SlideShare una empresa de Scribd logo
1 de 8
Personalized Mobile Search Engine
ABSTRACT
We propose a personalized mobile search engine, PMSE, that captures the users’ preferences in the form
of concepts by mining their clickthrough data. Due to the importance of location information in mobile search,
PMSE classifies these concepts into content concepts and location concepts. In addition, users’ locations
(positioned by GPS) are used to supplement the location concepts in PMSE. The user preferences are organized
in an ontology-based, multi-facet user profile, which are used to adapt a personalized ranking function for rank
adaptation of future search results. To characterize the diversity of the concepts associated with a query and
their relevances to the users need, four entropies are introduced to balance the weights between the content and
location facets. Based on the client-server model, we also present a detailed architecture and design for
implementation of PMSE. In our design, the client collects and stores locally the clickthrough data to protect
privacy, whereas heavy tasks such as concept extraction, training and reranking are performed at the PMSE
server. Moreover, we address the privacy issue by restricting the information in the user profile exposed to the
PMSE server with two privacy parameters. We prototype PMSE on the Google Android platform. Experimental
results show that PMSE significantly improves the precision comparing to the baseline.
GLOBALSOFT TECHNOLOGIES
IEEE PROJECTS & SOFTWARE DEVELOPMENTS
IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE
BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS
CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401
Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmail.com
Existing System
A major problem in mobile search is that the interactions between the users and search engines are
limited by the small form factors of the mobile devices. As a result, mobile users tend to submit shorter, hence,
more ambiguous queries compared to their web search counterparts. In order to return highly relevant results to
the users, mobile search engines must be able to profile the users’ interests and personalize the search results
according to the users’ profiles. A practical approach to capturing a user’s interests for personalization is to
analyze the user’s clickthrough data. Leung, et. al., developed a search engine personalization method based on
users’ concept preferences and showed that it is more effective than methods that are based on page preferences.
However, most of the previous work assumed that all concepts are of the same type. Observing the need for
different types of concepts.
Disadvantage:
 Most commercial search engines return roughly the same results to all users. However,
different users may have different information needs even for the same query.
Proposed System:
Many existing personalized web search systems are based clickthrough data to determine users’
preferences. Joachims proposed to mine document preferences from clickthrough data. Later, Ng, et. al.
proposed to combine a spying technique together with a novel voting procedure to determine user preferences.
More recently, Leung, et. al. introduced an effective approach to predict users’ conceptual preferences from
clickthrough data for personalized query suggestions. Search queries can be classified as content (i.e., non-geo)
or location (i.e., geo) queries. Examples of locationqueries are “hong kong hotels”, “museums in london” and
“virginia historical sites”. In, Gan, et. al., developed a classifier to classify geo and non-geo queries. It was
found that a significant number of queries were location queries focusing on location information. In order to
handle the queries that focus on location information, a number of location-based search systems designed for
location queries have been proposed. Yokoji, et. al. proposed a location-based search system for web
documents. Location information were extracted from the web documents, which was converted into latitude-
longitude pairs.
Advantages:
Personalization of search results is achieved by re-ranking search results returned by a standard search
engine based on proximity to the user’s interest model. The ability to recognize user interests in a
completely non-invasive way and the accuracy of personalized results are some of the major advantages
of our approach.
Architecture:
MODULES”
1. User Interest Profiling.
2. Diversity and Concept Entropy.
3. User Preferences Extraction and Privacy Preservation.
4. Personalized Ranking Functions.
Modules Description
1. User Interest Profiling
PMSE uses “concepts” to model the interests and preferences of a user. Since location
information is important in mobile search, the concepts are further classified into two different types,
namely, content concepts and location concepts. The concepts are modeled as ontologies, in order to
capture the relationships between the concepts. We observe that the characteristics of the content
concepts and location concepts are different. Thus, we propose two different techniques for building the
content ontology and location ontology. The ontologies indicate a possible concept space arising from a
user’s queries, which are maintained along with the clickthrough data for future preference adaptation.
In PMSE, we adopt ontologies to model the concept space because they not only can represent concepts
but also capture the relationships between concepts. Due to the different characteristics of the content
concepts and location concepts.
2. Diversity and Concept Entropy
PMSE consists of a content facet and a location facet. In order to seamlessly integrate the preferences in
these two facets into one coherent personalization framework, an important issue we have to address is how
to weigh the content preference and location preference in the integration step. To address this issue, we
propose to adjust the weights of content preference and location preference based on their effectiveness in
the personalization process. For a given query issued by a particular user, if the personalization based on
preferences from the content facet is more effective than based on the
preferences from the location facets, more weight should be put on the content-based preferences; and vice
versa.
3. User Preferences Extraction and Privacy Preservation
Given that the concepts and clickthrough data are collected from past search activities, user’s preference
can be learned. These search preferences, inform of a set of feature vectors, are to be submitted along
with future queries to the PMSE server for search result re-ranking. Instead of transmitting all the
detailed personal preference information to the server, PMSE allows the users to control the amount of
personal information exposed. In this section, we first review a preference mining
algorithms, namely SpyNB Method, that we adopt in PMSE, and then discuss how PMSE preserves user
privacy. SpyNB learns user behavior models from preferences extracted from clickthrough data.
Assuming that users only click on documents that are of interest to them, SpyNB treats the clicked
documents as positive samples, and predict reliable negative documents from the unlabeled (i.e.
unclicked) documents. To do the prediction, the “spy” technique incorporates a novel voting procedure
into Na¨ıve Bayes classifier to predict a negative set of documents from the unlabeled document set. The
details of the SpyNB method can be found in. Let P be the positive set, U the unlabeled set and PN the
predicted negative set (PN ⊂ U) obtained from the SpyNB method. SpyNB assumes that the user would
always prefer the positive set over the predicted negative set.
4. Personalized Ranking Functions
Upon reception of the user’s preferences, Ranking SVM (RSVM) is employed to learn a personalized
ranking function for rank adaptation of the search results according to the user content and location
preferences. For a given query, a set of content concepts and a set of location concepts are extracted
from the search results as the document features. Since each document can be represented by a feature
vector, it can be treated as a point in the feature space. Using the preference pairs as the input, RSVM
aims at finding a linear ranking function, which holds for as many document preference pairs as
possible. An adaptive implementation, SVM light available at, is used in our experiments. In the
following, we discuss two issues in the RSVM training process: 1) how to extract the feature vectors for
a document; 2) how to combine the content and location weight vectors into one integrated weight
vector.
System Configuration:-
H/W System Configuration:-
Processor - Pentium –III
Speed - 1.1 Ghz
RAM - 256 MB (min)
Hard Disk - 20 GB
Floppy Drive - 1.44 MB
Key Board - Standard Windows Keyboard
Mouse - Two or Three Button Mouse
Monitor - SVGA
S/W System Configuration:-
 Operating System :Windows95/98/2000/XP
 Application Server : Tomcat5.0/6.X
 Front End : HTML, Java, Jsp
 Scripts : JavaScript.
 Server side Script : Java Server Pages.
 Database : Mysql
 Database Connectivity : JDBC.
CONCLUSION
To adapt to the user mobility, we incorporated the user’s GPS locations in the personalization process. We
observed that GPS locations help to improve retrieval effectiveness, especially for location queries. We also
proposed two privacy parameters, minDistance and expRatio, to address privacy issues in PMSE by allowing
users to control the amount of personal information exposed to the PMSE server. The privacy parameters
facilitate smooth control of privacy exposure while maintaining good ranking quality. For future work, we will
investigate methods to exploit regular travel patterns and query patterns from the GPS and clickthrough data to
further enhance the personalization effectiveness of PMSE.

Más contenido relacionado

La actualidad más candente

Private Mobile Search Engine Using RSVM Training
Private Mobile Search Engine Using RSVM TrainingPrivate Mobile Search Engine Using RSVM Training
Private Mobile Search Engine Using RSVM Training
paperpublications3
 
Supporting privacy protection in personalized web search
Supporting privacy protection in personalized web searchSupporting privacy protection in personalized web search
Supporting privacy protection in personalized web search
Papitha Velumani
 

La actualidad más candente (18)

Study and Implementation of a Personalized Mobile Search Engine for Secure Se...
Study and Implementation of a Personalized Mobile Search Engine for Secure Se...Study and Implementation of a Personalized Mobile Search Engine for Secure Se...
Study and Implementation of a Personalized Mobile Search Engine for Secure Se...
 
Supporting privacy protection in personalized web search
Supporting privacy protection in personalized web search Supporting privacy protection in personalized web search
Supporting privacy protection in personalized web search
 
User search goal inference and feedback session using fast generalized – fuzz...
User search goal inference and feedback session using fast generalized – fuzz...User search goal inference and feedback session using fast generalized – fuzz...
User search goal inference and feedback session using fast generalized – fuzz...
 
supporting privacy protection in personalized web search
supporting privacy protection in personalized web searchsupporting privacy protection in personalized web search
supporting privacy protection in personalized web search
 
Supporting privacy protection in personalized web search
Supporting privacy protection in personalized web searchSupporting privacy protection in personalized web search
Supporting privacy protection in personalized web search
 
Supporting privacy protection in personalized web search
Supporting privacy protection in personalized web searchSupporting privacy protection in personalized web search
Supporting privacy protection in personalized web search
 
WEB IMAGE RE-RANKING USING QUERY-SPECIFIC SEMANTIC SIGNATURES
WEB IMAGE RE-RANKING USING QUERY-SPECIFIC SEMANTIC SIGNATURESWEB IMAGE RE-RANKING USING QUERY-SPECIFIC SEMANTIC SIGNATURES
WEB IMAGE RE-RANKING USING QUERY-SPECIFIC SEMANTIC SIGNATURES
 
Deriving concept based user profiles
Deriving concept based user profilesDeriving concept based user profiles
Deriving concept based user profiles
 
JPD1437 Click Prediction for Web Image Reranking Using Multimodal Sparse Coding
JPD1437  Click Prediction for Web Image Reranking Using Multimodal Sparse CodingJPD1437  Click Prediction for Web Image Reranking Using Multimodal Sparse Coding
JPD1437 Click Prediction for Web Image Reranking Using Multimodal Sparse Coding
 
IEEE 2014 JAVA DATA MINING PROJECTS Web image re ranking using query-specific...
IEEE 2014 JAVA DATA MINING PROJECTS Web image re ranking using query-specific...IEEE 2014 JAVA DATA MINING PROJECTS Web image re ranking using query-specific...
IEEE 2014 JAVA DATA MINING PROJECTS Web image re ranking using query-specific...
 
Private Mobile Search Engine Using RSVM Training
Private Mobile Search Engine Using RSVM TrainingPrivate Mobile Search Engine Using RSVM Training
Private Mobile Search Engine Using RSVM Training
 
Supporting privacy protection in personalized web search
Supporting privacy protection in personalized web searchSupporting privacy protection in personalized web search
Supporting privacy protection in personalized web search
 
web image re-ranking using query-specific semantic signatures
web image re-ranking using query-specific semantic signaturesweb image re-ranking using query-specific semantic signatures
web image re-ranking using query-specific semantic signatures
 
Supporting Privacy Protection in Personalized Web Search
Supporting Privacy Protection in Personalized Web SearchSupporting Privacy Protection in Personalized Web Search
Supporting Privacy Protection in Personalized Web Search
 
Efficient way of user search location in query processing
Efficient way of user search location in query processingEfficient way of user search location in query processing
Efficient way of user search location in query processing
 
1.supporting privacy protection in personalized web search..9440480873 ,proje...
1.supporting privacy protection in personalized web search..9440480873 ,proje...1.supporting privacy protection in personalized web search..9440480873 ,proje...
1.supporting privacy protection in personalized web search..9440480873 ,proje...
 
An attribute
An attributeAn attribute
An attribute
 
50120140506005 2
50120140506005 250120140506005 2
50120140506005 2
 

Similar a Personalized mobile search engine

IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
ijceronline
 
FIND MY VENUE: Content & Review Based Location Recommendation System
FIND MY VENUE: Content & Review Based Location Recommendation SystemFIND MY VENUE: Content & Review Based Location Recommendation System
FIND MY VENUE: Content & Review Based Location Recommendation System
IJTET Journal
 
SUPPORTING PRIVACY PROTECTION IN PERSONALIZED WEB SEARCH
SUPPORTING PRIVACY PROTECTION IN PERSONALIZED WEB SEARCHSUPPORTING PRIVACY PROTECTION IN PERSONALIZED WEB SEARCH
SUPPORTING PRIVACY PROTECTION IN PERSONALIZED WEB SEARCH
nikhil421080
 
Quest Trail: An Effective Approach for Construction of Personalized Search En...
Quest Trail: An Effective Approach for Construction of Personalized Search En...Quest Trail: An Effective Approach for Construction of Personalized Search En...
Quest Trail: An Effective Approach for Construction of Personalized Search En...
Editor IJCATR
 

Similar a Personalized mobile search engine (20)

L42016974
L42016974L42016974
L42016974
 
A270104
A270104A270104
A270104
 
Personalized web search using browsing history and domain knowledge
Personalized web search using browsing history and domain knowledgePersonalized web search using browsing history and domain knowledge
Personalized web search using browsing history and domain knowledge
 
Naresh sharma
Naresh sharmaNaresh sharma
Naresh sharma
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
FIND MY VENUE: Content & Review Based Location Recommendation System
FIND MY VENUE: Content & Review Based Location Recommendation SystemFIND MY VENUE: Content & Review Based Location Recommendation System
FIND MY VENUE: Content & Review Based Location Recommendation System
 
Deriving concept absed user profile
Deriving concept absed user profileDeriving concept absed user profile
Deriving concept absed user profile
 
Ac02411221125
Ac02411221125Ac02411221125
Ac02411221125
 
Projection Multi Scale Hashing Keyword Search in Multidimensional Datasets
Projection Multi Scale Hashing Keyword Search in Multidimensional DatasetsProjection Multi Scale Hashing Keyword Search in Multidimensional Datasets
Projection Multi Scale Hashing Keyword Search in Multidimensional Datasets
 
M phil-computer-science-pattern-recognition-projects
M phil-computer-science-pattern-recognition-projectsM phil-computer-science-pattern-recognition-projects
M phil-computer-science-pattern-recognition-projects
 
B045041114
B045041114B045041114
B045041114
 
SUPPORTING PRIVACY PROTECTION IN PERSONALIZED WEB SEARCH
SUPPORTING PRIVACY PROTECTION IN PERSONALIZED WEB SEARCHSUPPORTING PRIVACY PROTECTION IN PERSONALIZED WEB SEARCH
SUPPORTING PRIVACY PROTECTION IN PERSONALIZED WEB SEARCH
 
Analysis on Recommended System for Web Information Retrieval Using HMM
Analysis on Recommended System for Web Information Retrieval Using HMMAnalysis on Recommended System for Web Information Retrieval Using HMM
Analysis on Recommended System for Web Information Retrieval Using HMM
 
Quest Trail: An Effective Approach for Construction of Personalized Search En...
Quest Trail: An Effective Approach for Construction of Personalized Search En...Quest Trail: An Effective Approach for Construction of Personalized Search En...
Quest Trail: An Effective Approach for Construction of Personalized Search En...
 
2017 IEEE Projects 2017 For Cse ( Trichy, Chennai )
2017 IEEE Projects 2017 For Cse ( Trichy, Chennai )2017 IEEE Projects 2017 For Cse ( Trichy, Chennai )
2017 IEEE Projects 2017 For Cse ( Trichy, Chennai )
 
Image processing project list for java and dotnet
Image processing project list for java and dotnetImage processing project list for java and dotnet
Image processing project list for java and dotnet
 
G017415465
G017415465G017415465
G017415465
 
Al26234241
Al26234241Al26234241
Al26234241
 
11. Efficient Image Based Searching for Improving User Search Image Goals
11. Efficient Image Based Searching for Improving User Search Image Goals11. Efficient Image Based Searching for Improving User Search Image Goals
11. Efficient Image Based Searching for Improving User Search Image Goals
 
Service Rating Prediction by check-in and check-out behavior of user and POI
Service Rating Prediction by check-in and check-out behavior of user and POIService Rating Prediction by check-in and check-out behavior of user and POI
Service Rating Prediction by check-in and check-out behavior of user and POI
 

Más de IEEEFINALYEARPROJECTS

Más de IEEEFINALYEARPROJECTS (20)

Scalable face image retrieval using attribute enhanced sparse codewords
Scalable face image retrieval using attribute enhanced sparse codewordsScalable face image retrieval using attribute enhanced sparse codewords
Scalable face image retrieval using attribute enhanced sparse codewords
 
Scalable face image retrieval using attribute enhanced sparse codewords
Scalable face image retrieval using attribute enhanced sparse codewordsScalable face image retrieval using attribute enhanced sparse codewords
Scalable face image retrieval using attribute enhanced sparse codewords
 
Reversible watermarking based on invariant image classification and dynamic h...
Reversible watermarking based on invariant image classification and dynamic h...Reversible watermarking based on invariant image classification and dynamic h...
Reversible watermarking based on invariant image classification and dynamic h...
 
Reversible data hiding with optimal value transfer
Reversible data hiding with optimal value transferReversible data hiding with optimal value transfer
Reversible data hiding with optimal value transfer
 
Query adaptive image search with hash codes
Query adaptive image search with hash codesQuery adaptive image search with hash codes
Query adaptive image search with hash codes
 
Noise reduction based on partial reference, dual-tree complex wavelet transfo...
Noise reduction based on partial reference, dual-tree complex wavelet transfo...Noise reduction based on partial reference, dual-tree complex wavelet transfo...
Noise reduction based on partial reference, dual-tree complex wavelet transfo...
 
Local directional number pattern for face analysis face and expression recogn...
Local directional number pattern for face analysis face and expression recogn...Local directional number pattern for face analysis face and expression recogn...
Local directional number pattern for face analysis face and expression recogn...
 
An access point based fec mechanism for video transmission over wireless la ns
An access point based fec mechanism for video transmission over wireless la nsAn access point based fec mechanism for video transmission over wireless la ns
An access point based fec mechanism for video transmission over wireless la ns
 
Towards differential query services in cost efficient clouds
Towards differential query services in cost efficient cloudsTowards differential query services in cost efficient clouds
Towards differential query services in cost efficient clouds
 
Spoc a secure and privacy preserving opportunistic computing framework for mo...
Spoc a secure and privacy preserving opportunistic computing framework for mo...Spoc a secure and privacy preserving opportunistic computing framework for mo...
Spoc a secure and privacy preserving opportunistic computing framework for mo...
 
Secure and efficient data transmission for cluster based wireless sensor netw...
Secure and efficient data transmission for cluster based wireless sensor netw...Secure and efficient data transmission for cluster based wireless sensor netw...
Secure and efficient data transmission for cluster based wireless sensor netw...
 
Privacy preserving back propagation neural network learning over arbitrarily ...
Privacy preserving back propagation neural network learning over arbitrarily ...Privacy preserving back propagation neural network learning over arbitrarily ...
Privacy preserving back propagation neural network learning over arbitrarily ...
 
Non cooperative location privacy
Non cooperative location privacyNon cooperative location privacy
Non cooperative location privacy
 
Harnessing the cloud for securely outsourcing large
Harnessing the cloud for securely outsourcing largeHarnessing the cloud for securely outsourcing large
Harnessing the cloud for securely outsourcing large
 
Geo community-based broadcasting for data dissemination in mobile social netw...
Geo community-based broadcasting for data dissemination in mobile social netw...Geo community-based broadcasting for data dissemination in mobile social netw...
Geo community-based broadcasting for data dissemination in mobile social netw...
 
Enabling data dynamic and indirect mutual trust for cloud computing storage s...
Enabling data dynamic and indirect mutual trust for cloud computing storage s...Enabling data dynamic and indirect mutual trust for cloud computing storage s...
Enabling data dynamic and indirect mutual trust for cloud computing storage s...
 
Dynamic resource allocation using virtual machines for cloud computing enviro...
Dynamic resource allocation using virtual machines for cloud computing enviro...Dynamic resource allocation using virtual machines for cloud computing enviro...
Dynamic resource allocation using virtual machines for cloud computing enviro...
 
A secure protocol for spontaneous wireless ad hoc networks creation
A secure protocol for spontaneous wireless ad hoc networks creationA secure protocol for spontaneous wireless ad hoc networks creation
A secure protocol for spontaneous wireless ad hoc networks creation
 
Utility privacy tradeoff in databases an information-theoretic approach
Utility privacy tradeoff in databases an information-theoretic approachUtility privacy tradeoff in databases an information-theoretic approach
Utility privacy tradeoff in databases an information-theoretic approach
 
Two tales of privacy in online social networks
Two tales of privacy in online social networksTwo tales of privacy in online social networks
Two tales of privacy in online social networks
 

Último

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
Enterprise Knowledge
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 

Último (20)

From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 

Personalized mobile search engine

  • 1. Personalized Mobile Search Engine ABSTRACT We propose a personalized mobile search engine, PMSE, that captures the users’ preferences in the form of concepts by mining their clickthrough data. Due to the importance of location information in mobile search, PMSE classifies these concepts into content concepts and location concepts. In addition, users’ locations (positioned by GPS) are used to supplement the location concepts in PMSE. The user preferences are organized in an ontology-based, multi-facet user profile, which are used to adapt a personalized ranking function for rank adaptation of future search results. To characterize the diversity of the concepts associated with a query and their relevances to the users need, four entropies are introduced to balance the weights between the content and location facets. Based on the client-server model, we also present a detailed architecture and design for implementation of PMSE. In our design, the client collects and stores locally the clickthrough data to protect privacy, whereas heavy tasks such as concept extraction, training and reranking are performed at the PMSE server. Moreover, we address the privacy issue by restricting the information in the user profile exposed to the PMSE server with two privacy parameters. We prototype PMSE on the Google Android platform. Experimental results show that PMSE significantly improves the precision comparing to the baseline. GLOBALSOFT TECHNOLOGIES IEEE PROJECTS & SOFTWARE DEVELOPMENTS IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401 Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmail.com
  • 2. Existing System A major problem in mobile search is that the interactions between the users and search engines are limited by the small form factors of the mobile devices. As a result, mobile users tend to submit shorter, hence, more ambiguous queries compared to their web search counterparts. In order to return highly relevant results to the users, mobile search engines must be able to profile the users’ interests and personalize the search results according to the users’ profiles. A practical approach to capturing a user’s interests for personalization is to analyze the user’s clickthrough data. Leung, et. al., developed a search engine personalization method based on users’ concept preferences and showed that it is more effective than methods that are based on page preferences. However, most of the previous work assumed that all concepts are of the same type. Observing the need for different types of concepts. Disadvantage:  Most commercial search engines return roughly the same results to all users. However, different users may have different information needs even for the same query. Proposed System: Many existing personalized web search systems are based clickthrough data to determine users’ preferences. Joachims proposed to mine document preferences from clickthrough data. Later, Ng, et. al. proposed to combine a spying technique together with a novel voting procedure to determine user preferences. More recently, Leung, et. al. introduced an effective approach to predict users’ conceptual preferences from clickthrough data for personalized query suggestions. Search queries can be classified as content (i.e., non-geo) or location (i.e., geo) queries. Examples of locationqueries are “hong kong hotels”, “museums in london” and “virginia historical sites”. In, Gan, et. al., developed a classifier to classify geo and non-geo queries. It was found that a significant number of queries were location queries focusing on location information. In order to handle the queries that focus on location information, a number of location-based search systems designed for location queries have been proposed. Yokoji, et. al. proposed a location-based search system for web documents. Location information were extracted from the web documents, which was converted into latitude- longitude pairs.
  • 3. Advantages: Personalization of search results is achieved by re-ranking search results returned by a standard search engine based on proximity to the user’s interest model. The ability to recognize user interests in a completely non-invasive way and the accuracy of personalized results are some of the major advantages of our approach.
  • 5. MODULES” 1. User Interest Profiling. 2. Diversity and Concept Entropy. 3. User Preferences Extraction and Privacy Preservation. 4. Personalized Ranking Functions. Modules Description 1. User Interest Profiling PMSE uses “concepts” to model the interests and preferences of a user. Since location information is important in mobile search, the concepts are further classified into two different types, namely, content concepts and location concepts. The concepts are modeled as ontologies, in order to capture the relationships between the concepts. We observe that the characteristics of the content concepts and location concepts are different. Thus, we propose two different techniques for building the content ontology and location ontology. The ontologies indicate a possible concept space arising from a user’s queries, which are maintained along with the clickthrough data for future preference adaptation. In PMSE, we adopt ontologies to model the concept space because they not only can represent concepts but also capture the relationships between concepts. Due to the different characteristics of the content concepts and location concepts. 2. Diversity and Concept Entropy PMSE consists of a content facet and a location facet. In order to seamlessly integrate the preferences in these two facets into one coherent personalization framework, an important issue we have to address is how to weigh the content preference and location preference in the integration step. To address this issue, we propose to adjust the weights of content preference and location preference based on their effectiveness in the personalization process. For a given query issued by a particular user, if the personalization based on preferences from the content facet is more effective than based on the
  • 6. preferences from the location facets, more weight should be put on the content-based preferences; and vice versa. 3. User Preferences Extraction and Privacy Preservation Given that the concepts and clickthrough data are collected from past search activities, user’s preference can be learned. These search preferences, inform of a set of feature vectors, are to be submitted along with future queries to the PMSE server for search result re-ranking. Instead of transmitting all the detailed personal preference information to the server, PMSE allows the users to control the amount of personal information exposed. In this section, we first review a preference mining algorithms, namely SpyNB Method, that we adopt in PMSE, and then discuss how PMSE preserves user privacy. SpyNB learns user behavior models from preferences extracted from clickthrough data. Assuming that users only click on documents that are of interest to them, SpyNB treats the clicked documents as positive samples, and predict reliable negative documents from the unlabeled (i.e. unclicked) documents. To do the prediction, the “spy” technique incorporates a novel voting procedure into Na¨ıve Bayes classifier to predict a negative set of documents from the unlabeled document set. The details of the SpyNB method can be found in. Let P be the positive set, U the unlabeled set and PN the predicted negative set (PN ⊂ U) obtained from the SpyNB method. SpyNB assumes that the user would always prefer the positive set over the predicted negative set. 4. Personalized Ranking Functions Upon reception of the user’s preferences, Ranking SVM (RSVM) is employed to learn a personalized ranking function for rank adaptation of the search results according to the user content and location preferences. For a given query, a set of content concepts and a set of location concepts are extracted from the search results as the document features. Since each document can be represented by a feature vector, it can be treated as a point in the feature space. Using the preference pairs as the input, RSVM aims at finding a linear ranking function, which holds for as many document preference pairs as possible. An adaptive implementation, SVM light available at, is used in our experiments. In the following, we discuss two issues in the RSVM training process: 1) how to extract the feature vectors for a document; 2) how to combine the content and location weight vectors into one integrated weight
  • 7. vector. System Configuration:- H/W System Configuration:- Processor - Pentium –III Speed - 1.1 Ghz RAM - 256 MB (min) Hard Disk - 20 GB Floppy Drive - 1.44 MB Key Board - Standard Windows Keyboard Mouse - Two or Three Button Mouse Monitor - SVGA S/W System Configuration:-  Operating System :Windows95/98/2000/XP  Application Server : Tomcat5.0/6.X  Front End : HTML, Java, Jsp  Scripts : JavaScript.  Server side Script : Java Server Pages.  Database : Mysql  Database Connectivity : JDBC.
  • 8. CONCLUSION To adapt to the user mobility, we incorporated the user’s GPS locations in the personalization process. We observed that GPS locations help to improve retrieval effectiveness, especially for location queries. We also proposed two privacy parameters, minDistance and expRatio, to address privacy issues in PMSE by allowing users to control the amount of personal information exposed to the PMSE server. The privacy parameters facilitate smooth control of privacy exposure while maintaining good ranking quality. For future work, we will investigate methods to exploit regular travel patterns and query patterns from the GPS and clickthrough data to further enhance the personalization effectiveness of PMSE.