SlideShare una empresa de Scribd logo
1 de 70
Glass Fiber-Reinforced Polymer/Steel
Hybrid Honeycomb Sandwich Concept
for Bridge Deck Applications
Final Examination
February 1, 2008
Nick Lombardi
Outline
 Introduction
 Hybrid Concept Parametric Studies
 Experimental Studies
 Hybrid Concept Analysis, Modeling,
and Design Methods
 Conclusions
INTRODUCTION:
KSCI bridge deck panel
face sheet
flute (typ.)
flat (typ.)
T-, 3-, or
out-of-plane,
direction
L-, 1-, or
longitudinal,
direction
W-, 2-, or
transverse,
direction
face sheet
flute (typ.)
flat (typ.)
T-, 3-, or
out-of-plane,
direction
L-, 1-, or
longitudinal,
direction
W-, 2-, or
transverse,
direction
W-, 2-, or
transverse,
direction
T-, 3-, or
out-of-plane,
direction
L-, 1-, or
longitudinal,
direction
flute or curve wall (typ.)
flat (typ.)
W-, 2-, or
transverse,
direction
T-, 3-, or
out-of-plane,
direction
L-, 1-, or
longitudinal,
direction
W-, 2-, or
transverse,
direction
T-, 3-, or
out-of-plane,
direction
L-, 1-, or
longitudinal,
direction
flute or curve wall (typ.)
flat (typ.)
Reinforced-sinusoidal
honeycomb core
KSCI core orientation on bridge
L
W
Honeycomb core
orientation
Half of Case Study Bridge
Concrete
Approach
30’- 0”50’- 0”
Research motivation
 Wildcat Creek Bridge rehabilitation
 AASHTO span-to-deflection ratio exceeded
EXISTING PROPOSE
D
10
Research motivation
 Bridge deck issues
 Uneconomical GFRP core depth
 Build up concrete approach spans
 Face sheet design and economy
CL bridge span 3-span continuous
main span (GFRP)
Approach span
(concrete)
Research objectives
1. To increase structural stiffness
2. To provide simplified stiffness
design procedures
Research tasks
 Hybrid steel-GFRP parametric studies
 Experimental studies - stiffness
 Small-scale honeycomb core
 Large-scale beams
 Analysis/Design methods
 Strip method hand calc techniques
 3D finite element analyses
HYBRID CONCEPT
PARAMETRIC STUDIES
 Steel plate embedded in face sheet
 Steel tube spaced within KSCI core
 Steel plate vs. steel tube
 KSCI L-dir vs. W-dir core beam study
 Steel roof deck honeycomb core
 Steel core vs. steel plate
Steel plate study
 Transformed
section
 Cantilever beam
model
 Plate thicknesses
 22 gage - 1/8”
bequiv
(n-1)As/2
dc tflat
tf
unit thickness P
GChSM Ac
E1 If
L
D
Exterior bridge beam
Steel tube studies
 ABAQUS FE
 Detailed core model
 (4) face sheet layups
 Original KSCI layup
 Highest E2 modulus
 Highest E2tf stiffness
 Highest G12tf stiffness
Clamped @ exterior
bridge beam
Load patch
L
W
L
W
Steel tube vs. Steel plate
1.25
3.25
5.25
7.25
9.25
11.25
13.25
0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26
Maximum deflection, in
As,in2
plate(I)
plate(II)
tube(I), s = 2ft
tube(II), s = 2ft
tube(I), s = 4ft
tube(II), s = 4ft
tube(III), s = 2ft
tube(III), s = 4ft
tube(IV), s = 4ft
tube(IV), s = 2ft
L/300
Face sheet stiffness/
Honeycomb core stiffness studies
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
baseline t_face E_face t_core wall E_core wall
Stiffness parameters
Midspandeflection,in
W-dir L-dir
0.845”
0.325”
0.717”
0.284”
Steel roof deck honeycomb core:
United Steel and Vulcraft results
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
KSCI UF1X UF2X 1.5A 3N
Honeycomb core type
Midspandeflection,in
W-dir L-dir
Steel roof deck honeycomb core:
Vulcraft 1.5A assembled core
L-direction steel core
W-direction steel core
Steel core vs. Steel plate
3ft overhang span length
1.75
2.75
3.75
4.75
5.75
6.75
7.75
8.75
9.75
10.75
0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135 0.140
Maximum deflection, in
As,in2
1.5A steel deck
steel plate
L/300
EXPERIMENTAL STUDY
 Specimen fabrication
 Tension coupon tests
 Honeycomb core equivalent moduli
 Large-scale beam tests
Specimen fabrication
 Help KSCI workers – any problems
 KSCI experience with steel core
 KSCI workers’ opinion of steel core
 Personal interest in process
Honeycomb core tests
 Obtain equivalent
elastic moduli
 Relevance to
sandwich theory
 In-plane
elastic moduli
 EL and EW
 Out-of-plane
elastic moduli
 ET, GLT, and GWT
l
θ
t h
b
d
L
W
c
L-direction equivalent modulus:
Prediction equation - theory
2
6EI
FEM = l
l
δ
 
 ÷
 δl
L-direction equivalent modulus:
Test setup - photos
L-direction equivalent modulus:
Prediction equation - experimental
2
2EI
FEM = l
l
δ
 
 ÷
 
δl
L-direction equivalent modulus:
Prediction equation - experimental
2
2EI W cosθ
FEM=δ =
2
l
l
l
 
 ÷
 
3
W cosθ
δ =
4EI
l
l
W
δ =
EA
h
h
( )
( )L
δ cos θ + δΔL
ε = =
L + sinθ
l h
h l
L
L
L
σ
E =
ε
σL
σL
( )( )LW = σ cos θ×bl
L-direction equivalent modulus:
Elastic modulus summary
EL,avg = 1,130 psi (experimental)
( ) ( )
( )
3
-4
L,theory steel steel3
h +sinθt lE = E =1.141×10 E = 3,309 psi
l cosθ
 
  
 ÷  
 
( )( )
( ) ( )( )
3
-5
L,hybrid steel steel3 2 2
t h+lsinθ
E = E =3.78×10 E = 1,096 psi
lcosθ 3l cos θ +ht
 
 
  
W-direction equivalent modulus:
Test setup - photos
W-direction equivalent modulus:
Elastic modulus summary
( )
( ) ( )( ) ( )
3
-4
W,theory steel steel
2
cosθt
E = E =2.118×10 E = 6,142 psi
l h +sinθ sin θ
l
 
  
 ÷  
  
( )
( ) ( )( ) ( )
3
-4
W,hybrid steel steel
2
cosθ1 t
E = E =1.06×10 E = 3,074 psi
2 l h +sinθ sin θ
l
 
  
 ÷  
  
Core L and W direction transverse shear moduli:
Theoretical KSCI and Hybrid shear moduli
GLT (ksi) GWT (ksi)
KSCI 44.2 18.4
Hybrid 498 175
HYBRID unit cell
KSCI unit cell
Core L-direction transverse shear moduli:
Test setup
Japanese yoke
Support beam
setup
Load plates
LVDT
(typ.)
Core L-direction transverse shear moduli:
Typical core shear strain distribution
-3.5
-2.5
-1.5
-0.5
0.5
1.5
2.5
3.5
-150 -100 -50 0 50 100 150
Shear strain, γL'T'/2 (µε)
Verticaldistancefromcenterline(in)
8,000 lb
6,000 lb
4,000 lb
2,000 lb
PARABOLIC
Core W-direction transverse shear moduli:
Typical core shear strain distribution
-3.5
-2.5
-1.5
-0.5
0.5
1.5
2.5
3.5
-150 -100 -50 0 50 100 150 200
Shear strain, γW'T'/2 (µε)
Verticaldistancefromcenterline(in)
10,000 lb
6,000 lb
8,000 lb
4,000 lb2,000 lb
LINEAR
Core L and W direction shear moduli:
Equivalent experimental shear moduli
Beam-1 Beam-2 Beam-3 Average Theory
GLT (ksi) -100.6 -279.1 -191.2 -190 498
GWT (ksi) 69.4 104.7 67.6 80.6 175
Core L and W direction shear moduli:
Face sheet thickness dependence
0.0000
0.0625
0.1250
0.1875
0.2500
0.3125
0.3750
0.4375
GLT-1 GLT-2 GLT-3 GWT-1 GWT-2 GWT-3
Shear beam specimen
Facesheetthickness,in
measured required design required-design measured-design
EXPERIMENTAL STUDY
 Specimen fabrication
 Tension coupon tests
 Honeycomb core equivalent moduli
 Large-scale beam tests
Hybrid L-direction large-scale beams:
Test setup
Hybrid L-direction large-scale beams:
Test setup - photos
Hybrid W-direction large-scale beams:
Test specimens: core orientation
span direction
"stiffener" along span
(typ.)
Hybrid W-direction large-scale beams:
Test setup - photos
HYBRID CONCEPT
ANALYSIS, MODELING, & DESIGN
 KSCI vs. Hybrid large-scale beam
equivalent modulus comparison
 Analysis methods
 Two-way vs. One-way bending
 Design example
 Demonstrate analysis/design methods
KSCI and Hybrid Equivalent
Experimental Flexural Modulus
( )( )
transformed transformed transformed
PL D
Mc PLD4 2σ = = =
I I 8I
Bending strains, εavg, taken from average of midspan uniaxial gages
Equivalent
Core D
Eface
Ecore
dc
bf
tf
n(bc)transformed
section
core
face
E
n =
E
L-direction beam σ-ε summary
Equivalent modulus comparison
0
500
1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000
0 500 1,000 1,500 2,000 2,500 3,000 3,500
Avg midspan strain, µε
Mc/Itransform,psi
Hybrid beam-1
2,111 ksi
Hybrid beam-2
2,051 ksi
KSCI baseline beam
1,459 ksi
Prediction
2,001 ksi
W-direction beam σ-ε summary
Equivalent modulus comparison
0
500
1,000
1,500
2,000
2,500
3,000
0 500 1,000 1,500 2,000 2,500
Avg midspan strain, µε
Mc/Itransform,psi
Hybrid beam-1
2,408 ksi
Hybrid beam-2
1,965 ksi
KSCI baseline beam
2,128 ksi
Hybrid Prediction
2,001 ksi
KSCI original design
1,324 ksi
KSCI and Hybrid Equivalent
Experimental Core τ-γ Summary
( ) transf
transf transf
transf core transf core transf core
P QVQ PQ2τ = = =
I b I b 2I b
Core shear strains, γavg, taken from average of core centerline
rosettes on each side of beam
face
core
E
n =
E
D
Equivalent
Core
Eface
Ecore
transformed
section
n(bf)
dc
tf
bc
L-direction beam τ-γ summary
Honeycomb core comparison
0
10
20
30
40
50
60
70
0 100 200 300 400 500
Avg max core shear strain, µε
VQtransf/Itransfbcore,psi
Hybrid beam-2
481.9 ksi Hybrid beam-1
360.9 ksi
KSCI baseline beam
141.3 ksi
W-direction beam τ-γ summary
Honeycomb core comparison
0
5
10
15
20
25
30
35
40
0 100 200 300 400 500
Avg max core shear strain, µε
VQtransf/Itransfbcore,psi
Hybrid beam-2
383.1 ksi
Hybrid beam-1
335.0 ksi
KSCI baseline beam
78.4 ksi
Analysis methods
 Detailed core finite element models
 Homogenized core finite element
models
 Hand calculation methods
 (EI)face/core + (GA)core
 (EI)face + (GA)core
 (EI)face
homogenizationhomogenization
Honeycomb core FE models vs.
Experimental results
1,850
1,900
1,950
2,000
2,050
2,100
2,150
2,200
L-direction W-direction
Honeycomb core span orientation
Equivalentflexuralmodulus,ksi
Detailed FE Homogenized FE Experiment (avg)
< 2% difference < 10% difference
Hand calculation methods vs.
Experimental results
0.0
0.5
1.0
1.5
2.0
2.5
3.0
L-direction W-direction
Honeycomb core span orientation
Normalizedstiffness,(kips/in)/in
EI_f,c+AG_c EI_f+AG_c EI_f Experiment (avg)
Two-way vs. One-way bending
 Effective width determination
 Based on finite element models
 Strip method vs. Finite elements
 Maximum overhang deflection analysis
 Simply supported beam with overhang
 Strip method – one-way bending
 Finite elements – two-way bending
Strip method vs. FE analysis
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
24 in 36 in 48 in 60 in
Overhang span length, LOH
Maximumoverhangtipdeflection,in
Strip method (EI+AG) Strip method (EI) FEA
UNCONSERVATIVE!!!
CONCLUSIONS:
Summary of work
 Small-scale
 Steel hexagonal honeycomb core
equivalent orthotropic elastic moduli tests
 Stiffness design equations
 Large-scale tests
 Hybrid and KSCI test beams
 KSCI vs. Hybrid equivalent flexural and
shear stiffness comparisons
CONCLUSIONS:
Summary of work
 Solid equivalent core modeling
 2D strip method modeling
 3D FE modeling
CONCLUSIONS:
Main conclusions/results
 Replacement of KSCI GFRP core with
steel core
 Elastic characterization of steel
honeycomb core
 Steel core significantly reduces shear
deformations
 Overall increase in stiffness relative to
KSCI GFRP core
CONCLUSIONS:
Main conclusions/results
 Maintain light-weight honeycomb core
 17.6 pcf (hybrid) vs. 14.2 pcf (KSCI)
 2D strip method
 Conservative: One-way bending
 Unconservative: Two-way bending
 3D FE modeling necessary
 Two-way bending – shorter overhangs
Future work
 Address manufacturing techniques
 Mechanize steel core construction
 Improve face sheet-to-honeycomb
core interface connection
 Strength characterization of new
hybrid GFRP-steel sandwich bridge
deck
 Experimentally and theoretically
QUESTIONS???
INTRODUCTION:
KSCI core unit cell/face sheet layup
(1) 3oz/ft2 ChSM ply
(7) biaxial plies
(2) 3oz/ft2 ChSM plies
(bonding layer to honeycomb)
(1) 3oz/ft2 ChSM ply
(7) biaxial plies
(2) 3oz/ft2 ChSM plies
(bonding layer to honeycomb)
b
h
h
s
t
t t/2
x
y
INTRODUCTION:
KSCI core orientation on bridge
stringer centerline (typ.)
steel tube
(typ.)
honeycomb core
orientation
Face sheet stiffness/
Honeycomb core stiffness studies
L-direction core beam
W-direction core beam
Tension coupon tests
 Constituent elastic moduli
 Five different samples
 Vulcraft steel decking
 3 oz/ft2
chopped strand mat
 Face sheet layup
 Biaxial plies
 Face sheet with embedded strain gage
Core W-direction transverse shear moduli:
Test setup
Japanese yoke
LVDT
(typ.)
Support beam
setup
Load plates
Effective width calculation
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Node across width
S11,ksi
S11node,max
( )
,max
11
11
trib node
eff
node
S b
b
S
Σ ×
=
Effective width:
Varying overhang spans
y = -0.0275x
2
+ 3.4865x - 24.287
0
10
20
30
40
50
60
70
80
90
100
18 24 30 36 42 48 54 60 66
Overhang span length, LOH (in)
Effectivewidth,beff(in)
beff = -0.0275LOH
2
+ 3.4865LOH - 24.287
Design example:
Strip method
 Wildcat Creek Bridge: Lafayette, IN
 Bridge widening
 Stringer spacing same
 5’-7”
 Overhang increased
 2’-9” to 3’-2”: strip method conservative
 Design GFRP-steel hybrid decking for
stiffness using AASHTO specs
Design example:
Overhang span design
Model as simply supported beam with an overhang:
P P
L x
a b y
10"
P
(kips)
Ef
(ksi)
tf
(in)
a
(in)
b
(in)
y
(in)
x
(in)
L
(in)
21 2,001 0.625 23 44 38 28 67
Design example:
Overhang span design
2
= -0.0275 + 3.4865 - 24.287 = 68.5 ineffb y y
( )
( )
23
2
2.787 21.41 0.625
6 2
eff f c feff f
f c
b t d tb t
I d
+
= + = + +
Compute effective width, beff:
Compute face sheet moment of inertia and equivalent core area in
terms of the core depth design variable, dc:
68.5c eff c cA b d d= =
Design example:
Overhang span design
4
2,770 infI =
( )
( )
( )
( )
2
300 6 3
overhang
f f
y Paby Px
L a L x
EI L EI
∆ = = + + +
( )
2
2,770 2.787 21.41 0.625cd= + +
The deflection at the overhang tip due to applied loads is set equal
to the AASHTO recommended span-deflection ratio:
Substitute all defined variables and solve for If:
Set required If equal to expression for If in terms of dc and solve:
10.75 incd ≥
Design example:
Stringer span design
Model as simply supported beam between stringers:
P
L
Use all previously
defined variables from
overhang design.
Equivalent L-dir core
shear modulus:
GLT = Gc = 498 ksi
Design example:
Stringer span design
( ) ( )
3
6
800 48 5 4
stringer
f c
L PL PL
EI AG
 
∆ = = +  ÷
 
3 2
1.793 1.976 65.16 0.1379 0c c cd d d+ − − =
The midspan deflection (bending and shear) due to applied loads is
set equal to the AASHTO recommended span-deflection ratio:
Substitute all known variables and expressions, and solve for the
design core depth, dc:
5.5 incd ≥
Therefore the overhang design governs and the minimum core
depth must be 10.75in to satisfy AASHTO span-deflection limits.
Design example verification:
Homogenized core FE model
-5
L 1 steelE = E = 3.802×10 E
-4
W 2 steelE = E = 1.059×10 E
-2
T 3 steelE = E = 2.432×10 E
-2
LT 13 steelG = G = 4.465×10 G
-2
WT 23 steelG = G = 1.567×10 G
-6
LW 12G = G = 10 ksi (assumed)
LW 12 steelν = ν = 2.447 ν
-3
LT 13 steelν = ν = 1.564×10 ν
-3
WT 23 steelν = ν = 4.355×10 ν
E1
(ksi)
E2
(ksi)
E3
(ksi)
G12
(ksi)
G13
(ksi)
G23
(ksi)
ν12
ν13
(x10-4
)
ν23
(x10-3
)
1.10 3.07 705 10-6
498 175 0.59 4.69 1.31
Design example verification:
Homogenized core FE model
L 38 in
= = 0.127 in
300 300
∆FEM = 0.085 in OK

Más contenido relacionado

La actualidad más candente (9)

Slender columnn and two-way slabs
Slender columnn and two-way slabsSlender columnn and two-way slabs
Slender columnn and two-way slabs
 
Structur e very helpfull
Structur e very helpfullStructur e very helpfull
Structur e very helpfull
 
Topic%20 compression
Topic%20 compressionTopic%20 compression
Topic%20 compression
 
Us5101215 sistem de turn telescopic
Us5101215 sistem de turn telescopicUs5101215 sistem de turn telescopic
Us5101215 sistem de turn telescopic
 
Three.hinged.arch
Three.hinged.archThree.hinged.arch
Three.hinged.arch
 
M6l36
M6l36M6l36
M6l36
 
D E S I G N O F M A C H I N E M E M B E R S I J N T U M O D E L P A P E R...
D E S I G N O F M A C H I N E M E M B E R S  I  J N T U  M O D E L  P A P E R...D E S I G N O F M A C H I N E M E M B E R S  I  J N T U  M O D E L  P A P E R...
D E S I G N O F M A C H I N E M E M B E R S I J N T U M O D E L P A P E R...
 
Chapter 5-cables and arches
Chapter 5-cables and archesChapter 5-cables and arches
Chapter 5-cables and arches
 
Wire ropes
Wire ropesWire ropes
Wire ropes
 

Destacado

Диагностика товарного рынка Украины: макроэкономические показатели и тенденци...
Диагностика товарного рынка Украины: макроэкономические показатели и тенденци...Диагностика товарного рынка Украины: макроэкономические показатели и тенденци...
Диагностика товарного рынка Украины: макроэкономические показатели и тенденци...
KNEU
 
кодировка Html
кодировка Htmlкодировка Html
кодировка Html
serega127
 

Destacado (20)

İnovatif Kimya Dergisi Sayı-24
İnovatif Kimya Dergisi Sayı-24İnovatif Kimya Dergisi Sayı-24
İnovatif Kimya Dergisi Sayı-24
 
vol7
vol7vol7
vol7
 
Presentación2
Presentación2Presentación2
Presentación2
 
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueOil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
 
MediaPackage
MediaPackage MediaPackage
MediaPackage
 
p850-ries
p850-riesp850-ries
p850-ries
 
Script false image montage
Script false image montage Script false image montage
Script false image montage
 
netflix
netflixnetflix
netflix
 
İnovatif Kimya Dergisi Sayı-22
İnovatif Kimya Dergisi Sayı-22İnovatif Kimya Dergisi Sayı-22
İnovatif Kimya Dergisi Sayı-22
 
Диагностика товарного рынка Украины: макроэкономические показатели и тенденци...
Диагностика товарного рынка Украины: макроэкономические показатели и тенденци...Диагностика товарного рынка Украины: макроэкономические показатели и тенденци...
Диагностика товарного рынка Украины: макроэкономические показатели и тенденци...
 
Electro and mechanical works in qatar
Electro and mechanical works in qatarElectro and mechanical works in qatar
Electro and mechanical works in qatar
 
İnovatif Kimya Dergisi Sayı-16
İnovatif Kimya Dergisi Sayı-16İnovatif Kimya Dergisi Sayı-16
İnovatif Kimya Dergisi Sayı-16
 
Binus AIO group Big Bang Disruption 2016
Binus AIO group Big Bang Disruption 2016Binus AIO group Big Bang Disruption 2016
Binus AIO group Big Bang Disruption 2016
 
My curriculum vitae
My curriculum vitaeMy curriculum vitae
My curriculum vitae
 
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
 
Presentation1
Presentation1Presentation1
Presentation1
 
Mu0010–manpower planning and resourcing
Mu0010–manpower planning and resourcingMu0010–manpower planning and resourcing
Mu0010–manpower planning and resourcing
 
Work Term Report
Work Term ReportWork Term Report
Work Term Report
 
DOLETA!
DOLETA!DOLETA!
DOLETA!
 
кодировка Html
кодировка Htmlкодировка Html
кодировка Html
 

Similar a thesis defense presentation

Thesis Defense Presentation
Thesis Defense PresentationThesis Defense Presentation
Thesis Defense Presentation
elumpkin1
 
Columns lecture#2
Columns lecture#2Columns lecture#2
Columns lecture#2
Irfan Malik
 
OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo roberti
OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo robertiOPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo roberti
OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo roberti
Vincenzo Roberti
 
FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE FLEXURAL CAPACITY OF ...
FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE FLEXURAL CAPACITY OF ...FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE FLEXURAL CAPACITY OF ...
FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE FLEXURAL CAPACITY OF ...
Sadia Mitu
 
1. simple stress_strain
1. simple stress_strain1. simple stress_strain
1. simple stress_strain
amitsomwanshi
 
Strengthening metallic shells with frp against buckling cice2008
Strengthening metallic shells with frp against buckling cice2008Strengthening metallic shells with frp against buckling cice2008
Strengthening metallic shells with frp against buckling cice2008
Yara Mouna
 

Similar a thesis defense presentation (20)

U01232170177
U01232170177U01232170177
U01232170177
 
Analysis of T-Beam
Analysis of T-BeamAnalysis of T-Beam
Analysis of T-Beam
 
Thesis Defense Presentation
Thesis Defense PresentationThesis Defense Presentation
Thesis Defense Presentation
 
Column design.ppt
Column design.pptColumn design.ppt
Column design.ppt
 
Structures and Materials- Section 6 Axially Loaded Structural Members
Structures and Materials- Section 6 Axially Loaded Structural MembersStructures and Materials- Section 6 Axially Loaded Structural Members
Structures and Materials- Section 6 Axially Loaded Structural Members
 
Ch 8.pdf
Ch 8.pdfCh 8.pdf
Ch 8.pdf
 
Columns lecture#2
Columns lecture#2Columns lecture#2
Columns lecture#2
 
SA-II Notes.pdf
SA-II  Notes.pdfSA-II  Notes.pdf
SA-II Notes.pdf
 
Conceps of RCC-PCC.pptx
Conceps of RCC-PCC.pptxConceps of RCC-PCC.pptx
Conceps of RCC-PCC.pptx
 
Short Composite Columns - thesis
Short Composite Columns - thesis Short Composite Columns - thesis
Short Composite Columns - thesis
 
OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo roberti
OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo robertiOPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo roberti
OPTIMIZATION OF PRESTRESSED CONCRETE BEAMS-student vincenzo roberti
 
Analysis and Design of Reinforced Concrete Beams
Analysis and Design of Reinforced Concrete BeamsAnalysis and Design of Reinforced Concrete Beams
Analysis and Design of Reinforced Concrete Beams
 
FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE FLEXURAL CAPACITY OF ...
FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE FLEXURAL CAPACITY OF ...FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE FLEXURAL CAPACITY OF ...
FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE FLEXURAL CAPACITY OF ...
 
1. simple stress_strain
1. simple stress_strain1. simple stress_strain
1. simple stress_strain
 
stress_strain SS ramamrutham.ppt
stress_strain SS ramamrutham.pptstress_strain SS ramamrutham.ppt
stress_strain SS ramamrutham.ppt
 
Estimating the economic quantities of different concrete slab types
Estimating the economic quantities of different concrete slab typesEstimating the economic quantities of different concrete slab types
Estimating the economic quantities of different concrete slab types
 
2009 NEES Presentation
2009 NEES Presentation2009 NEES Presentation
2009 NEES Presentation
 
Column_Buckling_2.ppt
Column_Buckling_2.pptColumn_Buckling_2.ppt
Column_Buckling_2.ppt
 
IRJET - Comparison of Single Skin Corrugated Hollow Steel Column and Conventi...
IRJET - Comparison of Single Skin Corrugated Hollow Steel Column and Conventi...IRJET - Comparison of Single Skin Corrugated Hollow Steel Column and Conventi...
IRJET - Comparison of Single Skin Corrugated Hollow Steel Column and Conventi...
 
Strengthening metallic shells with frp against buckling cice2008
Strengthening metallic shells with frp against buckling cice2008Strengthening metallic shells with frp against buckling cice2008
Strengthening metallic shells with frp against buckling cice2008
 

thesis defense presentation

  • 1. Glass Fiber-Reinforced Polymer/Steel Hybrid Honeycomb Sandwich Concept for Bridge Deck Applications Final Examination February 1, 2008 Nick Lombardi
  • 2. Outline  Introduction  Hybrid Concept Parametric Studies  Experimental Studies  Hybrid Concept Analysis, Modeling, and Design Methods  Conclusions
  • 3. INTRODUCTION: KSCI bridge deck panel face sheet flute (typ.) flat (typ.) T-, 3-, or out-of-plane, direction L-, 1-, or longitudinal, direction W-, 2-, or transverse, direction face sheet flute (typ.) flat (typ.) T-, 3-, or out-of-plane, direction L-, 1-, or longitudinal, direction W-, 2-, or transverse, direction W-, 2-, or transverse, direction T-, 3-, or out-of-plane, direction L-, 1-, or longitudinal, direction flute or curve wall (typ.) flat (typ.) W-, 2-, or transverse, direction T-, 3-, or out-of-plane, direction L-, 1-, or longitudinal, direction W-, 2-, or transverse, direction T-, 3-, or out-of-plane, direction L-, 1-, or longitudinal, direction flute or curve wall (typ.) flat (typ.) Reinforced-sinusoidal honeycomb core
  • 4. KSCI core orientation on bridge L W Honeycomb core orientation Half of Case Study Bridge Concrete Approach 30’- 0”50’- 0”
  • 5. Research motivation  Wildcat Creek Bridge rehabilitation  AASHTO span-to-deflection ratio exceeded EXISTING PROPOSE D 10
  • 6. Research motivation  Bridge deck issues  Uneconomical GFRP core depth  Build up concrete approach spans  Face sheet design and economy CL bridge span 3-span continuous main span (GFRP) Approach span (concrete)
  • 7. Research objectives 1. To increase structural stiffness 2. To provide simplified stiffness design procedures
  • 8. Research tasks  Hybrid steel-GFRP parametric studies  Experimental studies - stiffness  Small-scale honeycomb core  Large-scale beams  Analysis/Design methods  Strip method hand calc techniques  3D finite element analyses
  • 9. HYBRID CONCEPT PARAMETRIC STUDIES  Steel plate embedded in face sheet  Steel tube spaced within KSCI core  Steel plate vs. steel tube  KSCI L-dir vs. W-dir core beam study  Steel roof deck honeycomb core  Steel core vs. steel plate
  • 10. Steel plate study  Transformed section  Cantilever beam model  Plate thicknesses  22 gage - 1/8” bequiv (n-1)As/2 dc tflat tf unit thickness P GChSM Ac E1 If L D Exterior bridge beam
  • 11. Steel tube studies  ABAQUS FE  Detailed core model  (4) face sheet layups  Original KSCI layup  Highest E2 modulus  Highest E2tf stiffness  Highest G12tf stiffness Clamped @ exterior bridge beam Load patch L W L W
  • 12. Steel tube vs. Steel plate 1.25 3.25 5.25 7.25 9.25 11.25 13.25 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 Maximum deflection, in As,in2 plate(I) plate(II) tube(I), s = 2ft tube(II), s = 2ft tube(I), s = 4ft tube(II), s = 4ft tube(III), s = 2ft tube(III), s = 4ft tube(IV), s = 4ft tube(IV), s = 2ft L/300
  • 13. Face sheet stiffness/ Honeycomb core stiffness studies 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 baseline t_face E_face t_core wall E_core wall Stiffness parameters Midspandeflection,in W-dir L-dir 0.845” 0.325” 0.717” 0.284”
  • 14. Steel roof deck honeycomb core: United Steel and Vulcraft results 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 KSCI UF1X UF2X 1.5A 3N Honeycomb core type Midspandeflection,in W-dir L-dir
  • 15. Steel roof deck honeycomb core: Vulcraft 1.5A assembled core L-direction steel core W-direction steel core
  • 16. Steel core vs. Steel plate 3ft overhang span length 1.75 2.75 3.75 4.75 5.75 6.75 7.75 8.75 9.75 10.75 0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135 0.140 Maximum deflection, in As,in2 1.5A steel deck steel plate L/300
  • 17. EXPERIMENTAL STUDY  Specimen fabrication  Tension coupon tests  Honeycomb core equivalent moduli  Large-scale beam tests
  • 18. Specimen fabrication  Help KSCI workers – any problems  KSCI experience with steel core  KSCI workers’ opinion of steel core  Personal interest in process
  • 19. Honeycomb core tests  Obtain equivalent elastic moduli  Relevance to sandwich theory  In-plane elastic moduli  EL and EW  Out-of-plane elastic moduli  ET, GLT, and GWT l θ t h b d L W c
  • 20. L-direction equivalent modulus: Prediction equation - theory 2 6EI FEM = l l δ    ÷  δl
  • 22. L-direction equivalent modulus: Prediction equation - experimental 2 2EI FEM = l l δ    ÷   δl
  • 23. L-direction equivalent modulus: Prediction equation - experimental 2 2EI W cosθ FEM=δ = 2 l l l    ÷   3 W cosθ δ = 4EI l l W δ = EA h h ( ) ( )L δ cos θ + δΔL ε = = L + sinθ l h h l L L L σ E = ε σL σL ( )( )LW = σ cos θ×bl
  • 24. L-direction equivalent modulus: Elastic modulus summary EL,avg = 1,130 psi (experimental) ( ) ( ) ( ) 3 -4 L,theory steel steel3 h +sinθt lE = E =1.141×10 E = 3,309 psi l cosθ       ÷     ( )( ) ( ) ( )( ) 3 -5 L,hybrid steel steel3 2 2 t h+lsinθ E = E =3.78×10 E = 1,096 psi lcosθ 3l cos θ +ht       
  • 26. W-direction equivalent modulus: Elastic modulus summary ( ) ( ) ( )( ) ( ) 3 -4 W,theory steel steel 2 cosθt E = E =2.118×10 E = 6,142 psi l h +sinθ sin θ l       ÷      ( ) ( ) ( )( ) ( ) 3 -4 W,hybrid steel steel 2 cosθ1 t E = E =1.06×10 E = 3,074 psi 2 l h +sinθ sin θ l       ÷     
  • 27. Core L and W direction transverse shear moduli: Theoretical KSCI and Hybrid shear moduli GLT (ksi) GWT (ksi) KSCI 44.2 18.4 Hybrid 498 175 HYBRID unit cell KSCI unit cell
  • 28. Core L-direction transverse shear moduli: Test setup Japanese yoke Support beam setup Load plates LVDT (typ.)
  • 29. Core L-direction transverse shear moduli: Typical core shear strain distribution -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -150 -100 -50 0 50 100 150 Shear strain, γL'T'/2 (µε) Verticaldistancefromcenterline(in) 8,000 lb 6,000 lb 4,000 lb 2,000 lb PARABOLIC
  • 30. Core W-direction transverse shear moduli: Typical core shear strain distribution -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 -150 -100 -50 0 50 100 150 200 Shear strain, γW'T'/2 (µε) Verticaldistancefromcenterline(in) 10,000 lb 6,000 lb 8,000 lb 4,000 lb2,000 lb LINEAR
  • 31. Core L and W direction shear moduli: Equivalent experimental shear moduli Beam-1 Beam-2 Beam-3 Average Theory GLT (ksi) -100.6 -279.1 -191.2 -190 498 GWT (ksi) 69.4 104.7 67.6 80.6 175
  • 32. Core L and W direction shear moduli: Face sheet thickness dependence 0.0000 0.0625 0.1250 0.1875 0.2500 0.3125 0.3750 0.4375 GLT-1 GLT-2 GLT-3 GWT-1 GWT-2 GWT-3 Shear beam specimen Facesheetthickness,in measured required design required-design measured-design
  • 33. EXPERIMENTAL STUDY  Specimen fabrication  Tension coupon tests  Honeycomb core equivalent moduli  Large-scale beam tests
  • 34. Hybrid L-direction large-scale beams: Test setup
  • 35. Hybrid L-direction large-scale beams: Test setup - photos
  • 36. Hybrid W-direction large-scale beams: Test specimens: core orientation span direction "stiffener" along span (typ.)
  • 37. Hybrid W-direction large-scale beams: Test setup - photos
  • 38. HYBRID CONCEPT ANALYSIS, MODELING, & DESIGN  KSCI vs. Hybrid large-scale beam equivalent modulus comparison  Analysis methods  Two-way vs. One-way bending  Design example  Demonstrate analysis/design methods
  • 39. KSCI and Hybrid Equivalent Experimental Flexural Modulus ( )( ) transformed transformed transformed PL D Mc PLD4 2σ = = = I I 8I Bending strains, εavg, taken from average of midspan uniaxial gages Equivalent Core D Eface Ecore dc bf tf n(bc)transformed section core face E n = E
  • 40. L-direction beam σ-ε summary Equivalent modulus comparison 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 0 500 1,000 1,500 2,000 2,500 3,000 3,500 Avg midspan strain, µε Mc/Itransform,psi Hybrid beam-1 2,111 ksi Hybrid beam-2 2,051 ksi KSCI baseline beam 1,459 ksi Prediction 2,001 ksi
  • 41. W-direction beam σ-ε summary Equivalent modulus comparison 0 500 1,000 1,500 2,000 2,500 3,000 0 500 1,000 1,500 2,000 2,500 Avg midspan strain, µε Mc/Itransform,psi Hybrid beam-1 2,408 ksi Hybrid beam-2 1,965 ksi KSCI baseline beam 2,128 ksi Hybrid Prediction 2,001 ksi KSCI original design 1,324 ksi
  • 42. KSCI and Hybrid Equivalent Experimental Core τ-γ Summary ( ) transf transf transf transf core transf core transf core P QVQ PQ2τ = = = I b I b 2I b Core shear strains, γavg, taken from average of core centerline rosettes on each side of beam face core E n = E D Equivalent Core Eface Ecore transformed section n(bf) dc tf bc
  • 43. L-direction beam τ-γ summary Honeycomb core comparison 0 10 20 30 40 50 60 70 0 100 200 300 400 500 Avg max core shear strain, µε VQtransf/Itransfbcore,psi Hybrid beam-2 481.9 ksi Hybrid beam-1 360.9 ksi KSCI baseline beam 141.3 ksi
  • 44. W-direction beam τ-γ summary Honeycomb core comparison 0 5 10 15 20 25 30 35 40 0 100 200 300 400 500 Avg max core shear strain, µε VQtransf/Itransfbcore,psi Hybrid beam-2 383.1 ksi Hybrid beam-1 335.0 ksi KSCI baseline beam 78.4 ksi
  • 45. Analysis methods  Detailed core finite element models  Homogenized core finite element models  Hand calculation methods  (EI)face/core + (GA)core  (EI)face + (GA)core  (EI)face homogenizationhomogenization
  • 46. Honeycomb core FE models vs. Experimental results 1,850 1,900 1,950 2,000 2,050 2,100 2,150 2,200 L-direction W-direction Honeycomb core span orientation Equivalentflexuralmodulus,ksi Detailed FE Homogenized FE Experiment (avg) < 2% difference < 10% difference
  • 47. Hand calculation methods vs. Experimental results 0.0 0.5 1.0 1.5 2.0 2.5 3.0 L-direction W-direction Honeycomb core span orientation Normalizedstiffness,(kips/in)/in EI_f,c+AG_c EI_f+AG_c EI_f Experiment (avg)
  • 48. Two-way vs. One-way bending  Effective width determination  Based on finite element models  Strip method vs. Finite elements  Maximum overhang deflection analysis  Simply supported beam with overhang  Strip method – one-way bending  Finite elements – two-way bending
  • 49. Strip method vs. FE analysis 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 24 in 36 in 48 in 60 in Overhang span length, LOH Maximumoverhangtipdeflection,in Strip method (EI+AG) Strip method (EI) FEA UNCONSERVATIVE!!!
  • 50. CONCLUSIONS: Summary of work  Small-scale  Steel hexagonal honeycomb core equivalent orthotropic elastic moduli tests  Stiffness design equations  Large-scale tests  Hybrid and KSCI test beams  KSCI vs. Hybrid equivalent flexural and shear stiffness comparisons
  • 51. CONCLUSIONS: Summary of work  Solid equivalent core modeling  2D strip method modeling  3D FE modeling
  • 52. CONCLUSIONS: Main conclusions/results  Replacement of KSCI GFRP core with steel core  Elastic characterization of steel honeycomb core  Steel core significantly reduces shear deformations  Overall increase in stiffness relative to KSCI GFRP core
  • 53. CONCLUSIONS: Main conclusions/results  Maintain light-weight honeycomb core  17.6 pcf (hybrid) vs. 14.2 pcf (KSCI)  2D strip method  Conservative: One-way bending  Unconservative: Two-way bending  3D FE modeling necessary  Two-way bending – shorter overhangs
  • 54. Future work  Address manufacturing techniques  Mechanize steel core construction  Improve face sheet-to-honeycomb core interface connection  Strength characterization of new hybrid GFRP-steel sandwich bridge deck  Experimentally and theoretically
  • 56. INTRODUCTION: KSCI core unit cell/face sheet layup (1) 3oz/ft2 ChSM ply (7) biaxial plies (2) 3oz/ft2 ChSM plies (bonding layer to honeycomb) (1) 3oz/ft2 ChSM ply (7) biaxial plies (2) 3oz/ft2 ChSM plies (bonding layer to honeycomb) b h h s t t t/2 x y
  • 57. INTRODUCTION: KSCI core orientation on bridge stringer centerline (typ.) steel tube (typ.) honeycomb core orientation
  • 58. Face sheet stiffness/ Honeycomb core stiffness studies L-direction core beam W-direction core beam
  • 59. Tension coupon tests  Constituent elastic moduli  Five different samples  Vulcraft steel decking  3 oz/ft2 chopped strand mat  Face sheet layup  Biaxial plies  Face sheet with embedded strain gage
  • 60. Core W-direction transverse shear moduli: Test setup Japanese yoke LVDT (typ.) Support beam setup Load plates
  • 61. Effective width calculation 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 Node across width S11,ksi S11node,max ( ) ,max 11 11 trib node eff node S b b S Σ × =
  • 62. Effective width: Varying overhang spans y = -0.0275x 2 + 3.4865x - 24.287 0 10 20 30 40 50 60 70 80 90 100 18 24 30 36 42 48 54 60 66 Overhang span length, LOH (in) Effectivewidth,beff(in) beff = -0.0275LOH 2 + 3.4865LOH - 24.287
  • 63. Design example: Strip method  Wildcat Creek Bridge: Lafayette, IN  Bridge widening  Stringer spacing same  5’-7”  Overhang increased  2’-9” to 3’-2”: strip method conservative  Design GFRP-steel hybrid decking for stiffness using AASHTO specs
  • 64. Design example: Overhang span design Model as simply supported beam with an overhang: P P L x a b y 10" P (kips) Ef (ksi) tf (in) a (in) b (in) y (in) x (in) L (in) 21 2,001 0.625 23 44 38 28 67
  • 65. Design example: Overhang span design 2 = -0.0275 + 3.4865 - 24.287 = 68.5 ineffb y y ( ) ( ) 23 2 2.787 21.41 0.625 6 2 eff f c feff f f c b t d tb t I d + = + = + + Compute effective width, beff: Compute face sheet moment of inertia and equivalent core area in terms of the core depth design variable, dc: 68.5c eff c cA b d d= =
  • 66. Design example: Overhang span design 4 2,770 infI = ( ) ( ) ( ) ( ) 2 300 6 3 overhang f f y Paby Px L a L x EI L EI ∆ = = + + + ( ) 2 2,770 2.787 21.41 0.625cd= + + The deflection at the overhang tip due to applied loads is set equal to the AASHTO recommended span-deflection ratio: Substitute all defined variables and solve for If: Set required If equal to expression for If in terms of dc and solve: 10.75 incd ≥
  • 67. Design example: Stringer span design Model as simply supported beam between stringers: P L Use all previously defined variables from overhang design. Equivalent L-dir core shear modulus: GLT = Gc = 498 ksi
  • 68. Design example: Stringer span design ( ) ( ) 3 6 800 48 5 4 stringer f c L PL PL EI AG   ∆ = = +  ÷   3 2 1.793 1.976 65.16 0.1379 0c c cd d d+ − − = The midspan deflection (bending and shear) due to applied loads is set equal to the AASHTO recommended span-deflection ratio: Substitute all known variables and expressions, and solve for the design core depth, dc: 5.5 incd ≥ Therefore the overhang design governs and the minimum core depth must be 10.75in to satisfy AASHTO span-deflection limits.
  • 69. Design example verification: Homogenized core FE model -5 L 1 steelE = E = 3.802×10 E -4 W 2 steelE = E = 1.059×10 E -2 T 3 steelE = E = 2.432×10 E -2 LT 13 steelG = G = 4.465×10 G -2 WT 23 steelG = G = 1.567×10 G -6 LW 12G = G = 10 ksi (assumed) LW 12 steelν = ν = 2.447 ν -3 LT 13 steelν = ν = 1.564×10 ν -3 WT 23 steelν = ν = 4.355×10 ν E1 (ksi) E2 (ksi) E3 (ksi) G12 (ksi) G13 (ksi) G23 (ksi) ν12 ν13 (x10-4 ) ν23 (x10-3 ) 1.10 3.07 705 10-6 498 175 0.59 4.69 1.31
  • 70. Design example verification: Homogenized core FE model L 38 in = = 0.127 in 300 300 ∆FEM = 0.085 in OK

Notas del editor

  1. Glass fiber-reinforced polymer honeycomb sandwich panels Reinforced sinusoidal honeycomb core Hand layup manufacturing
  2. L-direction: 12.6% maximum reduction – related to bending (face stiffness) W-direction: 15.2% maximum reduction – related to shear (core stiffness)
  3. 3’-2” is in range to use strip method
  4. dc=10.75 in tf= 0.625 in panel dim: L=105 in, W=96 in, T=10.75 in P=21 kips over 12” x 12” patch 6” bearing on support