BIOLOGÍAY GEOLOGÍABIOLOGÍAY GEOLOGÍA
1º BACHILLERATO1º BACHILLERATO
Tema 3. La tectónica de Placas
ÍndiceÍndice
1. Las placas litosféricas
2. Límites o bordes de placas
2.1 Dorsales oceánicas
2.2 Zonas de subducción
2.3 F...
1. Las placas litosféricas1. Las placas litosféricas
 La litosfera es la capa más superficial de la Tierra sólida (geosfe...
2. Límites o bordes de placas2. Límites o bordes de placas
2.1 Bordes constructivos: Dorsales2.1 Bordes constructivos: Dor...
2.2 Bordes destructivos: Subducción2.2 Bordes destructivos: Subducción
 Se producen entre placas enfrentadas por esfuerzo...
 La placa oceánica, más delgada y densa subduce bajo la
continental dando lugar a:
◦ Formación de una fosa oceánica, por ...
Colisión litosfera oceánica con litosfera oceánica.
 Dos placas oceánicas colisionan y
una de ellas subduce respecto a la...
 Colisionan en este caso dos
placas con litosfera
continental por cierre de un
océano que las separaba.
 Ninguna de las ...
2.3 Bordes neutros: fallas transformantes2.3 Bordes neutros: fallas transformantes
 Límites en los que las placas están
r...
3. Causas del movimiento de las placas3. Causas del movimiento de las placas
 La causa fundamental del movimiento de las ...
4. Ciclo de Wilson4. Ciclo de Wilson
 Tuzo Wilson propuso una evolución cíclica de las placas litosféricas.
5. Pruebas de la Tectónica de placas5. Pruebas de la Tectónica de placas
 Los continentes cambian de posición a una veloc...
Alfred Wegener y la deriva continental (1880-1930)
Los continentes han estado juntos en el pasado
ocupando posiciones dist...
Arthur Holmes y las corrientes de convección del manto (1929)
 Propuso que la deriva continental podía deberse a la actua...
Conocimiento del magnetismo de las rocasConocimiento del magnetismo de las rocas
 Se debe al campo magnético terrestre. L...
Hermann Hess y la expansión del fondo oceánico (1960)
 A partir del paleomagnetismo de las rocas volcánicas basálticas de...
6. Tectónica de placas hoy6. Tectónica de placas hoy
 Uno de los puntos controvertidos de la teoría global de la tectónic...
¿Quién mueve las placas?¿Quién mueve las placas?
 Modelo 1: Corrientes de convección en la astenosfera.
◦ Los materiales ...
7. Riesgos derivados de la dinámica7. Riesgos derivados de la dinámica
interna de la Tierrainterna de la Tierra
 Riesgo g...
7.1 Riesgo sísmico7.1 Riesgo sísmico
 Un terremoto ocurre cuando se libera la tensión acumulada en un fractura y la
energ...
 En nuestro territorio, el riesgo sísmico se sitúa
en la zona de prolongación de una falla
transformante procedente de la...
7.2 Riesgo volcánico7.2 Riesgo volcánico
 La mayoría de las erupciones volcánicas coinciden con las zonas de
subducción, ...
 Para predecir las erupciones se utilizan:
◦ Historia eruptiva de un volcán, con cálculo del tiempo de
retorno de la acti...
 El vulcanismo de las Canarias, es calificado por algunos como de
"punto caliente", aunque otras personas discuten esta a...
Bibliografía y materialesBibliografía y materiales
 Alfonso Cervel, F. y colab. Biología y Geología. Proyecto Tesela. Ed....
1º bachillerato tectónica de placas
1º bachillerato tectónica de placas
Próxima SlideShare
Cargando en…5
×

1º bachillerato tectónica de placas

371 visualizaciones

Publicado el

EXCELENTE POWERPOINT PARA BACHILLERATO

Publicado en: Medio ambiente
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
371
En SlideShare
0
De insertados
0
Número de insertados
10
Acciones
Compartido
0
Descargas
3
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

1º bachillerato tectónica de placas

  1. 1. BIOLOGÍAY GEOLOGÍABIOLOGÍAY GEOLOGÍA 1º BACHILLERATO1º BACHILLERATO Tema 3. La tectónica de Placas
  2. 2. ÍndiceÍndice 1. Las placas litosféricas 2. Límites o bordes de placas 2.1 Dorsales oceánicas 2.2 Zonas de subducción 2.3 Fallas transformantes 1. Causas del movimiento de las placas 2. Ciclo de Wilson 3. Pruebas de la Tectónica de placas 4. Tectónica de placas hoy 5. Riesgos geológicos derivados de la dinámica interna de la Tierra 7.1 Riesgo sísmico 7.2 Riesgo volcánico
  3. 3. 1. Las placas litosféricas1. Las placas litosféricas  La litosfera es la capa más superficial de la Tierra sólida (geosfera). Se comporta como sólido rígido, es decir como frágil, fracturándose con facilidad y transmitiendo esfuerzos en el mismo sentido en que se le aplican.  Espesor entre 50 y 200 km, con toda la corteza y parte del manto superior. La variación depende de la temperatura del interior: bajo la corteza oceánica es mayor, lo que hace que los materiales sean más plásticos y se adelgace, mientras bajo los continentes, más fríos, es más rígida y gruesa.  El manto situado bajo la litosfera está más caliente, es más plástico y transmite los esfuerzos en todas direcciones. Esto hace posible la existencia de corrientes de convección que estarán implicadas en los movimientos de las placas.  Las placas son fragmentos de litosfera de extensión variable y de forma irregular que encajan entre sí. La mayoría son mixtas, pero algunas son sólo oceánicas como la Pacífica y Nazca y otras sólo continentales, como la Arábiga y la Iraní.  Se mueven interaccionando entre sí, estando en esos contactos las zonas más activas del planeta desde el punto de vista geológico.  A lo largo de la historia del planeta han cambiado en número, tamaño y distribución. Actualmente hay 8 grandes y otras menores.
  4. 4. 2. Límites o bordes de placas2. Límites o bordes de placas 2.1 Bordes constructivos: Dorsales2.1 Bordes constructivos: Dorsales  Zonas en las que se producen esfuerzos de tensión, que tienden a separar las placas. Esto hace que disminuya la presión en profundidad y que se forme un magma basáltico, fluido.  El magma tenderá a ascender entre las placas y al solidificarse formará nueva corteza oceánica. Este crecimiento ocasiona una progresiva separación de los continentes.  Estos bordes se denominan dorsales oceánicas y forman tres grandes cordilleras submarinas volcánicas (Atlántica, Pacífica e Índica), de hasta 3000 m sobre el fondo marino, con 1500 km de ancho y hasta 60.000 km de longitud total. • En ellas se ralentizan las ondas S y aumenta el gradiente geotérmico. • Además de la actividad magmática se da una actividad sísmica frecuente y de poca intensidad.
  5. 5. 2.2 Bordes destructivos: Subducción2.2 Bordes destructivos: Subducción  Se producen entre placas enfrentadas por esfuerzos de compresión. En este caso la placa más delgada, generalmente oceánica, se sumerge bajo la otra y se introduce en el manto plástico.  Así se destruye litosfera oceánica, compensando lo que se crea en las dorsales.  Estos bordes forman las zonas de subducción, de las que existen tres tipos: ◦ Colisión litosfera oceánica con litosfera continental. ◦ Colisión litosfera oceánica con litosfera oceánica. ◦ Colisión entre litosfera continental y litosfera continental (obducción).
  6. 6.  La placa oceánica, más delgada y densa subduce bajo la continental dando lugar a: ◦ Formación de una fosa oceánica, por flexión de la placa subducida. ◦ Gran actividad sísmica por rozamiento entre las dos placas, muy intensa y con terremotos superficiales, intermedios y profundos de todos los tipos con hipocentro en un plano de contacto entre ambas o plano de Benioff, de modo que a mayor profundidad de hipocentro más interior es el epicentro. ◦ Gran actividad térmica, debida al calor producido por el rozamiento, con formación de nuevas rocas, metamórficas y magmáticas, tanto volcánicas como plutónicas. ◦ Formación de orógenos o cordilleras pericontinentales, debido a la compresión de materiales unido a la creación de rocas endógenas y a la acreción de los sedimentos de la cuenca oceánica. ◦ El ejemplo más claro lo constituyen los Andes, en la costa oeste de Sudamérica, originados por la subducción de la placa de Nazca bajo la Sudamericana. Colisión litosfera oceánica con litosfera continentalColisión litosfera oceánica con litosfera continental..
  7. 7. Colisión litosfera oceánica con litosfera oceánica.  Dos placas oceánicas colisionan y una de ellas subduce respecto a la otra, generalmente la más moderna y densa, frente a la otra que puede estar más próxima al continente.  Se generan una fosa oceánica y un arco de islas volcánicas.  Este proceso ha ocasionado archipiélagos como Indonesia, Antillas o Kuriles.
  8. 8.  Colisionan en este caso dos placas con litosfera continental por cierre de un océano que las separaba.  Ninguna de las dos placas subduce, de modo que los materiales emergen y se elevan formando una cordillera intracontinental, como es el caso del Himalaya, formado por colisión de la placa India con la Euroasiática.  Son frecuentes fenómenos sísmicos, pero no volcánicos. Colisión entre litosfera continental y litosferaColisión entre litosfera continental y litosfera continental (obducción).continental (obducción).
  9. 9. 2.3 Bordes neutros: fallas transformantes2.3 Bordes neutros: fallas transformantes  Límites en los que las placas están relacionadas por esfuerzos de cizalla, moviéndose en sentidos opuestos.  El rozamiento ocasiona numerosos terremotos, muchos de ellos bajo el mar dado que muchas fallas transformantes cortan las dorsales oceánicas.  En este caso no existe vulcanismo.  Un ejemplo es la falla de San Andrés, en California.  En nuestro territorio, el riesgo sísmico se sitúa en la zona de prolongación de una falla transformante procedente de la dorsal Atlántica, que a su vez constituye la zona de interacción con la placa africana.
  10. 10. 3. Causas del movimiento de las placas3. Causas del movimiento de las placas  La causa fundamental del movimiento de las placas es la diferencia de temperatura que existe en el interior de la Tierra, es decir la energía térmica es la que mueve las placas. Este calor interno procede del calor primigenio, de formación del planeta y de la desintegración de materiales radiactivos.  En el manto, sólido y plástico, existe una diferencia de temperatura de más de 3000 ºC entre la zona más profunda, limitante con el núcleo y la más superficial. Eso provoca corrientes de convección. Los materiales profundos, calientes, se vuelven menos densos y ascienden transportando materia y energía, los fríos, más densos, descienden.  Esto se comprueba mediante tomografía sísmica computerizada, una técnica que refleja con colores las zonas más calientes y la actividad dentro del manto. La teoría más extendida afirma que la corriente ascendente provoca la elevación de las dorsales y el magmatismo, al calentar los materiales que se encuentran bajo ellas. El componente lateral de estas corrientes, desde las dorsales hacia las zonas de subducción arrastraría las placas en el mismo sentido. Cuando la litosfera se introduce en el manto se hace más densa y su volumen disminuye, tirando del resto de la placa hacia el interior.
  11. 11. 4. Ciclo de Wilson4. Ciclo de Wilson  Tuzo Wilson propuso una evolución cíclica de las placas litosféricas.
  12. 12. 5. Pruebas de la Tectónica de placas5. Pruebas de la Tectónica de placas  Los continentes cambian de posición a una velocidad que podemos medir gracias a la tecnología, pero se han ido dando pasos sucesivos hasta llegar a afianzar esta teoría: ◦ Alfred Wegener y la deriva continental (1880-1930) ◦ Arthur Holmes y las corrientes de convección del manto (1929) ◦ Conocimiento de los fondos oceánicos gracias al sónar (1945) ◦ Conocimiento del magnetismo de las rocas ◦ Hermann Hess y la expansión del fondo oceánico (1960)
  13. 13. Alfred Wegener y la deriva continental (1880-1930) Los continentes han estado juntos en el pasado ocupando posiciones distintas de las actuales. Pruebas: • Geográficas. Coincidencia entre las formas de la costa de los continentes, sobre todo si se tienen en cuenta las plataformas continentales. • Paleontológicas. Existen fósiles de organismos idénticos en lugares que hoy distan miles de kilómetros lo que hace pensar en puentes continentales en el pasado (Sudamérica, Africa, India, Australia). • Geológicas y tectónicas. Existen rocas del mismo tipo y edad a ambos lados del Atlántico, así como coincidencia de cadenas montañosas. • Paleoclimáticas. Existen zonas de la tierra cuyos climas no coinciden con los que tuvieron en el pasado, lo que se refleja por registros geológicos. En el Carbonífero India y Australia estuvieron cubiertas por hielo (tillitas), mientras Norteamérica y Europa eran bosques cálidos (carbón) y zonas próximas a los Polos tenían climas áridos (depósitos evaporíticos). EL ORIGEN DE LOS CONTINENTES Y LOS OCÉANOS, 1915  Problema: No pudo explicar qué fuerza era capaz de mover los continentes miles de kilómetros
  14. 14. Arthur Holmes y las corrientes de convección del manto (1929)  Propuso que la deriva continental podía deberse a la actuación de corrientes de convección térmica en el manto, explicación que más tarde fue la más aceptada.  Contribuyó con ello a afianzar las teorías movilistas sobre la historia de nuestro planeta, frente a las fijistas que fueron descartadas en los años sesenta. Conocimiento de los fondos oceánicos gracias al sónar (1945)Conocimiento de los fondos oceánicos gracias al sónar (1945) • El sónar permitió realizar mapas de la topografía del fondo marino, descubriéndose las dorsales y las fosas oceánicas y su relación geográfica con la distribución de volcanes y terremotos. • Los sondeos permitieron conocer datos sobre la diferencia de espesor y composición de ambas cortezas, así como de la mayor antigüedad de la corteza oceánica en la proximidad de los continentes, aunque nunca supera los 200 ma frente a la continental que en los cratones llega a 3.800 ma.
  15. 15. Conocimiento del magnetismo de las rocasConocimiento del magnetismo de las rocas  Se debe al campo magnético terrestre. Los minerales de hierro como la magnetita o el hematites poseen la propiedad de imantarse cuando son sometidos a un campo magnético. Esta magnetización hace que el mineral desarrolle su propio campo de modo que el extremo próximo al polo positivo del campo terrestre se convierte en polo negativo de su imán y viceversa.  Cuando una roca magnética se enfría por debajo de 500ºC adquiere un magnetismo intenso que permanecerá inalterable lo que permite demostrar dos argumentos para la tectónica de placas: ◦ El movimiento de los continentes. Midiendo la magnetización de los minerales férricos presentes en las rocas de edades conocidas se puede determinar la posición de los polos magnéticos terrestres en esa época. Además, si estudiamos rocas de distintas edades se deducen distintas posiciones para el mismo polo magnético que nos dibujan una curva de deriva polar aparente, es decir, la trayectoria de los continentes en su movimiento hasta las posiciones actuales. Al conocer la posición de los polos a lo largo de la historia se observa un cambio en la polaridad del campo magnético en varias ocasiones. Cuando una roca se ha magnetizado bajo un campo magnético similar al actual se habla de anomalía positiva, mientras que cuando se ha producido durante una inversión del campo, se trata de una anomalía negativa. ◦ La expansión del fondo oceánico.
  16. 16. Hermann Hess y la expansión del fondo oceánico (1960)  A partir del paleomagnetismo de las rocas volcánicas basálticas del fondo oceánico se observó que las anomalías magnéticas formaban bandas paralelas, dispuestas simétricamente a ambos lados de las dorsal.  Hess formuló la hipótesis de la expansión del fondo oceánico al intuir que la corteza oceánica se originaba en las dorsales y se separaba progresivamente a medida que se formaba nueva corteza, y que se imantaba según la polaridad que tuviera el campo magnético en ese momento.  Así la corteza oceánica sería más joven en la proximidad de las dorsales y más vieja cerca de los continentes, como se demostró después.  Para poder conservarse el perímetro terrestre era necesario encontrar algún mecanismo por el que se consumiera corteza oceánica. La respuesta fue el descubrimiento de las zonas de subducción. Por eso la corteza oceánica no supera la edad de los 200 ma.
  17. 17. 6. Tectónica de placas hoy6. Tectónica de placas hoy  Uno de los puntos controvertidos de la teoría global de la tectónica de placas es la convección del manto y su relación con la dinámica de la litosfera. La tomografía sísmica demuestra que la subducción abarca la totalidad del manto,.  Sin embargo no se tiene tan clara la llegada directa de los penachos ascendentes desde la base del manto a la superficie. Parece que quedaran retenidos en la interfase entre manto inferior y superior, alimentando desde allí zonas de fusión incipiente a unos 100 km de profundidad que equivaldrían a la astenosfera.  Así, la astenosfera no es una capa continua y global, sino local o regional, de modo que la convección se realiza a través de todo el manto en estado sólido.  Además la tomografía sísmica demuestra que las dorsales no se sitúan indefinidamente sobre las raíces térmicas que las originan, procedentes del manto profundo. Se empieza a creer que constituyen un sistema de fracturas que se desplaza a medida que crecen las placas donde se sitúan, y que la fusión de los materiales subyacentes puede producirse por bajada de la presión en la base de la placa con aumento de temperatura.
  18. 18. ¿Quién mueve las placas?¿Quién mueve las placas?  Modelo 1: Corrientes de convección en la astenosfera. ◦ Los materiales calientes menos densos ascenderían hasta la superficie donde se enfriarían, haciéndose de nuevo más densos y hundiéndose en las zonas más alejadas de las dorsales.  Modelo 2. Arrastre de las placas. ◦ El peso de la propia placa, al subducir, haría de arrastre de los materiales hacia el manto.  Modelo 3. Empuje de placas. ◦ El empuje de los materiales que aparecen continuamente en las dorsales desplazaría la placa que, al colisionar con zonas continentales menos densas se hundirían.
  19. 19. 7. Riesgos derivados de la dinámica7. Riesgos derivados de la dinámica interna de la Tierrainterna de la Tierra  Riesgo geológico es toda condición, proceso, fenómeno o evento que debido a su localización, severidad y frecuencia, puede causar daños a la salud o la muerte de seres humanos, daños económicos y daños al medio ambiente.  Derivados de la dinámica interna del planeta tenemos dos riesgos importantes: volcanes y terremotos, cuya distribución en la superficie está ligada a los bordes de las placas litosféricas y a los procesos que ocurren en ellas.  Para valorar un riesgo hay que tener en cuenta tres factores: ◦ Peligrosidad, indica la probabilidad de que ocurra un determinado riesgo con una intensidad y magnitud definidas. Se establece en base a la periodicidad y violencia del riesgo en una determinada zona. Con ello se elaboran mapas de peligrosidad o riesgo muy útiles para la predicción. ◦ Vulnerabilidad, cuantifica la relación entre el porcentaje de víctimas o pérdidas con respecto al total. El desarrollo económico de una región está en clara relación con este factor, dado que los sistemas de construcción, evacuación, etc., lo disminuyen. ◦ Exposición, cantidad de personas y bienes susceptibles de ser afectados por un determinado riesgo.  El riesgo total se calcula como R = P.V.E
  20. 20. 7.1 Riesgo sísmico7.1 Riesgo sísmico  Un terremoto ocurre cuando se libera la tensión acumulada en un fractura y la energía liberada se propaga desde el hipocentro en forma de ondas P y S hasta el epicentro. A partir de allí las ondas superficiales, L y R son responsables de la destrucción.  Para valorar un terremoto se emplean dos escalas: ◦ Escala de Mercalli o MSK, con doce grados, de I a XII, cuantifica la intensidad del terremoto, es decir, los daños que genera. ◦ Escala de Richter, con 10 grados, de 1 a 10, cuantifica la magnitud del seísmo, es decir la energía liberada. Es una escala logarítmica de forma que el paso de magnitud en un grado equivale a una energía 30 veces superior.  La predicción se basa en: ◦ Historial de temblores y elaboración de mapas de riesgo que reflejan los daños ocurridos en seísmos anteriores. ◦ Estudio de precursores sísmicos, como variación en las propiedades físicas del entorno de la fractura.  La prevención consiste en: ◦ Medidas estructurales: construcciones sismorresistentes ◦ Medidas no estructurales: protección civil, educación para el riesgo, ordenación del territorio
  21. 21.  En nuestro territorio, el riesgo sísmico se sitúa en la zona de prolongación de una falla transformante procedente de la dorsal Atlántica, que a su vez coincide con la zona de interacción con la placa africana.
  22. 22. 7.2 Riesgo volcánico7.2 Riesgo volcánico  La mayoría de las erupciones volcánicas coinciden con las zonas de subducción, (cinturón de Fuego del Pacífico, Antillas y cinturón del Mediterráneo), y con los bordes divergentes en las dorsales (Islandia). Existen, además, fenómenos volcánicos intraplaca, como ocurre en las islas Hawai.  Para cuantificar la peligrosidad de un volcán se establece el índice de explosividad volcánica (IEV) que va del 0 al 8 en función de las características de la erupción. Un factor importante es la acidez de los magmas, ya que aumenta la viscosidad, retiene los gases y provoca explosiones más violentas. Así los volcanes continentales suelen ser más violentos que los submarinos. • Hay cuatro tipo de erupciones: • Hawaiana IEV=0-1 Lavas fluidas y edificio de pendientes suaves. • Estroboliana IEV=1-2 Más explosivas, con piroclastos, columnas eruptivas no muy altas y edificios formados por capas alternas de coladas y piroclastos. • Vulcaniana IEV=2-4 Expulsan fundamentalmente piroclastos, con explosividad de moderada a violenta, y altas columnas eruptivas. • Pliniana o peleana IEV=>5 Muy explosivas y violentas, con grandes emisiones de piroclastos y nubes ardientes, columnas de más de 20 km de altura.
  23. 23.  Para predecir las erupciones se utilizan: ◦ Historia eruptiva de un volcán, con cálculo del tiempo de retorno de la actividad (que varía entre décadas y miles de años) ◦ Estudio de precursores volcánicos: movimientos sísmicos, elevación del terreno, aumento del potencial eléctrico y alteraciones del campo magnético local, emisión de gases, cambios de temperatura en el agua de los lagos del cráter, etc.  Para llevar a cabo la prevención se pueden tomar: ◦ Medidas estructurales: cambiar el curso de las coladas y paralizarlas con agua fría, construcción de refugios semiesféricos que resistan la lluvia de piroclastos, drenaje de lagos o embalses próximos para evitar coladas de barro y erupciones freatomagmáticas, altamente explosivas ◦ Medidas no estructurales: ordenación del territorio, protección civil, educación para el riesgo, evacuación de la población
  24. 24.  El vulcanismo de las Canarias, es calificado por algunos como de "punto caliente", aunque otras personas discuten esta adscripción. Es probable que tenga relación estrecha con la zona de transición entre el continente Africano y la litosfera oceánica del Atlántico, y que se encuentre también afectada por los movimientos tectónicos que levantaron la cordillera del Atlas en el Norte de Africa y, por supuesto, por el lento movimiento (alrededor de 1 cm por año) de la placa Africana. El resultado de todos estos fenómenos habría sido la aparición del conjunto volcánico de las Canarias. Tenerife, La Palma, Lanzarote y Hierro han tenido erupciones en los últimos siglos.  En Tenerife se encuentra el Teide, que con sus 3,715 m marca el punto más alto de la geografía española. Este volcán se encuentra en la caldera de Las Cañadas que tiene unos 12 a 20 km de diámetro y reúne diferentes cráteres. De la caldera salen, a modo de radios, zonas de rift, en las que se formaron los valles de Orotava y Guimar cuando grandes fragmentos de la isla fueron eliminados por deslizamientos de tierras. Los volcanes de Tenerife han entrado en erupción varias veces desde que se colonizó la isla en 1402. La más reciente ha sido en 1909 y duró sólo 10 días, produciendo flujos de lava que ocasionaron algunos daños.  Más recientemente ha habido erupciones volcánicas en otras islas de las Canarias, como la del volcán Teneguia, de la isla de La Palma, en 1971 y, actualmente, existe en el Hierro.  Fuerteventura y Gran Canaria hace más tiempo que no han tenido erupciones y el riesgo es menor y en La Gomera la actividad volcánica puede considerarse extinta.
  25. 25. Bibliografía y materialesBibliografía y materiales  Alfonso Cervel, F. y colab. Biología y Geología. Proyecto Tesela. Ed. Oxford Educación. 2008.  Para estudiar estos contenidos de forma visual http://www.librosvivos.net/smtc/homeTC.asp?TemaClave=1190  Animaciones sobre la tectónica de placas http://www.juntadeandalucia.es/averroes/manuales/tectonica_animada/tectonanim.htm  Deriva continental y tectónica de placas http://web.educastur.princast.es/proyectos/biogeo_ov/4a_ESO/02_placas/INDICE.htm  Materiales de otros profesores http://nuestrorincondelasciencias.blogspot.com/2008/05/tarea- final-fenmenos-asociados-la.html  Vídeos cortos que muestran distintos procesos internos: ◦ Placas tectónicas http://www.youtube.com/watch?v=qF7wKnubg1w&feature=related ◦ Creación de corteza terrestre y cuencas oceánicas http://www.youtube.com/watch?NR=1&v=2LSaLggiPaQ ◦ Creación de corteza y subducción http://www.youtube.com/watch?v=41VYn-RPqaw&feature=related ◦ Volcanes en zonas de subducción http://www.youtube.com/watch?v=N3avCIeujnk&feature=related ◦ Formación del relieve http://www.youtube.com/watch?v=grA9H3e1jM0&feature=related ◦ Modificación del relieve. Colisión de placas. http://www.youtube.com/watch? v=7FiCqTcNbqE&feature=related ◦ Modificación del relieve. Terremotos http://www.youtube.com/watch?v=07n965Z-YfY&feature=related ◦ De Wegener y la deriva continental a la tectónica de placas http://www.youtube.com/watch? v=nuq1Ux42DQg&feature=related  Práctica de localización mundial de volcanes y terremotos y su relación con los bordes de placas

×