SlideShare una empresa de Scribd logo
1 de 21
Descargar para leer sin conexión
CU06997 Fluid Dynamics
    Open channel flow 1
    5.1 Flow with a free surface (page 122)
    5.2 Flow classification (page 122, 123)
    5.3 Channels and their properties (page 123-125)
    5.4 Velocity distributions (page 126,127)
    5.5 Laminar and turbulent flow (page 127-129)
    5.6 Uniform flow (page 129 -138)




1
Flow with a free surface




1
Classification of flows, see part 2

    1. Steady uniform flow
      example: pipe with constant D and Q
      example: channel with constant A and Q
    2. Steady non-uniform flow
      example: pipe with different D and constant Q
      example: channel with different A and constant Q
    3. Unsteady uniform flow
      example: channel with constant A and different Q
    4. Unsteady non-uniform flow
      example; channel with different A and Q
2
Types of flow




2
Geometric properties




3
Velocity distributions




3
Velocity distributions




                     𝑄  𝑉1 𝐴1 + 𝑉2 𝐴2 + 𝑉3 𝐴3
         𝑉𝑎𝑣𝑒𝑟𝑎𝑔𝑒   = =
                     𝐴      𝐴1 + 𝐴2 + 𝐴3
    𝑄 𝑡𝑜𝑡𝑎𝑎𝑙 = 𝑄1 + 𝑄3 + 𝑄3 =𝑉1 𝐴1 + 𝑉2 𝐴2 + 𝑉3 𝐴3

3
Reynolds number, see part 3 𝑅𝑒 = 𝑉. 𝐷
                                            𝜈
 𝜇=  Absolute viscosity     [m2/s]         𝑉. 4𝑅
 𝜐=  Kinematic viscosity    [kg/ms]   𝑅𝑒 =
     water, 20°C= 1,00 ∙ 10−6                 𝜈
𝜌 = Density of liquid       [kg/m3]
𝑉 = Velocity                [m/s]
D = Hydraulic diameter      [m]
R=   Hydraulic Radius = D/4 [m]
𝑅𝑒 = Reynolds Number        [1]

 𝑹𝒆 > 𝟒𝟎𝟎𝟎 Turbulent flow
 𝑹𝒆 < 𝟐𝟎𝟎𝟎 Laminar flow


3 In this course we only look at turbulent flow
Open channel, with bed slope >0
           2              2
          𝑢1             𝑢2
𝑦1 + 𝑧1 +    = 𝑦2 + 𝑧2 +    + ∆𝐻1−2
          2𝑔             2𝑔
                                    Q  u1  A1  u2  A2

                                                   Head loss




                   Reference line

4
Open channel, with bed slope <= 0
                    2                 2
                   u              u
         y1  z1   1
                       y2  z2      H 1 2
                                      2
                   2g             2g
                                               Head loss [m]
          u12/2g                ΔH
                                               Total Head H [m]
          y1                 u22/2g            Velocity Head [m]
    P1
               u1                              Surfacelevel y +z [m]
          z1                              y2
                                 P2
                           u2             z2

4                                              Reference [m]
Chezy formula                               𝑉= 𝐶∙        𝑅 ∙ 𝑆𝑓

Chezy formula describes the mean velocity of uniform, turbulent flow

                                𝑉=     Mean Fluid Velocity [m/s]
                                R=     Hydraulic Radius    [m]
                                𝑆𝑓 =   Hydraulic gradient [1]
                                       8𝑔
                                 𝐶=         Chezy coefficient [m1/2/s]
                                        𝜆


                      ΔH
                 𝑆𝑓 =
                       𝐿
                                                         ΔH
5                    Length
Chezy coefficient


    In this course we assume a hydraulic rough boundary




    Boundary hydraulic rough                     12 R
                                      C  18 log      [m1/2/s]
                                                  k

    kS =   surface roughness    [m]

5
Surface roughness kS [m]
                                             Equivalent Sand Roughness,
                           Material                  (ft)             (mm)
                       Copper, brass     1x10-4 - 3x10-3      3.05x10-2 - 0.9
                       Wrought iron,
                                         1.5x10-4 - 8x10-3    4.6x10-2 - 2.4
                       steel
                       Asphalt-lined
                                         4x10-4 - 7x10-3      0.1 - 2.1
                       cast iron
                                         3.3x10-4 - 1.5x10-
                       Galvanized iron   2                    0.102 - 4.6

                       Cast iron         8x10-4 - 1.8x10-2    0.2 - 5.5
                       Concrete          10-3   -   10-2      0.3 - 3.0
                       Uncoated Cast
                                         7.4x10-4             0.226
                       Iron
                       Coated Cast Iron 3.3x10-4              0.102
                       Coated Spun
                                         1.8x10-4             5.6x10-2
                       Iron
                       Cement            1.3x10-3 - 4x10-3    0.4 - 1.2s
                       Wrought Iron      1.7x10-4             5x10-2
                       Uncoated Steel    9.2x10-5             2.8x10-2
                       Coated Steel      1.8x10-4             5.8x10-2
                       Wood Stave        6x10-4 - 3x10-3      0.2 - 0.9
                       PVC               5x10-6               1.5x10-3
                       Compiled from Lamont (1981), Moody (1944), and
                       Mays (1999)




5
Manning’s formula describes the
Manning’s formula                  mean velocity of uniform,
                                   turbulent flow

          2        1                 5
                                              1
         𝑅3   ∙   𝑆2        1       𝐴3
                                             𝑆2
                                                        1


    𝑉=
                   𝑓      𝑄= ∙           ∙            R 6

                             𝑛       2        𝑓    C
              𝑛                     𝑃3                n
𝑉=     Mean Fluid Velocity                   [m/s]
R=     Hydraulic Radius                      [m]
𝑆𝑓 =   Slope Total head                      [1]
𝐴=     Wetted Area                           [m2]
𝑃=     Wetter Perimeter                      [m]
𝑛=     Mannings roughness coefficient        [s/m1/3]



6
Manning's roughness coefficient




6
Mean boundary shear stress

       𝜏0 = 𝜌 ∙ 𝑔 ∙ 𝑅 ∙ 𝑆0

      τ0 =    shear stress at solid boundary [N/m2]
      R=      Hydraulic Radius        [m]
       𝑆0 =   Slope of channel bed [1]




7
Flowing water and energy
                       2
                   u
    H1  z1  y1      1
                      [m ]
                   2g
                             Total head H [m]
                  u12/2g     Velocity head [m]
                             Surface level [m]
                  y1         y = Pressure head [m]
    u1       P1
                  z1         z = Potential head [m]

                             Reference /datum [m]
Specific Energy
             𝑉2
    𝐸𝑠 = 𝑦 +
             2𝑔

 𝑉=         Mean Fluid Velocity           [m/s]
       p
 y=         = Pressure Head / water depth [m]
      ρ∙g
                      Total head H or Specific energy Es [m]

                          V2/2g          Velocity head [m]
                                         Surface level [m]

        V
                          y               y = Pressure head [m]
                                            = water depth [m]
8                                         Channel bed as datum [m]
Equilibrium / normal depth
                                          Discharge, cross-section, energy
                                          gradient and friction are constant
                yn

                                           𝑆0 = 𝑆 𝑓
    Side view



                                            𝑉= 𝐶∙          𝑅 ∙ 𝑆𝑜
                          yn

                                            A   b. y
                                          R          y
        Cross-section
                                            P b  2 y
                                           𝑞 = 𝑉 ∙ 𝐴 = 𝐶 2 𝑦 ∙ 𝑆 𝑜∙ 𝑦 ∙ 𝑏
                     3         𝑞2
      𝑦𝑛 =
9                        𝑏 2 ∙ 𝐶 2 ∙ 𝑆0
Equilibrium / normal depth
                                    𝑆0 = 𝑆 𝑓
             3          𝑞2
     𝑦𝑛 =
                  𝑏 2 ∙ 𝐶 2 ∙ 𝑆0

    yn =    normal depth [m]
    q=      discharge     [m3/s]
    b=      width         [m]
     𝑆0 =   bed slope     [1]
     𝑆𝑓 =   Hydraulic gradient caused by friction [1]
            8𝑔
    𝐶=           Chezy coefficient [m1/2/s]
             𝜆

9
Equilibrium / normal depth
yn

                   yn

                                yn

                                                    yn



                                     Dredged area




           3         𝑞2
    𝑦𝑛 =
               𝑏 2 ∙ 𝐶 2 ∙ 𝑆0

9

Más contenido relacionado

La actualidad más candente

Cu06997 lecture 4_bernoulli-17-2-2013
Cu06997 lecture 4_bernoulli-17-2-2013Cu06997 lecture 4_bernoulli-17-2-2013
Cu06997 lecture 4_bernoulli-17-2-2013Henk Massink
 
Cu06997 lecture 12_sediment transport and back water
Cu06997 lecture 12_sediment transport and back waterCu06997 lecture 12_sediment transport and back water
Cu06997 lecture 12_sediment transport and back waterHenk Massink
 
Cu06997 lecture 6_exercises
Cu06997 lecture 6_exercisesCu06997 lecture 6_exercises
Cu06997 lecture 6_exercisesHenk Massink
 
Cu06997 assignment 6 2014_answer
Cu06997 assignment 6 2014_answerCu06997 assignment 6 2014_answer
Cu06997 assignment 6 2014_answerHenk Massink
 
Cu06997 lecture 10_froude
Cu06997 lecture 10_froudeCu06997 lecture 10_froude
Cu06997 lecture 10_froudeHenk Massink
 
Cu06997 lecture 2_answer
Cu06997 lecture 2_answerCu06997 lecture 2_answer
Cu06997 lecture 2_answerHenk Massink
 
(Part ii)- open channels
(Part ii)- open channels(Part ii)- open channels
(Part ii)- open channelsMohsin Siddique
 
A Seminar Topic On Boundary Layer
A Seminar Topic On Boundary LayerA Seminar Topic On Boundary Layer
A Seminar Topic On Boundary LayerRAJKUMAR PATRA
 
Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Mohsin Siddique
 
Cu06997 lecture 8_exercise
Cu06997 lecture 8_exerciseCu06997 lecture 8_exercise
Cu06997 lecture 8_exerciseHenk Massink
 
Boundary layer theory 4
Boundary layer theory 4Boundary layer theory 4
Boundary layer theory 4sistec
 
Laminar Flow in pipes and Anuli Newtonian Fluids
Laminar Flow in pipes and Anuli Newtonian FluidsLaminar Flow in pipes and Anuli Newtonian Fluids
Laminar Flow in pipes and Anuli Newtonian FluidsUsman Shah
 
Design of pipe network
Design of pipe networkDesign of pipe network
Design of pipe networkManoj Mota
 

La actualidad más candente (20)

Cu06997 lecture 4_bernoulli-17-2-2013
Cu06997 lecture 4_bernoulli-17-2-2013Cu06997 lecture 4_bernoulli-17-2-2013
Cu06997 lecture 4_bernoulli-17-2-2013
 
Cu06997 lecture 12_sediment transport and back water
Cu06997 lecture 12_sediment transport and back waterCu06997 lecture 12_sediment transport and back water
Cu06997 lecture 12_sediment transport and back water
 
Cu06997 lecture 6_exercises
Cu06997 lecture 6_exercisesCu06997 lecture 6_exercises
Cu06997 lecture 6_exercises
 
Cu06997 assignment 6 2014_answer
Cu06997 assignment 6 2014_answerCu06997 assignment 6 2014_answer
Cu06997 assignment 6 2014_answer
 
Cu06997 lecture 10_froude
Cu06997 lecture 10_froudeCu06997 lecture 10_froude
Cu06997 lecture 10_froude
 
Cu06997 lecture 2_answer
Cu06997 lecture 2_answerCu06997 lecture 2_answer
Cu06997 lecture 2_answer
 
(Part ii)- open channels
(Part ii)- open channels(Part ii)- open channels
(Part ii)- open channels
 
CE-6451-Fluid_Mechanics.GVK
CE-6451-Fluid_Mechanics.GVKCE-6451-Fluid_Mechanics.GVK
CE-6451-Fluid_Mechanics.GVK
 
A Seminar Topic On Boundary Layer
A Seminar Topic On Boundary LayerA Seminar Topic On Boundary Layer
A Seminar Topic On Boundary Layer
 
Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)
 
Cu06997 lecture 8_exercise
Cu06997 lecture 8_exerciseCu06997 lecture 8_exercise
Cu06997 lecture 8_exercise
 
Fluid dynamic
Fluid dynamicFluid dynamic
Fluid dynamic
 
Hydraulic losses in pipe
Hydraulic losses in pipeHydraulic losses in pipe
Hydraulic losses in pipe
 
Lecture notes 05
Lecture notes 05Lecture notes 05
Lecture notes 05
 
Lecture notes 04
Lecture notes 04Lecture notes 04
Lecture notes 04
 
Chapter 7 gvf
Chapter 7 gvfChapter 7 gvf
Chapter 7 gvf
 
Laminar turbulent
Laminar turbulentLaminar turbulent
Laminar turbulent
 
Boundary layer theory 4
Boundary layer theory 4Boundary layer theory 4
Boundary layer theory 4
 
Laminar Flow in pipes and Anuli Newtonian Fluids
Laminar Flow in pipes and Anuli Newtonian FluidsLaminar Flow in pipes and Anuli Newtonian Fluids
Laminar Flow in pipes and Anuli Newtonian Fluids
 
Design of pipe network
Design of pipe networkDesign of pipe network
Design of pipe network
 

Similar a CU06997 Fluid Dynamics Open Channel Flow

Similar a CU06997 Fluid Dynamics Open Channel Flow (14)

Sediment transport
Sediment transportSediment transport
Sediment transport
 
Rubble mound breakwater
Rubble mound breakwaterRubble mound breakwater
Rubble mound breakwater
 
8. fm 9 flow in pipes major loses co 3 copy
8. fm 9 flow in pipes  major loses co 3   copy8. fm 9 flow in pipes  major loses co 3   copy
8. fm 9 flow in pipes major loses co 3 copy
 
Fluid mechanics for chermical engineering students
Fluid mechanics  for chermical  engineering studentsFluid mechanics  for chermical  engineering students
Fluid mechanics for chermical engineering students
 
Gabarito Fox Mecanica dos Fluidos cap 1 a 6
Gabarito Fox Mecanica dos Fluidos cap 1 a 6Gabarito Fox Mecanica dos Fluidos cap 1 a 6
Gabarito Fox Mecanica dos Fluidos cap 1 a 6
 
Met 402 mod_2
Met 402 mod_2Met 402 mod_2
Met 402 mod_2
 
010a (PPT) Flow through pipes.pdf .
010a (PPT) Flow through pipes.pdf          .010a (PPT) Flow through pipes.pdf          .
010a (PPT) Flow through pipes.pdf .
 
Viscosity & flow
Viscosity & flowViscosity & flow
Viscosity & flow
 
Laminar flow
Laminar flowLaminar flow
Laminar flow
 
Plank on a log
Plank on a logPlank on a log
Plank on a log
 
Plank on a log
Plank on a logPlank on a log
Plank on a log
 
Soil Mechanics
Soil MechanicsSoil Mechanics
Soil Mechanics
 
Surface area and volume ssolids
Surface area and volume ssolidsSurface area and volume ssolids
Surface area and volume ssolids
 
L21 MOS OCT 2020.pptx .
L21 MOS OCT 2020.pptx                           .L21 MOS OCT 2020.pptx                           .
L21 MOS OCT 2020.pptx .
 

Más de Henk Massink

Cu07821 ppt9 recapitulation
Cu07821 ppt9 recapitulationCu07821 ppt9 recapitulation
Cu07821 ppt9 recapitulationHenk Massink
 
Cu07821 10management and maintenance2015
Cu07821 10management and maintenance2015Cu07821 10management and maintenance2015
Cu07821 10management and maintenance2015Henk Massink
 
Cu07821 9 zoning plan2015
Cu07821 9 zoning plan2015Cu07821 9 zoning plan2015
Cu07821 9 zoning plan2015Henk Massink
 
Cu07821 7 culverts new
Cu07821 7 culverts newCu07821 7 culverts new
Cu07821 7 culverts newHenk Massink
 
Cu07821 6 pumping stations_update
Cu07821 6 pumping stations_updateCu07821 6 pumping stations_update
Cu07821 6 pumping stations_updateHenk Massink
 
Cu07821 5 drainage
Cu07821 5 drainageCu07821 5 drainage
Cu07821 5 drainageHenk Massink
 
Cu07821 3 precipitation and evapotranspiration
Cu07821 3  precipitation and evapotranspirationCu07821 3  precipitation and evapotranspiration
Cu07821 3 precipitation and evapotranspirationHenk Massink
 
Cu07821 1 intro_1415
Cu07821 1 intro_1415Cu07821 1 intro_1415
Cu07821 1 intro_1415Henk Massink
 
Research portfolio delta_academy_s2_2014_2015
Research portfolio delta_academy_s2_2014_2015Research portfolio delta_academy_s2_2014_2015
Research portfolio delta_academy_s2_2014_2015Henk Massink
 
Research portfolio da arc 2014-2015 s1
Research portfolio da arc  2014-2015 s1Research portfolio da arc  2014-2015 s1
Research portfolio da arc 2014-2015 s1Henk Massink
 
Research portfolios1 2013_2014 jan july 2014
Research portfolios1 2013_2014 jan july 2014Research portfolios1 2013_2014 jan july 2014
Research portfolios1 2013_2014 jan july 2014Henk Massink
 
Presentatie AET voor scholieren 15-11-2013
Presentatie AET voor scholieren 15-11-2013Presentatie AET voor scholieren 15-11-2013
Presentatie AET voor scholieren 15-11-2013Henk Massink
 
Final presentation spain quattro
Final presentation spain quattroFinal presentation spain quattro
Final presentation spain quattroHenk Massink
 
Final presentation group 3
Final presentation group 3Final presentation group 3
Final presentation group 3Henk Massink
 

Más de Henk Massink (20)

Cu07821 ppt9 recapitulation
Cu07821 ppt9 recapitulationCu07821 ppt9 recapitulation
Cu07821 ppt9 recapitulation
 
Gastcollege mli
Gastcollege mliGastcollege mli
Gastcollege mli
 
Cu07821 10management and maintenance2015
Cu07821 10management and maintenance2015Cu07821 10management and maintenance2015
Cu07821 10management and maintenance2015
 
Cu07821 9 zoning plan2015
Cu07821 9 zoning plan2015Cu07821 9 zoning plan2015
Cu07821 9 zoning plan2015
 
Cu07821 8 weirs
Cu07821 8 weirsCu07821 8 weirs
Cu07821 8 weirs
 
Cu07821 7 culverts new
Cu07821 7 culverts newCu07821 7 culverts new
Cu07821 7 culverts new
 
Cu07821 6 pumping stations_update
Cu07821 6 pumping stations_updateCu07821 6 pumping stations_update
Cu07821 6 pumping stations_update
 
Cu07821 5 drainage
Cu07821 5 drainageCu07821 5 drainage
Cu07821 5 drainage
 
Cu07821 4 soil
Cu07821 4 soilCu07821 4 soil
Cu07821 4 soil
 
Cu07821 3 precipitation and evapotranspiration
Cu07821 3  precipitation and evapotranspirationCu07821 3  precipitation and evapotranspiration
Cu07821 3 precipitation and evapotranspiration
 
Cu07821 2 help
Cu07821 2 helpCu07821 2 help
Cu07821 2 help
 
Cu07821 1 intro_1415
Cu07821 1 intro_1415Cu07821 1 intro_1415
Cu07821 1 intro_1415
 
Research portfolio delta_academy_s2_2014_2015
Research portfolio delta_academy_s2_2014_2015Research portfolio delta_academy_s2_2014_2015
Research portfolio delta_academy_s2_2014_2015
 
Research portfolio da arc 2014-2015 s1
Research portfolio da arc  2014-2015 s1Research portfolio da arc  2014-2015 s1
Research portfolio da arc 2014-2015 s1
 
Jacobapolder
JacobapolderJacobapolder
Jacobapolder
 
Research portfolios1 2013_2014 jan july 2014
Research portfolios1 2013_2014 jan july 2014Research portfolios1 2013_2014 jan july 2014
Research portfolios1 2013_2014 jan july 2014
 
Presentatie AET voor scholieren 15-11-2013
Presentatie AET voor scholieren 15-11-2013Presentatie AET voor scholieren 15-11-2013
Presentatie AET voor scholieren 15-11-2013
 
Vision group1(5)
Vision group1(5)Vision group1(5)
Vision group1(5)
 
Final presentation spain quattro
Final presentation spain quattroFinal presentation spain quattro
Final presentation spain quattro
 
Final presentation group 3
Final presentation group 3Final presentation group 3
Final presentation group 3
 

Último

Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...Pooja Nehwal
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 

Último (20)

Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 

CU06997 Fluid Dynamics Open Channel Flow

  • 1. CU06997 Fluid Dynamics Open channel flow 1 5.1 Flow with a free surface (page 122) 5.2 Flow classification (page 122, 123) 5.3 Channels and their properties (page 123-125) 5.4 Velocity distributions (page 126,127) 5.5 Laminar and turbulent flow (page 127-129) 5.6 Uniform flow (page 129 -138) 1
  • 2. Flow with a free surface 1
  • 3. Classification of flows, see part 2 1. Steady uniform flow example: pipe with constant D and Q example: channel with constant A and Q 2. Steady non-uniform flow example: pipe with different D and constant Q example: channel with different A and constant Q 3. Unsteady uniform flow example: channel with constant A and different Q 4. Unsteady non-uniform flow example; channel with different A and Q 2
  • 7. Velocity distributions 𝑄 𝑉1 𝐴1 + 𝑉2 𝐴2 + 𝑉3 𝐴3 𝑉𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = = 𝐴 𝐴1 + 𝐴2 + 𝐴3 𝑄 𝑡𝑜𝑡𝑎𝑎𝑙 = 𝑄1 + 𝑄3 + 𝑄3 =𝑉1 𝐴1 + 𝑉2 𝐴2 + 𝑉3 𝐴3 3
  • 8. Reynolds number, see part 3 𝑅𝑒 = 𝑉. 𝐷 𝜈 𝜇= Absolute viscosity [m2/s] 𝑉. 4𝑅 𝜐= Kinematic viscosity [kg/ms] 𝑅𝑒 = water, 20°C= 1,00 ∙ 10−6 𝜈 𝜌 = Density of liquid [kg/m3] 𝑉 = Velocity [m/s] D = Hydraulic diameter [m] R= Hydraulic Radius = D/4 [m] 𝑅𝑒 = Reynolds Number [1] 𝑹𝒆 > 𝟒𝟎𝟎𝟎 Turbulent flow 𝑹𝒆 < 𝟐𝟎𝟎𝟎 Laminar flow 3 In this course we only look at turbulent flow
  • 9. Open channel, with bed slope >0 2 2 𝑢1 𝑢2 𝑦1 + 𝑧1 + = 𝑦2 + 𝑧2 + + ∆𝐻1−2 2𝑔 2𝑔 Q  u1  A1  u2  A2 Head loss Reference line 4
  • 10. Open channel, with bed slope <= 0 2 2 u u y1  z1  1  y2  z2   H 1 2 2 2g 2g Head loss [m] u12/2g ΔH Total Head H [m] y1 u22/2g Velocity Head [m] P1 u1 Surfacelevel y +z [m] z1 y2 P2 u2 z2 4 Reference [m]
  • 11. Chezy formula 𝑉= 𝐶∙ 𝑅 ∙ 𝑆𝑓 Chezy formula describes the mean velocity of uniform, turbulent flow 𝑉= Mean Fluid Velocity [m/s] R= Hydraulic Radius [m] 𝑆𝑓 = Hydraulic gradient [1] 8𝑔 𝐶= Chezy coefficient [m1/2/s] 𝜆 ΔH 𝑆𝑓 = 𝐿 ΔH 5 Length
  • 12. Chezy coefficient In this course we assume a hydraulic rough boundary Boundary hydraulic rough 12 R C  18 log [m1/2/s] k kS = surface roughness [m] 5
  • 13. Surface roughness kS [m] Equivalent Sand Roughness, Material (ft) (mm) Copper, brass 1x10-4 - 3x10-3 3.05x10-2 - 0.9 Wrought iron, 1.5x10-4 - 8x10-3 4.6x10-2 - 2.4 steel Asphalt-lined 4x10-4 - 7x10-3 0.1 - 2.1 cast iron 3.3x10-4 - 1.5x10- Galvanized iron 2 0.102 - 4.6 Cast iron 8x10-4 - 1.8x10-2 0.2 - 5.5 Concrete 10-3 - 10-2 0.3 - 3.0 Uncoated Cast 7.4x10-4 0.226 Iron Coated Cast Iron 3.3x10-4 0.102 Coated Spun 1.8x10-4 5.6x10-2 Iron Cement 1.3x10-3 - 4x10-3 0.4 - 1.2s Wrought Iron 1.7x10-4 5x10-2 Uncoated Steel 9.2x10-5 2.8x10-2 Coated Steel 1.8x10-4 5.8x10-2 Wood Stave 6x10-4 - 3x10-3 0.2 - 0.9 PVC 5x10-6 1.5x10-3 Compiled from Lamont (1981), Moody (1944), and Mays (1999) 5
  • 14. Manning’s formula describes the Manning’s formula mean velocity of uniform, turbulent flow 2 1 5 1 𝑅3 ∙ 𝑆2 1 𝐴3 𝑆2 1 𝑉= 𝑓 𝑄= ∙ ∙ R 6 𝑛 2 𝑓 C 𝑛 𝑃3 n 𝑉= Mean Fluid Velocity [m/s] R= Hydraulic Radius [m] 𝑆𝑓 = Slope Total head [1] 𝐴= Wetted Area [m2] 𝑃= Wetter Perimeter [m] 𝑛= Mannings roughness coefficient [s/m1/3] 6
  • 16. Mean boundary shear stress 𝜏0 = 𝜌 ∙ 𝑔 ∙ 𝑅 ∙ 𝑆0 τ0 = shear stress at solid boundary [N/m2] R= Hydraulic Radius [m] 𝑆0 = Slope of channel bed [1] 7
  • 17. Flowing water and energy 2 u H1  z1  y1  1 [m ] 2g Total head H [m] u12/2g Velocity head [m] Surface level [m] y1 y = Pressure head [m] u1 P1 z1 z = Potential head [m] Reference /datum [m]
  • 18. Specific Energy 𝑉2 𝐸𝑠 = 𝑦 + 2𝑔 𝑉= Mean Fluid Velocity [m/s] p y= = Pressure Head / water depth [m] ρ∙g Total head H or Specific energy Es [m] V2/2g Velocity head [m] Surface level [m] V y y = Pressure head [m] = water depth [m] 8 Channel bed as datum [m]
  • 19. Equilibrium / normal depth Discharge, cross-section, energy gradient and friction are constant yn 𝑆0 = 𝑆 𝑓 Side view 𝑉= 𝐶∙ 𝑅 ∙ 𝑆𝑜 yn A b. y R  y Cross-section P b  2 y 𝑞 = 𝑉 ∙ 𝐴 = 𝐶 2 𝑦 ∙ 𝑆 𝑜∙ 𝑦 ∙ 𝑏 3 𝑞2 𝑦𝑛 = 9 𝑏 2 ∙ 𝐶 2 ∙ 𝑆0
  • 20. Equilibrium / normal depth 𝑆0 = 𝑆 𝑓 3 𝑞2 𝑦𝑛 = 𝑏 2 ∙ 𝐶 2 ∙ 𝑆0 yn = normal depth [m] q= discharge [m3/s] b= width [m] 𝑆0 = bed slope [1] 𝑆𝑓 = Hydraulic gradient caused by friction [1] 8𝑔 𝐶= Chezy coefficient [m1/2/s] 𝜆 9
  • 21. Equilibrium / normal depth yn yn yn yn Dredged area 3 𝑞2 𝑦𝑛 = 𝑏 2 ∙ 𝐶 2 ∙ 𝑆0 9