SlideShare una empresa de Scribd logo
1 de 9
Descargar para leer sin conexión
International Journal of Engineering Research and Development
e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com
Volume 9, Issue 3 (December 2013), PP. 52-60

Enhancing collaborative filtering in music recommender
system by using context based approach
Prof.Reena Pagare1, Intekhab Naser 2, Vinod Pingale 3, Nayankumar Wathap4
1

Professor, Department of Computer, MIT College of Engineering, Pune, India
B.E Student, Department Of Computer, MIT College of Engineering, Pune, India

2,3,4

Abstract:- Recommender Systems analyse some user and item interactions to help users by recommending the
most relevant, feasible and appropriate items from a wide range and pool of items and resources. We propose to
enhance the collaborative filtering methodology in recommender systems by considering the content as well as
the context based approach towards recommendation. The rating of items and the contextual information of
users are expected to enhance the relevance constraint by taking into account the user’s mood and activity
implicitly by using respective API’s to capture and consider the contextual features of the user. The
methodology and technique of reduction based approach and user based rating prediction will be used to
accomplish the desired results for the proposed recommender system.
Keywords:- Recommender system, collaborative filtering, context.

I. INTRODUCTION
Recommender Systems make use of community opinions to help users identify useful items from a
considerably large search space [8]. The technique used by many of these systems is collaborative filtering (CF)
[9], which analyses past community opinions to find correlations of similar users and items to suggest
personalized items to querying users. Since collaborative-filtering methods only require the information about
user interactions and do not rely on the content information of items or user profiles, they have more broad
applications [10], [11], [12], and more and more research studies on collaborative filtering have been reported
[13], [14], [15]. These methods filter or evaluate items through the opinions of other users [16]. They are
usually based on the assumption that the given user will prefer the items which other users with similar
preferences liked in the past [17]. However, existing collaborative-filtering methods often directly exploit the
information about the users’ interaction with the systems. In other words, they make recommendations by
learning a ―user– item‖ dualistic relationship [2]. These kinds neglect the user interests, their behaviour or the
current mood and activity of the user which comes under the contextual information of user.
Mobile devices are becoming smarter and more popular including smart phones and tablets, and
accordingly access to multimedia data in real time in various environments is also getting easier. By utilizing
the appropriate and proper communication services, the users can acquaint themselves and acquire broadly
distributed documents, music or videos they are concerned about. As per the use, feasibility and memory or
capacity requirements, the popularity of music multimedia data is more than the other types. The feasibility of
viewing documents or videos on mobile phones owing to the small size of their screens is not good, and the
overhead of retrieving the huge data size of videos is also more. In sync with the advancement in compression
techniques for music, the memory requirement and data storage space for music is significantly reduced, and
the Circulation of music data is further more facilitated. This leads to ensure that users can obtain and avail their
favourite music directly on Web and the mundane task of going to music stores can be eliminated. Accordingly,
helping users find music they like in a large archive has become an attractive but challenging issue over the past
few years. Moreover relying on the traditional recommender systems for music recommendation may not be
feasible and may give less relevant and inappropriate results. In addition, user preferences may vary in
accordance with various contexts including location, season, state of movement, and environmental condition.
For example, someone jogging might prefer hip-hop to classical music. A survey showed that activity (a type of
context information) significantly affects a listener’s mood [18]. This finding delivers an important message
that context information is an important element for a music recommender to consider in selecting music to suit
the listener’s mood [1]. Such context information can be provided by the new generation of smart phones by
utilizing the respective Application Programming Interfaces (API’s) provided by android operating system for
the relevant context information. Considering these aspects, in our approach we propose a strategy of music
recommendation by applying the conceptual aspects of reduction based approach [7] and user based rating
prediction [7]. Through this approach we expect to get more refined and relevant results for music
recommendation.

52
Enhancing collaborative filtering in music recommender system by using context based approach

II. RELATED WORK
A. Traditional Recommender Systems
The traditional recommendation systems generally use collaborative filtering technique for
recommending relevant items to users. In this methodology, a matrix is generated with the users and items as
members where for each item there is a rating given by users on an appropriate scale according to the likes or
dislikes of the user of that item. Then by consideration of the ratings given by the users, an average rating for an
item is calculated by all the users who rated the item. Finally the top items with maximum average rating are
recommended to the current active user. In this approach, the current active user’s context and his particular
likes are not considered in the recommendation process.
B. Ubiquitous Recommendation System
The ubiquitous recommender system is a system that also considers context information of users. In
this system the musical acoustic features are extracted from the music database and the context of the user is
determined. In offline pre-processing, two-stage clustering of music data is carried out and a pattern database is
created. In online prediction, musical snippets are generated. Then these features are used to group and
categorize musical genres into some classic rock, Latin, simple classical, vocal opera, rock and jazz. According
to the current context of the user, the evaluation is done to determine the type of user and the kind of music to
be recommended. Finally an appropriate recommendation list of songs is generated and provided to the user.
C. iExpand Method
In this method, user’s latent interests are considered by implicitly evaluating the user’s liked or rated
items and observing the characteristics of those items. According to which, a consideration of user’s latent
interests are calculated and more relevant traces to the most appropriate recommendation of items are provided
to the user.
D. Comparison with Former Recommender Approaches
In our proposed system, we enhance the approaches adopted by the traditional systems and also
introducing certain modifications by collaborating the ubiquitous system approach and an i-expand similar
method approach in our proposed system for music recommendation system.
In our approach, we use the current context of the active user and then compare this contextual
information with a log of user context information to fetch similar users to the current user. Again, users similar
to the active user are found by calculating the similarity constraint with the application of Pearson Correlation
(PC) similarity [7] measure. The list of users fetched from both the context and behaviour are used to get
relevant list of songs from these users, and then according to the ratings to the songs, the top rated songs from
the refined list will be recommended to the current active user.
As of the approaches mentioned formerly, the traditional approach of collaborative filtering can be
used after some modifications in the multi-dimensional matrix in the system. The characteristics of the
ubiquitous recommendation system are profound in our system when the contextual information of the user
comes under consideration. The extraction of behaviourally similar users to the active user by using the concept
of normalized ratings and Pearson Correlation (PC) similarity factor is slightly similar to the previous method.
That is, our approach is a refined and idiosyncratic system dealing with the recommendation of the most
relevant songs by considering intuitively the user interests and mood by the method of capturing the user’s
context.

III. BLOCK DIAGRAM
The block diagram shown in Fig.1 is our proposed recommender system which illustrates the modules
of our system in appropriate sections considering the relations between them and an abstraction of the work
flow. Broadly categorizing the system, aspects of consideration includes the musical content feature extraction
which pre dominantly is obtained from million song dataset along with last.fm data from the respective
websites[4][5], the user context information extraction and the processing for recommendation. Rating matrix
includes the popularity of any particular music and the context log includes the behaviourally similar user’s
context data to the active or current user. Explanation of all these modules can be briefly summarized as
follows:
A. Rating Matrix:
Rating matrix is similar to the matrix in any collaborative filtering methodology, where we have
ratings given by users for items (songs). The parameters in the matrix include songs and users, where the entries

53
Enhancing collaborative filtering in music recommender system by using context based approach
in the matrix are the rating given by the users for the songs. According to the ratings for the songs, the
categorization is done.

Fig.1 Rating matrix in which ratings are represented by the (user, item, rating triple) [3]
B. Context Log:
Context log consists of the log of history of users who previously listened to songs in a particular
context [1]. Consideration of songs and the context in which those songs were listened by a respective user is
stored as data. Moreover, whenever any user listens a song, his/her context along with the song and user -id are
fetched and inserted into the context log.
Abbreviation
LN
M
C

Context dimension
Location
Motion
Calendar

Possible values
Indoor, outdoor
Stop, slow, middle, fast
Jan, Feb, Mar, Apr, May, Jun, Jul,
Aug, Sep, Oct, Nov, Dec.
Morning, afternoon,
Time
evening
Light
Bright, moderate, dim, dark.
Humidity
High, moderate, low
Air temperature
High, moderate, low
Table.1 Context information dimensions and value ranges.

T
LT
H
AT

Name
Rohit
Kamran
Jim
Aditi

LN
Indoor
Outdoor
Outdoor
Indoor

Name
David

M
Stop
Fast
Middle
Slow

LN
M
Outdoor Fast

C
Apr
Sep
Mar
Jun

T
Evening
Morning
Evening
Afternoon

LT
Dim
Bright
Dark
Moderate

H
Moderate
Low
High
High

AT
Low
Moderate
Low
High

Song1
4
3
0
5

Song2
2
5
1
1

C
T
LT
H
AT
Song1 Song2
Nov Evening
Dim
Moderate Moderate
2
4
Table.2 Context log example

54
Enhancing collaborative filtering in music recommender system by using context based approach

Fig 2. Block Diagram of work flow: The context information of user is evaluated for refinement in
recommendation.
C.
Active User Context Extraction: This module deals with the current context of an active user in
which the user is in the present situation and what kind of song user may want to listen in that respective
context. This information include the user’s current location, the present form of motion or rest, calendar
consideration which can influence the season and occasions in a particular region, the time of day and also the
environmental conditions around the user including light, humidity and air temperature. This contextual
information of the user can significantly affect the user’s mood which enhances their preference and choice of
song. This information about the user’s context can be extracted by using relevant android API’s (application
programming interfaces) [6].
D.
Contextually Similar Users: Users similar to the active user with respect to the current context of the
active user from the context log are fetched and the consideration of further collaborations is carried out. This
can be done by using Reduction-Based Approach [19]. The reduction-based approach reduces the problem of
multidimensional recommendations to the traditional two-dimensional User × Song recommendation space.
To see how this reduction can be done, consider the basic two-dimensional rating estimation function
that, given existing ratings D (i.e., D contains records _user, content, rating for each of the user specified
ratings), can calculate a prediction for any rating,

A three-dimensional rating prediction function supporting time can be defined similarly as

where D contains records as user, content, time, rating for the user-specified ratings. Again the threedimensional prediction function can be reduced and expressed through a two-dimensional prediction function as
follows:

55
Enhancing collaborative filtering in music recommender system by using context based approach
where D[Time = t](User, Content, rating) denotes a rating set obtained from D by selecting only those
records where Time dimension has value t and keeping only the corresponding values for User and Content
dimensions as well as the value of the rating itself. In other words, if we treat a set of three-dimensional ratings
D as a relation, then D [Time = t](User, Content, rating) can be explained as simply another relation obtained
from D by performing two relational operations: selection followed by projection.
The above three-dimensional reduction-based approach can be extended to a general method reducing
an arbitrary n-dimensional recommendation space to an m-dimensional one (where m < n). However, in most of
the applications we have m = 2 because traditional recommendation algorithms are designed for the twodimensional case.
We will refer to these two dimensions on which the ratings are projected as the main dimensions.
Usually these are User and Song dimensions. All the remaining dimensions, such as Time, will be called
contextual dimensions since they identify the context in which recommendations are made (e.g., at a specific
time). We reiterate that the segments define not arbitrary subsets of the overall set of ratings D, but rather
subsets of ratings that are selected based on the values of attributes of the contextual dimensions or the
combinations of these values. For example the Evening segment of D contains all the ratings of songs listened
in evening: Evening = {d ∈ D|d.Time.evening = yes}. Similarly, Outdoor-Evening segment contains all the song
ratings listened outdoor in the evenings: Outdoor- Evening = {d ∈ D| (d.Location.place = outdoor) ∧
(d.Time.evening = yes)}.
By applying the above strategy in our multi-dimensional search space, we can eventually reduce it to a
two-dimensional matrix with the users, songs as items and the ratings given by to those songs by the respective
users. Then we can apply the basic collaborative filtering approach on it to get the set of contextually similar
users. The traditional CF approach computes the rating of item i by user u as

Various approaches have been used to compute similarity measure sim(u, u_) between users in
collaborative recommender systems. In most of these approaches, sim(u, u_) is based on the ratings of items
that both users u and u_ have rated. The two most popular approaches are the correlation based [19]

and the cosine-based approach [19]

where rx,s and ry,s are the ratings of song s assigned by users x and y respectively,
Sx y = {s ∈ Items |rx,s _= ε ∧ ry,s _= ε} is the set of all items co-rated by both users x and y, and X・Y
denotes the dot-product of the rating vectors X and Y of the respective users. From the above considerations, it
is possible to reduce the multidimensional context information of user to a two dimensional matrix with only
users, songs and the respective ratings. And we can extract the contextually similar users with maximum
relevancy to the active user’s context

E. Behaviourally Similar Users:
Users similar to the active user with respect to the likes or ratings gives by the current active user from
the rating matrix are fetched and the consideration of further collaborations is carried out. This can be achieved
by applying the User-based Rating Prediction.[7]
User-based neighbourhood recommendation methods predict the rating rui of a user u for a new song i
using the ratings given to i by users most similar to u, called nearest-neighbours. Suppose we have for each user
=u a value wuv representing the preference similarity between u and v. The k-nearest-neighbours (k-NN) of u,

56
Enhancing collaborative filtering in music recommender system by using context based approach
denoted by N(u), are the k users v with the highest similarity wuv to u. However, only the users who have rated
song i can be used in the prediction of rui, and we instead consider the k users most similar to u that have rated i.
We write this set of neighbours as Ni(u).
The rating given by the neighbours to i can be estimated as the average rating rui as:

To account for the fact that the neighbours can have different levels of similarity, we weigh the
contribution of each neighbour by its similarity to u. However, if the sum of these weights is not equal 1, the
predicted ratings may go out of the range of allowed values. Consequently, it is customary to normalize these
weights, such that the predicted rating becomes

In the denominator of, |wuv| is used instead of wuv because negative weights can produce ratings outside the
allowed range. Also, wuv can be replaced by wαuv, where α > 0 is an amplification factor [20]. When α > 1, as is
it most often employed, an even greater importance is given to the neighbours that are the closest to u.
The similarity between two user u and user v, would then be computed as Cosine Vector (CV) (or Vector Space)
similarity [7]:

where Iuv once more denotes the songs rated by both u and v. A problem with this measure is that is
does not consider the differences in the mean and variance of the ratings made by users u and v
Another popular measure where the ratings are compared and the effects of mean and variance have
been removed is the Pearson Correlation (PC) similarity:

Note that this is different from computing the CV similarity on the Z-score normalized ratings, since
the standard deviation of the ratings is evaluated only on the common items Iuv to both the user u and user v, not
on the entire set of songs rated by them, i.e. Iu and Iv.

57
Enhancing collaborative filtering in music recommender system by using context based approach

Fig.3 Contextually Similar Users

Fig.4 Behaviourally Similar Users

A. Contextually Similar User:
The contextually similar users are fetched from the context log by the following sequence of steps:
1)The context log and the current context of the user are evaluated to check for similarity constraints.
2)The similarity constraints are assigned to users as a unit of degree of similarity with the current context.
3)According to the relevancy of higher degree of similarity of users with the current user, a list is generated and
fetched of similar users.
B. Behaviourally Similar Users:
The behaviourally similar users are fetched from the rating matrix by the following sequence of steps:
1)The rating matrix will be checked for the unique user id of our current active user.
2)From the rating matrix, the songs rated or liked by the user will be fetched.
3)This will be done by applying one of the various techniques for similarity calculation.
4)Now the users who liked or rated these songs will be evaluated and a list of these behaviourally similar users
will be generated and fetched.

IV. CONTROL FLOW THROUGH FLOWCHART
The control flow of these sub systems can be explained by referring to the flow chart above. As the
user logs into the system, the inputs taken and fetched by the system concerning the user include the current
context of the active user along with the unique user id of the user. Then the similar users pertaining to the user
on account of the user’s context as well as the behaviour of the user from previous experience or past history
according to the ratings given by the user are evaluated to get a contingent of relevant similar users.
A. Refined User Sub-matrix:
Similar users with respect to the current context as well as with respect to the behaviour of the active
user are generated in the previous module. Again for refinement, the intersection of the sets from the
contextually similar user’s module and the behaviourally similar user’s module will be taken. These relevant
and similar users along with the songs will give us a refined sub-matrix of users along with the ratings for
required songs.
 ∩ B={x: x ∈ A ∧ x ∈ B}
A
B. Relevant Song list:
The contingent of users subsequently generated in the previous module is evaluated to acquire and
fetch the songs rated by these users. These highly refined users will eventually generate significantly relevant

58
Enhancing collaborative filtering in music recommender system by using context based approach
list of songs. The next module will refine this list further by application of some more appropriate constraint.
C. Music Feature Extraction:
The musical content feature extraction is pre dominantly done and is obtained from million song
dataset along with last.fm data from the respective websites [4] [5]. These features help in identifying and
releasing the required list of songs according to the requirements and respective constraints.
D. Prioritized Song List:
The users in the previous modules will be evaluated to generate a prioritized list of most relevant songs
by assigning the rating points to the songs as a parameter for priority. The songs generated and fetched from
these users are prioritized according to the rating, which means the popularity constraint of the songs is also
being considered.
E. Recommendation:
The recommendation list of these highly refined, closely relevant and significantly appropriate songs is
generated by tuning through all the above modules of the respective system. These songs are arranged and the
top n entries from the list are finally provided as a recommendation to the active user.

V.

CONCLUSION

The possibility of irrelevant recommendations due to only popularity consideration in the traditional
approaches is very much reduced by the application of context based approach. We focused on the contextual
similarity as well as the behavioural similarity of the user with other users to be able to extract implicitly
relevant songs to the user for recommendation. For the contextual similarity consideration, we used Reduction
Based Approach and for the behavioural similarity consideration, we used User Based Rating Prediction. With
the combination of above approaches, we have increased the relevancy constraint of the system for
recommendation.

VI. FUTURE WORK
The advancements in the application programming interfaces will help to enhance the extraction of
relevant contextual information about the user. As more and more appropriate context data of the user will be
available to the system the feasibility of more improvised and optimal list of songs for recommendation can be
generated. Also connection to various social networks will boost the efficiency of our system concerning the
consideration of the user’s likes and dislikes.
Our system is not very concretely dependent on the data base. So with little modification in our system
we can develop recommendation for a wide range of items and products. The portability, feasibility and the
application of our system can be further enhanced by developing the system for various other operating
systems.

VII. REFERENCES
[1]
Ja-Hwung Su, Hsin-Ho Yeh, Philip S.Yu and Vincent S. Tseng, ―Music recommendation using
content and context information mining‖, IEEE Intelligent Systems, IEEE Computer Society, 2010.
[2]
Qi Liu, Enhong Chen, Hui Xiong,Chris H. Q. Ding, and Jian Chen, ―Enhancing Collaborative
Filtering by User Interest Expansion via Personalized Ranking‖, IEEE Transactions on Systems, man, and
cybernetics—PART B: CYBERNETICS, VOL. 42, NO. 1, FEBRUARY 2012.
[3]
Mohamed Sarwt, Justin J. Levandoski, Ahmed Eldawy and Mohamed F. Mokbel, ―LARS*: An
Efficient and Scalable Location-Aware Recommender System‖, TRANSACTIONS ON KNOWLEDGE AND
DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2012.
[4]Million song dataset: applications and methods http://labrosa.ee.columbia.edu/millionsong/ [5]Last.fm:
Music recommendation service (2013). http://www.last.fm/
[6]Android.com Website: Application programming interfaces. http://developer.android.com/index.html
[7]
Francesco Ricci, Lior Rokach, Bracha Shapira and Paul B. Kantor‖ Recommender Systems
Handbook‖, Springer New York Dordrecht Heidelberg London, LLC 2011.
[8]
G. Linden et al, ―Amazon.com Recommendations: Item-to-Item Collaborative Filtering,‖ IEEE
Internet Computing, vol. 7, no. 1, pp. 76–80, 2003.
[9]
P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, ―GroupLens: An Open Architecture
for Collaborative Filtering of Netnews,‖ in CSWC, 1994
[10]F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens, ―Random-walk computation of similarities between
nodes of a graph with application to collaborative recommendation,‖ IEEE Trans. Knowl. Data Eng., vol. 19,
no. 3, pp. 355–369, Mar. 2007.

59
Enhancing collaborative filtering in music recommender system by using context based approach
[11]
Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. J. Pazzani, ―An energy-efficient mobile
recommender system,‖ in Proc. 16th ACM SIGKDD Int. Conf. KDD, 2010, pp. 899–908.
[12]
J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, ―Evaluating collaborative filtering
recommender systems,‖ ACM Trans. Inf. Syst. (TOIS), vol. 22, no. 1, pp. 5–53, Jan. 2004.
[13]
S.
Funk,
Netflix
Update:
Try
This
at
Home,
2006.
[Online].
Available:
http://sifter.org/~simon/journal/20061211.html
[14]
Y. Koren, ―Factorization meets the neighborhood: A multifaceted collaborative filtering model,‖ in
Proc. 14th ACM SIGKDD Int. Conf. KDD, 2008, pp. 426–434.
[15]
Y. Koren, ―Collaborative filtering with temporal dynamics,‖ in Proc. 15th ACM SIGKDD Int. Conf.
KDD, 2009, pp. 447–456.
[16]J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, ―Collaborative filtering recommender systems,‖ in
Proc. Adapt. Web, Lecture Notes in Computer Science, 2007, pp. 291–324.
[17]G. Adomavicius and A. Tuzhilin, ―Toward the next generation of recommender systems: A survey of the
state-of-the-art and possible extensions,‖ IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 734–749, Jun. 2005.
[18]G. Reynolds e 1. t al., ―Interacting with Large Music Collections: Towards the Use of Environmental
Metadata,‖ Proc. IEEE Int’l Conf. Multimedia and Expo, IEEE Press, 2008, pp. 989–992.
[19]Gediminas Adomavicius, Ramesh Sankaranarayanan, Shahana Sen And Alexander Tuzhilin,
―Incorporating Contextual Information in Recommender Systems Using a Multidimensional Approach‖, ACM
Transactions on Information Systems, Vol. 23, No.1, January 2005.
[20] Breese, J.S., Heckerman, D., Kadie, C.: Empirical nalysis of predictive algorithms for collaborative
filtering. In: Proc. of the 14th Annual Conf. on Uncertainty in Artificial Intelligence, pp. 43–52. Morgan
Kaufmann (1998).

60

Más contenido relacionado

La actualidad más candente

Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systemsvivatechijri
 
Adaptive Search Based On User Tags in Social Networking
Adaptive Search Based On User Tags in Social NetworkingAdaptive Search Based On User Tags in Social Networking
Adaptive Search Based On User Tags in Social NetworkingIOSR Journals
 
Privacy policy inference of user uploaded images on content sharing sites
Privacy policy inference of user uploaded images on content sharing sitesPrivacy policy inference of user uploaded images on content sharing sites
Privacy policy inference of user uploaded images on content sharing sitesieeepondy
 
A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015
A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015
A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015Journal For Research
 
A Study of Neural Network Learning-Based Recommender System
A Study of Neural Network Learning-Based Recommender SystemA Study of Neural Network Learning-Based Recommender System
A Study of Neural Network Learning-Based Recommender Systemtheijes
 
Privacy policy inference of user uploaded
Privacy policy inference of user uploadedPrivacy policy inference of user uploaded
Privacy policy inference of user uploadedjpstudcorner
 
IRJET- Analysis on Existing Methodologies of User Service Rating Prediction S...
IRJET- Analysis on Existing Methodologies of User Service Rating Prediction S...IRJET- Analysis on Existing Methodologies of User Service Rating Prediction S...
IRJET- Analysis on Existing Methodologies of User Service Rating Prediction S...IRJET Journal
 
A LOCATION-BASED RECOMMENDER SYSTEM FRAMEWORK TO IMPROVE ACCURACY IN USERBASE...
A LOCATION-BASED RECOMMENDER SYSTEM FRAMEWORK TO IMPROVE ACCURACY IN USERBASE...A LOCATION-BASED RECOMMENDER SYSTEM FRAMEWORK TO IMPROVE ACCURACY IN USERBASE...
A LOCATION-BASED RECOMMENDER SYSTEM FRAMEWORK TO IMPROVE ACCURACY IN USERBASE...ijcsa
 
Recommendation System Using Social Networking
Recommendation System Using Social Networking Recommendation System Using Social Networking
Recommendation System Using Social Networking ijcseit
 
Stabilization of Black Cotton Soil with Red Mud and Formulation of Linear Reg...
Stabilization of Black Cotton Soil with Red Mud and Formulation of Linear Reg...Stabilization of Black Cotton Soil with Red Mud and Formulation of Linear Reg...
Stabilization of Black Cotton Soil with Red Mud and Formulation of Linear Reg...IRJET Journal
 
Alluding Communities in Social Networking Websites using Enhanced Quasi-cliqu...
Alluding Communities in Social Networking Websites using Enhanced Quasi-cliqu...Alluding Communities in Social Networking Websites using Enhanced Quasi-cliqu...
Alluding Communities in Social Networking Websites using Enhanced Quasi-cliqu...IJMTST Journal
 
Ijricit 01-008 confidentiality strategy deduction of user-uploaded pictures o...
Ijricit 01-008 confidentiality strategy deduction of user-uploaded pictures o...Ijricit 01-008 confidentiality strategy deduction of user-uploaded pictures o...
Ijricit 01-008 confidentiality strategy deduction of user-uploaded pictures o...Ijripublishers Ijri
 
Privacy policy inference of user uploaded
Privacy policy inference of user uploadedPrivacy policy inference of user uploaded
Privacy policy inference of user uploadedNexgen Technology
 

La actualidad más candente (17)

Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
 
Adaptive Search Based On User Tags in Social Networking
Adaptive Search Based On User Tags in Social NetworkingAdaptive Search Based On User Tags in Social Networking
Adaptive Search Based On User Tags in Social Networking
 
B1802021823
B1802021823B1802021823
B1802021823
 
Privacy policy inference of user uploaded images on content sharing sites
Privacy policy inference of user uploaded images on content sharing sitesPrivacy policy inference of user uploaded images on content sharing sites
Privacy policy inference of user uploaded images on content sharing sites
 
A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015
A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015
A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015
 
A Study of Neural Network Learning-Based Recommender System
A Study of Neural Network Learning-Based Recommender SystemA Study of Neural Network Learning-Based Recommender System
A Study of Neural Network Learning-Based Recommender System
 
At4102337341
At4102337341At4102337341
At4102337341
 
Privacy policy inference of user uploaded
Privacy policy inference of user uploadedPrivacy policy inference of user uploaded
Privacy policy inference of user uploaded
 
IRJET- Analysis on Existing Methodologies of User Service Rating Prediction S...
IRJET- Analysis on Existing Methodologies of User Service Rating Prediction S...IRJET- Analysis on Existing Methodologies of User Service Rating Prediction S...
IRJET- Analysis on Existing Methodologies of User Service Rating Prediction S...
 
A LOCATION-BASED RECOMMENDER SYSTEM FRAMEWORK TO IMPROVE ACCURACY IN USERBASE...
A LOCATION-BASED RECOMMENDER SYSTEM FRAMEWORK TO IMPROVE ACCURACY IN USERBASE...A LOCATION-BASED RECOMMENDER SYSTEM FRAMEWORK TO IMPROVE ACCURACY IN USERBASE...
A LOCATION-BASED RECOMMENDER SYSTEM FRAMEWORK TO IMPROVE ACCURACY IN USERBASE...
 
Bn35364376
Bn35364376Bn35364376
Bn35364376
 
Recommendation System Using Social Networking
Recommendation System Using Social Networking Recommendation System Using Social Networking
Recommendation System Using Social Networking
 
243
243243
243
 
Stabilization of Black Cotton Soil with Red Mud and Formulation of Linear Reg...
Stabilization of Black Cotton Soil with Red Mud and Formulation of Linear Reg...Stabilization of Black Cotton Soil with Red Mud and Formulation of Linear Reg...
Stabilization of Black Cotton Soil with Red Mud and Formulation of Linear Reg...
 
Alluding Communities in Social Networking Websites using Enhanced Quasi-cliqu...
Alluding Communities in Social Networking Websites using Enhanced Quasi-cliqu...Alluding Communities in Social Networking Websites using Enhanced Quasi-cliqu...
Alluding Communities in Social Networking Websites using Enhanced Quasi-cliqu...
 
Ijricit 01-008 confidentiality strategy deduction of user-uploaded pictures o...
Ijricit 01-008 confidentiality strategy deduction of user-uploaded pictures o...Ijricit 01-008 confidentiality strategy deduction of user-uploaded pictures o...
Ijricit 01-008 confidentiality strategy deduction of user-uploaded pictures o...
 
Privacy policy inference of user uploaded
Privacy policy inference of user uploadedPrivacy policy inference of user uploaded
Privacy policy inference of user uploaded
 

Destacado

International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 

Destacado (15)

International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
G1034853
G1034853G1034853
G1034853
 
B1030610
B1030610B1030610
B1030610
 

Similar a International Journal of Engineering Research and Development (IJERD)

Mehfil : Song Recommendation System Using Sentiment Detected
Mehfil : Song Recommendation System Using Sentiment DetectedMehfil : Song Recommendation System Using Sentiment Detected
Mehfil : Song Recommendation System Using Sentiment DetectedIRJET Journal
 
A survey on recommendation system
A survey on recommendation systemA survey on recommendation system
A survey on recommendation systemiosrjce
 
Music Recommendation System using Euclidean, Cosine Similarity, Correlation D...
Music Recommendation System using Euclidean, Cosine Similarity, Correlation D...Music Recommendation System using Euclidean, Cosine Similarity, Correlation D...
Music Recommendation System using Euclidean, Cosine Similarity, Correlation D...IRJET Journal
 
Music Recommendation System
Music Recommendation SystemMusic Recommendation System
Music Recommendation SystemIRJET Journal
 
Effective Results of Searching Song for Keyword-Based Retrieval Systems Using...
Effective Results of Searching Song for Keyword-Based Retrieval Systems Using...Effective Results of Searching Song for Keyword-Based Retrieval Systems Using...
Effective Results of Searching Song for Keyword-Based Retrieval Systems Using...Suraj Ligade
 
CONTEXTUAL MODEL OF RECOMMENDING RESOURCES ON AN ACADEMIC NETWORKING PORTAL
CONTEXTUAL MODEL OF RECOMMENDING RESOURCES ON AN ACADEMIC NETWORKING PORTALCONTEXTUAL MODEL OF RECOMMENDING RESOURCES ON AN ACADEMIC NETWORKING PORTAL
CONTEXTUAL MODEL OF RECOMMENDING RESOURCES ON AN ACADEMIC NETWORKING PORTALcscpconf
 
Contextual model of recommending resources on an academic networking portal
Contextual model of recommending resources on an academic networking portalContextual model of recommending resources on an academic networking portal
Contextual model of recommending resources on an academic networking portalcsandit
 
A LOCATION-BASED MOVIE RECOMMENDER SYSTEM USING COLLABORATIVE FILTERING
A LOCATION-BASED MOVIE RECOMMENDER SYSTEM USING COLLABORATIVE FILTERINGA LOCATION-BASED MOVIE RECOMMENDER SYSTEM USING COLLABORATIVE FILTERING
A LOCATION-BASED MOVIE RECOMMENDER SYSTEM USING COLLABORATIVE FILTERINGijfcstjournal
 
Service rating prediction by exploring social mobile users’ geographical loca...
Service rating prediction by exploring social mobile users’ geographical loca...Service rating prediction by exploring social mobile users’ geographical loca...
Service rating prediction by exploring social mobile users’ geographical loca...CloudTechnologies
 
Music Recommendation System with User-based and Item-based Collaborative Filt...
Music Recommendation System with User-based and Item-based Collaborative Filt...Music Recommendation System with User-based and Item-based Collaborative Filt...
Music Recommendation System with User-based and Item-based Collaborative Filt...ijeei-iaes
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Friend Recommendation on Social Network Site Based on Their Life Style
Friend Recommendation on Social Network Site Based on Their Life StyleFriend Recommendation on Social Network Site Based on Their Life Style
Friend Recommendation on Social Network Site Based on Their Life Stylepaperpublications3
 
Deep Learning Based Music Recommendation System
Deep Learning Based Music Recommendation SystemDeep Learning Based Music Recommendation System
Deep Learning Based Music Recommendation SystemIRJET Journal
 
A Neural Network-Inspired Approach For Improved And True Movie Recommendations
A Neural Network-Inspired Approach For Improved And True Movie RecommendationsA Neural Network-Inspired Approach For Improved And True Movie Recommendations
A Neural Network-Inspired Approach For Improved And True Movie RecommendationsAmy Roman
 
AN EXTENDED HYBRID RECOMMENDER SYSTEM BASED ON ASSOCIATION RULES MINING IN DI...
AN EXTENDED HYBRID RECOMMENDER SYSTEM BASED ON ASSOCIATION RULES MINING IN DI...AN EXTENDED HYBRID RECOMMENDER SYSTEM BASED ON ASSOCIATION RULES MINING IN DI...
AN EXTENDED HYBRID RECOMMENDER SYSTEM BASED ON ASSOCIATION RULES MINING IN DI...cscpconf
 
A Study of Neural Network Learning-Based Recommender System
A Study of Neural Network Learning-Based Recommender SystemA Study of Neural Network Learning-Based Recommender System
A Study of Neural Network Learning-Based Recommender Systemtheijes
 
AN EXTENDED HYBRID RECOMMENDER SYSTEM BASED ON ASSOCIATION RULES MINING IN DI...
AN EXTENDED HYBRID RECOMMENDER SYSTEM BASED ON ASSOCIATION RULES MINING IN DI...AN EXTENDED HYBRID RECOMMENDER SYSTEM BASED ON ASSOCIATION RULES MINING IN DI...
AN EXTENDED HYBRID RECOMMENDER SYSTEM BASED ON ASSOCIATION RULES MINING IN DI...csandit
 

Similar a International Journal of Engineering Research and Development (IJERD) (20)

C018211723
C018211723C018211723
C018211723
 
Mehfil : Song Recommendation System Using Sentiment Detected
Mehfil : Song Recommendation System Using Sentiment DetectedMehfil : Song Recommendation System Using Sentiment Detected
Mehfil : Song Recommendation System Using Sentiment Detected
 
A survey on recommendation system
A survey on recommendation systemA survey on recommendation system
A survey on recommendation system
 
I017654651
I017654651I017654651
I017654651
 
Music Recommendation System using Euclidean, Cosine Similarity, Correlation D...
Music Recommendation System using Euclidean, Cosine Similarity, Correlation D...Music Recommendation System using Euclidean, Cosine Similarity, Correlation D...
Music Recommendation System using Euclidean, Cosine Similarity, Correlation D...
 
Music Recommendation System
Music Recommendation SystemMusic Recommendation System
Music Recommendation System
 
Effective Results of Searching Song for Keyword-Based Retrieval Systems Using...
Effective Results of Searching Song for Keyword-Based Retrieval Systems Using...Effective Results of Searching Song for Keyword-Based Retrieval Systems Using...
Effective Results of Searching Song for Keyword-Based Retrieval Systems Using...
 
LIBRS: LIBRARY RECOMMENDATION SYSTEM USING HYBRID FILTERING
LIBRS: LIBRARY RECOMMENDATION SYSTEM USING HYBRID FILTERING LIBRS: LIBRARY RECOMMENDATION SYSTEM USING HYBRID FILTERING
LIBRS: LIBRARY RECOMMENDATION SYSTEM USING HYBRID FILTERING
 
CONTEXTUAL MODEL OF RECOMMENDING RESOURCES ON AN ACADEMIC NETWORKING PORTAL
CONTEXTUAL MODEL OF RECOMMENDING RESOURCES ON AN ACADEMIC NETWORKING PORTALCONTEXTUAL MODEL OF RECOMMENDING RESOURCES ON AN ACADEMIC NETWORKING PORTAL
CONTEXTUAL MODEL OF RECOMMENDING RESOURCES ON AN ACADEMIC NETWORKING PORTAL
 
Contextual model of recommending resources on an academic networking portal
Contextual model of recommending resources on an academic networking portalContextual model of recommending resources on an academic networking portal
Contextual model of recommending resources on an academic networking portal
 
A LOCATION-BASED MOVIE RECOMMENDER SYSTEM USING COLLABORATIVE FILTERING
A LOCATION-BASED MOVIE RECOMMENDER SYSTEM USING COLLABORATIVE FILTERINGA LOCATION-BASED MOVIE RECOMMENDER SYSTEM USING COLLABORATIVE FILTERING
A LOCATION-BASED MOVIE RECOMMENDER SYSTEM USING COLLABORATIVE FILTERING
 
Service rating prediction by exploring social mobile users’ geographical loca...
Service rating prediction by exploring social mobile users’ geographical loca...Service rating prediction by exploring social mobile users’ geographical loca...
Service rating prediction by exploring social mobile users’ geographical loca...
 
Music Recommendation System with User-based and Item-based Collaborative Filt...
Music Recommendation System with User-based and Item-based Collaborative Filt...Music Recommendation System with User-based and Item-based Collaborative Filt...
Music Recommendation System with User-based and Item-based Collaborative Filt...
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Friend Recommendation on Social Network Site Based on Their Life Style
Friend Recommendation on Social Network Site Based on Their Life StyleFriend Recommendation on Social Network Site Based on Their Life Style
Friend Recommendation on Social Network Site Based on Their Life Style
 
Deep Learning Based Music Recommendation System
Deep Learning Based Music Recommendation SystemDeep Learning Based Music Recommendation System
Deep Learning Based Music Recommendation System
 
A Neural Network-Inspired Approach For Improved And True Movie Recommendations
A Neural Network-Inspired Approach For Improved And True Movie RecommendationsA Neural Network-Inspired Approach For Improved And True Movie Recommendations
A Neural Network-Inspired Approach For Improved And True Movie Recommendations
 
AN EXTENDED HYBRID RECOMMENDER SYSTEM BASED ON ASSOCIATION RULES MINING IN DI...
AN EXTENDED HYBRID RECOMMENDER SYSTEM BASED ON ASSOCIATION RULES MINING IN DI...AN EXTENDED HYBRID RECOMMENDER SYSTEM BASED ON ASSOCIATION RULES MINING IN DI...
AN EXTENDED HYBRID RECOMMENDER SYSTEM BASED ON ASSOCIATION RULES MINING IN DI...
 
A Study of Neural Network Learning-Based Recommender System
A Study of Neural Network Learning-Based Recommender SystemA Study of Neural Network Learning-Based Recommender System
A Study of Neural Network Learning-Based Recommender System
 
AN EXTENDED HYBRID RECOMMENDER SYSTEM BASED ON ASSOCIATION RULES MINING IN DI...
AN EXTENDED HYBRID RECOMMENDER SYSTEM BASED ON ASSOCIATION RULES MINING IN DI...AN EXTENDED HYBRID RECOMMENDER SYSTEM BASED ON ASSOCIATION RULES MINING IN DI...
AN EXTENDED HYBRID RECOMMENDER SYSTEM BASED ON ASSOCIATION RULES MINING IN DI...
 

Más de IJERD Editor

A Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service AttacksA Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service AttacksIJERD Editor
 
MEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACEMEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACEIJERD Editor
 
Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...IJERD Editor
 
Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’IJERD Editor
 
Reducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding DesignReducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding DesignIJERD Editor
 
Router 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and VerificationRouter 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and VerificationIJERD Editor
 
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...IJERD Editor
 
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVRMitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVRIJERD Editor
 
Study on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive ManufacturingStudy on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive ManufacturingIJERD Editor
 
Spyware triggering system by particular string value
Spyware triggering system by particular string valueSpyware triggering system by particular string value
Spyware triggering system by particular string valueIJERD Editor
 
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...IJERD Editor
 
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid SchemeSecure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid SchemeIJERD Editor
 
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...IJERD Editor
 
Gesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web CameraGesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web CameraIJERD Editor
 
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...IJERD Editor
 
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...IJERD Editor
 
Moon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF DxingMoon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF DxingIJERD Editor
 
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...IJERD Editor
 
Importance of Measurements in Smart Grid
Importance of Measurements in Smart GridImportance of Measurements in Smart Grid
Importance of Measurements in Smart GridIJERD Editor
 
Study of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powderStudy of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powderIJERD Editor
 

Más de IJERD Editor (20)

A Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service AttacksA Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
 
MEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACEMEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACE
 
Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...
 
Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’
 
Reducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding DesignReducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding Design
 
Router 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and VerificationRouter 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and Verification
 
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
 
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVRMitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
 
Study on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive ManufacturingStudy on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive Manufacturing
 
Spyware triggering system by particular string value
Spyware triggering system by particular string valueSpyware triggering system by particular string value
Spyware triggering system by particular string value
 
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
 
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid SchemeSecure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
 
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
 
Gesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web CameraGesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web Camera
 
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
 
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
 
Moon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF DxingMoon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF Dxing
 
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
 
Importance of Measurements in Smart Grid
Importance of Measurements in Smart GridImportance of Measurements in Smart Grid
Importance of Measurements in Smart Grid
 
Study of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powderStudy of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powder
 

Último

08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 

Último (20)

08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 

International Journal of Engineering Research and Development (IJERD)

  • 1. International Journal of Engineering Research and Development e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com Volume 9, Issue 3 (December 2013), PP. 52-60 Enhancing collaborative filtering in music recommender system by using context based approach Prof.Reena Pagare1, Intekhab Naser 2, Vinod Pingale 3, Nayankumar Wathap4 1 Professor, Department of Computer, MIT College of Engineering, Pune, India B.E Student, Department Of Computer, MIT College of Engineering, Pune, India 2,3,4 Abstract:- Recommender Systems analyse some user and item interactions to help users by recommending the most relevant, feasible and appropriate items from a wide range and pool of items and resources. We propose to enhance the collaborative filtering methodology in recommender systems by considering the content as well as the context based approach towards recommendation. The rating of items and the contextual information of users are expected to enhance the relevance constraint by taking into account the user’s mood and activity implicitly by using respective API’s to capture and consider the contextual features of the user. The methodology and technique of reduction based approach and user based rating prediction will be used to accomplish the desired results for the proposed recommender system. Keywords:- Recommender system, collaborative filtering, context. I. INTRODUCTION Recommender Systems make use of community opinions to help users identify useful items from a considerably large search space [8]. The technique used by many of these systems is collaborative filtering (CF) [9], which analyses past community opinions to find correlations of similar users and items to suggest personalized items to querying users. Since collaborative-filtering methods only require the information about user interactions and do not rely on the content information of items or user profiles, they have more broad applications [10], [11], [12], and more and more research studies on collaborative filtering have been reported [13], [14], [15]. These methods filter or evaluate items through the opinions of other users [16]. They are usually based on the assumption that the given user will prefer the items which other users with similar preferences liked in the past [17]. However, existing collaborative-filtering methods often directly exploit the information about the users’ interaction with the systems. In other words, they make recommendations by learning a ―user– item‖ dualistic relationship [2]. These kinds neglect the user interests, their behaviour or the current mood and activity of the user which comes under the contextual information of user. Mobile devices are becoming smarter and more popular including smart phones and tablets, and accordingly access to multimedia data in real time in various environments is also getting easier. By utilizing the appropriate and proper communication services, the users can acquaint themselves and acquire broadly distributed documents, music or videos they are concerned about. As per the use, feasibility and memory or capacity requirements, the popularity of music multimedia data is more than the other types. The feasibility of viewing documents or videos on mobile phones owing to the small size of their screens is not good, and the overhead of retrieving the huge data size of videos is also more. In sync with the advancement in compression techniques for music, the memory requirement and data storage space for music is significantly reduced, and the Circulation of music data is further more facilitated. This leads to ensure that users can obtain and avail their favourite music directly on Web and the mundane task of going to music stores can be eliminated. Accordingly, helping users find music they like in a large archive has become an attractive but challenging issue over the past few years. Moreover relying on the traditional recommender systems for music recommendation may not be feasible and may give less relevant and inappropriate results. In addition, user preferences may vary in accordance with various contexts including location, season, state of movement, and environmental condition. For example, someone jogging might prefer hip-hop to classical music. A survey showed that activity (a type of context information) significantly affects a listener’s mood [18]. This finding delivers an important message that context information is an important element for a music recommender to consider in selecting music to suit the listener’s mood [1]. Such context information can be provided by the new generation of smart phones by utilizing the respective Application Programming Interfaces (API’s) provided by android operating system for the relevant context information. Considering these aspects, in our approach we propose a strategy of music recommendation by applying the conceptual aspects of reduction based approach [7] and user based rating prediction [7]. Through this approach we expect to get more refined and relevant results for music recommendation. 52
  • 2. Enhancing collaborative filtering in music recommender system by using context based approach II. RELATED WORK A. Traditional Recommender Systems The traditional recommendation systems generally use collaborative filtering technique for recommending relevant items to users. In this methodology, a matrix is generated with the users and items as members where for each item there is a rating given by users on an appropriate scale according to the likes or dislikes of the user of that item. Then by consideration of the ratings given by the users, an average rating for an item is calculated by all the users who rated the item. Finally the top items with maximum average rating are recommended to the current active user. In this approach, the current active user’s context and his particular likes are not considered in the recommendation process. B. Ubiquitous Recommendation System The ubiquitous recommender system is a system that also considers context information of users. In this system the musical acoustic features are extracted from the music database and the context of the user is determined. In offline pre-processing, two-stage clustering of music data is carried out and a pattern database is created. In online prediction, musical snippets are generated. Then these features are used to group and categorize musical genres into some classic rock, Latin, simple classical, vocal opera, rock and jazz. According to the current context of the user, the evaluation is done to determine the type of user and the kind of music to be recommended. Finally an appropriate recommendation list of songs is generated and provided to the user. C. iExpand Method In this method, user’s latent interests are considered by implicitly evaluating the user’s liked or rated items and observing the characteristics of those items. According to which, a consideration of user’s latent interests are calculated and more relevant traces to the most appropriate recommendation of items are provided to the user. D. Comparison with Former Recommender Approaches In our proposed system, we enhance the approaches adopted by the traditional systems and also introducing certain modifications by collaborating the ubiquitous system approach and an i-expand similar method approach in our proposed system for music recommendation system. In our approach, we use the current context of the active user and then compare this contextual information with a log of user context information to fetch similar users to the current user. Again, users similar to the active user are found by calculating the similarity constraint with the application of Pearson Correlation (PC) similarity [7] measure. The list of users fetched from both the context and behaviour are used to get relevant list of songs from these users, and then according to the ratings to the songs, the top rated songs from the refined list will be recommended to the current active user. As of the approaches mentioned formerly, the traditional approach of collaborative filtering can be used after some modifications in the multi-dimensional matrix in the system. The characteristics of the ubiquitous recommendation system are profound in our system when the contextual information of the user comes under consideration. The extraction of behaviourally similar users to the active user by using the concept of normalized ratings and Pearson Correlation (PC) similarity factor is slightly similar to the previous method. That is, our approach is a refined and idiosyncratic system dealing with the recommendation of the most relevant songs by considering intuitively the user interests and mood by the method of capturing the user’s context. III. BLOCK DIAGRAM The block diagram shown in Fig.1 is our proposed recommender system which illustrates the modules of our system in appropriate sections considering the relations between them and an abstraction of the work flow. Broadly categorizing the system, aspects of consideration includes the musical content feature extraction which pre dominantly is obtained from million song dataset along with last.fm data from the respective websites[4][5], the user context information extraction and the processing for recommendation. Rating matrix includes the popularity of any particular music and the context log includes the behaviourally similar user’s context data to the active or current user. Explanation of all these modules can be briefly summarized as follows: A. Rating Matrix: Rating matrix is similar to the matrix in any collaborative filtering methodology, where we have ratings given by users for items (songs). The parameters in the matrix include songs and users, where the entries 53
  • 3. Enhancing collaborative filtering in music recommender system by using context based approach in the matrix are the rating given by the users for the songs. According to the ratings for the songs, the categorization is done. Fig.1 Rating matrix in which ratings are represented by the (user, item, rating triple) [3] B. Context Log: Context log consists of the log of history of users who previously listened to songs in a particular context [1]. Consideration of songs and the context in which those songs were listened by a respective user is stored as data. Moreover, whenever any user listens a song, his/her context along with the song and user -id are fetched and inserted into the context log. Abbreviation LN M C Context dimension Location Motion Calendar Possible values Indoor, outdoor Stop, slow, middle, fast Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec. Morning, afternoon, Time evening Light Bright, moderate, dim, dark. Humidity High, moderate, low Air temperature High, moderate, low Table.1 Context information dimensions and value ranges. T LT H AT Name Rohit Kamran Jim Aditi LN Indoor Outdoor Outdoor Indoor Name David M Stop Fast Middle Slow LN M Outdoor Fast C Apr Sep Mar Jun T Evening Morning Evening Afternoon LT Dim Bright Dark Moderate H Moderate Low High High AT Low Moderate Low High Song1 4 3 0 5 Song2 2 5 1 1 C T LT H AT Song1 Song2 Nov Evening Dim Moderate Moderate 2 4 Table.2 Context log example 54
  • 4. Enhancing collaborative filtering in music recommender system by using context based approach Fig 2. Block Diagram of work flow: The context information of user is evaluated for refinement in recommendation. C. Active User Context Extraction: This module deals with the current context of an active user in which the user is in the present situation and what kind of song user may want to listen in that respective context. This information include the user’s current location, the present form of motion or rest, calendar consideration which can influence the season and occasions in a particular region, the time of day and also the environmental conditions around the user including light, humidity and air temperature. This contextual information of the user can significantly affect the user’s mood which enhances their preference and choice of song. This information about the user’s context can be extracted by using relevant android API’s (application programming interfaces) [6]. D. Contextually Similar Users: Users similar to the active user with respect to the current context of the active user from the context log are fetched and the consideration of further collaborations is carried out. This can be done by using Reduction-Based Approach [19]. The reduction-based approach reduces the problem of multidimensional recommendations to the traditional two-dimensional User × Song recommendation space. To see how this reduction can be done, consider the basic two-dimensional rating estimation function that, given existing ratings D (i.e., D contains records _user, content, rating for each of the user specified ratings), can calculate a prediction for any rating, A three-dimensional rating prediction function supporting time can be defined similarly as where D contains records as user, content, time, rating for the user-specified ratings. Again the threedimensional prediction function can be reduced and expressed through a two-dimensional prediction function as follows: 55
  • 5. Enhancing collaborative filtering in music recommender system by using context based approach where D[Time = t](User, Content, rating) denotes a rating set obtained from D by selecting only those records where Time dimension has value t and keeping only the corresponding values for User and Content dimensions as well as the value of the rating itself. In other words, if we treat a set of three-dimensional ratings D as a relation, then D [Time = t](User, Content, rating) can be explained as simply another relation obtained from D by performing two relational operations: selection followed by projection. The above three-dimensional reduction-based approach can be extended to a general method reducing an arbitrary n-dimensional recommendation space to an m-dimensional one (where m < n). However, in most of the applications we have m = 2 because traditional recommendation algorithms are designed for the twodimensional case. We will refer to these two dimensions on which the ratings are projected as the main dimensions. Usually these are User and Song dimensions. All the remaining dimensions, such as Time, will be called contextual dimensions since they identify the context in which recommendations are made (e.g., at a specific time). We reiterate that the segments define not arbitrary subsets of the overall set of ratings D, but rather subsets of ratings that are selected based on the values of attributes of the contextual dimensions or the combinations of these values. For example the Evening segment of D contains all the ratings of songs listened in evening: Evening = {d ∈ D|d.Time.evening = yes}. Similarly, Outdoor-Evening segment contains all the song ratings listened outdoor in the evenings: Outdoor- Evening = {d ∈ D| (d.Location.place = outdoor) ∧ (d.Time.evening = yes)}. By applying the above strategy in our multi-dimensional search space, we can eventually reduce it to a two-dimensional matrix with the users, songs as items and the ratings given by to those songs by the respective users. Then we can apply the basic collaborative filtering approach on it to get the set of contextually similar users. The traditional CF approach computes the rating of item i by user u as Various approaches have been used to compute similarity measure sim(u, u_) between users in collaborative recommender systems. In most of these approaches, sim(u, u_) is based on the ratings of items that both users u and u_ have rated. The two most popular approaches are the correlation based [19] and the cosine-based approach [19] where rx,s and ry,s are the ratings of song s assigned by users x and y respectively, Sx y = {s ∈ Items |rx,s _= ε ∧ ry,s _= ε} is the set of all items co-rated by both users x and y, and X・Y denotes the dot-product of the rating vectors X and Y of the respective users. From the above considerations, it is possible to reduce the multidimensional context information of user to a two dimensional matrix with only users, songs and the respective ratings. And we can extract the contextually similar users with maximum relevancy to the active user’s context E. Behaviourally Similar Users: Users similar to the active user with respect to the likes or ratings gives by the current active user from the rating matrix are fetched and the consideration of further collaborations is carried out. This can be achieved by applying the User-based Rating Prediction.[7] User-based neighbourhood recommendation methods predict the rating rui of a user u for a new song i using the ratings given to i by users most similar to u, called nearest-neighbours. Suppose we have for each user =u a value wuv representing the preference similarity between u and v. The k-nearest-neighbours (k-NN) of u, 56
  • 6. Enhancing collaborative filtering in music recommender system by using context based approach denoted by N(u), are the k users v with the highest similarity wuv to u. However, only the users who have rated song i can be used in the prediction of rui, and we instead consider the k users most similar to u that have rated i. We write this set of neighbours as Ni(u). The rating given by the neighbours to i can be estimated as the average rating rui as: To account for the fact that the neighbours can have different levels of similarity, we weigh the contribution of each neighbour by its similarity to u. However, if the sum of these weights is not equal 1, the predicted ratings may go out of the range of allowed values. Consequently, it is customary to normalize these weights, such that the predicted rating becomes In the denominator of, |wuv| is used instead of wuv because negative weights can produce ratings outside the allowed range. Also, wuv can be replaced by wαuv, where α > 0 is an amplification factor [20]. When α > 1, as is it most often employed, an even greater importance is given to the neighbours that are the closest to u. The similarity between two user u and user v, would then be computed as Cosine Vector (CV) (or Vector Space) similarity [7]: where Iuv once more denotes the songs rated by both u and v. A problem with this measure is that is does not consider the differences in the mean and variance of the ratings made by users u and v Another popular measure where the ratings are compared and the effects of mean and variance have been removed is the Pearson Correlation (PC) similarity: Note that this is different from computing the CV similarity on the Z-score normalized ratings, since the standard deviation of the ratings is evaluated only on the common items Iuv to both the user u and user v, not on the entire set of songs rated by them, i.e. Iu and Iv. 57
  • 7. Enhancing collaborative filtering in music recommender system by using context based approach Fig.3 Contextually Similar Users Fig.4 Behaviourally Similar Users A. Contextually Similar User: The contextually similar users are fetched from the context log by the following sequence of steps: 1)The context log and the current context of the user are evaluated to check for similarity constraints. 2)The similarity constraints are assigned to users as a unit of degree of similarity with the current context. 3)According to the relevancy of higher degree of similarity of users with the current user, a list is generated and fetched of similar users. B. Behaviourally Similar Users: The behaviourally similar users are fetched from the rating matrix by the following sequence of steps: 1)The rating matrix will be checked for the unique user id of our current active user. 2)From the rating matrix, the songs rated or liked by the user will be fetched. 3)This will be done by applying one of the various techniques for similarity calculation. 4)Now the users who liked or rated these songs will be evaluated and a list of these behaviourally similar users will be generated and fetched. IV. CONTROL FLOW THROUGH FLOWCHART The control flow of these sub systems can be explained by referring to the flow chart above. As the user logs into the system, the inputs taken and fetched by the system concerning the user include the current context of the active user along with the unique user id of the user. Then the similar users pertaining to the user on account of the user’s context as well as the behaviour of the user from previous experience or past history according to the ratings given by the user are evaluated to get a contingent of relevant similar users. A. Refined User Sub-matrix: Similar users with respect to the current context as well as with respect to the behaviour of the active user are generated in the previous module. Again for refinement, the intersection of the sets from the contextually similar user’s module and the behaviourally similar user’s module will be taken. These relevant and similar users along with the songs will give us a refined sub-matrix of users along with the ratings for required songs.  ∩ B={x: x ∈ A ∧ x ∈ B} A B. Relevant Song list: The contingent of users subsequently generated in the previous module is evaluated to acquire and fetch the songs rated by these users. These highly refined users will eventually generate significantly relevant 58
  • 8. Enhancing collaborative filtering in music recommender system by using context based approach list of songs. The next module will refine this list further by application of some more appropriate constraint. C. Music Feature Extraction: The musical content feature extraction is pre dominantly done and is obtained from million song dataset along with last.fm data from the respective websites [4] [5]. These features help in identifying and releasing the required list of songs according to the requirements and respective constraints. D. Prioritized Song List: The users in the previous modules will be evaluated to generate a prioritized list of most relevant songs by assigning the rating points to the songs as a parameter for priority. The songs generated and fetched from these users are prioritized according to the rating, which means the popularity constraint of the songs is also being considered. E. Recommendation: The recommendation list of these highly refined, closely relevant and significantly appropriate songs is generated by tuning through all the above modules of the respective system. These songs are arranged and the top n entries from the list are finally provided as a recommendation to the active user. V. CONCLUSION The possibility of irrelevant recommendations due to only popularity consideration in the traditional approaches is very much reduced by the application of context based approach. We focused on the contextual similarity as well as the behavioural similarity of the user with other users to be able to extract implicitly relevant songs to the user for recommendation. For the contextual similarity consideration, we used Reduction Based Approach and for the behavioural similarity consideration, we used User Based Rating Prediction. With the combination of above approaches, we have increased the relevancy constraint of the system for recommendation. VI. FUTURE WORK The advancements in the application programming interfaces will help to enhance the extraction of relevant contextual information about the user. As more and more appropriate context data of the user will be available to the system the feasibility of more improvised and optimal list of songs for recommendation can be generated. Also connection to various social networks will boost the efficiency of our system concerning the consideration of the user’s likes and dislikes. Our system is not very concretely dependent on the data base. So with little modification in our system we can develop recommendation for a wide range of items and products. The portability, feasibility and the application of our system can be further enhanced by developing the system for various other operating systems. VII. REFERENCES [1] Ja-Hwung Su, Hsin-Ho Yeh, Philip S.Yu and Vincent S. Tseng, ―Music recommendation using content and context information mining‖, IEEE Intelligent Systems, IEEE Computer Society, 2010. [2] Qi Liu, Enhong Chen, Hui Xiong,Chris H. Q. Ding, and Jian Chen, ―Enhancing Collaborative Filtering by User Interest Expansion via Personalized Ranking‖, IEEE Transactions on Systems, man, and cybernetics—PART B: CYBERNETICS, VOL. 42, NO. 1, FEBRUARY 2012. [3] Mohamed Sarwt, Justin J. Levandoski, Ahmed Eldawy and Mohamed F. Mokbel, ―LARS*: An Efficient and Scalable Location-Aware Recommender System‖, TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, NOVEMBER 2012. [4]Million song dataset: applications and methods http://labrosa.ee.columbia.edu/millionsong/ [5]Last.fm: Music recommendation service (2013). http://www.last.fm/ [6]Android.com Website: Application programming interfaces. http://developer.android.com/index.html [7] Francesco Ricci, Lior Rokach, Bracha Shapira and Paul B. Kantor‖ Recommender Systems Handbook‖, Springer New York Dordrecht Heidelberg London, LLC 2011. [8] G. Linden et al, ―Amazon.com Recommendations: Item-to-Item Collaborative Filtering,‖ IEEE Internet Computing, vol. 7, no. 1, pp. 76–80, 2003. [9] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, ―GroupLens: An Open Architecture for Collaborative Filtering of Netnews,‖ in CSWC, 1994 [10]F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens, ―Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation,‖ IEEE Trans. Knowl. Data Eng., vol. 19, no. 3, pp. 355–369, Mar. 2007. 59
  • 9. Enhancing collaborative filtering in music recommender system by using context based approach [11] Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. J. Pazzani, ―An energy-efficient mobile recommender system,‖ in Proc. 16th ACM SIGKDD Int. Conf. KDD, 2010, pp. 899–908. [12] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, ―Evaluating collaborative filtering recommender systems,‖ ACM Trans. Inf. Syst. (TOIS), vol. 22, no. 1, pp. 5–53, Jan. 2004. [13] S. Funk, Netflix Update: Try This at Home, 2006. [Online]. Available: http://sifter.org/~simon/journal/20061211.html [14] Y. Koren, ―Factorization meets the neighborhood: A multifaceted collaborative filtering model,‖ in Proc. 14th ACM SIGKDD Int. Conf. KDD, 2008, pp. 426–434. [15] Y. Koren, ―Collaborative filtering with temporal dynamics,‖ in Proc. 15th ACM SIGKDD Int. Conf. KDD, 2009, pp. 447–456. [16]J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, ―Collaborative filtering recommender systems,‖ in Proc. Adapt. Web, Lecture Notes in Computer Science, 2007, pp. 291–324. [17]G. Adomavicius and A. Tuzhilin, ―Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions,‖ IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 734–749, Jun. 2005. [18]G. Reynolds e 1. t al., ―Interacting with Large Music Collections: Towards the Use of Environmental Metadata,‖ Proc. IEEE Int’l Conf. Multimedia and Expo, IEEE Press, 2008, pp. 989–992. [19]Gediminas Adomavicius, Ramesh Sankaranarayanan, Shahana Sen And Alexander Tuzhilin, ―Incorporating Contextual Information in Recommender Systems Using a Multidimensional Approach‖, ACM Transactions on Information Systems, Vol. 23, No.1, January 2005. [20] Breese, J.S., Heckerman, D., Kadie, C.: Empirical nalysis of predictive algorithms for collaborative filtering. In: Proc. of the 14th Annual Conf. on Uncertainty in Artificial Intelligence, pp. 43–52. Morgan Kaufmann (1998). 60