SlideShare una empresa de Scribd logo
1 de 75
Descargar para leer sin conexión
Axioms on the Set of Real Numbers

                          Mathematics 4


                            June 7, 2011




Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   1 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms
    Associativity Axioms




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms
    Associativity Axioms
    Commutativity Axioms




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms
    Associativity Axioms
    Commutativity Axioms
    Distributive Property of Multiplication over Addition




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms
    Associativity Axioms
    Commutativity Axioms
    Distributive Property of Multiplication over Addition
    Existence of an Identity Element




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms
    Associativity Axioms
    Commutativity Axioms
    Distributive Property of Multiplication over Addition
    Existence of an Identity Element
    Existence of an Inverse Element




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms: Closure




Closure Axioms
Addition: ∀ a, b ∈ R : (a + b) ∈ R.
Multiplication: ∀ a, b ∈ R, (a · b) ∈ R.




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   3 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+




      Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−




      Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−
  3   {−1, 0, 1}




      Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−
  3   {−1, 0, 1}
  4   {2, 4, 6, 8, 10, ...}




      Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−
  3   {−1, 0, 1}
  4   {2, 4, 6, 8, 10, ...}
  5   {−2, −1, 0, 1, 2, 3, ...}




      Mathematics 4 ()            Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−
  3   {−1, 0, 1}
  4   {2, 4, 6, 8, 10, ...}
  5   {−2, −1, 0, 1, 2, 3, ...}
  6   Q




      Mathematics 4 ()            Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−
  3   {−1, 0, 1}
  4   {2, 4, 6, 8, 10, ...}
  5   {−2, −1, 0, 1, 2, 3, ...}
  6   Q
  7   Q




      Mathematics 4 ()            Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Associativity




Associativity Axioms




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   5 / 14
Field Axioms: Associativity




Associativity Axioms
    Addition




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   5 / 14
Field Axioms: Associativity




Associativity Axioms
    Addition
    ∀ a, b, c ∈ R, (a + b) + c = a + (b + c)




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   5 / 14
Field Axioms: Associativity




Associativity Axioms
    Addition
    ∀ a, b, c ∈ R, (a + b) + c = a + (b + c)
    Multiplication




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   5 / 14
Field Axioms: Associativity




Associativity Axioms
    Addition
    ∀ a, b, c ∈ R, (a + b) + c = a + (b + c)
    Multiplication
    ∀ a, b, c ∈ R, (a · b) · c = a · (b · c)




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   5 / 14
Field Axioms: Commutativity




Commutativity Axioms




    Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   6 / 14
Field Axioms: Commutativity




Commutativity Axioms
   Addition




    Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   6 / 14
Field Axioms: Commutativity




Commutativity Axioms
   Addition
   ∀ a, b ∈ R, a + b = b + a




    Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   6 / 14
Field Axioms: Commutativity




Commutativity Axioms
   Addition
   ∀ a, b ∈ R, a + b = b + a
   Multiplication




    Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   6 / 14
Field Axioms: Commutativity




Commutativity Axioms
   Addition
   ∀ a, b ∈ R, a + b = b + a
   Multiplication
   ∀ a, b ∈ R, a · b = b · a




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   6 / 14
Field Axioms: DPMA




Distributive Property of Multiplication over Addition
∀ a, b, c ∈ R, c · (a + b) = c · a + c · b




      Mathematics 4 ()       Axioms on the Set of Real Numbers   June 7, 2011   7 / 14
Field Axioms: Existence of an Identity Element




Existence of an Identity Element




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   8 / 14
Field Axioms: Existence of an Identity Element




Existence of an Identity Element
    Addition




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   8 / 14
Field Axioms: Existence of an Identity Element




Existence of an Identity Element
    Addition
    ∃! 0 : a + 0 = a for a ∈ R.




     Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   8 / 14
Field Axioms: Existence of an Identity Element




Existence of an Identity Element
    Addition
    ∃! 0 : a + 0 = a for a ∈ R.
    Multiplication




     Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   8 / 14
Field Axioms: Existence of an Identity Element




Existence of an Identity Element
    Addition
    ∃! 0 : a + 0 = a for a ∈ R.
    Multiplication
    ∃! 1 : a · 1 = a and 1 · a = a for a ∈ R.




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   8 / 14
Field Axioms: Existence of an Inverse Element




Existence of an Inverse Element




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   9 / 14
Field Axioms: Existence of an Inverse Element




Existence of an Inverse Element
    Addition




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   9 / 14
Field Axioms: Existence of an Inverse Element




Existence of an Inverse Element
    Addition
    ∀ a ∈ R, ∃! (-a) : a + (−a) = 0




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   9 / 14
Field Axioms: Existence of an Inverse Element




Existence of an Inverse Element
    Addition
    ∀ a ∈ R, ∃! (-a) : a + (−a) = 0
    Multiplication




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   9 / 14
Field Axioms: Existence of an Inverse Element




Existence of an Inverse Element
    Addition
    ∀ a ∈ R, ∃! (-a) : a + (−a) = 0
    Multiplication
                        1          1
    ∀ a ∈ R − {0}, ∃!   a   : a·   a   =1




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   9 / 14
Equality Axioms




Equality Axioms




    Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   10 / 14
Equality Axioms




Equality Axioms
 1   Reflexivity: ∀ a ∈ R : a = a




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   10 / 14
Equality Axioms




Equality Axioms
 1   Reflexivity: ∀ a ∈ R : a = a
 2   Symmetry: ∀ a, b ∈ R : a = b → b = a




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   10 / 14
Equality Axioms




Equality Axioms
 1   Reflexivity: ∀ a ∈ R : a = a
 2   Symmetry: ∀ a, b ∈ R : a = b → b = a
 3   Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   10 / 14
Equality Axioms




Equality Axioms
 1   Reflexivity: ∀ a ∈ R : a = a
 2   Symmetry: ∀ a, b ∈ R : a = b → b = a
 3   Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c
 4   Addition PE: ∀ a, b, c ∈ R : a = b → a + c = b + c




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   10 / 14
Equality Axioms




Equality Axioms
 1   Reflexivity: ∀ a ∈ R : a = a
 2   Symmetry: ∀ a, b ∈ R : a = b → b = a
 3   Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c
 4   Addition PE: ∀ a, b, c ∈ R : a = b → a + c = b + c
 5   Multiplication PE: ∀ a, b, c ∈ R : a = b → a · c = b · c




     Mathematics 4 ()      Axioms on the Set of Real Numbers    June 7, 2011   10 / 14
Theorems from the Field and Equality Axioms




Cancellation for Addition: ∀ a, b, c ∈ R : a + c = b + c → a = c
            a+c=b+c                    Given
  a + c + (−c) = b + c + (−c)          APE
 a + (c + (−c)) = b + (c + (−c))       APA
            a+0=b+0                    ∃ additive inverses
                  a=b                  ∃ additive identity




     Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   11 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems




    Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a




    Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)




    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)
    (−1) · (−1) = 1    (Corollary of previous item)




    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)
    (−1) · (−1) = 1    (Corollary of previous item)
    ∀ a, b ∈ R : (−a) · (−b) = a · b




    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)
    (−1) · (−1) = 1    (Corollary of previous item)
    ∀ a, b ∈ R : (−a) · (−b) = a · b
    ∀ a, b ∈ R : − (a + b) = (−a) + (−b)




    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)
    (−1) · (−1) = 1    (Corollary of previous item)
    ∀ a, b ∈ R : (−a) · (−b) = a · b
    ∀ a, b ∈ R : − (a + b) = (−a) + (−b)
    Cancellation Law for Multiplication:
    ∀ a, b, c ∈ R, c = 0 : ac = bc → a = b




    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)
    (−1) · (−1) = 1    (Corollary of previous item)
    ∀ a, b ∈ R : (−a) · (−b) = a · b
    ∀ a, b ∈ R : − (a + b) = (−a) + (−b)
    Cancellation Law for Multiplication:
    ∀ a, b, c ∈ R, c = 0 : ac = bc → a = b
                         1
    ∀ a ∈ R, a = 0 :          =a
                      (1/a)


    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Order Axioms




Order Axioms: Trichotomy
∀ a, b ∈ R, only one of the following is true:




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   13 / 14
Order Axioms




Order Axioms: Trichotomy
∀ a, b ∈ R, only one of the following is true:
  1   a>b




      Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   13 / 14
Order Axioms




Order Axioms: Trichotomy
∀ a, b ∈ R, only one of the following is true:
  1   a>b
  2   a=b




      Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   13 / 14
Order Axioms




Order Axioms: Trichotomy
∀ a, b ∈ R, only one of the following is true:
  1   a>b
  2   a=b
  3   a<b




      Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   13 / 14
Order Axioms



Order Axioms: Inequalities




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities
     ∀ a, b, c ∈ R : a > b ∧ b > c → a > c




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities
     ∀ a, b, c ∈ R : a > b ∧ b > c → a > c
 2   Addition Property of Inequality




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities
     ∀ a, b, c ∈ R : a > b ∧ b > c → a > c
 2   Addition Property of Inequality
     ∀ a, b, c ∈ R : a > b → a + c > b + c




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities
     ∀ a, b, c ∈ R : a > b ∧ b > c → a > c
 2   Addition Property of Inequality
     ∀ a, b, c ∈ R : a > b → a + c > b + c
 3   Multiplication Property of Inequality




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities
     ∀ a, b, c ∈ R : a > b ∧ b > c → a > c
 2   Addition Property of Inequality
     ∀ a, b, c ∈ R : a > b → a + c > b + c
 3   Multiplication Property of Inequality
     ∀ a, b, c ∈ R, c > 0 : a > b → a · c > b · c




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Theorems from the Order Axioms

Prove the following theorems




    Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0




    Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)
    (4-4) ∀ a, b ∈ R : a > b → −b > −a




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)
    (4-4) ∀ a, b ∈ R : a > b → −b > −a
    (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0)




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)
    (4-4) ∀ a, b ∈ R : a > b → −b > −a
    (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0)
    (4-6) 1 > 0




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)
    (4-4) ∀ a, b ∈ R : a > b → −b > −a
    (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0)
    (4-6) 1 > 0
    ∀ a, b, c ∈ R : (a > b) ∧ (0 > c) → b · c > a · c




    Mathematics 4 ()       Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)
    (4-4) ∀ a, b ∈ R : a > b → −b > −a
    (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0)
    (4-6) 1 > 0
    ∀ a, b, c ∈ R : (a > b) ∧ (0 > c) → b · c > a · c
                         1
    ∀ a ∈ R: a > 0 → > 0
                         a


    Mathematics 4 ()       Axioms on the Set of Real Numbers   June 7, 2011   15 / 14

Más contenido relacionado

La actualidad más candente

Lecture 5 inverse of matrices - section 2-2 and 2-3
Lecture 5   inverse of matrices - section 2-2 and 2-3Lecture 5   inverse of matrices - section 2-2 and 2-3
Lecture 5 inverse of matrices - section 2-2 and 2-3njit-ronbrown
 
Final maths presentation on sets
Final maths presentation on setsFinal maths presentation on sets
Final maths presentation on setsRahul Avicii
 
Solving systems of Linear Equations
Solving systems of Linear EquationsSolving systems of Linear Equations
Solving systems of Linear Equationsswartzje
 
Properties of Real Numbers
Properties of Real NumbersProperties of Real Numbers
Properties of Real Numbersrfant
 
logic and set theory
logic and set theorylogic and set theory
logic and set theoryNathan Trillo
 
Variables & Expressions
Variables & ExpressionsVariables & Expressions
Variables & Expressionsrfant
 
2.1 frequency distributions for organizing and summarizing data
2.1 frequency distributions for organizing and summarizing data2.1 frequency distributions for organizing and summarizing data
2.1 frequency distributions for organizing and summarizing dataLong Beach City College
 
Mathematics class XI SETS
Mathematics class XI SETSMathematics class XI SETS
Mathematics class XI SETSNaveen R
 
Sets PowerPoint Presentation
Sets PowerPoint PresentationSets PowerPoint Presentation
Sets PowerPoint PresentationAshna Rajput
 
Mathematical system
Mathematical systemMathematical system
Mathematical systemM K
 
Matrix basic operations
Matrix basic operationsMatrix basic operations
Matrix basic operationsJessica Garcia
 

La actualidad más candente (20)

Lecture 5 inverse of matrices - section 2-2 and 2-3
Lecture 5   inverse of matrices - section 2-2 and 2-3Lecture 5   inverse of matrices - section 2-2 and 2-3
Lecture 5 inverse of matrices - section 2-2 and 2-3
 
Maths sets ppt
Maths sets pptMaths sets ppt
Maths sets ppt
 
Final maths presentation on sets
Final maths presentation on setsFinal maths presentation on sets
Final maths presentation on sets
 
Types of sets
Types of setsTypes of sets
Types of sets
 
Solving systems of Linear Equations
Solving systems of Linear EquationsSolving systems of Linear Equations
Solving systems of Linear Equations
 
Sets and venn diagrams
Sets and venn diagramsSets and venn diagrams
Sets and venn diagrams
 
2.2 Set Operations
2.2 Set Operations2.2 Set Operations
2.2 Set Operations
 
Properties of Real Numbers
Properties of Real NumbersProperties of Real Numbers
Properties of Real Numbers
 
Hyperbola
HyperbolaHyperbola
Hyperbola
 
logic and set theory
logic and set theorylogic and set theory
logic and set theory
 
7 functions
7   functions7   functions
7 functions
 
Variables & Expressions
Variables & ExpressionsVariables & Expressions
Variables & Expressions
 
2.1 frequency distributions for organizing and summarizing data
2.1 frequency distributions for organizing and summarizing data2.1 frequency distributions for organizing and summarizing data
2.1 frequency distributions for organizing and summarizing data
 
Number Theory - Lesson 1 - Introduction to Number Theory
Number Theory - Lesson 1 - Introduction to Number TheoryNumber Theory - Lesson 1 - Introduction to Number Theory
Number Theory - Lesson 1 - Introduction to Number Theory
 
Sample Space And Events
Sample Space And EventsSample Space And Events
Sample Space And Events
 
Mathematics class XI SETS
Mathematics class XI SETSMathematics class XI SETS
Mathematics class XI SETS
 
Sets PowerPoint Presentation
Sets PowerPoint PresentationSets PowerPoint Presentation
Sets PowerPoint Presentation
 
Mathematical system
Mathematical systemMathematical system
Mathematical system
 
Matrix basic operations
Matrix basic operationsMatrix basic operations
Matrix basic operations
 
Bivariate data
Bivariate dataBivariate data
Bivariate data
 

Más de Leo Crisologo

Math 4 graphing rational functions
Math 4 graphing rational functionsMath 4 graphing rational functions
Math 4 graphing rational functionsLeo Crisologo
 
More theorems on polynomial functions
More theorems on polynomial functionsMore theorems on polynomial functions
More theorems on polynomial functionsLeo Crisologo
 
Theorems on polynomial functions
Theorems on polynomial functionsTheorems on polynomial functions
Theorems on polynomial functionsLeo Crisologo
 
Polynomial functions
Polynomial functionsPolynomial functions
Polynomial functionsLeo Crisologo
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersLeo Crisologo
 
Specific function examples
Specific function examplesSpecific function examples
Specific function examplesLeo Crisologo
 
Inverse of functions
Inverse of functionsInverse of functions
Inverse of functionsLeo Crisologo
 
Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?Leo Crisologo
 
Permutations and combinations examples
Permutations and combinations examplesPermutations and combinations examples
Permutations and combinations examplesLeo Crisologo
 
Sequences and series
Sequences and seriesSequences and series
Sequences and seriesLeo Crisologo
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbersLeo Crisologo
 
Right triangle problems
Right triangle problemsRight triangle problems
Right triangle problemsLeo Crisologo
 
Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functionsLeo Crisologo
 
Graphing trigonometric functions
Graphing trigonometric functionsGraphing trigonometric functions
Graphing trigonometric functionsLeo Crisologo
 
Circles and Tangent Lines
Circles and Tangent LinesCircles and Tangent Lines
Circles and Tangent LinesLeo Crisologo
 
Circles - Degenerate and Null cases
Circles - Degenerate and Null casesCircles - Degenerate and Null cases
Circles - Degenerate and Null casesLeo Crisologo
 

Más de Leo Crisologo (20)

Math 4 graphing rational functions
Math 4 graphing rational functionsMath 4 graphing rational functions
Math 4 graphing rational functions
 
More theorems on polynomial functions
More theorems on polynomial functionsMore theorems on polynomial functions
More theorems on polynomial functions
 
Theorems on polynomial functions
Theorems on polynomial functionsTheorems on polynomial functions
Theorems on polynomial functions
 
Polynomial functions
Polynomial functionsPolynomial functions
Polynomial functions
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbers
 
Completeness axiom
Completeness axiomCompleteness axiom
Completeness axiom
 
Specific function examples
Specific function examplesSpecific function examples
Specific function examples
 
Inverse of functions
Inverse of functionsInverse of functions
Inverse of functions
 
Functions
FunctionsFunctions
Functions
 
Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?
 
Permutations and combinations examples
Permutations and combinations examplesPermutations and combinations examples
Permutations and combinations examples
 
Permutations
PermutationsPermutations
Permutations
 
Counting examples
Counting examplesCounting examples
Counting examples
 
Sequences and series
Sequences and seriesSequences and series
Sequences and series
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbers
 
Right triangle problems
Right triangle problemsRight triangle problems
Right triangle problems
 
Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functions
 
Graphing trigonometric functions
Graphing trigonometric functionsGraphing trigonometric functions
Graphing trigonometric functions
 
Circles and Tangent Lines
Circles and Tangent LinesCircles and Tangent Lines
Circles and Tangent Lines
 
Circles - Degenerate and Null cases
Circles - Degenerate and Null casesCircles - Degenerate and Null cases
Circles - Degenerate and Null cases
 

Último

Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 

Último (20)

Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 

Math 4 axioms on the set of real numbers

  • 1. Axioms on the Set of Real Numbers Mathematics 4 June 7, 2011 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 1 / 14
  • 2. Field Axioms Fields A field is a set where the following axioms hold: Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 3. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 4. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Associativity Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 5. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Associativity Axioms Commutativity Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 6. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Associativity Axioms Commutativity Axioms Distributive Property of Multiplication over Addition Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 7. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Associativity Axioms Commutativity Axioms Distributive Property of Multiplication over Addition Existence of an Identity Element Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 8. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Associativity Axioms Commutativity Axioms Distributive Property of Multiplication over Addition Existence of an Identity Element Existence of an Inverse Element Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 9. Field Axioms: Closure Closure Axioms Addition: ∀ a, b ∈ R : (a + b) ∈ R. Multiplication: ∀ a, b ∈ R, (a · b) ∈ R. Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 3 / 14
  • 10. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 11. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 12. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 13. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− 3 {−1, 0, 1} Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 14. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− 3 {−1, 0, 1} 4 {2, 4, 6, 8, 10, ...} Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 15. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− 3 {−1, 0, 1} 4 {2, 4, 6, 8, 10, ...} 5 {−2, −1, 0, 1, 2, 3, ...} Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 16. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− 3 {−1, 0, 1} 4 {2, 4, 6, 8, 10, ...} 5 {−2, −1, 0, 1, 2, 3, ...} 6 Q Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 17. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− 3 {−1, 0, 1} 4 {2, 4, 6, 8, 10, ...} 5 {−2, −1, 0, 1, 2, 3, ...} 6 Q 7 Q Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 18. Field Axioms: Associativity Associativity Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 5 / 14
  • 19. Field Axioms: Associativity Associativity Axioms Addition Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 5 / 14
  • 20. Field Axioms: Associativity Associativity Axioms Addition ∀ a, b, c ∈ R, (a + b) + c = a + (b + c) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 5 / 14
  • 21. Field Axioms: Associativity Associativity Axioms Addition ∀ a, b, c ∈ R, (a + b) + c = a + (b + c) Multiplication Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 5 / 14
  • 22. Field Axioms: Associativity Associativity Axioms Addition ∀ a, b, c ∈ R, (a + b) + c = a + (b + c) Multiplication ∀ a, b, c ∈ R, (a · b) · c = a · (b · c) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 5 / 14
  • 23. Field Axioms: Commutativity Commutativity Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 6 / 14
  • 24. Field Axioms: Commutativity Commutativity Axioms Addition Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 6 / 14
  • 25. Field Axioms: Commutativity Commutativity Axioms Addition ∀ a, b ∈ R, a + b = b + a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 6 / 14
  • 26. Field Axioms: Commutativity Commutativity Axioms Addition ∀ a, b ∈ R, a + b = b + a Multiplication Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 6 / 14
  • 27. Field Axioms: Commutativity Commutativity Axioms Addition ∀ a, b ∈ R, a + b = b + a Multiplication ∀ a, b ∈ R, a · b = b · a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 6 / 14
  • 28. Field Axioms: DPMA Distributive Property of Multiplication over Addition ∀ a, b, c ∈ R, c · (a + b) = c · a + c · b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 7 / 14
  • 29. Field Axioms: Existence of an Identity Element Existence of an Identity Element Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 8 / 14
  • 30. Field Axioms: Existence of an Identity Element Existence of an Identity Element Addition Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 8 / 14
  • 31. Field Axioms: Existence of an Identity Element Existence of an Identity Element Addition ∃! 0 : a + 0 = a for a ∈ R. Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 8 / 14
  • 32. Field Axioms: Existence of an Identity Element Existence of an Identity Element Addition ∃! 0 : a + 0 = a for a ∈ R. Multiplication Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 8 / 14
  • 33. Field Axioms: Existence of an Identity Element Existence of an Identity Element Addition ∃! 0 : a + 0 = a for a ∈ R. Multiplication ∃! 1 : a · 1 = a and 1 · a = a for a ∈ R. Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 8 / 14
  • 34. Field Axioms: Existence of an Inverse Element Existence of an Inverse Element Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 9 / 14
  • 35. Field Axioms: Existence of an Inverse Element Existence of an Inverse Element Addition Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 9 / 14
  • 36. Field Axioms: Existence of an Inverse Element Existence of an Inverse Element Addition ∀ a ∈ R, ∃! (-a) : a + (−a) = 0 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 9 / 14
  • 37. Field Axioms: Existence of an Inverse Element Existence of an Inverse Element Addition ∀ a ∈ R, ∃! (-a) : a + (−a) = 0 Multiplication Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 9 / 14
  • 38. Field Axioms: Existence of an Inverse Element Existence of an Inverse Element Addition ∀ a ∈ R, ∃! (-a) : a + (−a) = 0 Multiplication 1 1 ∀ a ∈ R − {0}, ∃! a : a· a =1 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 9 / 14
  • 39. Equality Axioms Equality Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 40. Equality Axioms Equality Axioms 1 Reflexivity: ∀ a ∈ R : a = a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 41. Equality Axioms Equality Axioms 1 Reflexivity: ∀ a ∈ R : a = a 2 Symmetry: ∀ a, b ∈ R : a = b → b = a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 42. Equality Axioms Equality Axioms 1 Reflexivity: ∀ a ∈ R : a = a 2 Symmetry: ∀ a, b ∈ R : a = b → b = a 3 Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 43. Equality Axioms Equality Axioms 1 Reflexivity: ∀ a ∈ R : a = a 2 Symmetry: ∀ a, b ∈ R : a = b → b = a 3 Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c 4 Addition PE: ∀ a, b, c ∈ R : a = b → a + c = b + c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 44. Equality Axioms Equality Axioms 1 Reflexivity: ∀ a ∈ R : a = a 2 Symmetry: ∀ a, b ∈ R : a = b → b = a 3 Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c 4 Addition PE: ∀ a, b, c ∈ R : a = b → a + c = b + c 5 Multiplication PE: ∀ a, b, c ∈ R : a = b → a · c = b · c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 45. Theorems from the Field and Equality Axioms Cancellation for Addition: ∀ a, b, c ∈ R : a + c = b + c → a = c a+c=b+c Given a + c + (−c) = b + c + (−c) APE a + (c + (−c)) = b + (c + (−c)) APA a+0=b+0 ∃ additive inverses a=b ∃ additive identity Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 11 / 14
  • 46. Theorems from the Field and Equality Axioms Prove the following theorems Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 47. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 48. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 49. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 50. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 51. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) (−1) · (−1) = 1 (Corollary of previous item) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 52. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) (−1) · (−1) = 1 (Corollary of previous item) ∀ a, b ∈ R : (−a) · (−b) = a · b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 53. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) (−1) · (−1) = 1 (Corollary of previous item) ∀ a, b ∈ R : (−a) · (−b) = a · b ∀ a, b ∈ R : − (a + b) = (−a) + (−b) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 54. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) (−1) · (−1) = 1 (Corollary of previous item) ∀ a, b ∈ R : (−a) · (−b) = a · b ∀ a, b ∈ R : − (a + b) = (−a) + (−b) Cancellation Law for Multiplication: ∀ a, b, c ∈ R, c = 0 : ac = bc → a = b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 55. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) (−1) · (−1) = 1 (Corollary of previous item) ∀ a, b ∈ R : (−a) · (−b) = a · b ∀ a, b ∈ R : − (a + b) = (−a) + (−b) Cancellation Law for Multiplication: ∀ a, b, c ∈ R, c = 0 : ac = bc → a = b 1 ∀ a ∈ R, a = 0 : =a (1/a) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 56. Order Axioms Order Axioms: Trichotomy ∀ a, b ∈ R, only one of the following is true: Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 13 / 14
  • 57. Order Axioms Order Axioms: Trichotomy ∀ a, b ∈ R, only one of the following is true: 1 a>b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 13 / 14
  • 58. Order Axioms Order Axioms: Trichotomy ∀ a, b ∈ R, only one of the following is true: 1 a>b 2 a=b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 13 / 14
  • 59. Order Axioms Order Axioms: Trichotomy ∀ a, b ∈ R, only one of the following is true: 1 a>b 2 a=b 3 a<b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 13 / 14
  • 60. Order Axioms Order Axioms: Inequalities Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 61. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 62. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities ∀ a, b, c ∈ R : a > b ∧ b > c → a > c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 63. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities ∀ a, b, c ∈ R : a > b ∧ b > c → a > c 2 Addition Property of Inequality Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 64. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities ∀ a, b, c ∈ R : a > b ∧ b > c → a > c 2 Addition Property of Inequality ∀ a, b, c ∈ R : a > b → a + c > b + c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 65. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities ∀ a, b, c ∈ R : a > b ∧ b > c → a > c 2 Addition Property of Inequality ∀ a, b, c ∈ R : a > b → a + c > b + c 3 Multiplication Property of Inequality Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 66. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities ∀ a, b, c ∈ R : a > b ∧ b > c → a > c 2 Addition Property of Inequality ∀ a, b, c ∈ R : a > b → a + c > b + c 3 Multiplication Property of Inequality ∀ a, b, c ∈ R, c > 0 : a > b → a · c > b · c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 67. Theorems from the Order Axioms Prove the following theorems Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 68. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 69. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 70. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 71. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) (4-4) ∀ a, b ∈ R : a > b → −b > −a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 72. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) (4-4) ∀ a, b ∈ R : a > b → −b > −a (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 73. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) (4-4) ∀ a, b ∈ R : a > b → −b > −a (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0) (4-6) 1 > 0 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 74. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) (4-4) ∀ a, b ∈ R : a > b → −b > −a (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0) (4-6) 1 > 0 ∀ a, b, c ∈ R : (a > b) ∧ (0 > c) → b · c > a · c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 75. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) (4-4) ∀ a, b ∈ R : a > b → −b > −a (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0) (4-6) 1 > 0 ∀ a, b, c ∈ R : (a > b) ∧ (0 > c) → b · c > a · c 1 ∀ a ∈ R: a > 0 → > 0 a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14