SlideShare una empresa de Scribd logo
1 de 102
Descargar para leer sin conexión
..
Sec on 5.3
Evalua ng Definite Integrals
V63.0121.011: Calculus I
Professor Ma hew Leingang
New York University
April 27, 2011
Announcements
Today: 5.3
Thursday/Friday: Quiz on
4.1–4.4
Monday 5/2: 5.4
Wednesday 5/4: 5.5
Monday 5/9: Review and
Movie Day!
Thursday 5/12: Final
Exam, 2:00–3:50pm
Objectives
Use the Evalua on
Theorem to evaluate
definite integrals.
Write an deriva ves as
indefinite integrals.
Interpret definite
integrals as “net change”
of a func on over an
interval.
Outline
Last me: The Definite Integral
The definite integral as a limit
Proper es of the integral
Evalua ng Definite Integrals
Examples
The Integral as Net Change
Indefinite Integrals
My first table of integrals
Compu ng Area with integrals
The definite integral as a limit
Defini on
If f is a func on defined on [a, b], the definite integral of f from a to
b is the number
∫ b
a
f(x) dx = lim
n→∞
n∑
i=1
f(ci) ∆x
where ∆x =
b − a
n
, and for each i, xi = a + i∆x, and ci is a point in
[xi−1, xi].
The definite integral as a limit
Theorem
If f is con nuous on [a, b] or if f has only finitely many jump
discon nui es, then f is integrable on [a, b]; that is, the definite
integral
∫ b
a
f(x) dx exists and is the same for any choice of ci.
Notation/Terminology
∫ b
a
f(x) dx
∫
— integral sign (swoopy S)
f(x) — integrand
a and b — limits of integra on (a is the lower limit and b the
upper limit)
dx — ??? (a parenthesis? an infinitesimal? a variable?)
The process of compu ng an integral is called integra on
Example
Es mate
∫ 1
0
4
1 + x2
dx using M4.
Example
Es mate
∫ 1
0
4
1 + x2
dx using M4.
Solu on
We have x0 = 0, x1 =
1
4
, x2 =
1
2
, x3 =
3
4
, x4 = 1.
So c1 =
1
8
, c2 =
3
8
, c3 =
5
8
, c4 =
7
8
.
Example
Es mate
∫ 1
0
4
1 + x2
dx using M4.
Solu on
M4 =
1
4
(
4
1 + (1/8)2
+
4
1 + (3/8)2
+
4
1 + (5/8)2
+
4
1 + (7/8)2
)
Example
Es mate
∫ 1
0
4
1 + x2
dx using M4.
Solu on
M4 =
1
4
(
4
1 + (1/8)2
+
4
1 + (3/8)2
+
4
1 + (5/8)2
+
4
1 + (7/8)2
)
=
1
4
(
4
65/64
+
4
73/64
+
4
89/64
+
4
113/64
)
Example
Es mate
∫ 1
0
4
1 + x2
dx using M4.
Solu on
M4 =
1
4
(
4
1 + (1/8)2
+
4
1 + (3/8)2
+
4
1 + (5/8)2
+
4
1 + (7/8)2
)
=
1
4
(
4
65/64
+
4
73/64
+
4
89/64
+
4
113/64
)
=
64
65
+
64
73
+
64
89
+
64
113
≈ 3.1468
Properties of the integral
Theorem (Addi ve Proper es of the Integral)
Let f and g be integrable func ons on [a, b] and c a constant. Then
1.
∫ b
a
c dx = c(b − a)
2.
∫ b
a
[f(x) + g(x)] dx =
∫ b
a
f(x) dx +
∫ b
a
g(x) dx.
3.
∫ b
a
cf(x) dx = c
∫ b
a
f(x) dx.
4.
∫ b
a
[f(x) − g(x)] dx =
∫ b
a
f(x) dx −
∫ b
a
g(x) dx.
More Properties of the Integral
Conven ons: ∫ a
b
f(x) dx = −
∫ b
a
f(x) dx
∫ a
a
f(x) dx = 0
This allows us to have
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
Illustrating Property 5
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
..
x
.
y
..
a
..
b
..
c
Illustrating Property 5
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
..
x
.
y
..
a
..
b
..
c
.
∫ b
a
f(x) dx
Illustrating Property 5
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
..
x
.
y
..
a
..
b
..
c
.
∫ b
a
f(x) dx
.
∫ c
b
f(x) dx
Illustrating Property 5
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
..
x
.
y
..
a
..
b
..
c
.
∫ b
a
f(x) dx
.
∫ c
b
f(x) dx
.
∫ c
a
f(x) dx
Illustrating Property 5
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
..
x
.
y
..
a
..
b
..
c
Illustrating Property 5
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
..
x
.
y
..
a
..
b
..
c
.
∫ b
a
f(x) dx
Illustrating Property 5
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
..
x
.
y
..
a
..
b
..
c
.
∫ c
b
f(x) dx =
−
∫ b
c
f(x) dx
Illustrating Property 5
Theorem
5.
∫ c
a
f(x) dx =
∫ b
a
f(x) dx +
∫ c
b
f(x) dx for all a, b, and c.
..
x
.
y
..
a
..
b
..
c
.
∫ c
b
f(x) dx =
−
∫ b
c
f(x) dx
.
∫ c
a
f(x) dx
Definite Integrals We Know So Far
If the integral computes an area
and we know the area, we can
use that. For instance,
∫ 1
0
√
1 − x2 dx =
π
4
By brute force we computed
∫ 1
0
x2
dx =
1
3
∫ 1
0
x3
dx =
1
4
..
x
.
y
Comparison Properties of the Integral
Theorem
Let f and g be integrable func ons on [a, b].
Comparison Properties of the Integral
Theorem
Let f and g be integrable func ons on [a, b].
6. If f(x) ≥ 0 for all x in [a, b], then
∫ b
a
f(x) dx ≥ 0
Comparison Properties of the Integral
Theorem
Let f and g be integrable func ons on [a, b].
6. If f(x) ≥ 0 for all x in [a, b], then
∫ b
a
f(x) dx ≥ 0
7. If f(x) ≥ g(x) for all x in [a, b], then
∫ b
a
f(x) dx ≥
∫ b
a
g(x) dx
Comparison Properties of the Integral
Theorem
Let f and g be integrable func ons on [a, b].
6. If f(x) ≥ 0 for all x in [a, b], then
∫ b
a
f(x) dx ≥ 0
7. If f(x) ≥ g(x) for all x in [a, b], then
∫ b
a
f(x) dx ≥
∫ b
a
g(x) dx
8. If m ≤ f(x) ≤ M for all x in [a, b], then
m(b − a) ≤
∫ b
a
f(x) dx ≤ M(b − a)
Integral of a nonnegative function is nonnegative
Proof.
If f(x) ≥ 0 for all x in [a, b], then for
any number of divisions n and choice
of sample points {ci}:
Sn =
n∑
i=1
f(ci)
≥0
∆x ≥
n∑
i=1
0 · ∆x = 0
.. x.......
Since Sn ≥ 0 for all n, the limit of {Sn} is nonnega ve, too:
∫ b
a
f(x) dx = lim
n→∞
Sn
≥0
≥ 0
The integral is “increasing”
Proof.
Let h(x) = f(x) − g(x). If f(x) ≥ g(x)
for all x in [a, b], then h(x) ≥ 0 for all
x in [a, b]. So by the previous
property
∫ b
a
h(x) dx ≥ 0 .. x.
f(x)
.
g(x)
.
h(x)
This means that
∫ b
a
f(x) dx −
∫ b
a
g(x) dx =
∫ b
a
(f(x) − g(x)) dx =
∫ b
a
h(x) dx ≥ 0
Bounding the integral
Proof.
If m ≤ f(x) ≤ M on for all x in [a, b], then by
the previous property
∫ b
a
m dx ≤
∫ b
a
f(x) dx ≤
∫ b
a
M dx
By Property 8, the integral of a constant
func on is the product of the constant and
the width of the interval. So:
m(b − a) ≤
∫ b
a
f(x) dx ≤ M(b − a)
.. x.
y
.
M
.
f(x)
.
m
..
a
..
b
Example
Es mate
∫ 2
1
1
x
dx using the comparison proper es.
Example
Es mate
∫ 2
1
1
x
dx using the comparison proper es.
Solu on
Since
1
2
≤
1
x
≤
1
1
for all x in [1, 2], we have
1
2
· 1 ≤
∫ 2
1
1
x
dx ≤ 1 · 1
Ques on
Es mate
∫ 2
1
1
x
dx with L2 and R2. Are your es mates overes mates?
Underes mates? Impossible to tell?
Ques on
Es mate
∫ 2
1
1
x
dx with L2 and R2. Are your es mates overes mates?
Underes mates? Impossible to tell?
Answer
Since the integrand is decreasing,
Rn <
∫ 2
1
1
x
dx < Ln
for all n. So
7
12
<
∫ 2
1
1
x
dx <
5
6
.
Outline
Last me: The Definite Integral
The definite integral as a limit
Proper es of the integral
Evalua ng Definite Integrals
Examples
The Integral as Net Change
Indefinite Integrals
My first table of integrals
Compu ng Area with integrals
Socratic proof
The definite integral of velocity
measures displacement (net
distance)
The deriva ve of displacement
is velocity
So we can compute
displacement with the definite
integral or the an deriva ve of
velocity
But any func on can be a
velocity func on, so . . .
Theorem of the Day
Theorem (The Second Fundamental Theorem of Calculus)
Suppose f is integrable on [a, b] and f = F′
for another func on F,
then ∫ b
a
f(x) dx = F(b) − F(a).
Theorem of the Day
Theorem (The Second Fundamental Theorem of Calculus)
Suppose f is integrable on [a, b] and f = F′
for another func on F,
then ∫ b
a
f(x) dx = F(b) − F(a).
Note
In Sec on 5.3, this theorem is called “The Evalua on Theorem”.
Nobody else in the world calls it that.
Proving the Second FTC
Proof.
Divide up [a, b] into n pieces of equal width ∆x =
b − a
n
as
usual.
Proving the Second FTC
Proof.
Divide up [a, b] into n pieces of equal width ∆x =
b − a
n
as
usual.
For each i, F is con nuous on [xi−1, xi] and differen able on
(xi−1, xi). So there is a point ci in (xi−1, xi) with
F(xi) − F(xi−1)
xi − xi−1
= F′
(ci) = f(ci)
Proving the Second FTC
Proof.
Divide up [a, b] into n pieces of equal width ∆x =
b − a
n
as
usual.
For each i, F is con nuous on [xi−1, xi] and differen able on
(xi−1, xi). So there is a point ci in (xi−1, xi) with
F(xi) − F(xi−1)
xi − xi−1
= F′
(ci) = f(ci)
=⇒ f(ci)∆x = F(xi) − F(xi−1)
Proving the Second FTC
Proof.
Form the Riemann Sum:
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
Proving the Second FTC
Proof.
Form the Riemann Sum:
Sn =
n∑
i=1
f(ci)∆x =
n∑
i=1
(F(xi) − F(xi−1))
= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·
· · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
= F(xn) − F(x0) = F(b) − F(a)
Proving the Second FTC
Proof.
We have shown for each n,
Sn = F(b) − F(a)
Which does not depend on n.
Proving the Second FTC
Proof.
We have shown for each n,
Sn = F(b) − F(a)
Which does not depend on n.
So in the limit
∫ b
a
f(x) dx = lim
n→∞
Sn = lim
n→∞
(F(b) − F(a)) = F(b) − F(a)
Computing area with the 2nd FTC
Example
Find the area between y = x3
and the x-axis, between x = 0 and
x = 1.
.
Computing area with the 2nd FTC
Example
Find the area between y = x3
and the x-axis, between x = 0 and
x = 1.
Solu on
A =
∫ 1
0
x3
dx =
x4
4
1
0
=
1
4 .
Computing area with the 2nd FTC
Example
Find the area between y = x3
and the x-axis, between x = 0 and
x = 1.
Solu on
A =
∫ 1
0
x3
dx =
x4
4
1
0
=
1
4 .
Here we use the nota on F(x)|b
a or [F(x)]b
a to mean F(b) − F(a).
Computing area with the 2nd FTC
Example
Find the area enclosed by the parabola y = x2
and the line y = 1.
Computing area with the 2nd FTC
Example
Find the area enclosed by the parabola y = x2
and the line y = 1.
...
−1
..
1
..
1
Computing area with the 2nd FTC
Example
Find the area enclosed by the parabola y = x2
and the line y = 1.
Solu on
A = 2 −
∫ 1
−1
x2
dx = 2 −
[
x3
3
]1
−1
= 2 −
[
1
3
−
(
−
1
3
)]
=
4
3
...
−1
..
1
..
1
Computing an integral we
estimated before
Example
Evaluate the integral
∫ 1
0
4
1 + x2
dx.
Example
Es mate
∫ 1
0
4
1 + x2
dx using M4.
Solu on
M4 =
1
4
(
4
1 + (1/8)2
+
4
1 + (3/8)2
+
4
1 + (5/8)2
+
4
1 + (7/8)2
)
=
1
4
(
4
65/64
+
4
73/64
+
4
89/64
+
4
113/64
)
=
64
65
+
64
73
+
64
89
+
64
113
≈ 3.1468
Computing an integral we
estimated before
Example
Evaluate the integral
∫ 1
0
4
1 + x2
dx.
Solu on
∫ 1
0
4
1 + x2
dx = 4
∫ 1
0
1
1 + x2
dx
Computing an integral we
estimated before
Example
Evaluate the integral
∫ 1
0
4
1 + x2
dx.
Solu on
∫ 1
0
4
1 + x2
dx = 4
∫ 1
0
1
1 + x2
dx = 4 arctan(x)|1
0
Computing an integral we
estimated before
Example
Evaluate the integral
∫ 1
0
4
1 + x2
dx.
Solu on
∫ 1
0
4
1 + x2
dx = 4
∫ 1
0
1
1 + x2
dx = 4 arctan(x)|1
0
= 4 (arctan 1 − arctan 0)
Computing an integral we
estimated before
Example
Evaluate the integral
∫ 1
0
4
1 + x2
dx.
Solu on
∫ 1
0
4
1 + x2
dx = 4
∫ 1
0
1
1 + x2
dx = 4 arctan(x)|1
0
= 4 (arctan 1 − arctan 0) = 4
(π
4
− 0
)
Computing an integral we
estimated before
Example
Evaluate the integral
∫ 1
0
4
1 + x2
dx.
Solu on
∫ 1
0
4
1 + x2
dx = 4
∫ 1
0
1
1 + x2
dx = 4 arctan(x)|1
0
= 4 (arctan 1 − arctan 0) = 4
(π
4
− 0
)
= π
Computing an integral we
estimated before
Example
Evaluate
∫ 2
1
1
x
dx.
Example
Es mate
∫ 2
1
1
x
dx using the comparison proper es.
Solu on
Since
1
2
≤
1
x
≤
1
1
for all x in [1, 2], we have
1
2
· 1 ≤
∫ 2
1
1
x
dx ≤ 1 · 1
Computing an integral we
estimated before
Example
Evaluate
∫ 2
1
1
x
dx.
Solu on
∫ 2
1
1
x
dx
Computing an integral we
estimated before
Example
Evaluate
∫ 2
1
1
x
dx.
Solu on
∫ 2
1
1
x
dx = ln x|2
1
Computing an integral we
estimated before
Example
Evaluate
∫ 2
1
1
x
dx.
Solu on
∫ 2
1
1
x
dx = ln x|2
1 = ln 2 − ln 1
Computing an integral we
estimated before
Example
Evaluate
∫ 2
1
1
x
dx.
Solu on
∫ 2
1
1
x
dx = ln x|2
1 = ln 2 − ln 1 = ln 2
Outline
Last me: The Definite Integral
The definite integral as a limit
Proper es of the integral
Evalua ng Definite Integrals
Examples
The Integral as Net Change
Indefinite Integrals
My first table of integrals
Compu ng Area with integrals
The Integral as Net Change
Another way to state this theorem is:
∫ b
a
F′
(x) dx = F(b) − F(a),
or the integral of a deriva ve along an interval is the net change
over that interval. This has many interpreta ons.
The Integral as Net Change
The Integral as Net Change
Corollary
If v(t) represents the velocity of a par cle moving rec linearly, then
∫ t1
t0
v(t) dt = s(t1) − s(t0).
The Integral as Net Change
Corollary
If MC(x) represents the marginal cost of making x units of a product,
then
C(x) = C(0) +
∫ x
0
MC(q) dq.
The Integral as Net Change
Corollary
If ρ(x) represents the density of a thin rod at a distance of x from its
end, then the mass of the rod up to x is
m(x) =
∫ x
0
ρ(s) ds.
Outline
Last me: The Definite Integral
The definite integral as a limit
Proper es of the integral
Evalua ng Definite Integrals
Examples
The Integral as Net Change
Indefinite Integrals
My first table of integrals
Compu ng Area with integrals
A new notation for antiderivatives
To emphasize the rela onship between an differen a on and
integra on, we use the indefinite integral nota on
∫
f(x) dx
for any func on whose deriva ve is f(x).
A new notation for antiderivatives
To emphasize the rela onship between an differen a on and
integra on, we use the indefinite integral nota on
∫
f(x) dx
for any func on whose deriva ve is f(x). Thus
∫
x2
dx = 1
3x3
+ C.
My first table of integrals..
∫
[f(x) + g(x)] dx =
∫
f(x) dx +
∫
g(x) dx
∫
xn
dx =
xn+1
n + 1
+ C (n ̸= −1)
∫
ex
dx = ex
+ C
∫
sin x dx = − cos x + C
∫
cos x dx = sin x + C
∫
sec2
x dx = tan x + C
∫
sec x tan x dx = sec x + C
∫
1
1 + x2
dx = arctan x + C
∫
cf(x) dx = c
∫
f(x) dx
∫
1
x
dx = ln |x| + C
∫
ax
dx =
ax
ln a
+ C
∫
csc2
x dx = − cot x + C
∫
csc x cot x dx = − csc x + C
∫
1
√
1 − x2
dx = arcsin x + C
Outline
Last me: The Definite Integral
The definite integral as a limit
Proper es of the integral
Evalua ng Definite Integrals
Examples
The Integral as Net Change
Indefinite Integrals
My first table of integrals
Compu ng Area with integrals
Computing Area with integrals
Example
Find the area of the region bounded by the lines x = 1, x = 4, the
x-axis, and the curve y = ex
.
Computing Area with integrals
Example
Find the area of the region bounded by the lines x = 1, x = 4, the
x-axis, and the curve y = ex
.
Solu on
The answer is ∫ 4
1
ex
dx = ex
|4
1 = e4
− e.
Computing Area with integrals
Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.
Computing Area with integrals
Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.
Solu on
The answer is
∫ 1
0
arcsin x dx, but
we do not know an an deriva ve
for arcsin.
..
x
.
y
..
1
..
π/2
Computing Area with integrals
Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.
Solu on
Instead compute the area as
π
2
−
∫ π/2
0
sin y dy
..
x
.
y
..
1
..
π/2
Computing Area with integrals
Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.
Solu on
Instead compute the area as
π
2
−
∫ π/2
0
sin y dy =
π
2
−[− cos x]
π/2
0
..
x
.
y
..
1
..
π/2
Computing Area with integrals
Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.
Solu on
Instead compute the area as
π
2
−
∫ π/2
0
sin y dy =
π
2
−[− cos x]
π/2
0 =
π
2
−1
..
x
.
y
..
1
..
π/2
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.
Solu on
No ce the func on
y = (x − 1)(x − 2) is posi ve on [0, 1)
and (2, 3], and nega ve on (1, 2).
.. x.
y
..
1
..
2
..
3
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.
Solu on
A =
∫ 1
0
(x2
− 3x + 2) dx
−
∫ 2
1
(x2
− 3x + 2) dx
+
∫ 3
2
(x2
− 3x + 2) dx
.. x.
y
..
1
..
2
..
3
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.
Solu on
A =
∫ 1
0
(x − 1)(x − 2) dx
−
∫ 2
1
(x − 1)(x − 2) dx
+
∫ 3
2
(x − 1)(x − 2) dx
.. x.
y
..
1
..
2
..
3
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.
Solu on
A =
[1
3x3
− 3
2x2
+ 2x
]1
0
−
[1
3x3
− 3
2x2
+ 2x
]2
1
+
[1
3x3
− 3
2x2
+ 2x
]3
2
=
11
6
.. x.
y
..
1
..
2
..
3
Interpretation of “negative area”
in motion
There is an analog in rectlinear mo on:
∫ t1
t0
v(t) dt is net distance traveled.
∫ t1
t0
|v(t)| dt is total distance traveled.
What about the constant?
It seems we forgot about the +C when we say for instance
∫ 1
0
x3
dx =
x4
4
1
0
=
1
4
− 0 =
1
4
But no ce
[
x4
4
+ C
]1
0
=
(
1
4
+ C
)
− (0 + C) =
1
4
+ C − C =
1
4
no ma er what C is.
So in an differen a on for definite integrals, the constant is
immaterial.
Summary
The second Fundamental Theorem of Calculus:
∫ b
a
f(x) dx = F(b) − F(a)
where F′
= f.
Definite integrals represent net change of a func on over an
interval.
We write an deriva ves as indefinite integrals
∫
f(x) dx

Más contenido relacionado

La actualidad más candente

Numerical Analysis (Solution of Non-Linear Equations)
Numerical Analysis (Solution of Non-Linear Equations)Numerical Analysis (Solution of Non-Linear Equations)
Numerical Analysis (Solution of Non-Linear Equations)Asad Ali
 
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Matthew Leingang
 
19 min max-saddle-points
19 min max-saddle-points19 min max-saddle-points
19 min max-saddle-pointsmath267
 
Higher order derivatives for N -body simulations
Higher order derivatives for N -body simulationsHigher order derivatives for N -body simulations
Higher order derivatives for N -body simulationsKeigo Nitadori
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Integration
IntegrationIntegration
Integrationsuefee
 
Introductory Mathematical Analysis for Business Economics International 13th ...
Introductory Mathematical Analysis for Business Economics International 13th ...Introductory Mathematical Analysis for Business Economics International 13th ...
Introductory Mathematical Analysis for Business Economics International 13th ...Leblancer
 
Números primos repunits
Números primos repunitsNúmeros primos repunits
Números primos repunitslenixez
 
Higher Derivatives & Partial Differentiation
Higher Derivatives & Partial DifferentiationHigher Derivatives & Partial Differentiation
Higher Derivatives & Partial DifferentiationRaymundo Raymund
 
Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)Matthew Leingang
 
Introductory maths analysis chapter 11 official
Introductory maths analysis   chapter 11 officialIntroductory maths analysis   chapter 11 official
Introductory maths analysis chapter 11 officialEvert Sandye Taasiringan
 
28 work and line integrals
28 work and line integrals28 work and line integrals
28 work and line integralsmath267
 

La actualidad más candente (18)

Derivatives
DerivativesDerivatives
Derivatives
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
Numerical Analysis (Solution of Non-Linear Equations)
Numerical Analysis (Solution of Non-Linear Equations)Numerical Analysis (Solution of Non-Linear Equations)
Numerical Analysis (Solution of Non-Linear Equations)
 
Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)Lesson 27: Integration by Substitution (Section 041 slides)
Lesson 27: Integration by Substitution (Section 041 slides)
 
19 min max-saddle-points
19 min max-saddle-points19 min max-saddle-points
19 min max-saddle-points
 
Higher order derivatives for N -body simulations
Higher order derivatives for N -body simulationsHigher order derivatives for N -body simulations
Higher order derivatives for N -body simulations
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
 
Integration
IntegrationIntegration
Integration
 
Introductory Mathematical Analysis for Business Economics International 13th ...
Introductory Mathematical Analysis for Business Economics International 13th ...Introductory Mathematical Analysis for Business Economics International 13th ...
Introductory Mathematical Analysis for Business Economics International 13th ...
 
Números primos repunits
Números primos repunitsNúmeros primos repunits
Números primos repunits
 
Analysis Solutions CIV
Analysis Solutions CIVAnalysis Solutions CIV
Analysis Solutions CIV
 
Higher Derivatives & Partial Differentiation
Higher Derivatives & Partial DifferentiationHigher Derivatives & Partial Differentiation
Higher Derivatives & Partial Differentiation
 
Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3
 
Introductory maths analysis chapter 11 official
Introductory maths analysis   chapter 11 officialIntroductory maths analysis   chapter 11 official
Introductory maths analysis chapter 11 official
 
Rules of derivative
Rules of derivativeRules of derivative
Rules of derivative
 
28 work and line integrals
28 work and line integrals28 work and line integrals
28 work and line integrals
 

Similar a Evaluating definite integrals

Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite IntegralJelaiAujero
 
Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slidesLesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slidesMel Anthony Pepito
 
Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Juan Miguel Palero
 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functionsdionesioable
 
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptxlesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptxJohnReyManzano2
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite IntegralMatthew Leingang
 
1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoioNoorYassinHJamel
 
The chain rule
The chain ruleThe chain rule
The chain ruleJ M
 
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddKarmaX1
 
Integration material
Integration material Integration material
Integration material Surya Swaroop
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsMatthew Leingang
 

Similar a Evaluating definite integrals (20)

Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 
3. Functions II.pdf
3. Functions II.pdf3. Functions II.pdf
3. Functions II.pdf
 
Functions
FunctionsFunctions
Functions
 
Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)
 
The integral
The integralThe integral
The integral
 
Lesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slidesLesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slides
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
 
Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)
 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functions
 
1519 differentiation-integration-02
1519 differentiation-integration-021519 differentiation-integration-02
1519 differentiation-integration-02
 
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptxlesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite Integral
 
Inverse.pptx
Inverse.pptxInverse.pptx
Inverse.pptx
 
1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio
 
The chain rule
The chain ruleThe chain rule
The chain rule
 
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
 
Imc2017 day2-solutions
Imc2017 day2-solutionsImc2017 day2-solutions
Imc2017 day2-solutions
 
Integration material
Integration material Integration material
Integration material
 
Integration
IntegrationIntegration
Integration
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite Integrals
 

Último

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxannathomasp01
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxJisc
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxPooja Bhuva
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17Celine George
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxDr. Sarita Anand
 

Último (20)

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 

Evaluating definite integrals

  • 1. .. Sec on 5.3 Evalua ng Definite Integrals V63.0121.011: Calculus I Professor Ma hew Leingang New York University April 27, 2011
  • 2. Announcements Today: 5.3 Thursday/Friday: Quiz on 4.1–4.4 Monday 5/2: 5.4 Wednesday 5/4: 5.5 Monday 5/9: Review and Movie Day! Thursday 5/12: Final Exam, 2:00–3:50pm
  • 3. Objectives Use the Evalua on Theorem to evaluate definite integrals. Write an deriva ves as indefinite integrals. Interpret definite integrals as “net change” of a func on over an interval.
  • 4. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 5. The definite integral as a limit Defini on If f is a func on defined on [a, b], the definite integral of f from a to b is the number ∫ b a f(x) dx = lim n→∞ n∑ i=1 f(ci) ∆x where ∆x = b − a n , and for each i, xi = a + i∆x, and ci is a point in [xi−1, xi].
  • 6. The definite integral as a limit Theorem If f is con nuous on [a, b] or if f has only finitely many jump discon nui es, then f is integrable on [a, b]; that is, the definite integral ∫ b a f(x) dx exists and is the same for any choice of ci.
  • 7. Notation/Terminology ∫ b a f(x) dx ∫ — integral sign (swoopy S) f(x) — integrand a and b — limits of integra on (a is the lower limit and b the upper limit) dx — ??? (a parenthesis? an infinitesimal? a variable?) The process of compu ng an integral is called integra on
  • 8. Example Es mate ∫ 1 0 4 1 + x2 dx using M4.
  • 9. Example Es mate ∫ 1 0 4 1 + x2 dx using M4. Solu on We have x0 = 0, x1 = 1 4 , x2 = 1 2 , x3 = 3 4 , x4 = 1. So c1 = 1 8 , c2 = 3 8 , c3 = 5 8 , c4 = 7 8 .
  • 10. Example Es mate ∫ 1 0 4 1 + x2 dx using M4. Solu on M4 = 1 4 ( 4 1 + (1/8)2 + 4 1 + (3/8)2 + 4 1 + (5/8)2 + 4 1 + (7/8)2 )
  • 11. Example Es mate ∫ 1 0 4 1 + x2 dx using M4. Solu on M4 = 1 4 ( 4 1 + (1/8)2 + 4 1 + (3/8)2 + 4 1 + (5/8)2 + 4 1 + (7/8)2 ) = 1 4 ( 4 65/64 + 4 73/64 + 4 89/64 + 4 113/64 )
  • 12. Example Es mate ∫ 1 0 4 1 + x2 dx using M4. Solu on M4 = 1 4 ( 4 1 + (1/8)2 + 4 1 + (3/8)2 + 4 1 + (5/8)2 + 4 1 + (7/8)2 ) = 1 4 ( 4 65/64 + 4 73/64 + 4 89/64 + 4 113/64 ) = 64 65 + 64 73 + 64 89 + 64 113 ≈ 3.1468
  • 13. Properties of the integral Theorem (Addi ve Proper es of the Integral) Let f and g be integrable func ons on [a, b] and c a constant. Then 1. ∫ b a c dx = c(b − a) 2. ∫ b a [f(x) + g(x)] dx = ∫ b a f(x) dx + ∫ b a g(x) dx. 3. ∫ b a cf(x) dx = c ∫ b a f(x) dx. 4. ∫ b a [f(x) − g(x)] dx = ∫ b a f(x) dx − ∫ b a g(x) dx.
  • 14. More Properties of the Integral Conven ons: ∫ a b f(x) dx = − ∫ b a f(x) dx ∫ a a f(x) dx = 0 This allows us to have Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c.
  • 15. Illustrating Property 5 Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c. .. x . y .. a .. b .. c
  • 16. Illustrating Property 5 Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c. .. x . y .. a .. b .. c . ∫ b a f(x) dx
  • 17. Illustrating Property 5 Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c. .. x . y .. a .. b .. c . ∫ b a f(x) dx . ∫ c b f(x) dx
  • 18. Illustrating Property 5 Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c. .. x . y .. a .. b .. c . ∫ b a f(x) dx . ∫ c b f(x) dx . ∫ c a f(x) dx
  • 19. Illustrating Property 5 Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c. .. x . y .. a .. b .. c
  • 20. Illustrating Property 5 Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c. .. x . y .. a .. b .. c . ∫ b a f(x) dx
  • 21. Illustrating Property 5 Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c. .. x . y .. a .. b .. c . ∫ c b f(x) dx = − ∫ b c f(x) dx
  • 22. Illustrating Property 5 Theorem 5. ∫ c a f(x) dx = ∫ b a f(x) dx + ∫ c b f(x) dx for all a, b, and c. .. x . y .. a .. b .. c . ∫ c b f(x) dx = − ∫ b c f(x) dx . ∫ c a f(x) dx
  • 23. Definite Integrals We Know So Far If the integral computes an area and we know the area, we can use that. For instance, ∫ 1 0 √ 1 − x2 dx = π 4 By brute force we computed ∫ 1 0 x2 dx = 1 3 ∫ 1 0 x3 dx = 1 4 .. x . y
  • 24. Comparison Properties of the Integral Theorem Let f and g be integrable func ons on [a, b].
  • 25. Comparison Properties of the Integral Theorem Let f and g be integrable func ons on [a, b]. 6. If f(x) ≥ 0 for all x in [a, b], then ∫ b a f(x) dx ≥ 0
  • 26. Comparison Properties of the Integral Theorem Let f and g be integrable func ons on [a, b]. 6. If f(x) ≥ 0 for all x in [a, b], then ∫ b a f(x) dx ≥ 0 7. If f(x) ≥ g(x) for all x in [a, b], then ∫ b a f(x) dx ≥ ∫ b a g(x) dx
  • 27. Comparison Properties of the Integral Theorem Let f and g be integrable func ons on [a, b]. 6. If f(x) ≥ 0 for all x in [a, b], then ∫ b a f(x) dx ≥ 0 7. If f(x) ≥ g(x) for all x in [a, b], then ∫ b a f(x) dx ≥ ∫ b a g(x) dx 8. If m ≤ f(x) ≤ M for all x in [a, b], then m(b − a) ≤ ∫ b a f(x) dx ≤ M(b − a)
  • 28. Integral of a nonnegative function is nonnegative Proof. If f(x) ≥ 0 for all x in [a, b], then for any number of divisions n and choice of sample points {ci}: Sn = n∑ i=1 f(ci) ≥0 ∆x ≥ n∑ i=1 0 · ∆x = 0 .. x....... Since Sn ≥ 0 for all n, the limit of {Sn} is nonnega ve, too: ∫ b a f(x) dx = lim n→∞ Sn ≥0 ≥ 0
  • 29. The integral is “increasing” Proof. Let h(x) = f(x) − g(x). If f(x) ≥ g(x) for all x in [a, b], then h(x) ≥ 0 for all x in [a, b]. So by the previous property ∫ b a h(x) dx ≥ 0 .. x. f(x) . g(x) . h(x) This means that ∫ b a f(x) dx − ∫ b a g(x) dx = ∫ b a (f(x) − g(x)) dx = ∫ b a h(x) dx ≥ 0
  • 30. Bounding the integral Proof. If m ≤ f(x) ≤ M on for all x in [a, b], then by the previous property ∫ b a m dx ≤ ∫ b a f(x) dx ≤ ∫ b a M dx By Property 8, the integral of a constant func on is the product of the constant and the width of the interval. So: m(b − a) ≤ ∫ b a f(x) dx ≤ M(b − a) .. x. y . M . f(x) . m .. a .. b
  • 31. Example Es mate ∫ 2 1 1 x dx using the comparison proper es.
  • 32. Example Es mate ∫ 2 1 1 x dx using the comparison proper es. Solu on Since 1 2 ≤ 1 x ≤ 1 1 for all x in [1, 2], we have 1 2 · 1 ≤ ∫ 2 1 1 x dx ≤ 1 · 1
  • 33. Ques on Es mate ∫ 2 1 1 x dx with L2 and R2. Are your es mates overes mates? Underes mates? Impossible to tell?
  • 34. Ques on Es mate ∫ 2 1 1 x dx with L2 and R2. Are your es mates overes mates? Underes mates? Impossible to tell? Answer Since the integrand is decreasing, Rn < ∫ 2 1 1 x dx < Ln for all n. So 7 12 < ∫ 2 1 1 x dx < 5 6 .
  • 35. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 36. Socratic proof The definite integral of velocity measures displacement (net distance) The deriva ve of displacement is velocity So we can compute displacement with the definite integral or the an deriva ve of velocity But any func on can be a velocity func on, so . . .
  • 37. Theorem of the Day Theorem (The Second Fundamental Theorem of Calculus) Suppose f is integrable on [a, b] and f = F′ for another func on F, then ∫ b a f(x) dx = F(b) − F(a).
  • 38. Theorem of the Day Theorem (The Second Fundamental Theorem of Calculus) Suppose f is integrable on [a, b] and f = F′ for another func on F, then ∫ b a f(x) dx = F(b) − F(a). Note In Sec on 5.3, this theorem is called “The Evalua on Theorem”. Nobody else in the world calls it that.
  • 39. Proving the Second FTC Proof. Divide up [a, b] into n pieces of equal width ∆x = b − a n as usual.
  • 40. Proving the Second FTC Proof. Divide up [a, b] into n pieces of equal width ∆x = b − a n as usual. For each i, F is con nuous on [xi−1, xi] and differen able on (xi−1, xi). So there is a point ci in (xi−1, xi) with F(xi) − F(xi−1) xi − xi−1 = F′ (ci) = f(ci)
  • 41. Proving the Second FTC Proof. Divide up [a, b] into n pieces of equal width ∆x = b − a n as usual. For each i, F is con nuous on [xi−1, xi] and differen able on (xi−1, xi). So there is a point ci in (xi−1, xi) with F(xi) − F(xi−1) xi − xi−1 = F′ (ci) = f(ci) =⇒ f(ci)∆x = F(xi) − F(xi−1)
  • 42. Proving the Second FTC Proof. Form the Riemann Sum:
  • 43. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1))
  • 44. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 45. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 46. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 47. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 48. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 49. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 50. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 51. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 52. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 53. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 54. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1))
  • 55. Proving the Second FTC Proof. Form the Riemann Sum: Sn = n∑ i=1 f(ci)∆x = n∑ i=1 (F(xi) − F(xi−1)) = (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · · · · · + (F(xn−1) − F(xn−2)) + (F(xn) − F(xn−1)) = F(xn) − F(x0) = F(b) − F(a)
  • 56. Proving the Second FTC Proof. We have shown for each n, Sn = F(b) − F(a) Which does not depend on n.
  • 57. Proving the Second FTC Proof. We have shown for each n, Sn = F(b) − F(a) Which does not depend on n. So in the limit ∫ b a f(x) dx = lim n→∞ Sn = lim n→∞ (F(b) − F(a)) = F(b) − F(a)
  • 58. Computing area with the 2nd FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. .
  • 59. Computing area with the 2nd FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. Solu on A = ∫ 1 0 x3 dx = x4 4 1 0 = 1 4 .
  • 60. Computing area with the 2nd FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. Solu on A = ∫ 1 0 x3 dx = x4 4 1 0 = 1 4 . Here we use the nota on F(x)|b a or [F(x)]b a to mean F(b) − F(a).
  • 61. Computing area with the 2nd FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1.
  • 62. Computing area with the 2nd FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1. ... −1 .. 1 .. 1
  • 63. Computing area with the 2nd FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1. Solu on A = 2 − ∫ 1 −1 x2 dx = 2 − [ x3 3 ]1 −1 = 2 − [ 1 3 − ( − 1 3 )] = 4 3 ... −1 .. 1 .. 1
  • 64. Computing an integral we estimated before Example Evaluate the integral ∫ 1 0 4 1 + x2 dx.
  • 65. Example Es mate ∫ 1 0 4 1 + x2 dx using M4. Solu on M4 = 1 4 ( 4 1 + (1/8)2 + 4 1 + (3/8)2 + 4 1 + (5/8)2 + 4 1 + (7/8)2 ) = 1 4 ( 4 65/64 + 4 73/64 + 4 89/64 + 4 113/64 ) = 64 65 + 64 73 + 64 89 + 64 113 ≈ 3.1468
  • 66. Computing an integral we estimated before Example Evaluate the integral ∫ 1 0 4 1 + x2 dx. Solu on ∫ 1 0 4 1 + x2 dx = 4 ∫ 1 0 1 1 + x2 dx
  • 67. Computing an integral we estimated before Example Evaluate the integral ∫ 1 0 4 1 + x2 dx. Solu on ∫ 1 0 4 1 + x2 dx = 4 ∫ 1 0 1 1 + x2 dx = 4 arctan(x)|1 0
  • 68. Computing an integral we estimated before Example Evaluate the integral ∫ 1 0 4 1 + x2 dx. Solu on ∫ 1 0 4 1 + x2 dx = 4 ∫ 1 0 1 1 + x2 dx = 4 arctan(x)|1 0 = 4 (arctan 1 − arctan 0)
  • 69. Computing an integral we estimated before Example Evaluate the integral ∫ 1 0 4 1 + x2 dx. Solu on ∫ 1 0 4 1 + x2 dx = 4 ∫ 1 0 1 1 + x2 dx = 4 arctan(x)|1 0 = 4 (arctan 1 − arctan 0) = 4 (π 4 − 0 )
  • 70. Computing an integral we estimated before Example Evaluate the integral ∫ 1 0 4 1 + x2 dx. Solu on ∫ 1 0 4 1 + x2 dx = 4 ∫ 1 0 1 1 + x2 dx = 4 arctan(x)|1 0 = 4 (arctan 1 − arctan 0) = 4 (π 4 − 0 ) = π
  • 71. Computing an integral we estimated before Example Evaluate ∫ 2 1 1 x dx.
  • 72. Example Es mate ∫ 2 1 1 x dx using the comparison proper es. Solu on Since 1 2 ≤ 1 x ≤ 1 1 for all x in [1, 2], we have 1 2 · 1 ≤ ∫ 2 1 1 x dx ≤ 1 · 1
  • 73. Computing an integral we estimated before Example Evaluate ∫ 2 1 1 x dx. Solu on ∫ 2 1 1 x dx
  • 74. Computing an integral we estimated before Example Evaluate ∫ 2 1 1 x dx. Solu on ∫ 2 1 1 x dx = ln x|2 1
  • 75. Computing an integral we estimated before Example Evaluate ∫ 2 1 1 x dx. Solu on ∫ 2 1 1 x dx = ln x|2 1 = ln 2 − ln 1
  • 76. Computing an integral we estimated before Example Evaluate ∫ 2 1 1 x dx. Solu on ∫ 2 1 1 x dx = ln x|2 1 = ln 2 − ln 1 = ln 2
  • 77. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 78. The Integral as Net Change Another way to state this theorem is: ∫ b a F′ (x) dx = F(b) − F(a), or the integral of a deriva ve along an interval is the net change over that interval. This has many interpreta ons.
  • 79. The Integral as Net Change
  • 80. The Integral as Net Change Corollary If v(t) represents the velocity of a par cle moving rec linearly, then ∫ t1 t0 v(t) dt = s(t1) − s(t0).
  • 81. The Integral as Net Change Corollary If MC(x) represents the marginal cost of making x units of a product, then C(x) = C(0) + ∫ x 0 MC(q) dq.
  • 82. The Integral as Net Change Corollary If ρ(x) represents the density of a thin rod at a distance of x from its end, then the mass of the rod up to x is m(x) = ∫ x 0 ρ(s) ds.
  • 83. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 84. A new notation for antiderivatives To emphasize the rela onship between an differen a on and integra on, we use the indefinite integral nota on ∫ f(x) dx for any func on whose deriva ve is f(x).
  • 85. A new notation for antiderivatives To emphasize the rela onship between an differen a on and integra on, we use the indefinite integral nota on ∫ f(x) dx for any func on whose deriva ve is f(x). Thus ∫ x2 dx = 1 3x3 + C.
  • 86. My first table of integrals.. ∫ [f(x) + g(x)] dx = ∫ f(x) dx + ∫ g(x) dx ∫ xn dx = xn+1 n + 1 + C (n ̸= −1) ∫ ex dx = ex + C ∫ sin x dx = − cos x + C ∫ cos x dx = sin x + C ∫ sec2 x dx = tan x + C ∫ sec x tan x dx = sec x + C ∫ 1 1 + x2 dx = arctan x + C ∫ cf(x) dx = c ∫ f(x) dx ∫ 1 x dx = ln |x| + C ∫ ax dx = ax ln a + C ∫ csc2 x dx = − cot x + C ∫ csc x cot x dx = − csc x + C ∫ 1 √ 1 − x2 dx = arcsin x + C
  • 87. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 88. Computing Area with integrals Example Find the area of the region bounded by the lines x = 1, x = 4, the x-axis, and the curve y = ex .
  • 89. Computing Area with integrals Example Find the area of the region bounded by the lines x = 1, x = 4, the x-axis, and the curve y = ex . Solu on The answer is ∫ 4 1 ex dx = ex |4 1 = e4 − e.
  • 90. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1.
  • 91. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solu on The answer is ∫ 1 0 arcsin x dx, but we do not know an an deriva ve for arcsin. .. x . y .. 1 .. π/2
  • 92. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solu on Instead compute the area as π 2 − ∫ π/2 0 sin y dy .. x . y .. 1 .. π/2
  • 93. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solu on Instead compute the area as π 2 − ∫ π/2 0 sin y dy = π 2 −[− cos x] π/2 0 .. x . y .. 1 .. π/2
  • 94. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solu on Instead compute the area as π 2 − ∫ π/2 0 sin y dy = π 2 −[− cos x] π/2 0 = π 2 −1 .. x . y .. 1 .. π/2
  • 95. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3.
  • 96. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3. Solu on No ce the func on y = (x − 1)(x − 2) is posi ve on [0, 1) and (2, 3], and nega ve on (1, 2). .. x. y .. 1 .. 2 .. 3
  • 97. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3. Solu on A = ∫ 1 0 (x2 − 3x + 2) dx − ∫ 2 1 (x2 − 3x + 2) dx + ∫ 3 2 (x2 − 3x + 2) dx .. x. y .. 1 .. 2 .. 3
  • 98. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3. Solu on A = ∫ 1 0 (x − 1)(x − 2) dx − ∫ 2 1 (x − 1)(x − 2) dx + ∫ 3 2 (x − 1)(x − 2) dx .. x. y .. 1 .. 2 .. 3
  • 99. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3. Solu on A = [1 3x3 − 3 2x2 + 2x ]1 0 − [1 3x3 − 3 2x2 + 2x ]2 1 + [1 3x3 − 3 2x2 + 2x ]3 2 = 11 6 .. x. y .. 1 .. 2 .. 3
  • 100. Interpretation of “negative area” in motion There is an analog in rectlinear mo on: ∫ t1 t0 v(t) dt is net distance traveled. ∫ t1 t0 |v(t)| dt is total distance traveled.
  • 101. What about the constant? It seems we forgot about the +C when we say for instance ∫ 1 0 x3 dx = x4 4 1 0 = 1 4 − 0 = 1 4 But no ce [ x4 4 + C ]1 0 = ( 1 4 + C ) − (0 + C) = 1 4 + C − C = 1 4 no ma er what C is. So in an differen a on for definite integrals, the constant is immaterial.
  • 102. Summary The second Fundamental Theorem of Calculus: ∫ b a f(x) dx = F(b) − F(a) where F′ = f. Definite integrals represent net change of a func on over an interval. We write an deriva ves as indefinite integrals ∫ f(x) dx