SlideShare una empresa de Scribd logo
1 de 8
Descargar para leer sin conexión
 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
       	
        	
       AMS	
  COLLABORATION	
  	
  
	
  
                                                      Press	
  Release	
  	
  	
    	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  April	
  3rd,	
  	
  2013,	
  Geneva,	
  Switzerland	
  
                                                       	
  
                                                       First	
  Results	
  from	
  the	
  Alpha	
  Magnetic	
  Spectrometer	
  (AMS)	
  Experiment	
  
	
  
                                                       The	
   Alpha	
   Magnetic	
   Spectrometer	
   (AMS)	
   Collaboration	
   announces	
   the	
  
publication	
  of	
  its	
  first	
  physics	
  result	
  in	
  Physical	
  Review	
  Letters.	
  The	
  AMS	
  Experiment	
  
is	
   the	
   most	
   powerful	
   and	
   sensitive	
   particle	
   physics	
   spectrometer	
   ever	
   deployed	
   in	
  
space.	
  As	
  seen	
  in	
  Figure	
  1,	
  AMS	
  is	
  located	
  on	
  the	
  exterior	
  of	
  the	
  International	
  Space	
  
Station	
   (ISS)	
   and,	
   since	
   its	
   installation	
   on	
   May	
   19,	
   2011	
   until	
   the	
   present,	
   it	
   has	
  
measured	
   over	
   30	
   billion	
   cosmic	
   rays	
   at	
   energies	
   up	
   to	
   trillions	
   of	
   electron	
   volts.	
   Its	
  
permanent	
   magnet	
   and	
   array	
   of	
   precision	
   particle	
   detectors	
   collect	
   and	
   identify	
  
charged	
   cosmic	
   rays	
   passing	
   through	
   AMS	
   from	
   the	
   far	
   reaches	
   of	
   space.	
   	
   Over	
   its	
  
long	
   duration	
   mission	
   on	
   the	
   ISS,	
   AMS	
   will	
   record	
   signals	
   from	
   16	
   billion	
   cosmic	
  
rays	
  every	
  year	
  and	
  transmit	
  them	
  to	
  Earth	
  for	
  analysis	
  by	
  the	
  AMS	
  Collaboration.	
  
This	
  is	
  the	
  first	
  of	
  many	
  physics	
  results	
  to	
  be	
  reported.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
           Figure	
  1:	
  From	
  its	
  vantage	
  point	
  ~260	
  miles	
  (~400	
  km)	
  above	
  the	
  Earth,	
  the	
  Alpha	
  Magnetic	
  
            Spectrometer	
  (AMS)	
  collects	
  data	
  from	
  primordial	
  cosmic	
  rays	
  that	
  traverse	
  the	
  detector.	
  	
  
	
  
          In	
   the	
   initial	
   18	
   month	
   period	
   of	
   space	
   operations,	
   from	
   May	
   19,	
   2011	
   to	
  
December	
  10,	
  2012,	
  AMS	
  analyzed	
  25	
  billion	
  primary	
  cosmic	
  ray	
  events.	
  	
  Of	
  these,	
  
an	
  unprecedented	
  number,	
  6.8	
  million,	
  were	
  unambiguously	
  identified	
  as	
  electrons	
  
and	
   their	
   antimatter	
   counterpart,	
   positrons.	
   	
   The	
   6.8	
   million	
   particles	
   observed	
   in	
  


	
                                                                                            1	
  
the	
  energy	
  range	
  0.5	
  to	
  350	
  GeV	
  are	
  the	
  subject	
  of	
  the	
  precision	
  study	
  reported	
  in	
  
this	
  first	
  paper.	
  	
  
             Electrons	
   and	
   positrons	
   are	
   identified	
   by	
   the	
   accurate	
   and	
   redundant	
  
measurements	
   provided	
   by	
   the	
   various	
   AMS	
   instruments	
   against	
   a	
   large	
  
background	
   of	
   protons.	
   Positrons	
   are	
   clearly	
   distinguished	
   from	
   this	
   background	
  
through	
   the	
   robust	
   rejection	
   power	
   of	
   AMS	
   of	
   more	
   than	
   one	
   in	
   one	
   million.	
  	
  	
  
Currently,	
  the	
  total	
  number	
  of	
  positrons	
  identified	
  by	
  AMS,	
  in	
  excess	
  of	
  400,000,	
  is	
  
the	
  largest	
  number	
  of	
  energetic	
  antimatter	
  particles	
  directly	
  measured	
  and	
  analyzed	
  
from	
  space.	
  	
  The	
  present	
  paper	
  can	
  be	
  summarized	
  as	
  follows:	
  	
  	
  
	
  
             AMS	
   has	
   measured	
   the	
   positron	
   fraction	
   (ratio	
   of	
   the	
   positron	
   flux	
   to	
   the	
  
combined	
  flux	
  of	
  positrons	
  and	
  electrons)	
  in	
  the	
  energy	
  range	
  0.5	
  to	
  350	
  GeV.	
  	
  We	
  
have	
   observed	
   that	
   from	
   0.5	
   to	
   10	
   GeV,	
   the	
   fraction	
   decreases	
   with	
   increasing	
  
energy.	
  	
  The	
  fraction	
  then	
  increases	
  steadily	
  between	
  10	
  GeV	
  to	
  ~250	
  GeV.	
  	
  Yet	
  the	
  
slope	
  (rate	
  of	
  growth)	
  of	
  the	
  positron	
  fraction	
  decreases	
  by	
  an	
  order	
  of	
  magnitude	
  
from	
  20	
  to	
  250	
  GeV.	
  	
  At	
  energies	
  above	
  250	
  GeV,	
  the	
  spectrum	
  appears	
  to	
  flatten	
  but	
  
to	
   study	
   the	
   behavior	
   above	
   250	
   GeV	
   requires	
   more	
   statistics	
   –	
   the	
   data	
   reported	
  
represents	
  ~10%	
  of	
  the	
  total	
  expected.	
  The	
  positron	
  fraction	
  spectrum	
  exhibits	
  no	
  
structure	
   nor	
   time	
   dependence.	
   	
   The	
   positron	
   to	
   electron	
   ratio	
   shows	
   no	
   anisotropy	
  
indicating	
   the	
   energetic	
   positrons	
   are	
   not	
   coming	
   from	
   a	
   preferred	
   direction	
   in	
  
space.	
  	
  Together,	
  these	
  features	
  show	
  evidence	
  of	
  a	
  new	
  physics	
  phenomena.	
  	
  
	
  
             Figure	
  2	
  illustrates	
  the	
  AMS	
  data	
  presented	
  in	
  the	
  first	
  publication.	
  
	
  




                                                                                                                                                                	
  
	
  
       Figure	
  2:	
  The	
  positron	
  fraction	
  measured	
  by	
  AMS	
  demonstrates	
  excellent	
  agreement	
  with	
  the	
  model	
  
       described	
  below.	
  Even	
  with	
  the	
  high	
  statistics,	
  6.8	
  million	
  events,	
  and	
  accuracy	
  of	
  AMS,	
  the	
  fraction	
  
                                                              shows	
  no	
  fine	
  structure.	
  
	
  


	
                                                                              2	
  
 
            The	
   exact	
   shape	
   of	
   the	
   spectrum,	
   as	
   shown	
   in	
   Figure	
   2,	
   extended	
   to	
   higher	
  
energies,	
   will	
   ultimately	
   determine	
   whether	
   this	
   spectrum	
   originates	
   from	
   the	
  
collision	
   of	
   dark	
   matter	
   particles	
   or	
   from	
   pulsars	
   in	
   the	
   galaxy.	
   	
   The	
   high	
   level	
   of	
  
accuracy	
  of	
  this	
  data	
  shows	
  that	
  AMS	
  will	
  soon	
  resolve	
  this	
  issue.	
  
	
  
            Over	
   the	
   last	
   few	
   decades	
   there	
   has	
   been	
   much	
   interest	
   on	
   the	
   positron	
  
fraction	
   from	
   primary	
   cosmic	
   rays	
   by	
   both	
   particle	
   physicists	
   and	
   astrophysicists.	
  	
  
The	
   underlying	
   reason	
   for	
   this	
   interest	
   is	
   that	
   by	
   measuring	
   the	
   ratio	
   between	
  
positrons	
   and	
   electrons	
   and	
   by	
   studying	
   the	
   behavior	
   of	
   any	
   excess	
   across	
   the	
  
energy	
   spectrum,	
   a	
   better	
   understanding	
   of	
   the	
   origin	
   of	
   dark	
   matter	
   and	
   other	
  
physics	
  phenomena	
  can	
  be	
  obtained.	
  	
  
	
  
            The	
   first	
   AMS	
   result	
   has	
   been	
   analyzed	
   using	
   several	
   phenomenological	
  
models,	
  one	
  of	
  which	
  is	
  described	
  in	
  the	
  paper	
  and	
  included	
  in	
  Figure	
  2.	
  	
  This	
  model,	
  
with	
   diffuse	
   electron	
   and	
   positron	
   components	
   and	
   a	
   common	
   source	
   component,	
  
fits	
   the	
   AMS	
   data	
   surprisingly	
   well.	
   	
   This	
   agreement	
   indicates	
   that	
   the	
   positron	
  
fraction	
   spectrum	
   is	
   consistent	
   with	
   electron	
   positron	
   fluxes	
   each	
   of	
   which	
   is	
   the	
  
sum	
  of	
  its	
  diffuse	
  spectrum	
  and	
  a	
  single	
  energetic	
  common	
  source.	
  	
  In	
  other	
  words,	
  a	
  
significant	
   portion	
   of	
   the	
   high-­‐energy	
   electrons	
   and	
   positrons	
   originate	
   from	
   a	
  
common	
  source.	
  	
  	
  
	
  
            AMS	
   is	
   a	
   magnetic	
   spectrometer	
   with	
   the	
   ability	
   to	
   explore	
   new	
   physics	
  
because	
   of	
   its	
   precision,	
   statistics,	
   energy	
   range,	
   capability	
   to	
   identify	
   different	
  
particles	
   and	
   nuclei	
   and	
   its	
   long	
   duration	
   in	
   space.	
   	
   	
   As	
   shown	
   in	
   Figure	
   3,	
   the	
  
accuracy	
  of	
  AMS	
  and	
  the	
  high	
  statistics	
  available	
  distinguish	
  the	
  reported	
  positron	
  
fraction	
  spectrum	
  from	
  earlier	
  experiments.	
  	
  
	
  
            It	
   is	
   expected	
   that	
   hundreds	
   of	
   billions	
   of	
   cosmic	
   rays	
   will	
   be	
   measured	
   by	
  
AMS	
  throughout	
  the	
  lifetime	
  of	
  the	
  Space	
  Station.	
  	
  The	
  volume	
  of	
  raw	
  data	
  requires	
  a	
  
massive	
   analysis	
   effort.	
   The	
   parameters	
   of	
   each	
   signal	
   collected	
   are	
   meticulously	
  
reconstructed,	
   characterized	
   and	
   archived	
   before	
   they	
   undergo	
   analysis	
   by	
   multiple	
  
independent	
   groups	
   of	
   AMS	
   physicists	
   thus	
   ensuring	
   the	
   accuracy	
   of	
   the	
   physics	
  
results.	
  	
  
	
  




	
                                                                     3	
  
 




                                                                                                                                                                                                            	
  
	
  
       Figure	
  3:	
  A	
  comparison	
  of	
  AMS	
  results	
  with	
  recent	
  published	
  measurements.	
  	
  With	
  its	
  magnet	
  and	
  precision	
  particle	
  detectors,	
  high	
  accuracy	
  and	
  statistics,	
  
                       the	
  first	
  result	
  of	
  AMS,	
  based	
  on	
  only	
  ~10%	
  of	
  the	
  total	
  data	
  expected,	
  is	
  clearly	
  distinguished	
  from	
  earlier	
  experiments	
  (see	
  References).	
  




	
                                                                                                                   4	
  
Background	
  of	
  AMS	
  
	
  
             The	
  first	
  publication	
  from	
  the	
  AMS	
  Experiment	
  is	
  a	
  major	
  milestone	
  for	
  the	
  
AMS	
  international	
  collaboration.	
  	
  Hundreds	
  of	
  scientists,	
  engineers,	
  technicians	
  and	
  
students	
   from	
   all	
   over	
   the	
   world	
   have	
   worked	
   together	
   for	
   over	
   18	
   years	
   to	
   make	
  
AMS	
   a	
   reality.	
   	
   The	
   collaboration	
   represents	
   16	
   countries	
   from	
   Europe,	
   Asia	
   and	
  
North	
   America	
   (Finland,	
   France,	
   Germany,	
   Italy,	
   the	
   Netherlands,	
   Portugal,	
   Spain,	
  
Switzerland,	
  Romania,	
  Russia,	
  Turkey,	
  China,	
  Korea,	
  Taiwan,	
  Mexico	
  and	
  the	
  United	
  
States)	
   under	
   the	
   leadership	
   of	
   Nobel	
   Laureate	
   Samuel	
   Ting	
   of	
   M.I.T.	
   	
   The	
  
collaboration	
   continues	
   to	
   work	
   closely	
   with	
   the	
   excellent	
   NASA	
   AMS	
   Project	
  
Management	
   team	
   from	
   Johnson	
   Space	
   Center	
   as	
   it	
   has	
   throughout	
   the	
   entire	
  
process.	
  	
  
             	
  
             Many	
  countries	
  made	
  important	
  contributions	
  	
   contributions	
  to	
  the	
  detector	
  
construction	
  and	
  presently	
  to	
  the	
  data	
  analysis.	
  These	
  include:	
  
             	
  
             Italy,	
   under	
   the	
   leadership	
   of	
   Professor	
   Roberto	
   Battiston,	
   AMS	
   deputy	
  
spokesperson,	
  of	
  University	
  and	
  INFN-­‐TIFPA,	
  Trento,	
  with	
  the	
  support	
  of	
  INFN	
  and	
  
ASI.	
  
             Germany,	
  under	
  the	
  leadership	
  of	
  Professor	
  Stefan	
  Schael	
  with	
  the	
  support	
  of	
  
DRL	
  and	
  RWTH	
  Aachen	
  
             Spain	
  under	
  the	
  leadership	
  of	
  Professor	
  Manuel	
  Aguilar	
  with	
  the	
  support	
  of	
  
CIEMAT	
  	
  and	
  CDTI	
  
             France	
   under	
   the	
   leadership	
   of	
   Professor	
   Sylvie	
   Rosier	
   -­‐	
   Lees	
   with	
   the	
  
support	
  of	
  CNRS,	
  	
  IN2P3	
  and	
  CNES.	
  
             Taiwan	
  under	
  the	
  leadership	
  of	
  Academician	
  Shi-­‐chang	
  Lee,	
  supported	
  by	
  the	
  
Academia	
  Sinica,	
  the	
  National	
  Science	
  Council	
  and	
  CSIST.	
  
             Chinese	
   Universities	
   and	
   research	
   institutes	
   have	
   made	
   important	
  
contributions.	
   These	
   include:	
   Shandong	
   Univrsity,	
   under	
   the	
   leadership	
   of	
   Professor	
  
Cheng	
  Lin;	
  the	
  Institute	
  of	
  High	
  Energy	
  Physics	
  in	
  Beijing,	
  	
   under	
  the	
  leadership	
  of	
  
Academician	
  He-­‐shen	
  Chen;	
  Southeast	
  University	
  in	
  Nanjing,	
  under	
  the	
  leadership	
  of	
  
Professor	
   Hong	
   Yi;	
   Sun	
   Yat-­‐sen	
   University	
   in	
   Guangzhou	
   under	
   the	
   leadership	
   of	
  
Professor	
   N.S.	
   Xu;	
   as	
   well	
   as	
   Shanghai	
   Jiaotong	
   University	
   in	
   Shanghai,	
   and	
   the	
  
Institute	
   of	
   Electrical	
   Engineering,	
   NLAA,	
   and	
   the	
   Chinese	
   Academiy	
   of	
   Launch	
  
Vehicle	
  Technology	
  in	
  Beijing.	
  
             Switzerland	
  under	
  the	
  leadership	
  of	
  Professor	
  Martin	
  Pohl	
  of	
  the	
  University	
  
of	
  Geneva,	
  supported	
  by	
  SNSF.	
  
	
  
             AMS	
   is	
   a	
   U.S.	
   Department	
   of	
   Energy	
   sponsored	
   particle	
   physics	
   experiment	
  
on	
  the	
  ISS	
  under	
  a	
  DOE-­‐NASA	
  Implementing	
  Arrangement.	
  AMS	
  was	
  constructed	
  at	
  
universities	
   and	
   research	
   institutes	
   around	
   the	
   world	
   and	
   assembled	
   at	
   the	
  
European	
   Organization	
   for	
   Nuclear	
   Research,	
   CERN,	
   Geneva,	
   Switzerland.	
   	
   It	
   was	
  
transported	
   to	
   the	
   Kennedy	
   Space	
   Center	
   in	
   August	
   2010	
   onboard	
   a	
   special	
   C-­‐5M	
  
transport	
  aircraft	
  of	
  the	
  U.S.	
  Air	
  Force	
  Air	
  Mobility	
  Command.	
  	
  AMS	
  was	
  launched	
  by	
  
NASA	
  to	
  the	
  ISS	
  as	
  the	
  primary	
  payload	
  onboard	
  the	
  final	
  mission	
  of	
  space	
  shuttle	
  
Endeavour	
   (STS-­‐134)	
   on	
   May	
   16,	
   2011.	
   	
   The	
   crew	
   of	
   STS-­‐134,	
   Greg	
   Johnson,	
   Mike	
  


	
                                                                 5	
  
Fincke,	
  Greg	
  Chamitoff,	
  Drew	
  Feustel,	
  Roberto	
  Vittori	
  under	
  the	
  command	
  of	
  Mark	
  
Kelly,	
   	
   successfully	
   deployed	
   AMS	
   as	
   an	
   external	
   attachment	
   on	
   the	
   U.S.	
   ISS	
   National	
  
Laboratory	
   on	
   May	
   19,	
   2011.	
   Once	
   installed,	
   AMS	
   was	
   powered	
   up	
   and	
   immediately	
  
began	
  collecting	
  data	
  from	
  primary	
  sources	
  in	
  space	
  and	
  these	
  were	
  transmitted	
  to	
  
the	
  AMS	
  Payload	
  Operations	
  Control	
  Center	
  (POCC).	
  	
  	
  The	
  POCC	
  is	
  located	
  at	
  CERN,	
  
Geneva,	
  Switzerland.	
  
	
  
                Once	
  AMS	
  became	
  operational,	
  the	
  first	
  task	
  for	
  the	
  AMS	
  Collaboration	
  was	
  to	
  
ensure	
  that	
  all	
  instruments	
  and	
  systems	
  performed	
  as	
  designed	
  and	
  as	
  tested	
  on	
  the	
  
ground.	
  	
  The	
  AMS	
  detector,	
  with	
  its	
  multiple	
  redundancies,	
  has	
  proven	
  to	
  perform	
  
flawlessly	
   in	
   space.	
   Over	
   the	
   last	
   twenty-­‐two	
   months	
   in	
   flight,	
   AMS	
   collaborators	
  
have	
  gained	
  invaluable	
  operational	
  experience	
  in	
  running	
  a	
  precision	
  spectrometer	
  
in	
   space	
   and	
   mitigating	
   the	
   hazardous	
   conditions	
   to	
   which	
   AMS	
   is	
   exposed	
   as	
   it	
  
orbits	
  the	
  Earth	
  every	
  90	
  minutes.	
  	
  These	
  are	
  conditions	
  that	
  are	
  not	
  encountered	
  by	
  
ground-­‐based	
   accelerator	
   experiments	
   or	
   satellite-­‐based	
   experiments	
   and	
   require	
  
constant	
   vigilance	
   in	
   order	
   to	
   avoid	
   irreparable	
   damage.	
   	
   These	
   include	
   the	
   extreme	
  
thermal	
   variations	
   caused	
   by	
   solar	
   effects	
   and	
   the	
   re-­‐positioning	
   of	
   ISS	
   onboard	
  
radiators	
   and	
   solar	
   arrays.	
   In	
   addition,	
   the	
   AMS	
   operators	
   regularly	
   transmit	
  
software	
   updates	
   from	
   the	
   AMS	
   POCC	
   at	
   CERN	
   to	
   the	
   AMS	
   computers	
   in	
   space	
   in	
  
order	
  to	
  match	
  the	
  regular	
  upgrades	
  of	
  the	
  ISS	
  software	
  and	
  hardware.	
  	
  
                	
  
                With	
   the	
   wealth	
   of	
   data	
   emitted	
   by	
   primary	
   cosmic	
   rays	
   passing	
   through	
  
AMS,	
   the	
   Collaboration	
   will	
   also	
   explore	
   other	
   topics	
   such	
   as	
   the	
   precision	
  
measurements	
  of	
  the	
  boron	
  to	
  carbon	
  ratio,	
  nuclei	
  and	
  antimatter	
  nuclei,	
  precision	
  
measurements	
  of	
  the	
  helium	
  flux,	
  proton	
  flux	
  and	
  photons,	
  as	
  well	
  as	
  the	
  search	
  for	
  
new	
  physics	
  and	
  astrophysics	
  phenomena	
  such	
  as	
  strangelets.	
  	
  
                	
  
                The	
   AMS	
   Collaboration	
   will	
   provide	
   new,	
   accurate	
   information	
   over	
   the	
  
lifetime	
   of	
   the	
   Space	
   Station	
   as	
   the	
   AMS	
   detector	
   continues	
   its	
   mission	
   to	
   explore	
  
new	
  physics	
  phenomena	
  in	
  the	
  cosmos	
  (as	
  seen	
  in	
  Figure	
  4).	
  
                	
  
                More	
  informations	
  about	
  the	
  AMS	
  detector,	
  its	
  history	
  and	
  its	
  science	
  can	
  be	
  
found	
  on	
  	
  
                	
  
                	
        	
        	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  www.ams02.org	
  
	
  




	
                                                                    6	
  
 
	
  
       Figure	
  4:	
  	
  The	
  International	
  Space	
  Station	
  provides	
  a	
  unique	
  platform	
  for	
  the	
  AMS	
  detector	
  that	
  is	
  charting	
  a	
  new	
  
       realm	
  of	
  fundamental	
  physics	
  research	
  not	
  possible	
  to	
  achieve	
  on	
  Earth.	
  	
  	
  All	
  primary	
  charged	
  particles	
  and	
  high	
  
          energy	
  gamma	
  rays	
  are	
  absorbed	
  by	
  the	
  Earth’s	
  atmosphere.	
  	
  AMS	
  is	
  currently	
  the	
  only	
  precision	
  magnetic	
  
                                                      spectrometer	
  which	
  will	
  stay	
  on	
  ISS	
  for	
  its	
  lifetime.	
  	
  	
  




	
                                                                                          7	
  
 
                                                                             References	
  
                                                                                  	
  
TS93:	
  	
   R.	
  Golden	
  et	
  al.,	
  Astrophys.	
  J.	
  457	
  (1996)	
  L103.	
  
	
  
Wizard/CAPRICE:	
  M.	
  Boezio	
  et	
  al.,	
  Adv.	
  Sp.	
  Res.27-­4	
  (2001)	
  669.	
  
	
  
HEAT:	
  	
   J.	
  J.	
  Beatty	
  et	
  al.,	
  Phys.	
  Rev.	
  Lett.	
  93	
  (2004)	
  241102;	
  
              M.	
  A.	
  DuVernois	
  et	
  al.,	
  Astrophys.	
  J.	
  559	
  (2001)	
  296.	
  
	
  
AMS-­‐01:	
   M.	
  Aguilar	
  et	
  al.,	
  Phys.	
  Lett.	
  B	
  646	
  (2007)	
  145.	
  
	
  
PAMELA:	
  P.	
  Picozza,	
  Proc.	
  of	
  the	
  4th	
  International	
  Conference	
  on	
  Particle	
  and	
  Fundamental	
  Physics	
  in	
  Space,	
  
              Geneva,	
  5-­‐7	
  Nov.	
  2012,	
  to	
  be	
  published.	
  The	
  value	
  in	
  the	
  highest	
  energy	
  bin	
  is	
  the	
  90	
  %	
  confidence	
  level	
  
              lower	
  limit.	
  	
  We	
  are	
  grateful	
  to	
  Professor	
  Picozza	
  for	
  providing	
  us	
  with	
  accurate	
  information	
  on	
  the	
  
              PAMELA	
  experiment.	
  	
  Note:	
  1)	
  The	
  data	
  are	
  obtained	
  directly	
  from	
  the	
  absolute	
  fluxes	
  of	
  electrons	
  and	
  
              positrons,	
  gotten	
  independently.	
  	
  2)	
  The	
  reported	
  errors	
  contain	
  not	
  only	
  statistical	
  errors,	
  but	
  also	
  a	
  
              portion	
  of	
  the	
  systematics.	
  3)	
  The	
  data	
  shown	
  have	
  been	
  collected	
  between	
  June	
  2006	
  and	
  January	
  
              2010.	
  They	
  represent	
  an	
  average	
  of	
  the	
  solar	
  modulation.	
  
              O.	
  Adriani	
  et	
  al.,Astropart.	
  Phys.	
  34	
  (2010)	
  1;	
  
              O.	
  Adriani	
  et	
  al.,Nature	
  458	
  (2009)	
  607.	
  
	
  
Fermi-­‐LAT:	
  M.	
  Ackermann	
  et	
  al.,	
  Phys.	
  Rev.	
  Lett.	
  108	
  (2012)	
  011103.	
  
	
  
	
  
	
  
	
  




	
                                                                                      8	
  

Más contenido relacionado

La actualidad más candente

mass spectro scopy
mass spectro scopymass spectro scopy
mass spectro scopypooja singh
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopyaqsa ayoub
 
Anderson and the Positron
Anderson and the PositronAnderson and the Positron
Anderson and the PositronLouSheehan
 
Mass Spectroscopy
Mass SpectroscopyMass Spectroscopy
Mass SpectroscopyMVS Rao
 
Mass spectrometry
Mass spectrometryMass spectrometry
Mass spectrometryAmlan Roy
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopyZainab&Sons
 
Laser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton ScatteringLaser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton ScatteringTodd Hodges
 
Consequencies of the new intensity formula in many optical spectroscopy fields
Consequencies of the new intensity formula in many optical spectroscopy fieldsConsequencies of the new intensity formula in many optical spectroscopy fields
Consequencies of the new intensity formula in many optical spectroscopy fieldsIOSR Journals
 
Poster presentation of mass spectroscopy instrumentation
Poster presentation of mass spectroscopy instrumentationPoster presentation of mass spectroscopy instrumentation
Poster presentation of mass spectroscopy instrumentationAnam Fatima
 
Mass Spectroscopy and its applications
Mass Spectroscopy and its applicationsMass Spectroscopy and its applications
Mass Spectroscopy and its applicationsAchyut Adhikari
 

La actualidad más candente (20)

Mass spectrometry - A detailed study on components
Mass spectrometry - A detailed study on components Mass spectrometry - A detailed study on components
Mass spectrometry - A detailed study on components
 
mass spectro scopy
mass spectro scopymass spectro scopy
mass spectro scopy
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopy
 
Anderson and the Positron
Anderson and the PositronAnderson and the Positron
Anderson and the Positron
 
Mass Spectroscopy
Mass SpectroscopyMass Spectroscopy
Mass Spectroscopy
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopy
 
Mass spectrometry
Mass spectrometryMass spectrometry
Mass spectrometry
 
Mass spectroscopy(1)
Mass spectroscopy(1)Mass spectroscopy(1)
Mass spectroscopy(1)
 
Mass spectrometry i
Mass spectrometry iMass spectrometry i
Mass spectrometry i
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopy
 
Laser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton ScatteringLaser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton Scattering
 
Mass spectrometry new
Mass spectrometry newMass spectrometry new
Mass spectrometry new
 
Mass spectrometry
Mass spectrometryMass spectrometry
Mass spectrometry
 
Consequencies of the new intensity formula in many optical spectroscopy fields
Consequencies of the new intensity formula in many optical spectroscopy fieldsConsequencies of the new intensity formula in many optical spectroscopy fields
Consequencies of the new intensity formula in many optical spectroscopy fields
 
Poster presentation of mass spectroscopy instrumentation
Poster presentation of mass spectroscopy instrumentationPoster presentation of mass spectroscopy instrumentation
Poster presentation of mass spectroscopy instrumentation
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopy
 
Mass assingment
Mass  assingmentMass  assingment
Mass assingment
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopy
 
Mass Spectroscopy and its applications
Mass Spectroscopy and its applicationsMass Spectroscopy and its applications
Mass Spectroscopy and its applications
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopy
 

Destacado

Evidence for a_complex_enrichment_history_of_the_stream_from_fairall_9_sightline
Evidence for a_complex_enrichment_history_of_the_stream_from_fairall_9_sightlineEvidence for a_complex_enrichment_history_of_the_stream_from_fairall_9_sightline
Evidence for a_complex_enrichment_history_of_the_stream_from_fairall_9_sightlineSérgio Sacani
 
Shaping the glowing_eye_planetary_nebula_ngc6751
Shaping the glowing_eye_planetary_nebula_ngc6751Shaping the glowing_eye_planetary_nebula_ngc6751
Shaping the glowing_eye_planetary_nebula_ngc6751Sérgio Sacani
 
Tourism and Smart Specialisation
Tourism and Smart SpecialisationTourism and Smart Specialisation
Tourism and Smart SpecialisationJoão Romão
 
Irec solar market_trends_report_2009
Irec solar market_trends_report_2009Irec solar market_trends_report_2009
Irec solar market_trends_report_2009moeshahram
 
FREE SPEECH/HUMAN RIGHTS/THE WEB
FREE SPEECH/HUMAN RIGHTS/THE WEBFREE SPEECH/HUMAN RIGHTS/THE WEB
FREE SPEECH/HUMAN RIGHTS/THE WEBMatt Van Hoven
 
Magnetic field observations_as_voyager1_entered_the_heliosheath_depletion_region
Magnetic field observations_as_voyager1_entered_the_heliosheath_depletion_regionMagnetic field observations_as_voyager1_entered_the_heliosheath_depletion_region
Magnetic field observations_as_voyager1_entered_the_heliosheath_depletion_regionSérgio Sacani
 
Com comunica La Moncloa de Rajoy?
Com comunica La Moncloa de Rajoy? Com comunica La Moncloa de Rajoy?
Com comunica La Moncloa de Rajoy? ingenia_pro
 

Destacado (8)

Evidence for a_complex_enrichment_history_of_the_stream_from_fairall_9_sightline
Evidence for a_complex_enrichment_history_of_the_stream_from_fairall_9_sightlineEvidence for a_complex_enrichment_history_of_the_stream_from_fairall_9_sightline
Evidence for a_complex_enrichment_history_of_the_stream_from_fairall_9_sightline
 
Shaping the glowing_eye_planetary_nebula_ngc6751
Shaping the glowing_eye_planetary_nebula_ngc6751Shaping the glowing_eye_planetary_nebula_ngc6751
Shaping the glowing_eye_planetary_nebula_ngc6751
 
Tourism and Smart Specialisation
Tourism and Smart SpecialisationTourism and Smart Specialisation
Tourism and Smart Specialisation
 
Risk assessment
Risk assessmentRisk assessment
Risk assessment
 
Irec solar market_trends_report_2009
Irec solar market_trends_report_2009Irec solar market_trends_report_2009
Irec solar market_trends_report_2009
 
FREE SPEECH/HUMAN RIGHTS/THE WEB
FREE SPEECH/HUMAN RIGHTS/THE WEBFREE SPEECH/HUMAN RIGHTS/THE WEB
FREE SPEECH/HUMAN RIGHTS/THE WEB
 
Magnetic field observations_as_voyager1_entered_the_heliosheath_depletion_region
Magnetic field observations_as_voyager1_entered_the_heliosheath_depletion_regionMagnetic field observations_as_voyager1_entered_the_heliosheath_depletion_region
Magnetic field observations_as_voyager1_entered_the_heliosheath_depletion_region
 
Com comunica La Moncloa de Rajoy?
Com comunica La Moncloa de Rajoy? Com comunica La Moncloa de Rajoy?
Com comunica La Moncloa de Rajoy?
 

Similar a Press ams en

Literature Survey LaTeX
Literature Survey LaTeXLiterature Survey LaTeX
Literature Survey LaTeXDaniel Hurley
 
Results from telescope_array_experiment
Results from telescope_array_experimentResults from telescope_array_experiment
Results from telescope_array_experimentSérgio Sacani
 
Transmission Electron Microscopy (TEM)
Transmission Electron Microscopy (TEM) Transmission Electron Microscopy (TEM)
Transmission Electron Microscopy (TEM) Zohaib HUSSAIN
 
Scanning electron microscopy mubbu
Scanning electron microscopy mubbuScanning electron microscopy mubbu
Scanning electron microscopy mubbuMubashshir Arif
 
Aip pg book of abstracts
Aip pg book of abstractsAip pg book of abstracts
Aip pg book of abstractsSiddartha Verma
 
Forming intracluster gas in a galaxy protocluster at a redshift of 2.16
Forming intracluster gas in a galaxy protocluster at a redshift of 2.16Forming intracluster gas in a galaxy protocluster at a redshift of 2.16
Forming intracluster gas in a galaxy protocluster at a redshift of 2.16Sérgio Sacani
 
B.tech. ii engineering chemistry unit-5 B spectroscopic techniques
B.tech. ii engineering chemistry unit-5 B spectroscopic techniquesB.tech. ii engineering chemistry unit-5 B spectroscopic techniques
B.tech. ii engineering chemistry unit-5 B spectroscopic techniquesRai University
 
An unindetified line_in_xray_spectra_of_the_adromeda_galaxy_and_perseus_galax...
An unindetified line_in_xray_spectra_of_the_adromeda_galaxy_and_perseus_galax...An unindetified line_in_xray_spectra_of_the_adromeda_galaxy_and_perseus_galax...
An unindetified line_in_xray_spectra_of_the_adromeda_galaxy_and_perseus_galax...Sérgio Sacani
 
The Effect of RF Power on ion current and sheath current by electrical circui...
The Effect of RF Power on ion current and sheath current by electrical circui...The Effect of RF Power on ion current and sheath current by electrical circui...
The Effect of RF Power on ion current and sheath current by electrical circui...irjes
 
Atomic spectroscopy.pptx
Atomic spectroscopy.pptxAtomic spectroscopy.pptx
Atomic spectroscopy.pptxArpithacp2
 
Characterization of nanomaterials
Characterization of nanomaterialsCharacterization of nanomaterials
Characterization of nanomaterialsEllen Kay Cacatian
 
Basic Electromagnetism and Materials.pdf
Basic Electromagnetism and Materials.pdfBasic Electromagnetism and Materials.pdf
Basic Electromagnetism and Materials.pdfMauricioFabianDuqueD1
 
L4 interaction with matter
L4 interaction with matterL4 interaction with matter
L4 interaction with matterMahbubul Hassan
 
INCIDENCE OF ABSORPTION AT THE INTERFACE OF GALAXIES AND IGM
INCIDENCE OF ABSORPTION AT THE INTERFACE OF GALAXIES AND IGM INCIDENCE OF ABSORPTION AT THE INTERFACE OF GALAXIES AND IGM
INCIDENCE OF ABSORPTION AT THE INTERFACE OF GALAXIES AND IGM University of Delaware
 

Similar a Press ams en (20)

X – Ray Diffraction
X – Ray DiffractionX – Ray Diffraction
X – Ray Diffraction
 
Literature Survey LaTeX
Literature Survey LaTeXLiterature Survey LaTeX
Literature Survey LaTeX
 
Results from telescope_array_experiment
Results from telescope_array_experimentResults from telescope_array_experiment
Results from telescope_array_experiment
 
Transmission Electron Microscopy (TEM)
Transmission Electron Microscopy (TEM) Transmission Electron Microscopy (TEM)
Transmission Electron Microscopy (TEM)
 
Scanning electron microscopy mubbu
Scanning electron microscopy mubbuScanning electron microscopy mubbu
Scanning electron microscopy mubbu
 
Applied Biochemistry
Applied BiochemistryApplied Biochemistry
Applied Biochemistry
 
Aip pg book of abstracts
Aip pg book of abstractsAip pg book of abstracts
Aip pg book of abstracts
 
Forming intracluster gas in a galaxy protocluster at a redshift of 2.16
Forming intracluster gas in a galaxy protocluster at a redshift of 2.16Forming intracluster gas in a galaxy protocluster at a redshift of 2.16
Forming intracluster gas in a galaxy protocluster at a redshift of 2.16
 
B.tech. ii engineering chemistry unit-5 B spectroscopic techniques
B.tech. ii engineering chemistry unit-5 B spectroscopic techniquesB.tech. ii engineering chemistry unit-5 B spectroscopic techniques
B.tech. ii engineering chemistry unit-5 B spectroscopic techniques
 
An unindetified line_in_xray_spectra_of_the_adromeda_galaxy_and_perseus_galax...
An unindetified line_in_xray_spectra_of_the_adromeda_galaxy_and_perseus_galax...An unindetified line_in_xray_spectra_of_the_adromeda_galaxy_and_perseus_galax...
An unindetified line_in_xray_spectra_of_the_adromeda_galaxy_and_perseus_galax...
 
The Effect of RF Power on ion current and sheath current by electrical circui...
The Effect of RF Power on ion current and sheath current by electrical circui...The Effect of RF Power on ion current and sheath current by electrical circui...
The Effect of RF Power on ion current and sheath current by electrical circui...
 
Atomic spectroscopy.pptx
Atomic spectroscopy.pptxAtomic spectroscopy.pptx
Atomic spectroscopy.pptx
 
Microwave advancement
Microwave advancementMicrowave advancement
Microwave advancement
 
Characterization of nanomaterials
Characterization of nanomaterialsCharacterization of nanomaterials
Characterization of nanomaterials
 
Basic Electromagnetism and Materials.pdf
Basic Electromagnetism and Materials.pdfBasic Electromagnetism and Materials.pdf
Basic Electromagnetism and Materials.pdf
 
L4 interaction with matter
L4 interaction with matterL4 interaction with matter
L4 interaction with matter
 
Poster_modified12
Poster_modified12Poster_modified12
Poster_modified12
 
INCIDENCE OF ABSORPTION AT THE INTERFACE OF GALAXIES AND IGM
INCIDENCE OF ABSORPTION AT THE INTERFACE OF GALAXIES AND IGM INCIDENCE OF ABSORPTION AT THE INTERFACE OF GALAXIES AND IGM
INCIDENCE OF ABSORPTION AT THE INTERFACE OF GALAXIES AND IGM
 
E04915155
E04915155E04915155
E04915155
 
Introduction to Spectroscopy
Introduction to SpectroscopyIntroduction to Spectroscopy
Introduction to Spectroscopy
 

Más de Sérgio Sacani

Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...Sérgio Sacani
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Sérgio Sacani
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRSérgio Sacani
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...Sérgio Sacani
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNSérgio Sacani
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldSérgio Sacani
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillatingSérgio Sacani
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsSérgio Sacani
 

Más de Sérgio Sacani (20)

Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
The SAMI Galaxy Sur v ey: galaxy spin is more strongly correlated with stella...
 
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Con...
 
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPRFirst Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR
 
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...The Sun’s differential rotation is controlled by high- latitude baroclinicall...
The Sun’s differential rotation is controlled by high- latitude baroclinicall...
 
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGNHydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
Hydrogen Column Density Variability in a Sample of Local Compton-Thin AGN
 
Huygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious WorldHuygens - Exploring Titan A Mysterious World
Huygens - Exploring Titan A Mysterious World
 
The Radcliffe Wave Of Milk Way is oscillating
The Radcliffe Wave Of Milk Way  is oscillatingThe Radcliffe Wave Of Milk Way  is oscillating
The Radcliffe Wave Of Milk Way is oscillating
 
Thermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jetsThermonuclear explosions on neutron stars reveal the speed of their jets
Thermonuclear explosions on neutron stars reveal the speed of their jets
 

Último

What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 

Último (20)

What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 

Press ams en

  • 1.                                   AMS  COLLABORATION       Press  Release                                April  3rd,    2013,  Geneva,  Switzerland     First  Results  from  the  Alpha  Magnetic  Spectrometer  (AMS)  Experiment     The   Alpha   Magnetic   Spectrometer   (AMS)   Collaboration   announces   the   publication  of  its  first  physics  result  in  Physical  Review  Letters.  The  AMS  Experiment   is   the   most   powerful   and   sensitive   particle   physics   spectrometer   ever   deployed   in   space.  As  seen  in  Figure  1,  AMS  is  located  on  the  exterior  of  the  International  Space   Station   (ISS)   and,   since   its   installation   on   May   19,   2011   until   the   present,   it   has   measured   over   30   billion   cosmic   rays   at   energies   up   to   trillions   of   electron   volts.   Its   permanent   magnet   and   array   of   precision   particle   detectors   collect   and   identify   charged   cosmic   rays   passing   through   AMS   from   the   far   reaches   of   space.     Over   its   long   duration   mission   on   the   ISS,   AMS   will   record   signals   from   16   billion   cosmic   rays  every  year  and  transmit  them  to  Earth  for  analysis  by  the  AMS  Collaboration.   This  is  the  first  of  many  physics  results  to  be  reported.                                                         Figure  1:  From  its  vantage  point  ~260  miles  (~400  km)  above  the  Earth,  the  Alpha  Magnetic   Spectrometer  (AMS)  collects  data  from  primordial  cosmic  rays  that  traverse  the  detector.       In   the   initial   18   month   period   of   space   operations,   from   May   19,   2011   to   December  10,  2012,  AMS  analyzed  25  billion  primary  cosmic  ray  events.    Of  these,   an  unprecedented  number,  6.8  million,  were  unambiguously  identified  as  electrons   and   their   antimatter   counterpart,   positrons.     The   6.8   million   particles   observed   in     1  
  • 2. the  energy  range  0.5  to  350  GeV  are  the  subject  of  the  precision  study  reported  in   this  first  paper.     Electrons   and   positrons   are   identified   by   the   accurate   and   redundant   measurements   provided   by   the   various   AMS   instruments   against   a   large   background   of   protons.   Positrons   are   clearly   distinguished   from   this   background   through   the   robust   rejection   power   of   AMS   of   more   than   one   in   one   million.       Currently,  the  total  number  of  positrons  identified  by  AMS,  in  excess  of  400,000,  is   the  largest  number  of  energetic  antimatter  particles  directly  measured  and  analyzed   from  space.    The  present  paper  can  be  summarized  as  follows:         AMS   has   measured   the   positron   fraction   (ratio   of   the   positron   flux   to   the   combined  flux  of  positrons  and  electrons)  in  the  energy  range  0.5  to  350  GeV.    We   have   observed   that   from   0.5   to   10   GeV,   the   fraction   decreases   with   increasing   energy.    The  fraction  then  increases  steadily  between  10  GeV  to  ~250  GeV.    Yet  the   slope  (rate  of  growth)  of  the  positron  fraction  decreases  by  an  order  of  magnitude   from  20  to  250  GeV.    At  energies  above  250  GeV,  the  spectrum  appears  to  flatten  but   to   study   the   behavior   above   250   GeV   requires   more   statistics   –   the   data   reported   represents  ~10%  of  the  total  expected.  The  positron  fraction  spectrum  exhibits  no   structure   nor   time   dependence.     The   positron   to   electron   ratio   shows   no   anisotropy   indicating   the   energetic   positrons   are   not   coming   from   a   preferred   direction   in   space.    Together,  these  features  show  evidence  of  a  new  physics  phenomena.       Figure  2  illustrates  the  AMS  data  presented  in  the  first  publication.         Figure  2:  The  positron  fraction  measured  by  AMS  demonstrates  excellent  agreement  with  the  model   described  below.  Even  with  the  high  statistics,  6.8  million  events,  and  accuracy  of  AMS,  the  fraction   shows  no  fine  structure.       2  
  • 3.   The   exact   shape   of   the   spectrum,   as   shown   in   Figure   2,   extended   to   higher   energies,   will   ultimately   determine   whether   this   spectrum   originates   from   the   collision   of   dark   matter   particles   or   from   pulsars   in   the   galaxy.     The   high   level   of   accuracy  of  this  data  shows  that  AMS  will  soon  resolve  this  issue.     Over   the   last   few   decades   there   has   been   much   interest   on   the   positron   fraction   from   primary   cosmic   rays   by   both   particle   physicists   and   astrophysicists.     The   underlying   reason   for   this   interest   is   that   by   measuring   the   ratio   between   positrons   and   electrons   and   by   studying   the   behavior   of   any   excess   across   the   energy   spectrum,   a   better   understanding   of   the   origin   of   dark   matter   and   other   physics  phenomena  can  be  obtained.       The   first   AMS   result   has   been   analyzed   using   several   phenomenological   models,  one  of  which  is  described  in  the  paper  and  included  in  Figure  2.    This  model,   with   diffuse   electron   and   positron   components   and   a   common   source   component,   fits   the   AMS   data   surprisingly   well.     This   agreement   indicates   that   the   positron   fraction   spectrum   is   consistent   with   electron   positron   fluxes   each   of   which   is   the   sum  of  its  diffuse  spectrum  and  a  single  energetic  common  source.    In  other  words,  a   significant   portion   of   the   high-­‐energy   electrons   and   positrons   originate   from   a   common  source.         AMS   is   a   magnetic   spectrometer   with   the   ability   to   explore   new   physics   because   of   its   precision,   statistics,   energy   range,   capability   to   identify   different   particles   and   nuclei   and   its   long   duration   in   space.       As   shown   in   Figure   3,   the   accuracy  of  AMS  and  the  high  statistics  available  distinguish  the  reported  positron   fraction  spectrum  from  earlier  experiments.       It   is   expected   that   hundreds   of   billions   of   cosmic   rays   will   be   measured   by   AMS  throughout  the  lifetime  of  the  Space  Station.    The  volume  of  raw  data  requires  a   massive   analysis   effort.   The   parameters   of   each   signal   collected   are   meticulously   reconstructed,   characterized   and   archived   before   they   undergo   analysis   by   multiple   independent   groups   of   AMS   physicists   thus   ensuring   the   accuracy   of   the   physics   results.         3  
  • 4.       Figure  3:  A  comparison  of  AMS  results  with  recent  published  measurements.    With  its  magnet  and  precision  particle  detectors,  high  accuracy  and  statistics,   the  first  result  of  AMS,  based  on  only  ~10%  of  the  total  data  expected,  is  clearly  distinguished  from  earlier  experiments  (see  References).     4  
  • 5. Background  of  AMS     The  first  publication  from  the  AMS  Experiment  is  a  major  milestone  for  the   AMS  international  collaboration.    Hundreds  of  scientists,  engineers,  technicians  and   students   from   all   over   the   world   have   worked   together   for   over   18   years   to   make   AMS   a   reality.     The   collaboration   represents   16   countries   from   Europe,   Asia   and   North   America   (Finland,   France,   Germany,   Italy,   the   Netherlands,   Portugal,   Spain,   Switzerland,  Romania,  Russia,  Turkey,  China,  Korea,  Taiwan,  Mexico  and  the  United   States)   under   the   leadership   of   Nobel   Laureate   Samuel   Ting   of   M.I.T.     The   collaboration   continues   to   work   closely   with   the   excellent   NASA   AMS   Project   Management   team   from   Johnson   Space   Center   as   it   has   throughout   the   entire   process.       Many  countries  made  important  contributions     contributions  to  the  detector   construction  and  presently  to  the  data  analysis.  These  include:     Italy,   under   the   leadership   of   Professor   Roberto   Battiston,   AMS   deputy   spokesperson,  of  University  and  INFN-­‐TIFPA,  Trento,  with  the  support  of  INFN  and   ASI.   Germany,  under  the  leadership  of  Professor  Stefan  Schael  with  the  support  of   DRL  and  RWTH  Aachen   Spain  under  the  leadership  of  Professor  Manuel  Aguilar  with  the  support  of   CIEMAT    and  CDTI   France   under   the   leadership   of   Professor   Sylvie   Rosier   -­‐   Lees   with   the   support  of  CNRS,    IN2P3  and  CNES.   Taiwan  under  the  leadership  of  Academician  Shi-­‐chang  Lee,  supported  by  the   Academia  Sinica,  the  National  Science  Council  and  CSIST.   Chinese   Universities   and   research   institutes   have   made   important   contributions.   These   include:   Shandong   Univrsity,   under   the   leadership   of   Professor   Cheng  Lin;  the  Institute  of  High  Energy  Physics  in  Beijing,     under  the  leadership  of   Academician  He-­‐shen  Chen;  Southeast  University  in  Nanjing,  under  the  leadership  of   Professor   Hong   Yi;   Sun   Yat-­‐sen   University   in   Guangzhou   under   the   leadership   of   Professor   N.S.   Xu;   as   well   as   Shanghai   Jiaotong   University   in   Shanghai,   and   the   Institute   of   Electrical   Engineering,   NLAA,   and   the   Chinese   Academiy   of   Launch   Vehicle  Technology  in  Beijing.   Switzerland  under  the  leadership  of  Professor  Martin  Pohl  of  the  University   of  Geneva,  supported  by  SNSF.     AMS   is   a   U.S.   Department   of   Energy   sponsored   particle   physics   experiment   on  the  ISS  under  a  DOE-­‐NASA  Implementing  Arrangement.  AMS  was  constructed  at   universities   and   research   institutes   around   the   world   and   assembled   at   the   European   Organization   for   Nuclear   Research,   CERN,   Geneva,   Switzerland.     It   was   transported   to   the   Kennedy   Space   Center   in   August   2010   onboard   a   special   C-­‐5M   transport  aircraft  of  the  U.S.  Air  Force  Air  Mobility  Command.    AMS  was  launched  by   NASA  to  the  ISS  as  the  primary  payload  onboard  the  final  mission  of  space  shuttle   Endeavour   (STS-­‐134)   on   May   16,   2011.     The   crew   of   STS-­‐134,   Greg   Johnson,   Mike     5  
  • 6. Fincke,  Greg  Chamitoff,  Drew  Feustel,  Roberto  Vittori  under  the  command  of  Mark   Kelly,     successfully   deployed   AMS   as   an   external   attachment   on   the   U.S.   ISS   National   Laboratory   on   May   19,   2011.   Once   installed,   AMS   was   powered   up   and   immediately   began  collecting  data  from  primary  sources  in  space  and  these  were  transmitted  to   the  AMS  Payload  Operations  Control  Center  (POCC).      The  POCC  is  located  at  CERN,   Geneva,  Switzerland.     Once  AMS  became  operational,  the  first  task  for  the  AMS  Collaboration  was  to   ensure  that  all  instruments  and  systems  performed  as  designed  and  as  tested  on  the   ground.    The  AMS  detector,  with  its  multiple  redundancies,  has  proven  to  perform   flawlessly   in   space.   Over   the   last   twenty-­‐two   months   in   flight,   AMS   collaborators   have  gained  invaluable  operational  experience  in  running  a  precision  spectrometer   in   space   and   mitigating   the   hazardous   conditions   to   which   AMS   is   exposed   as   it   orbits  the  Earth  every  90  minutes.    These  are  conditions  that  are  not  encountered  by   ground-­‐based   accelerator   experiments   or   satellite-­‐based   experiments   and   require   constant   vigilance   in   order   to   avoid   irreparable   damage.     These   include   the   extreme   thermal   variations   caused   by   solar   effects   and   the   re-­‐positioning   of   ISS   onboard   radiators   and   solar   arrays.   In   addition,   the   AMS   operators   regularly   transmit   software   updates   from   the   AMS   POCC   at   CERN   to   the   AMS   computers   in   space   in   order  to  match  the  regular  upgrades  of  the  ISS  software  and  hardware.       With   the   wealth   of   data   emitted   by   primary   cosmic   rays   passing   through   AMS,   the   Collaboration   will   also   explore   other   topics   such   as   the   precision   measurements  of  the  boron  to  carbon  ratio,  nuclei  and  antimatter  nuclei,  precision   measurements  of  the  helium  flux,  proton  flux  and  photons,  as  well  as  the  search  for   new  physics  and  astrophysics  phenomena  such  as  strangelets.       The   AMS   Collaboration   will   provide   new,   accurate   information   over   the   lifetime   of   the   Space   Station   as   the   AMS   detector   continues   its   mission   to   explore   new  physics  phenomena  in  the  cosmos  (as  seen  in  Figure  4).     More  informations  about  the  AMS  detector,  its  history  and  its  science  can  be   found  on                                                        www.ams02.org       6  
  • 7.     Figure  4:    The  International  Space  Station  provides  a  unique  platform  for  the  AMS  detector  that  is  charting  a  new   realm  of  fundamental  physics  research  not  possible  to  achieve  on  Earth.      All  primary  charged  particles  and  high   energy  gamma  rays  are  absorbed  by  the  Earth’s  atmosphere.    AMS  is  currently  the  only  precision  magnetic   spectrometer  which  will  stay  on  ISS  for  its  lifetime.         7  
  • 8.   References     TS93:     R.  Golden  et  al.,  Astrophys.  J.  457  (1996)  L103.     Wizard/CAPRICE:  M.  Boezio  et  al.,  Adv.  Sp.  Res.27-­4  (2001)  669.     HEAT:     J.  J.  Beatty  et  al.,  Phys.  Rev.  Lett.  93  (2004)  241102;   M.  A.  DuVernois  et  al.,  Astrophys.  J.  559  (2001)  296.     AMS-­‐01:   M.  Aguilar  et  al.,  Phys.  Lett.  B  646  (2007)  145.     PAMELA:  P.  Picozza,  Proc.  of  the  4th  International  Conference  on  Particle  and  Fundamental  Physics  in  Space,   Geneva,  5-­‐7  Nov.  2012,  to  be  published.  The  value  in  the  highest  energy  bin  is  the  90  %  confidence  level   lower  limit.    We  are  grateful  to  Professor  Picozza  for  providing  us  with  accurate  information  on  the   PAMELA  experiment.    Note:  1)  The  data  are  obtained  directly  from  the  absolute  fluxes  of  electrons  and   positrons,  gotten  independently.    2)  The  reported  errors  contain  not  only  statistical  errors,  but  also  a   portion  of  the  systematics.  3)  The  data  shown  have  been  collected  between  June  2006  and  January   2010.  They  represent  an  average  of  the  solar  modulation.   O.  Adriani  et  al.,Astropart.  Phys.  34  (2010)  1;   O.  Adriani  et  al.,Nature  458  (2009)  607.     Fermi-­‐LAT:  M.  Ackermann  et  al.,  Phys.  Rev.  Lett.  108  (2012)  011103.             8