SlideShare una empresa de Scribd logo
1 de 5
Descargar para leer sin conexión
The International Journal Of Engineering And Science (IJES)
||Volume|| 3 ||Issue|| 01 || Pages || 48-52 || 2014 ||
ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805

AERODYNAMIC DESIGNING OF AUTOGYRO: GYROCAME
Irish Angelin S1, Senthilkumar S2, Maniiarasan P3, Arulselvan K4
1

Post Graduate Scholar, Department of Aeronautical Engineering
2
Assistant Professor, Department of Aeronautical Engineering
3
Professor, Department of Mechanical Engineering
4
Professor, Department of Mechatronics Engineering
Nehru Institute of Engineering and Technology, Coimbatore-641105

-------------------------------------------------------------ABSTRACT------------------------------------------------------To design a compound architecture of a surveillance autogyro, combined with the short Takeoff and Landing
STOL and efficient autorotation, free from rotor blades cyclic retrieval striking, vibration free features of
gyroplanes. It comprises counter rotating transverse twin rotors mounted on the dihedral wing support, which is
placed on top of the fuselage symmetrically, to produce the desired lift. The rotor blades are attached to the
shaft at a constant pitch angle which operates efficiently during cruise flight. A tractor type configuration proprotor is used in order to propel the auto gyro at an efficient forward speed. The tractor prop-rotor is powered
by means of a brushless motor. The general disadvantage of auto gyro (large drag) is overcome in our
Gyrocame by increasing the wing span and reducing the length of the transverse rotor blades.

Keywords - rotor blades, disc area, pitch angle, drag.
------------------------------------------------------------------------------------------------------------------------------------------Date of Submission: 24 December 2013
Date of Acceptance: 10 January 2014
-------------------------------------------------------------------------------------------------------------------------------------------

I. INTRODUCTION
An autogyro is an aircraft, similar to a modern helicopter in appearance, but with a few major dissimilarities. The
design had inherent safety, better low-speed flight than airplanes, as well as the capability of vertical take-off and landing.
One important feature of autogyro is its ability to flare, when there is a failure in engine, without causing much damage to
the pilot and the rotorcraft. It, like a helicopter, uses an overhead rotor as its main source of lift. The rotor on an autogyro,
however, is freely rotating, meaning it is not powered by any engine, and therefore applies no rotational force, or torque,
on the machine. Because of the fact that the rotor does not spin on its own to give itself thrust like a helicopter, it makes for
the need of another form of forward propulsion. This comes in the form of a propeller, like that on an airplane, to propel
the machine forward, which makes air to pass though the overhead rotor, causing it to spin and create lift. The faster the
machine goes the more lift the rotor creates.
Gyrocame is made out of chloroplast in order to reduce the weight and for crash resistance. Conventional type of
fuselage construction is used along with a bicycle undercarriage. Front end of the fuselage consist of battery, receiver,
electronic split controller and a brushless motor attached to the nose. A propeller with a fixed pitch angle is mounted on
the shaft of the brushless motor. This propeller helps the rotorcraft in obtaining the required forward speed. The counter
rotating twin rotors which produce the desired lift due to autorotation is attached to the fuselage using wing dihedral
support. A flat bottom airfoil is used in the wing in order to acquire a high amount of lift at a short interval of time. The
rotor consists of four blades, each placed at a constant pitch angle. The yaw and pitch movement are controlled by the
rudder and elevator respectively which is attached to two separate servos. T type tail plane configuration is used in the low
altitude rotorcraft.

II. LITERATURE SURVEY
Holger Duda [1] presented the flight performance of modern lightweight Gyroplanes which tends to increase the
airspeed and the performance of gyroplanes by means of reducing the drag. H. Glauert [2] obtained a high lift forces from a
freely rotating blades and the theory behind the lift generation. The maximum lift generation by using a proper disc area
and the forward speed in general and studied the best lift-drag ratio. John W. Hicks [3] shows the lift and drag
characteristics determined or met with respect to the drag polar shapes in subsonic speed for a various angle of attacks and
for flight envelope. Seppo Laine [4] presented a work to study the importance of the horizontal tail on the longitudinal
stability in horizontal flight. The study shows that the tailplane is necessary to ensure longitudinal stability. Woon-Tahk
Sung [5] presented an integral and derivative based controller design method to achieve the desired performances of
stability margin under parameter variations, demonstrating the usefulness of the proposed design scheme.

www.theijes.com

The IJES

Page 48
Aerodynamic Designing Of Autogyro: Gyrocame

III. DESIGN AND FARICATION OF COMPONENT
3.1. Wing Support and Rotor Blades
Generally in autogyro the wing is been replaced by the use of support. The support is used for fixing
the rotor blades. These rotor blades are mainly used for producing the lift. Here the support is inclined to a
particular angle, so called dihedral angle which is of approximately 2 degrees. To calculate the dihedral angle
we consider the planes for which the angles should be calculated. The general equation of the plane is given by:
Ax + By + Cz = 0
Comparing the two equation of plane and substituting in the below equation we get the dihedral angle

Chloroplast sheet is used for making the support. Care should be taken that, too much of dihedral
leads to unpleasant experience, or in extreme conditions it can lead to loss of control or can overstress an
aircraft. The rotors are made such that it has 4 blades and are joined together with a small rectangular
cardboard plate. The rotor blades are fixed with the small triangular support to the wing at a small pitch angle.
The two rotors are kept or fixed at a particular distance to avoid turbulence and collision. The corners of the
wing and rotor are covered with strips of balsa wood.
Unlike a helicopter, the rotor on an autogyro is not powered directly.As the machine moves forward in
level flight powered by a propeller the resultant aerodynamic forces on the blades cause the necessary torque to
spin the rotor and create lift. This phenomenon of “self-rotation” of the rotor is called autorotation.
A twin rotor blade is installed in the two sides of the support; four blades are attached together with
the help of the center boss. An angle of 90 degree is maintained between the blades in order to produce lift.
The rotation of blades are made in such a way that both the rotors rotate in opposite direction to each other.
The rotor blades are made with chloroplast for the reason of light weight and rigidity. The center boss
is located at the distance of 29cm from the ends of the rotor blades. The length of the blades is 35cm and width
5cm with 60o angle between the blades. The rotor diameter is 4mm with the rotor shaft weight to be 140g. The
rotor blades are kept at the ends of the wings. A square sheet of cardboard is used underneath the rotors so that
it reduces the friction created between the support and the blades. The blade is attached to the shaft at a small
positive angle of pitch θ as shown in Fig.2.1.1 and Fig.2.1.2.

Fig.3.1.1 Blades construction showing the pitch angle

Fig.3.1.2Rotor blades construction

The airfoil in many aspects is the heart of the airplane. The choice of airfoil selection on a rotating
wing aircraft is never an easy one because of the diverse range of Reynolds number and Mach number found
along the length of the blades. The lift produced in autogyro is directly proportional to the forward speed.
Since autogyro is a low speed flying aircraft, the lift generated is also proportionally reduced. In order to
improve the lift production, a flat bottom airfoil is chosen for the wing support. Considering the above
conditions Clark Y airfoil section as shown in Fig.2.1.3 is used.
www.theijes.com

The IJES

Page 49
Aerodynamic Designing Of Autogyro: Gyrocame
The airfoil has a thickness of 11.7 percent and is flat on the lower surface from 30 percent of
chord back as shown in Fig.2.1.4. The flat bottom simplifies angle measurements on propellers, and makes for
easy construction of wings on a flat surface.

Fig.3.1.3ClarkYairfoil

Fig.3.1.4Airfoil section

3.2. Fuselage
The fuselage, or body of the autogyro, is a long hollow tube which holds all the pieces of an autogyro
together. The fuselage is hollow to reduce weight. As with most other parts of the airplane, the shape of the
fuselage is normally determined by the mission of the aircraft. The weight of an aircraft is distributed all along
the aircraft. The centre of gravity of the autogyro is usually located inside the fuselage. The shape and
dimensions of the fuselage have a strong effect on the aircraft drag.
Conventional type of landing gear is attached at the bottom of the fuselage. The fuselage includes
covers enabling quick and easy access to components in the fuselage.3 servos are used and fixed in the fuselage
body (1-elevator, 1-rudder & 1-throttle). Fuselage is of 84 cm length and the maximum thickness of the
fuselage is 7.5 cm. Fuselage size variation is shown in Fig.2.2.1. The fuselage gives main support to the rotor
blades at both the ends and the tail plain is attached at the rear end of the fuselage. The material used for
making the fuselage is Coroplast. The propulsion system is fixed at front of the fuselage which plays a main
role in producing forward flight.

Fig.3.2.1Fuselage size variation
3.3. Tail Plane
In order to acquire longitudinal and directional stability of the aircraft, horizontal and vertical stabilizers are
incorporated in the rear end of the fuselage. Since gyrocame is a low speed aircraft, there is a necessity that it has excellent
glide ratio or lift to drag ratio. High glide ratio is obtained by using T tail configuration shown in Fig.2.3.1. T-tail designs
have become popular on many light and larger aircraft, especially those with aft fuselage-mounted engines because the Ttail configuration removes the tail from the exhaust blast of the engines.

Fig.3.3.1Tail plain-T-Tail configuration
www.theijes.com

The IJES

Page 50
Aerodynamic Designing Of Autogyro: Gyrocame

The horizontal stabilizer prevents up-and-down or pitching, motion of the aircraft nose. The length of the
horizontal stabilizer is 51cm and width 17.4 cm. the elevator is also a part of this stabilizer which has 18cm length and
2.3cm width. Sub-fin is a part of tail plain and it is used as a vertical stability. These sub-fins are used to increase the
stability of the tail plain. The height of sub fin is 6cm and length at rear is 12.5cm and at front is 16.5cm. The vertical
stabilizers in the aircraft is typically found on the aft end of the fuselage or body, and are intended to reduce aerodynamic
side slip and provide direction stability. It has breadth of 28cm and rear length to be 16.5cm and front length to be 20.5cm.

Fig.3.3.2.Fabricated Model
3.4. Other Components
Mini DV is one of three common digital formats used in sound and picture recording. Using digital technology,
Mini DV captures video and audio on high-density cassette tapes. This format is very popular, as it delivers sound and
video that is decidedly sharp and high quality. Transferring video to a PC can be accomplished using an IEEE-1394
interface, commonly known as FireWire or I. Lin.
The motor used here is a Brushless DC motor. This motor could be characterized as the modern kind of DC
motor. The motor is been selected in such a way that it has the pulling capacity of 1.5kg-2kg.Since our aircraft total weight
is estimated to be 1.5kg, a brushless motor of C3530 Model type which has the pulling capacity is been used. The total
capacity of the motor is 30amps.
An electronic speed control or ESC is used which is a device mounted onboard an electrically-powered R/C model in
order to vary its drive motor’s speed, its direction and even to act as a dynamic brake in certain controllers, perhaps even
antilock braking.
RC servos are composed of an electric motor mechanically linked to a potentiometer. The servos we have used
here is of 9gms weight. The voltage varies from 4.826volt to 6 volts. It has a maximum torque capacity of 1.3 to 1.5 kg and
the speed limit is 0.1 to 0.008 sec per 60 degree
The transmitter used here is mode 2 (left hand throttle) with 6 channels. The radio frequency range is 2.40 to 2.48
GHz with a bandwidth of 500 Hz and sensitivity of 1024. 12V DC power supply is used. The receiver used here has a RF
power less than 20db with 6 channels.

IV. PERFORMANCE PARAMETERS CALCULATION
The mission profile of gyrocame involves taxiing, take off, climb, cruising, loiter, cruise, descent and
ground roll. The weight plays an important role in designing any kind of aircraft. Here, the overall weight is
found by summing up all the other weights, which is given by,
Wo= We +Wm +Wp
= 1310+140+50
= 1500gms =1.5Kg
Where Wo is overall weight, We is empty weight, Wm is motor weight and Wp is the payload weight. The
velocity at which the aircraft stalls is known as stalling velocity. It is given by the formula,
Vstall=[(2/ρ∞) (w/s) (1/clmax)] (1/2)

www.theijes.com

The IJES

Page 51
Aerodynamic Designing Of Autogyro: Gyrocame
Substituting the values the required Vstall is 8.41 ft/sec. The flare velocity is given as 1.15 times the
stall velocity. So Vf is 9.67lb/ft2. The Flight path radius during flare is given by,
R= Vf2/0.2g = 47.6 ft
The aspect ratio, defined as the square of the wingspan, b (15.2) divided by the area, S (2.9) of the
wing, is 5.2. The wing loading is calculated to be 0.180. The turning radius which represents the size of the
smallest circular turn that the vehicle is capable of making is calculated from the equation,

The rate at which an aircraft turns is known as turn rate. Turn rate is given by the formula,

The performance results calculated was found to have higher efficiency than the past models which was designed
and fabricated. The comparison between the two fabricated models are shown in the below Table 3.1

TABLE 3.1 Comparison between different configurations
Specifications
Gross Weight(kg)
Cruise Speed(m/s)
Maximum Speed(m/s)
Maximum Operating Height(ft)
Disc area(mm)

Old Configuration
1.7
7
6.5 to 9.5
15
50

New Configuration
1.5
9.5
8.5 to 11.5
25
100

Pitch angle, Solidity of the blades are the major factors that will influence the efficiency of autogyro. The solidity
of the blades was found to be higher which is defined as the ratio between the total blade areas to the disc area. The drag is
reduced greatly by increasing the wing support span, rotor disc area and decreasing the rotor blade thickness.

V. CONCLUSION
Hereby we conclude that gyrocopter which has a good solidity of the blades, high ratio of tip speed to forward
speed and a desired disc area is one of the most efficient autogyro with features like effective flying at low speeds without
losing its stability. The loading is increased in order to maintain the sufficient tip to forward speed. Usage of twin rotor had
reduced the complicated linkage of the rotor head like in the single rotor auto gyro. This configuration is very tolerant of
failures like at times during the loss of a rotor blade. The critical short comings of Autogyro include a large amount of drag
(interference & induced) production. This has been overcome in gyrocame by the use of fairings in the wing & rotor blade
edges for interference drag and increasing the wing span for induced drag.

REFERENCE
[1] Holger Duda, Insa Pruter, “Flight Performance of Light Weight Gyroplanes”, 28th International Congress of the Aeronautical
Sciences, ICAS 2012.
[2] H.Gluaret, “General Theory of Autogyro”, Reports and Memoranda: 111, November 1926.
[3] John W Hicks and Thomas Huckabone, “Preliminary Flight – Determined Subsonic Lift and Drag Characteristics of the X-29A
Forward –Swept Wing Airplane”, NASATechnical Memorandum: 100409, August 1989.
[4] Seppo Laine, “Effect of Horizontal Tail on the Stability of the VTMM16 Autogyro”, Report AALTO-AM-18, 2010.
[5] Woon-Tah K Sung, Taesam Kang and Jang Gyu Lee, “Controller Design of a MEMS Gyro-Accelerometer with a Single Proof
Mass”, International Journal of Control, Automation and Systems, vol. 6, no.6, pp.873-883. Dec 2008.

www.theijes.com

The IJES

Page 52

Más contenido relacionado

La actualidad más candente

Flight controls translift
Flight controls  transliftFlight controls  translift
Flight controls transliftabarget
 
Structure of aircraft
Structure of aircraftStructure of aircraft
Structure of aircraftkorkmaz79
 
Hands on experience with aircraft major components on aircraft and to identif...
Hands on experience with aircraft major components on aircraft and to identif...Hands on experience with aircraft major components on aircraft and to identif...
Hands on experience with aircraft major components on aircraft and to identif...Mayank Gupta
 
Aerodinamica helicoptero
Aerodinamica helicopteroAerodinamica helicoptero
Aerodinamica helicopteroCamilo Guayazan
 
English for aviation mechanics
English for aviation mechanicsEnglish for aviation mechanics
English for aviation mechanicstariqdyab
 
The theory of flight 1234
The theory of flight 1234The theory of flight 1234
The theory of flight 1234Md Bas
 
Aircraft manufacturing
Aircraft manufacturingAircraft manufacturing
Aircraft manufacturingAMan Ahmed
 
4286 4290.output
4286 4290.output4286 4290.output
4286 4290.outputj1075017
 
Aircraft Characteristics
Aircraft CharacteristicsAircraft Characteristics
Aircraft CharacteristicsRino Cherian
 
Basic Info regarding making a RC aeroplane
Basic Info regarding making a RC aeroplaneBasic Info regarding making a RC aeroplane
Basic Info regarding making a RC aeroplaneZubair Ahmed
 
Aviation basic no background
Aviation basic no backgroundAviation basic no background
Aviation basic no backgroundoldcramo2009
 
Fixed wing aircrafts power point presentation
Fixed wing aircrafts power point presentationFixed wing aircrafts power point presentation
Fixed wing aircrafts power point presentationSamaleswari Prasad Mallik
 
Basic aircraft structure
Basic aircraft structureBasic aircraft structure
Basic aircraft structurenyinyilay
 
Mechanics and types of wings of air planes
Mechanics and types of wings of air planesMechanics and types of wings of air planes
Mechanics and types of wings of air planesDave Madhav
 
Landing Gear Project Final Report
Landing Gear Project Final ReportLanding Gear Project Final Report
Landing Gear Project Final ReportKevin Osman
 

La actualidad más candente (20)

Flight controls translift
Flight controls  transliftFlight controls  translift
Flight controls translift
 
Structure of aircraft
Structure of aircraftStructure of aircraft
Structure of aircraft
 
Hands on experience with aircraft major components on aircraft and to identif...
Hands on experience with aircraft major components on aircraft and to identif...Hands on experience with aircraft major components on aircraft and to identif...
Hands on experience with aircraft major components on aircraft and to identif...
 
Aerodinamica helicoptero
Aerodinamica helicopteroAerodinamica helicoptero
Aerodinamica helicoptero
 
English for aviation mechanics
English for aviation mechanicsEnglish for aviation mechanics
English for aviation mechanics
 
Basic aircraft structure
Basic aircraft structureBasic aircraft structure
Basic aircraft structure
 
The theory of flight 1234
The theory of flight 1234The theory of flight 1234
The theory of flight 1234
 
Aircraft manufacturing
Aircraft manufacturingAircraft manufacturing
Aircraft manufacturing
 
4286 4290.output
4286 4290.output4286 4290.output
4286 4290.output
 
Aircraft Characteristics
Aircraft CharacteristicsAircraft Characteristics
Aircraft Characteristics
 
Basic Info regarding making a RC aeroplane
Basic Info regarding making a RC aeroplaneBasic Info regarding making a RC aeroplane
Basic Info regarding making a RC aeroplane
 
Aircraft Design
Aircraft DesignAircraft Design
Aircraft Design
 
Aviation basic no background
Aviation basic no backgroundAviation basic no background
Aviation basic no background
 
MOTION IN AIRCRAFTS
MOTION IN AIRCRAFTSMOTION IN AIRCRAFTS
MOTION IN AIRCRAFTS
 
Fixed wing aircrafts power point presentation
Fixed wing aircrafts power point presentationFixed wing aircrafts power point presentation
Fixed wing aircrafts power point presentation
 
Basic aircraft structure
Basic aircraft structureBasic aircraft structure
Basic aircraft structure
 
The types of Wing
The types of WingThe types of Wing
The types of Wing
 
Aircraft basics
Aircraft basicsAircraft basics
Aircraft basics
 
Mechanics and types of wings of air planes
Mechanics and types of wings of air planesMechanics and types of wings of air planes
Mechanics and types of wings of air planes
 
Landing Gear Project Final Report
Landing Gear Project Final ReportLanding Gear Project Final Report
Landing Gear Project Final Report
 

Destacado

The impact of innovation on travel and tourism industries (World Travel Marke...
The impact of innovation on travel and tourism industries (World Travel Marke...The impact of innovation on travel and tourism industries (World Travel Marke...
The impact of innovation on travel and tourism industries (World Travel Marke...Brian Solis
 
Reuters: Pictures of the Year 2016 (Part 2)
Reuters: Pictures of the Year 2016 (Part 2)Reuters: Pictures of the Year 2016 (Part 2)
Reuters: Pictures of the Year 2016 (Part 2)maditabalnco
 
What's Next in Growth? 2016
What's Next in Growth? 2016What's Next in Growth? 2016
What's Next in Growth? 2016Andrew Chen
 
How to think like a startup
How to think like a startupHow to think like a startup
How to think like a startupLoic Le Meur
 
The Six Highest Performing B2B Blog Post Formats
The Six Highest Performing B2B Blog Post FormatsThe Six Highest Performing B2B Blog Post Formats
The Six Highest Performing B2B Blog Post FormatsBarry Feldman
 
32 Ways a Digital Marketing Consultant Can Help Grow Your Business
32 Ways a Digital Marketing Consultant Can Help Grow Your Business32 Ways a Digital Marketing Consultant Can Help Grow Your Business
32 Ways a Digital Marketing Consultant Can Help Grow Your BusinessBarry Feldman
 

Destacado (6)

The impact of innovation on travel and tourism industries (World Travel Marke...
The impact of innovation on travel and tourism industries (World Travel Marke...The impact of innovation on travel and tourism industries (World Travel Marke...
The impact of innovation on travel and tourism industries (World Travel Marke...
 
Reuters: Pictures of the Year 2016 (Part 2)
Reuters: Pictures of the Year 2016 (Part 2)Reuters: Pictures of the Year 2016 (Part 2)
Reuters: Pictures of the Year 2016 (Part 2)
 
What's Next in Growth? 2016
What's Next in Growth? 2016What's Next in Growth? 2016
What's Next in Growth? 2016
 
How to think like a startup
How to think like a startupHow to think like a startup
How to think like a startup
 
The Six Highest Performing B2B Blog Post Formats
The Six Highest Performing B2B Blog Post FormatsThe Six Highest Performing B2B Blog Post Formats
The Six Highest Performing B2B Blog Post Formats
 
32 Ways a Digital Marketing Consultant Can Help Grow Your Business
32 Ways a Digital Marketing Consultant Can Help Grow Your Business32 Ways a Digital Marketing Consultant Can Help Grow Your Business
32 Ways a Digital Marketing Consultant Can Help Grow Your Business
 

Similar a I030101048052

Aircraft characteristics
Aircraft characteristicsAircraft characteristics
Aircraft characteristicsAbhishek Kumar
 
Propulsion Selection and Analysis for Unmanned Aerial Vehicles for SAE Aero D...
Propulsion Selection and Analysis for Unmanned Aerial Vehicles for SAE Aero D...Propulsion Selection and Analysis for Unmanned Aerial Vehicles for SAE Aero D...
Propulsion Selection and Analysis for Unmanned Aerial Vehicles for SAE Aero D...theijes
 
Aerodynamics design of formula sae race car 41372
Aerodynamics design of formula sae race car 41372Aerodynamics design of formula sae race car 41372
Aerodynamics design of formula sae race car 41372EditorIJAERD
 
PPT-AIRCRAFT DESIGN PROJECT-II.pptx
 PPT-AIRCRAFT DESIGN PROJECT-II.pptx PPT-AIRCRAFT DESIGN PROJECT-II.pptx
PPT-AIRCRAFT DESIGN PROJECT-II.pptxManojRasaily1
 
A Study about HOVERCRAFT
A Study about HOVERCRAFTA Study about HOVERCRAFT
A Study about HOVERCRAFTijsrd.com
 
Optimizationof fuselage shape for better pressurization and drag reduction
Optimizationof fuselage shape for better pressurization and drag reductionOptimizationof fuselage shape for better pressurization and drag reduction
Optimizationof fuselage shape for better pressurization and drag reductioneSAT Journals
 
Side force generated by dorsal fin.
Side force generated by dorsal fin.Side force generated by dorsal fin.
Side force generated by dorsal fin.Kartheek Amaroju
 
DESIGN AND ANALYSIS OF MULTITASKING AGRICULTURAL DRONE
DESIGN AND ANALYSIS OF MULTITASKING AGRICULTURAL DRONEDESIGN AND ANALYSIS OF MULTITASKING AGRICULTURAL DRONE
DESIGN AND ANALYSIS OF MULTITASKING AGRICULTURAL DRONEIRJET Journal
 
SELECTION AND ANALYSIS OF THE LANDING GEAR FOR UNMANNED AERIAL VEHICLE FOR SA...
SELECTION AND ANALYSIS OF THE LANDING GEAR FOR UNMANNED AERIAL VEHICLE FOR SA...SELECTION AND ANALYSIS OF THE LANDING GEAR FOR UNMANNED AERIAL VEHICLE FOR SA...
SELECTION AND ANALYSIS OF THE LANDING GEAR FOR UNMANNED AERIAL VEHICLE FOR SA...IAEME Publication
 
Selection and analysis of the landing gear for unmanned aerial vehicle for sa...
Selection and analysis of the landing gear for unmanned aerial vehicle for sa...Selection and analysis of the landing gear for unmanned aerial vehicle for sa...
Selection and analysis of the landing gear for unmanned aerial vehicle for sa...IAEME Publication
 
Design, Fabrication and Aerodynamic Analysis of RC Powered Aircraft Wing
Design, Fabrication and Aerodynamic Analysis of RC Powered Aircraft WingDesign, Fabrication and Aerodynamic Analysis of RC Powered Aircraft Wing
Design, Fabrication and Aerodynamic Analysis of RC Powered Aircraft WingIRJET Journal
 
Development of a Integrated Air Cushioned Vehicle (Hovercraft)
Development of a Integrated Air Cushioned Vehicle (Hovercraft)Development of a Integrated Air Cushioned Vehicle (Hovercraft)
Development of a Integrated Air Cushioned Vehicle (Hovercraft)IJMER
 
IRJET- Design and Optimization of Sailplane for Static and Dynamic Stability
IRJET- Design and Optimization of Sailplane for Static and Dynamic StabilityIRJET- Design and Optimization of Sailplane for Static and Dynamic Stability
IRJET- Design and Optimization of Sailplane for Static and Dynamic StabilityIRJET Journal
 

Similar a I030101048052 (20)

Aircraft characteristics
Aircraft characteristicsAircraft characteristics
Aircraft characteristics
 
Propulsion Selection and Analysis for Unmanned Aerial Vehicles for SAE Aero D...
Propulsion Selection and Analysis for Unmanned Aerial Vehicles for SAE Aero D...Propulsion Selection and Analysis for Unmanned Aerial Vehicles for SAE Aero D...
Propulsion Selection and Analysis for Unmanned Aerial Vehicles for SAE Aero D...
 
Aerodynamics design of formula sae race car 41372
Aerodynamics design of formula sae race car 41372Aerodynamics design of formula sae race car 41372
Aerodynamics design of formula sae race car 41372
 
LIBRO DE FAA.pdf
LIBRO DE FAA.pdfLIBRO DE FAA.pdf
LIBRO DE FAA.pdf
 
PPT-AIRCRAFT DESIGN PROJECT-II.pptx
 PPT-AIRCRAFT DESIGN PROJECT-II.pptx PPT-AIRCRAFT DESIGN PROJECT-II.pptx
PPT-AIRCRAFT DESIGN PROJECT-II.pptx
 
A Study about HOVERCRAFT
A Study about HOVERCRAFTA Study about HOVERCRAFT
A Study about HOVERCRAFT
 
Optimizationof fuselage shape for better pressurization and drag reduction
Optimizationof fuselage shape for better pressurization and drag reductionOptimizationof fuselage shape for better pressurization and drag reduction
Optimizationof fuselage shape for better pressurization and drag reduction
 
Aj34219223
Aj34219223Aj34219223
Aj34219223
 
N1303047887
N1303047887N1303047887
N1303047887
 
Side force generated by dorsal fin.
Side force generated by dorsal fin.Side force generated by dorsal fin.
Side force generated by dorsal fin.
 
DESIGN AND ANALYSIS OF MULTITASKING AGRICULTURAL DRONE
DESIGN AND ANALYSIS OF MULTITASKING AGRICULTURAL DRONEDESIGN AND ANALYSIS OF MULTITASKING AGRICULTURAL DRONE
DESIGN AND ANALYSIS OF MULTITASKING AGRICULTURAL DRONE
 
SELECTION AND ANALYSIS OF THE LANDING GEAR FOR UNMANNED AERIAL VEHICLE FOR SA...
SELECTION AND ANALYSIS OF THE LANDING GEAR FOR UNMANNED AERIAL VEHICLE FOR SA...SELECTION AND ANALYSIS OF THE LANDING GEAR FOR UNMANNED AERIAL VEHICLE FOR SA...
SELECTION AND ANALYSIS OF THE LANDING GEAR FOR UNMANNED AERIAL VEHICLE FOR SA...
 
Selection and analysis of the landing gear for unmanned aerial vehicle for sa...
Selection and analysis of the landing gear for unmanned aerial vehicle for sa...Selection and analysis of the landing gear for unmanned aerial vehicle for sa...
Selection and analysis of the landing gear for unmanned aerial vehicle for sa...
 
Design, Fabrication and Aerodynamic Analysis of RC Powered Aircraft Wing
Design, Fabrication and Aerodynamic Analysis of RC Powered Aircraft WingDesign, Fabrication and Aerodynamic Analysis of RC Powered Aircraft Wing
Design, Fabrication and Aerodynamic Analysis of RC Powered Aircraft Wing
 
Development of a Integrated Air Cushioned Vehicle (Hovercraft)
Development of a Integrated Air Cushioned Vehicle (Hovercraft)Development of a Integrated Air Cushioned Vehicle (Hovercraft)
Development of a Integrated Air Cushioned Vehicle (Hovercraft)
 
P01243104110
P01243104110P01243104110
P01243104110
 
H0210040047
H0210040047H0210040047
H0210040047
 
IRJET- Design and Optimization of Sailplane for Static and Dynamic Stability
IRJET- Design and Optimization of Sailplane for Static and Dynamic StabilityIRJET- Design and Optimization of Sailplane for Static and Dynamic Stability
IRJET- Design and Optimization of Sailplane for Static and Dynamic Stability
 
L1303046572
L1303046572L1303046572
L1303046572
 
AIAA Technical Paper
AIAA Technical PaperAIAA Technical Paper
AIAA Technical Paper
 

Último

A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfOverkill Security
 
A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusZilliz
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbuapidays
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Zilliz
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024The Digital Insurer
 

Último (20)

A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source Milvus
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 

I030101048052

  • 1. The International Journal Of Engineering And Science (IJES) ||Volume|| 3 ||Issue|| 01 || Pages || 48-52 || 2014 || ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805 AERODYNAMIC DESIGNING OF AUTOGYRO: GYROCAME Irish Angelin S1, Senthilkumar S2, Maniiarasan P3, Arulselvan K4 1 Post Graduate Scholar, Department of Aeronautical Engineering 2 Assistant Professor, Department of Aeronautical Engineering 3 Professor, Department of Mechanical Engineering 4 Professor, Department of Mechatronics Engineering Nehru Institute of Engineering and Technology, Coimbatore-641105 -------------------------------------------------------------ABSTRACT------------------------------------------------------To design a compound architecture of a surveillance autogyro, combined with the short Takeoff and Landing STOL and efficient autorotation, free from rotor blades cyclic retrieval striking, vibration free features of gyroplanes. It comprises counter rotating transverse twin rotors mounted on the dihedral wing support, which is placed on top of the fuselage symmetrically, to produce the desired lift. The rotor blades are attached to the shaft at a constant pitch angle which operates efficiently during cruise flight. A tractor type configuration proprotor is used in order to propel the auto gyro at an efficient forward speed. The tractor prop-rotor is powered by means of a brushless motor. The general disadvantage of auto gyro (large drag) is overcome in our Gyrocame by increasing the wing span and reducing the length of the transverse rotor blades. Keywords - rotor blades, disc area, pitch angle, drag. ------------------------------------------------------------------------------------------------------------------------------------------Date of Submission: 24 December 2013 Date of Acceptance: 10 January 2014 ------------------------------------------------------------------------------------------------------------------------------------------- I. INTRODUCTION An autogyro is an aircraft, similar to a modern helicopter in appearance, but with a few major dissimilarities. The design had inherent safety, better low-speed flight than airplanes, as well as the capability of vertical take-off and landing. One important feature of autogyro is its ability to flare, when there is a failure in engine, without causing much damage to the pilot and the rotorcraft. It, like a helicopter, uses an overhead rotor as its main source of lift. The rotor on an autogyro, however, is freely rotating, meaning it is not powered by any engine, and therefore applies no rotational force, or torque, on the machine. Because of the fact that the rotor does not spin on its own to give itself thrust like a helicopter, it makes for the need of another form of forward propulsion. This comes in the form of a propeller, like that on an airplane, to propel the machine forward, which makes air to pass though the overhead rotor, causing it to spin and create lift. The faster the machine goes the more lift the rotor creates. Gyrocame is made out of chloroplast in order to reduce the weight and for crash resistance. Conventional type of fuselage construction is used along with a bicycle undercarriage. Front end of the fuselage consist of battery, receiver, electronic split controller and a brushless motor attached to the nose. A propeller with a fixed pitch angle is mounted on the shaft of the brushless motor. This propeller helps the rotorcraft in obtaining the required forward speed. The counter rotating twin rotors which produce the desired lift due to autorotation is attached to the fuselage using wing dihedral support. A flat bottom airfoil is used in the wing in order to acquire a high amount of lift at a short interval of time. The rotor consists of four blades, each placed at a constant pitch angle. The yaw and pitch movement are controlled by the rudder and elevator respectively which is attached to two separate servos. T type tail plane configuration is used in the low altitude rotorcraft. II. LITERATURE SURVEY Holger Duda [1] presented the flight performance of modern lightweight Gyroplanes which tends to increase the airspeed and the performance of gyroplanes by means of reducing the drag. H. Glauert [2] obtained a high lift forces from a freely rotating blades and the theory behind the lift generation. The maximum lift generation by using a proper disc area and the forward speed in general and studied the best lift-drag ratio. John W. Hicks [3] shows the lift and drag characteristics determined or met with respect to the drag polar shapes in subsonic speed for a various angle of attacks and for flight envelope. Seppo Laine [4] presented a work to study the importance of the horizontal tail on the longitudinal stability in horizontal flight. The study shows that the tailplane is necessary to ensure longitudinal stability. Woon-Tahk Sung [5] presented an integral and derivative based controller design method to achieve the desired performances of stability margin under parameter variations, demonstrating the usefulness of the proposed design scheme. www.theijes.com The IJES Page 48
  • 2. Aerodynamic Designing Of Autogyro: Gyrocame III. DESIGN AND FARICATION OF COMPONENT 3.1. Wing Support and Rotor Blades Generally in autogyro the wing is been replaced by the use of support. The support is used for fixing the rotor blades. These rotor blades are mainly used for producing the lift. Here the support is inclined to a particular angle, so called dihedral angle which is of approximately 2 degrees. To calculate the dihedral angle we consider the planes for which the angles should be calculated. The general equation of the plane is given by: Ax + By + Cz = 0 Comparing the two equation of plane and substituting in the below equation we get the dihedral angle Chloroplast sheet is used for making the support. Care should be taken that, too much of dihedral leads to unpleasant experience, or in extreme conditions it can lead to loss of control or can overstress an aircraft. The rotors are made such that it has 4 blades and are joined together with a small rectangular cardboard plate. The rotor blades are fixed with the small triangular support to the wing at a small pitch angle. The two rotors are kept or fixed at a particular distance to avoid turbulence and collision. The corners of the wing and rotor are covered with strips of balsa wood. Unlike a helicopter, the rotor on an autogyro is not powered directly.As the machine moves forward in level flight powered by a propeller the resultant aerodynamic forces on the blades cause the necessary torque to spin the rotor and create lift. This phenomenon of “self-rotation” of the rotor is called autorotation. A twin rotor blade is installed in the two sides of the support; four blades are attached together with the help of the center boss. An angle of 90 degree is maintained between the blades in order to produce lift. The rotation of blades are made in such a way that both the rotors rotate in opposite direction to each other. The rotor blades are made with chloroplast for the reason of light weight and rigidity. The center boss is located at the distance of 29cm from the ends of the rotor blades. The length of the blades is 35cm and width 5cm with 60o angle between the blades. The rotor diameter is 4mm with the rotor shaft weight to be 140g. The rotor blades are kept at the ends of the wings. A square sheet of cardboard is used underneath the rotors so that it reduces the friction created between the support and the blades. The blade is attached to the shaft at a small positive angle of pitch θ as shown in Fig.2.1.1 and Fig.2.1.2. Fig.3.1.1 Blades construction showing the pitch angle Fig.3.1.2Rotor blades construction The airfoil in many aspects is the heart of the airplane. The choice of airfoil selection on a rotating wing aircraft is never an easy one because of the diverse range of Reynolds number and Mach number found along the length of the blades. The lift produced in autogyro is directly proportional to the forward speed. Since autogyro is a low speed flying aircraft, the lift generated is also proportionally reduced. In order to improve the lift production, a flat bottom airfoil is chosen for the wing support. Considering the above conditions Clark Y airfoil section as shown in Fig.2.1.3 is used. www.theijes.com The IJES Page 49
  • 3. Aerodynamic Designing Of Autogyro: Gyrocame The airfoil has a thickness of 11.7 percent and is flat on the lower surface from 30 percent of chord back as shown in Fig.2.1.4. The flat bottom simplifies angle measurements on propellers, and makes for easy construction of wings on a flat surface. Fig.3.1.3ClarkYairfoil Fig.3.1.4Airfoil section 3.2. Fuselage The fuselage, or body of the autogyro, is a long hollow tube which holds all the pieces of an autogyro together. The fuselage is hollow to reduce weight. As with most other parts of the airplane, the shape of the fuselage is normally determined by the mission of the aircraft. The weight of an aircraft is distributed all along the aircraft. The centre of gravity of the autogyro is usually located inside the fuselage. The shape and dimensions of the fuselage have a strong effect on the aircraft drag. Conventional type of landing gear is attached at the bottom of the fuselage. The fuselage includes covers enabling quick and easy access to components in the fuselage.3 servos are used and fixed in the fuselage body (1-elevator, 1-rudder & 1-throttle). Fuselage is of 84 cm length and the maximum thickness of the fuselage is 7.5 cm. Fuselage size variation is shown in Fig.2.2.1. The fuselage gives main support to the rotor blades at both the ends and the tail plain is attached at the rear end of the fuselage. The material used for making the fuselage is Coroplast. The propulsion system is fixed at front of the fuselage which plays a main role in producing forward flight. Fig.3.2.1Fuselage size variation 3.3. Tail Plane In order to acquire longitudinal and directional stability of the aircraft, horizontal and vertical stabilizers are incorporated in the rear end of the fuselage. Since gyrocame is a low speed aircraft, there is a necessity that it has excellent glide ratio or lift to drag ratio. High glide ratio is obtained by using T tail configuration shown in Fig.2.3.1. T-tail designs have become popular on many light and larger aircraft, especially those with aft fuselage-mounted engines because the Ttail configuration removes the tail from the exhaust blast of the engines. Fig.3.3.1Tail plain-T-Tail configuration www.theijes.com The IJES Page 50
  • 4. Aerodynamic Designing Of Autogyro: Gyrocame The horizontal stabilizer prevents up-and-down or pitching, motion of the aircraft nose. The length of the horizontal stabilizer is 51cm and width 17.4 cm. the elevator is also a part of this stabilizer which has 18cm length and 2.3cm width. Sub-fin is a part of tail plain and it is used as a vertical stability. These sub-fins are used to increase the stability of the tail plain. The height of sub fin is 6cm and length at rear is 12.5cm and at front is 16.5cm. The vertical stabilizers in the aircraft is typically found on the aft end of the fuselage or body, and are intended to reduce aerodynamic side slip and provide direction stability. It has breadth of 28cm and rear length to be 16.5cm and front length to be 20.5cm. Fig.3.3.2.Fabricated Model 3.4. Other Components Mini DV is one of three common digital formats used in sound and picture recording. Using digital technology, Mini DV captures video and audio on high-density cassette tapes. This format is very popular, as it delivers sound and video that is decidedly sharp and high quality. Transferring video to a PC can be accomplished using an IEEE-1394 interface, commonly known as FireWire or I. Lin. The motor used here is a Brushless DC motor. This motor could be characterized as the modern kind of DC motor. The motor is been selected in such a way that it has the pulling capacity of 1.5kg-2kg.Since our aircraft total weight is estimated to be 1.5kg, a brushless motor of C3530 Model type which has the pulling capacity is been used. The total capacity of the motor is 30amps. An electronic speed control or ESC is used which is a device mounted onboard an electrically-powered R/C model in order to vary its drive motor’s speed, its direction and even to act as a dynamic brake in certain controllers, perhaps even antilock braking. RC servos are composed of an electric motor mechanically linked to a potentiometer. The servos we have used here is of 9gms weight. The voltage varies from 4.826volt to 6 volts. It has a maximum torque capacity of 1.3 to 1.5 kg and the speed limit is 0.1 to 0.008 sec per 60 degree The transmitter used here is mode 2 (left hand throttle) with 6 channels. The radio frequency range is 2.40 to 2.48 GHz with a bandwidth of 500 Hz and sensitivity of 1024. 12V DC power supply is used. The receiver used here has a RF power less than 20db with 6 channels. IV. PERFORMANCE PARAMETERS CALCULATION The mission profile of gyrocame involves taxiing, take off, climb, cruising, loiter, cruise, descent and ground roll. The weight plays an important role in designing any kind of aircraft. Here, the overall weight is found by summing up all the other weights, which is given by, Wo= We +Wm +Wp = 1310+140+50 = 1500gms =1.5Kg Where Wo is overall weight, We is empty weight, Wm is motor weight and Wp is the payload weight. The velocity at which the aircraft stalls is known as stalling velocity. It is given by the formula, Vstall=[(2/ρ∞) (w/s) (1/clmax)] (1/2) www.theijes.com The IJES Page 51
  • 5. Aerodynamic Designing Of Autogyro: Gyrocame Substituting the values the required Vstall is 8.41 ft/sec. The flare velocity is given as 1.15 times the stall velocity. So Vf is 9.67lb/ft2. The Flight path radius during flare is given by, R= Vf2/0.2g = 47.6 ft The aspect ratio, defined as the square of the wingspan, b (15.2) divided by the area, S (2.9) of the wing, is 5.2. The wing loading is calculated to be 0.180. The turning radius which represents the size of the smallest circular turn that the vehicle is capable of making is calculated from the equation, The rate at which an aircraft turns is known as turn rate. Turn rate is given by the formula, The performance results calculated was found to have higher efficiency than the past models which was designed and fabricated. The comparison between the two fabricated models are shown in the below Table 3.1 TABLE 3.1 Comparison between different configurations Specifications Gross Weight(kg) Cruise Speed(m/s) Maximum Speed(m/s) Maximum Operating Height(ft) Disc area(mm) Old Configuration 1.7 7 6.5 to 9.5 15 50 New Configuration 1.5 9.5 8.5 to 11.5 25 100 Pitch angle, Solidity of the blades are the major factors that will influence the efficiency of autogyro. The solidity of the blades was found to be higher which is defined as the ratio between the total blade areas to the disc area. The drag is reduced greatly by increasing the wing support span, rotor disc area and decreasing the rotor blade thickness. V. CONCLUSION Hereby we conclude that gyrocopter which has a good solidity of the blades, high ratio of tip speed to forward speed and a desired disc area is one of the most efficient autogyro with features like effective flying at low speeds without losing its stability. The loading is increased in order to maintain the sufficient tip to forward speed. Usage of twin rotor had reduced the complicated linkage of the rotor head like in the single rotor auto gyro. This configuration is very tolerant of failures like at times during the loss of a rotor blade. The critical short comings of Autogyro include a large amount of drag (interference & induced) production. This has been overcome in gyrocame by the use of fairings in the wing & rotor blade edges for interference drag and increasing the wing span for induced drag. REFERENCE [1] Holger Duda, Insa Pruter, “Flight Performance of Light Weight Gyroplanes”, 28th International Congress of the Aeronautical Sciences, ICAS 2012. [2] H.Gluaret, “General Theory of Autogyro”, Reports and Memoranda: 111, November 1926. [3] John W Hicks and Thomas Huckabone, “Preliminary Flight – Determined Subsonic Lift and Drag Characteristics of the X-29A Forward –Swept Wing Airplane”, NASATechnical Memorandum: 100409, August 1989. [4] Seppo Laine, “Effect of Horizontal Tail on the Stability of the VTMM16 Autogyro”, Report AALTO-AM-18, 2010. [5] Woon-Tah K Sung, Taesam Kang and Jang Gyu Lee, “Controller Design of a MEMS Gyro-Accelerometer with a Single Proof Mass”, International Journal of Control, Automation and Systems, vol. 6, no.6, pp.873-883. Dec 2008. www.theijes.com The IJES Page 52