SlideShare una empresa de Scribd logo
1 de 3
Descargar para leer sin conexión
http://www.geocities.com/calculusjrm/

Fórmulas de Cálculo Diferencial e Integral (Página 1 de 3)

Fórmulas de
Cálculo Diferencial
e Integral VER.6.8
Jesús Rubí Miranda (jesusrubim@yahoo.com)
http://www.geocities.com/calculusjrm/
VALOR ABSOLUTO

( a + b ) ⋅ ( a 2 − ab + b 2 ) = a 3 + b3
( a + b ) ⋅ ( a3 − a 2 b + ab 2 − b3 ) = a 4 − b 4
( a + b ) ⋅ ( a 4 − a 3b + a 2 b 2 − ab3 + b 4 ) = a 5 + b5
( a + b ) ⋅ ( a5 − a 4 b + a 3b 2 − a 2 b3 + ab 4 − b5 ) = a 6 − b 6
⎛ n
⎞
k +1
( a + b ) ⋅ ⎜ ∑ ( −1) a n− k b k −1 ⎟ = a n + b n ∀ n ∈
⎝ k =1
⎠
⎛

⎞
a n − k b k −1 ⎟ = a n − b n ∀ n ∈
⎝ k =1
⎠
SUMAS Y PRODUCTOS

a = −a

a1 + a2 +

a ≤ a y −a ≤ a
a ≥0 y a =0 ⇔ a=0
ab = a b ó

n

a+b ≤ a + b ó

k

n

n

≤ ∑ ak

k

k =1

(a ⋅b)

=a

n

k =1

k =1
n

k =1

ap
= a p−q
aq
p

k =1

n

∑(a

k =1

= a ⋅b

p

p

ap
⎛a⎞
⎜ ⎟ = p
b
⎝b⎠
a p/q = a p
q

LOGARITMOS
log a N = x ⇒ a x = N

log a MN = log a M + log a N
M
= log a M − log a N
N
log a N r = r log a N
log a

log b N ln N
=
log a N =
log b a ln a

1+ 3 + 5 +

log10 N = log N y log e N = ln N

π π

,
2 2

tg 2 θ + 1 = sec 2 θ

sin ( −θ ) = − sin θ

sin θ + cos 2 θ = 1
2

1 + ctg 2 θ = csc 2 θ

( a + b) ⋅ ( a − b) = a − b
2
( a + b ) ⋅ ( a + b ) = ( a + b ) = a 2 + 2ab + b 2
2
( a − b ) ⋅ ( a − b ) = ( a − b ) = a 2 − 2ab + b 2
( x + b ) ⋅ ( x + d ) = x 2 + ( b + d ) x + bd
( ax + b ) ⋅ ( cx + d ) = acx 2 + ( ad + bc ) x + bd
( a + b ) ⋅ ( c + d ) = ac + ad + bc + bd
3
( a + b ) = a3 + 3a 2b + 3ab 2 + b3
3
( a − b ) = a 3 − 3a 2b + 3ab 2 − b3
2
( a + b + c ) = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc
2

( a − b ) ⋅ ( a + ab + b ) = a − b
( a − b ) ⋅ ( a 3 + a 2 b + ab 2 + b3 ) = a 4 − b 4
( a − b ) ⋅ ( a 4 + a 3b + a 2 b 2 + ab3 + b 4 ) = a 5 − b5
2

n

2

⎞

3

3

( a − b ) ⋅ ⎜ ∑ a n − k b k −1 ⎟ = a n − b n
⎝ k =1

⎠

∀n ∈

tg (θ + π ) = tg θ
sen x
cos x
tg x

-1.5

-2

0

2

4

6

sin (θ + nπ ) = ( −1) sin θ
n

8

Gráfica 2. Las funciones trigonométricas csc x ,
sec x , ctg x :
2.5

1
0.5

2
0
-0.5
-1

k =1

( x1 + x2 +

+ xk ) = ∑
n

-1.5

-2

0

2

4

6

8

xknk

4

n
⎛ 2n + 1 ⎞
sin ⎜
π ⎟ = ( −1)
⎝ 2
⎠
⎛ 2n + 1 ⎞
cos ⎜
π⎟=0
⎝ 2
⎠
⎛ 2n + 1 ⎞
tg ⎜
π⎟=∞
⎝ 2
⎠

cosh :
tgh :
ctgh :

→
→ [1, ∞
→ −1,1
− {0} → −∞ , −1 ∪ 1, ∞

sech :

→ 0 ,1]

csch :

− {0} →

-1

arc sen x
arc cos x
arc tg x
-2

-1

0

1

2

3

cos 2θ = cos 2 θ − sin 2 θ
2 tg θ
tg 2θ =
1 − tg 2 θ
1
sin 2 θ = (1 − cos 2θ )
2
1
cos 2 θ = (1 + cos 2θ )
2
1 − cos 2θ
tg 2 θ =
1 + cos 2θ

− {0}

Gráfica 5. Las funciones hiperbólicas sinh x ,
cosh x , tgh x :
5
4

π⎞
⎛
sin θ = cos ⎜ θ − ⎟
2⎠
⎝
π⎞
⎛
cos θ = sin ⎜ θ + ⎟
2⎠
⎝

tg α ± tg β
tg (α ± β ) =
1 ∓ tg α tg β
sin 2θ = 2sin θ cos θ

0

CO

sinh :
n

3
2
1
0
-1
-2

cos (α ± β ) = cos α cos β ∓ sin α sin β

1

-2
-3

tg (θ + nπ ) = tg θ

sin ( nπ ) = 0

sin (α ± β ) = sin α cos β ± cos α sin β

2

π radianes=180

CA

-4

3

e = 2.71828182846…
TRIGONOMETRÍA
CO
1
sen θ =
cscθ =
HIP
sen θ
CA
1
cosθ =
secθ =
HIP
cosθ
sen θ CO
1
tgθ =
ctgθ =
=
cosθ CA
tgθ

θ

-6

Gráfica 3. Las funciones trigonométricas inversas
arcsin x , arccos x , arctg x :

CONSTANTES
π = 3.14159265359…

HIP

csc x
sec x
ctg x

-2

n!
n
x1n1 ⋅ x2 2
n1 ! n2 ! nk !

n

tg ( nπ ) = 0

1.5

-2.5
-8

cos (θ + nπ ) = ( −1) cos θ

cos ( nπ ) = ( −1)

2

ex − e− x
2
e x + e− x
cosh x =
2
sinh x e x − e − x
=
tgh x =
cosh x e x + e− x
e x + e− x
1
=
ctgh x =
tgh x e x − e − x
1
2
=
sech x =
cosh x e x + e − x
1
2
=
csch x =
sinh x e x − e − x
sinh x =

cos (θ + π ) = − cos θ

-1

⎛n⎞
n!
, k≤n
⎜ ⎟=
⎝ k ⎠ ( n − k )!k !
n
⎛n⎞
n
( x + y ) = ∑ ⎜ ⎟ xn−k y k
k =0 ⎝ k ⎠

tg ( −θ ) = − tg θ

tg (θ + 2π ) = tg θ

-0.5

sin α ⋅ cos β =

tg α + tg β
ctg α + ctg β
FUNCIONES HIPERBÓLICAS

sin (θ + π ) = − sin θ

-4

5

cos ( −θ ) = cos θ

cos (θ + 2π ) = cos θ

0

n

ALGUNOS PRODUCTOS
a ⋅ ( c + d ) = ac + ad
2

+ ( 2n − 1) = n

tg α ⋅ tg β =

y ∈ 0, π

sin (θ + 2π ) = sin θ

-6

sin (α ± β )
cos α ⋅ cos β

1
⎡sin (α − β ) + sin (α + β ) ⎤
⎦
2⎣
1
sin α ⋅ sin β = ⎡cos (α − β ) − cos (α + β ) ⎤
⎦
2⎣
1
cos α ⋅ cos β = ⎡cos (α − β ) + cos (α + β ) ⎤
⎦
2⎣

0

IDENTIDADES TRIGONOMÉTRICAS

0.5

-2
-8

tg α ± tg β =
arc ctg x
arc sec x
arc csc x

-2
-5

1

n! = ∏ k

⎛

y∈ −

Jesús Rubí M.

1
1
(α + β ) ⋅ cos (α − β )
2
2
1
1
sin α − sin β = 2 sin (α − β ) ⋅ cos (α + β )
2
2
1
1
cos α + cos β = 2 cos (α + β ) ⋅ cos (α − β )
2
2
1
1
cos α − cos β = −2 sin (α + β ) ⋅ sin (α − β )
2
2

sin α + sin β = 2sin

0

1.5

p

2

-1

n

pq

3

1

2

n
∑ ⎡ a + ( k − 1) d ⎤ = 2 ⎡ 2a + ( n − 1) d ⎤
⎣
⎦
⎣
⎦
k =1
n
= (a + l )
2
n
1 − r n a − rl
k −1
∑ ar = a 1 − r = 1 − r
k =1
n
1
∑ k = 2 ( n2 + n )
k =1
n
1
∑ k 2 = 6 ( 2n3 + 3n2 + n )
k =1
n
1
∑ k 3 = 4 ( n 4 + 2n3 + n 2 )
k =1
n
1
∑ k 4 = 30 ( 6n5 + 15n4 + 10n3 − n )
k =1

4

y ∈ ⎢− , ⎥
⎣ 2 2⎦
y = ∠ cos x y ∈ [ 0, π ]

Gráfica 1. Las funciones trigonométricas: sin x ,
cos x , tg x :

− ak −1 ) = an − a0

k

y = ∠ sin x

1
y = ∠ sec x = ∠ cos
y ∈ [ 0, π ]
x
1
⎡ π π⎤
y = ∠ csc x = ∠ sen
y ∈ ⎢− , ⎥
x
⎣ 2 2⎦

∑ ( ak + bk ) = ∑ ak + ∑ bk

EXPONENTES

(a )

k =1

Gráfica 4. Las funciones trigonométricas inversas
arcctg x , arcsec x , arccsc x :

⎡ π π⎤

1
y = ∠ ctg x = ∠ tg
x

= c ∑ ak

n

k =1

a p ⋅ a q = a p+q

p q

+ an = ∑ ak

n

k

k =1

tg
ctg
cos
sec
csc
sin
0
0
∞
∞
1
1
12
3 2 3 2
3 2 1 3
1 2 1 2
2
2
1
1
3 1 3
2 2 3
3 2 12
0
0
∞
∞
1
1

y = ∠ tg x

n

k =1

∑ ca

k =1

∑a

par

∑ c = nc

= ∏ ak

n

k +1

n

n

∏a
k =1

n

( a + b ) ⋅ ⎜ ∑ ( −1)

⎧a si a ≥ 0
a =⎨
⎩− a si a < 0

impar

θ
0
30
45
60
90

senh x
cosh x
tgh x

-3
-4
-5

0

5

FUNCIONES HIPERBÓLICAS INV

(
(

)
)

sinh −1 x = ln x + x 2 + 1 , ∀x ∈
cosh −1 x = ln x ± x 2 − 1 , x ≥ 1
tgh −1 x =

1 ⎛1+ x ⎞
ln ⎜
⎟,
2 ⎝1− x ⎠

1 ⎛ x +1⎞
ctgh −1 x = ln ⎜
⎟,
2 ⎝ x −1⎠

x <1
x >1

⎛ 1 ± 1 − x2 ⎞
⎟, 0 < x ≤ 1
sech −1 x = ln ⎜
⎜
⎟
x
⎝
⎠
⎛1
x2 + 1 ⎞
⎟, x ≠ 0
csch −1 x = ln ⎜ +
⎜x
x ⎟
⎝
⎠
http://www.geocities.com/calculusjrm/

Fórmulas de Cálculo Diferencial e Integral (Página 2 de 3)
IDENTIDADES DE FUNCS HIP
cosh 2 x − sinh 2 x = 1
1 − tgh 2 x = sech 2 x
ctgh 2 x − 1 = csch 2 x
sinh ( − x ) = − sinh x
cosh ( − x ) = cosh x
tgh ( − x ) = − tgh x

sinh ( x ± y ) = sinh x cosh y ± cosh x sinh y
cosh ( x ± y ) = cosh x cosh y ± sinh x sinh y
tgh x ± tgh y
1 ± tgh x tgh y
sinh 2 x = 2sinh x cosh x
tgh ( x ± y ) =

cosh 2 x = cosh 2 x + sinh 2 x
2 tgh x
tgh 2 x =
1 + tgh 2 x
1
sinh 2 x = ( cosh 2 x − 1)
2
1
cosh 2 x = ( cosh 2 x + 1)
2
cosh 2 x − 1
tgh 2 x =
cosh 2 x + 1
sinh 2 x
tgh x =
cosh 2 x + 1

e x = cosh x + sinh x
e − x = cosh x − sinh x
OTRAS
ax 2 + bx + c = 0
−b ± b 2 − 4ac
2a
b 2 − 4ac = discriminante
⇒ x=

exp (α ± i β ) = e

α

( cos β ± i sin β )

si α , β ∈

LÍMITES
1

lim (1 + x ) x = e = 2.71828...
x →0

x

⎛ 1⎞
lim ⎜1 + ⎟ = e
x →∞
⎝ x⎠
sen x
lim
=1
x →0
x
1 − cos x
lim
=0
x →0
x
ex −1
lim
=1
x →0
x
x −1
lim
=1
x →1 ln x

DERIVADAS
f ( x + ∆x ) − f ( x )
df
∆y
Dx f ( x ) =
= lim
= lim
∆x → 0 ∆x
dx ∆x →0
∆x
d
(c) = 0
dx
d
( cx ) = c
dx
d
( cx n ) = ncx n−1
dx
d
du dv dw
(u ± v ± w ± ) = ± ± ±
dx
dx dx dx
d
du
( cu ) = c
dx
dx

d
dv
du
( uv ) = u + v
dx
dx
dx
d
dw
dv
du
( uvw ) = uv + uw + vw
dx
dx
dx
dx
d ⎛ u ⎞ v ( du dx ) − u ( dv dx )
⎜ ⎟=
dx ⎝ v ⎠
v2
d n
n −1 du
( u ) = nu dx
dx

dF dF du
=
⋅
(Regla de la Cadena)
dx du dx
du
1
=
dx dx du
dF dF du
=
dx dx du
⎧
dy dy dt f 2′ ( t )
⎪ x = f1 ( t )
=
=
donde ⎨
dx dx dt
f1′( t )
⎪ y = f2 (t )
⎩
DERIVADA DE FUNCS LOG & EXP
d
du dx 1 du
= ⋅
( ln u ) =
dx
u
u dx
d
log e du
⋅
( log u ) =
dx
u dx
log e du
d
( log a u ) = a ⋅ a > 0, a ≠ 1
dx
u
dx
d u
( e ) = eu ⋅ du
dx
dx
d u
( a ) = au ln a ⋅ du
dx
dx
d v
( u ) = vu v−1 du + ln u ⋅ u v ⋅ dv
dx
dx
dx
DERIVADA DE FUNCIONES TRIGO
d
du
( sin u ) = cos u
dx
dx
d
du
( cos u ) = − sin u
dx
dx
d
du
( tg u ) = sec2 u
dx
dx
d
du
( ctg u ) = − csc2 u
dx
dx
d
du
( sec u ) = sec u tg u
dx
dx
d
du
( csc u ) = − csc u ctg u
dx
dx
d
du
( vers u ) = sen u
dx
dx
DERIV DE FUNCS TRIGO INVER
1
d
du
⋅
( ∠ sin u ) =
dx
1 − u 2 dx
1
d
du
⋅
( ∠ cos u ) = −
dx
1 − u 2 dx
1
d
du
⋅
( ∠ tg u ) =
dx
1 + u 2 dx
1
d
du
⋅
( ∠ ctg u ) = −
dx
1 + u 2 dx
1
d
du ⎧+ si u > 1
⋅ ⎨
( ∠ sec u ) = ±
dx
u u 2 − 1 dx ⎩− si u < −1
1
d
du ⎧− si u > 1
⋅ ⎨
( ∠ csc u ) = ∓
dx
u u 2 − 1 dx ⎩+ si u < −1
1
d
du
⋅
( ∠ vers u ) =
dx
2u − u 2 dx

DERIVADA DE FUNCS HIPERBÓLICAS
d
du
sinh u = cosh u
dx
dx
d
du
cosh u = sinh u
dx
dx
d
du
tgh u = sech 2 u
dx
dx
d
du
ctgh u = − csch 2 u
dx
dx
d
du
sech u = − sech u tgh u
dx
dx
d
du
csch u = − csch u ctgh u
dx
dx
DERIVADA DE FUNCS HIP INV
d
du
1
senh −1 u =
⋅
dx
1 + u 2 dx
d
du
±1
cosh −1 u =
⋅ , u >1
dx
u 2 − 1 dx
d
1 du
⋅ , u <1
tgh −1 u =
dx
1 − u 2 dx
d
1 du
−1
⋅ , u >1
ctgh u =
dx
1 − u 2 dx
d
du ⎧− si
∓1
⎪
sech −1 u =
⋅ ⎨
dx
u 1 − u 2 dx ⎪ + si
⎩

⎧+ si cosh -1u > 0
⎪
⎨
-1
⎪− si cosh u < 0
⎩

sech −1 u > 0, u ∈ 0,1
sech −1 u < 0, u ∈ 0,1

∫ { f ( x ) ± g ( x )} dx = ∫ f ( x ) dx ± ∫ g ( x ) dx
∫ cf ( x ) dx = c ⋅ ∫ f ( x ) dx c ∈
∫ f ( x ) dx = ∫ f ( x ) dx + ∫ f ( x ) dx
∫ f ( x ) dx = − ∫ f ( x ) dx
∫ f ( x ) dx = 0
m ⋅ ( b − a ) ≤ ∫ f ( x ) dx ≤ M ⋅ ( b − a )
b

a

b

a

b

a

b

a

b

c

b

a

a

c

b

a

a

b

a

a

b

a

⇔ m ≤ f ( x ) ≤ M ∀x ∈ [ a, b ] , m, M ∈

∫ f ( x ) dx ≤ ∫ g ( x ) dx
b

b

a

a

⇔ f ( x ) ≤ g ( x ) ∀x ∈ [ a , b ]

∫ f ( x ) dx ≤ ∫ f ( x ) dx si a < b
b

b

a

a

INTEGRALES

∫ adx =ax
∫ af ( x ) dx = a ∫ f ( x ) dx
∫ ( u ± v ± w ± ) dx = ∫ udx ± ∫ vdx ± ∫ wdx ±
∫ udv = uv − ∫ vdu ( Integración por partes )
u n+1

∫ u du = n + 1
n

du

∫u

= ln u

u

u

au ⎧a > 0
u
∫ a du = ln a ⎨a ≠ 1
⎩
au ⎛

−1

1 ⎞

∫ ua du = ln a ⋅ ⎜ u − ln a ⎟
⎝
⎠
u

∫ ue du = e ( u − 1)
∫ ln udu =u ln u − u = u ( ln u − 1)
u

u

1
u
( u ln u − u ) = ( ln u − 1)
ln a
ln a
u2
∫ u log a udu = 4 ⋅ ( 2log a u − 1)
u2
∫ u ln udu = 4 ( 2ln u − 1)
INTEGRALES DE FUNCS TRIGO

∫ log

a

udu =

∫ sin udu = − cos u
∫ cos udu = sin u
∫ sec udu = tg u
∫ csc udu = − ctg u
∫ sec u tg udu = sec u
∫ csc u ctg udu = − csc u
∫ tg udu = − ln cos u = ln sec u
∫ ctg udu = ln sin u
∫ sec udu = ln sec u + tg u
∫ csc udu = ln csc u − ctg u

1
= ln tgh u
2
INTEGRALES DE FRAC
du
1
u
∫ u 2 + a 2 = a ∠ tg a
u
1
= − ∠ ctg
a
a
du
1 u−a
2
2
∫ u 2 − a 2 = 2a ln u + a ( u > a )
du
1 a+u
2
2
∫ a 2 − u 2 = 2a ln a − u ( u < a )
INTEGRALES CON

∫

du

= ∠ sin

a2 − u2

∫

∫ ctg

2

2

(

du

= ln u + u 2 ± a 2

u 2 ± a2

(

∫e

udu = − ( ctg u + u )

∫ u sin udu = sin u − u cos u

∫e

∫ u cos udu = cos u + u sin u

au

au

sin bu du =
cos bu du =

INTEGRALES DE FUNCS TRIGO INV
2

2

a 2 + b2
e au ( a cos bu + b sin bu )

a2 + b2
1
1
∫ sec u du = 2 sec u tg u + 2 ln sec u + tg u
ALGUNAS SERIES

+

+

2

2

−1

= u∠ sec u − ∠ cosh u

∫ ∠ csc udu = u∠ csc u + ln ( u +

u2 − 1

)
)

= u∠ csc u + ∠ cosh u
INTEGRALES DE FUNCS HIP

2

e au ( a sin bu − b cos bu )

f '' ( x0 )( x − x0 )

f ( x ) = f ( x0 ) + f ' ( x0 )( x − x0 ) +

2

2

)

3

∫ ∠ sin udu = u∠ sin u + 1 − u
∫ ∠ cos udu = u∠ cos u − 1 − u
∫ ∠ tg udu = u∠ tg u − ln 1 + u
∫ ∠ ctg udu = u∠ ctg u + ln 1 + u
∫ ∠ sec udu = u∠ sec u − ln ( u + u

∫ sinh udu = cosh u
∫ cosh udu = sinh u
∫ sech udu = tgh u
∫ csch udu = − ctgh u
∫ sech u tgh udu = − sech u
∫ csch u ctgh udu = − csch u

)

1
u
∫ u a 2 ± u 2 = a ln a + a 2 ± u 2
1
du
a
∫ u u 2 − a 2 = a ∠ cos u
1
u
= ∠ sec
a
a
u 2
a2
u
2
2
2
∫ a − u du = 2 a − u + 2 ∠ sen a
2
u 2
a
2
2
2
2
2
∫ u ± a du = 2 u ± a ± 2 ln u + u ± a
MÁS INTEGRALES

udu =

n ≠ −1

u
a

du

u 1
− sin 2u
2 4
u 1
2
∫ cos udu = 2 + 4 sin 2u
2
∫ tg udu = tg u − u

∫ sin

u
a

= −∠ cos

2

INTEGRALES DEFINIDAS, PROPIEDADES
Nota. Para todas las fórmulas de integración deberá
agregarse una constante arbitraria c (constante de
integración).
b

∫ e du = e

Jesús Rubí M.

∫ tgh udu = ln cosh u
∫ ctgh udu = ln sinh u
∫ sech udu = ∠ tg ( sinh u )
∫ csch udu = − ctgh ( cosh u )

2

d
du
1
csch −1 u = −
⋅ , u≠0
dx
u 1 + u 2 dx

a

INTEGRALES DE FUNCS LOG & EXP

f ( n ) ( x0 )( x − x0 )
n!

f ( x ) = f (0) + f ' ( 0) x +
+

+

f ( n) ( 0 ) x n

2!

n

: Taylor

f '' ( 0 ) x 2
2!
: Maclaurin

n!
x 2 x3
xn
+ + +
+
n!
2! 3!
x 3 x5 x 7
x 2 n −1
n −1
−
+ + ( −1)
sin x = x − +
3! 5! 7!
( 2n − 1)!
ex = 1 + x +

cos x = 1 −

x2 x4 x6
+
+
−
2! 4! 6!

+ ( −1)

n −1

x 2 n− 2

( 2n − 2 ) !

n
x2 x3 x 4
n −1 x
+ −
+ + ( −1)
n
2
3
4
2 n −1
x3 x 5 x 7
n −1 x
∠ tg x = x − + −
+ + ( −1)
3
5
7
2n − 1

ln (1 + x ) = x −

2
Fórmulas de Cálculo Diferencial e Integral (Página 3 de 3)
ALFABETO GRIEGO
Mayúscula Minúscula Nombre
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Α
Β
Γ
∆
Ε
Ζ
Η
Θ
Ι
Κ
Λ
Μ
Ν
Ξ
Ο
Π
Ρ
Σ
Τ
Υ
Φ
Χ
Ψ
Ω

α
β
γ
δ
ε
ζ
η
θ

ϑ
ι
κ
λ
µ
ν
ξ
ο

π ϖ
ρ
ς
τ
υ
φ ϕ
χ
ψ
ω
σ

Alfa
Beta
Gamma
Delta
Epsilon
Zeta
Eta
Teta
Iota
Kappa
Lambda
Mu
Nu
Xi
Omicron
Pi
Rho
Sigma
Tau
Ipsilon
Phi
Ji
Psi
Omega

Equivalente
Romano
A
B
G
D
E
Z
H
Q
I
K
L
M
N
X
O
P
R
S
T
U
F
C
Y
W

NOTACIÓN
sin
cos
tg

Seno.
Coseno.
Tangente.

sec
csc
ctg

Secante.
Cosecante.
Cotangente.

vers Verso seno.
arcsin θ =

sin θ

Arco seno de un ángulo θ .

u = f ( x)
sinh Seno hiperbólico.
cosh Coseno hiperbólico.

tgh

Tangente hiperbólica.

ctgh Cotangente hiperbólica.
sech Secante hiperbólica.
csch Cosecante hiperbólica.

u, v, w

Funciones de x , u = u ( x ) , v = v ( x ) .
Conjunto de los números reales.

= {…, −2, −1,0,1, 2,…}

Conjunto de enteros.

Conjunto de números racionales.
c

Conjunto de números irracionales.

= {1, 2,3,…} Conjunto de números naturales.
Conjunto de números complejos.

http://www.geocities.com/calculusjrm/

Jesús Rubí M.

Más contenido relacionado

Último

Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 

Último (20)

Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 

Destacado

PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Applitools
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at WorkGetSmarter
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...DevGAMM Conference
 

Destacado (20)

Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 
ChatGPT webinar slides
ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slides
 
More than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike RoutesMore than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike Routes
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
 

Formulario de calculo integral y diferencial

  • 1. http://www.geocities.com/calculusjrm/ Fórmulas de Cálculo Diferencial e Integral (Página 1 de 3) Fórmulas de Cálculo Diferencial e Integral VER.6.8 Jesús Rubí Miranda (jesusrubim@yahoo.com) http://www.geocities.com/calculusjrm/ VALOR ABSOLUTO ( a + b ) ⋅ ( a 2 − ab + b 2 ) = a 3 + b3 ( a + b ) ⋅ ( a3 − a 2 b + ab 2 − b3 ) = a 4 − b 4 ( a + b ) ⋅ ( a 4 − a 3b + a 2 b 2 − ab3 + b 4 ) = a 5 + b5 ( a + b ) ⋅ ( a5 − a 4 b + a 3b 2 − a 2 b3 + ab 4 − b5 ) = a 6 − b 6 ⎛ n ⎞ k +1 ( a + b ) ⋅ ⎜ ∑ ( −1) a n− k b k −1 ⎟ = a n + b n ∀ n ∈ ⎝ k =1 ⎠ ⎛ ⎞ a n − k b k −1 ⎟ = a n − b n ∀ n ∈ ⎝ k =1 ⎠ SUMAS Y PRODUCTOS a = −a a1 + a2 + a ≤ a y −a ≤ a a ≥0 y a =0 ⇔ a=0 ab = a b ó n a+b ≤ a + b ó k n n ≤ ∑ ak k k =1 (a ⋅b) =a n k =1 k =1 n k =1 ap = a p−q aq p k =1 n ∑(a k =1 = a ⋅b p p ap ⎛a⎞ ⎜ ⎟ = p b ⎝b⎠ a p/q = a p q LOGARITMOS log a N = x ⇒ a x = N log a MN = log a M + log a N M = log a M − log a N N log a N r = r log a N log a log b N ln N = log a N = log b a ln a 1+ 3 + 5 + log10 N = log N y log e N = ln N π π , 2 2 tg 2 θ + 1 = sec 2 θ sin ( −θ ) = − sin θ sin θ + cos 2 θ = 1 2 1 + ctg 2 θ = csc 2 θ ( a + b) ⋅ ( a − b) = a − b 2 ( a + b ) ⋅ ( a + b ) = ( a + b ) = a 2 + 2ab + b 2 2 ( a − b ) ⋅ ( a − b ) = ( a − b ) = a 2 − 2ab + b 2 ( x + b ) ⋅ ( x + d ) = x 2 + ( b + d ) x + bd ( ax + b ) ⋅ ( cx + d ) = acx 2 + ( ad + bc ) x + bd ( a + b ) ⋅ ( c + d ) = ac + ad + bc + bd 3 ( a + b ) = a3 + 3a 2b + 3ab 2 + b3 3 ( a − b ) = a 3 − 3a 2b + 3ab 2 − b3 2 ( a + b + c ) = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc 2 ( a − b ) ⋅ ( a + ab + b ) = a − b ( a − b ) ⋅ ( a 3 + a 2 b + ab 2 + b3 ) = a 4 − b 4 ( a − b ) ⋅ ( a 4 + a 3b + a 2 b 2 + ab3 + b 4 ) = a 5 − b5 2 n 2 ⎞ 3 3 ( a − b ) ⋅ ⎜ ∑ a n − k b k −1 ⎟ = a n − b n ⎝ k =1 ⎠ ∀n ∈ tg (θ + π ) = tg θ sen x cos x tg x -1.5 -2 0 2 4 6 sin (θ + nπ ) = ( −1) sin θ n 8 Gráfica 2. Las funciones trigonométricas csc x , sec x , ctg x : 2.5 1 0.5 2 0 -0.5 -1 k =1 ( x1 + x2 + + xk ) = ∑ n -1.5 -2 0 2 4 6 8 xknk 4 n ⎛ 2n + 1 ⎞ sin ⎜ π ⎟ = ( −1) ⎝ 2 ⎠ ⎛ 2n + 1 ⎞ cos ⎜ π⎟=0 ⎝ 2 ⎠ ⎛ 2n + 1 ⎞ tg ⎜ π⎟=∞ ⎝ 2 ⎠ cosh : tgh : ctgh : → → [1, ∞ → −1,1 − {0} → −∞ , −1 ∪ 1, ∞ sech : → 0 ,1] csch : − {0} → -1 arc sen x arc cos x arc tg x -2 -1 0 1 2 3 cos 2θ = cos 2 θ − sin 2 θ 2 tg θ tg 2θ = 1 − tg 2 θ 1 sin 2 θ = (1 − cos 2θ ) 2 1 cos 2 θ = (1 + cos 2θ ) 2 1 − cos 2θ tg 2 θ = 1 + cos 2θ − {0} Gráfica 5. Las funciones hiperbólicas sinh x , cosh x , tgh x : 5 4 π⎞ ⎛ sin θ = cos ⎜ θ − ⎟ 2⎠ ⎝ π⎞ ⎛ cos θ = sin ⎜ θ + ⎟ 2⎠ ⎝ tg α ± tg β tg (α ± β ) = 1 ∓ tg α tg β sin 2θ = 2sin θ cos θ 0 CO sinh : n 3 2 1 0 -1 -2 cos (α ± β ) = cos α cos β ∓ sin α sin β 1 -2 -3 tg (θ + nπ ) = tg θ sin ( nπ ) = 0 sin (α ± β ) = sin α cos β ± cos α sin β 2 π radianes=180 CA -4 3 e = 2.71828182846… TRIGONOMETRÍA CO 1 sen θ = cscθ = HIP sen θ CA 1 cosθ = secθ = HIP cosθ sen θ CO 1 tgθ = ctgθ = = cosθ CA tgθ θ -6 Gráfica 3. Las funciones trigonométricas inversas arcsin x , arccos x , arctg x : CONSTANTES π = 3.14159265359… HIP csc x sec x ctg x -2 n! n x1n1 ⋅ x2 2 n1 ! n2 ! nk ! n tg ( nπ ) = 0 1.5 -2.5 -8 cos (θ + nπ ) = ( −1) cos θ cos ( nπ ) = ( −1) 2 ex − e− x 2 e x + e− x cosh x = 2 sinh x e x − e − x = tgh x = cosh x e x + e− x e x + e− x 1 = ctgh x = tgh x e x − e − x 1 2 = sech x = cosh x e x + e − x 1 2 = csch x = sinh x e x − e − x sinh x = cos (θ + π ) = − cos θ -1 ⎛n⎞ n! , k≤n ⎜ ⎟= ⎝ k ⎠ ( n − k )!k ! n ⎛n⎞ n ( x + y ) = ∑ ⎜ ⎟ xn−k y k k =0 ⎝ k ⎠ tg ( −θ ) = − tg θ tg (θ + 2π ) = tg θ -0.5 sin α ⋅ cos β = tg α + tg β ctg α + ctg β FUNCIONES HIPERBÓLICAS sin (θ + π ) = − sin θ -4 5 cos ( −θ ) = cos θ cos (θ + 2π ) = cos θ 0 n ALGUNOS PRODUCTOS a ⋅ ( c + d ) = ac + ad 2 + ( 2n − 1) = n tg α ⋅ tg β = y ∈ 0, π sin (θ + 2π ) = sin θ -6 sin (α ± β ) cos α ⋅ cos β 1 ⎡sin (α − β ) + sin (α + β ) ⎤ ⎦ 2⎣ 1 sin α ⋅ sin β = ⎡cos (α − β ) − cos (α + β ) ⎤ ⎦ 2⎣ 1 cos α ⋅ cos β = ⎡cos (α − β ) + cos (α + β ) ⎤ ⎦ 2⎣ 0 IDENTIDADES TRIGONOMÉTRICAS 0.5 -2 -8 tg α ± tg β = arc ctg x arc sec x arc csc x -2 -5 1 n! = ∏ k ⎛ y∈ − Jesús Rubí M. 1 1 (α + β ) ⋅ cos (α − β ) 2 2 1 1 sin α − sin β = 2 sin (α − β ) ⋅ cos (α + β ) 2 2 1 1 cos α + cos β = 2 cos (α + β ) ⋅ cos (α − β ) 2 2 1 1 cos α − cos β = −2 sin (α + β ) ⋅ sin (α − β ) 2 2 sin α + sin β = 2sin 0 1.5 p 2 -1 n pq 3 1 2 n ∑ ⎡ a + ( k − 1) d ⎤ = 2 ⎡ 2a + ( n − 1) d ⎤ ⎣ ⎦ ⎣ ⎦ k =1 n = (a + l ) 2 n 1 − r n a − rl k −1 ∑ ar = a 1 − r = 1 − r k =1 n 1 ∑ k = 2 ( n2 + n ) k =1 n 1 ∑ k 2 = 6 ( 2n3 + 3n2 + n ) k =1 n 1 ∑ k 3 = 4 ( n 4 + 2n3 + n 2 ) k =1 n 1 ∑ k 4 = 30 ( 6n5 + 15n4 + 10n3 − n ) k =1 4 y ∈ ⎢− , ⎥ ⎣ 2 2⎦ y = ∠ cos x y ∈ [ 0, π ] Gráfica 1. Las funciones trigonométricas: sin x , cos x , tg x : − ak −1 ) = an − a0 k y = ∠ sin x 1 y = ∠ sec x = ∠ cos y ∈ [ 0, π ] x 1 ⎡ π π⎤ y = ∠ csc x = ∠ sen y ∈ ⎢− , ⎥ x ⎣ 2 2⎦ ∑ ( ak + bk ) = ∑ ak + ∑ bk EXPONENTES (a ) k =1 Gráfica 4. Las funciones trigonométricas inversas arcctg x , arcsec x , arccsc x : ⎡ π π⎤ 1 y = ∠ ctg x = ∠ tg x = c ∑ ak n k =1 a p ⋅ a q = a p+q p q + an = ∑ ak n k k =1 tg ctg cos sec csc sin 0 0 ∞ ∞ 1 1 12 3 2 3 2 3 2 1 3 1 2 1 2 2 2 1 1 3 1 3 2 2 3 3 2 12 0 0 ∞ ∞ 1 1 y = ∠ tg x n k =1 ∑ ca k =1 ∑a par ∑ c = nc = ∏ ak n k +1 n n ∏a k =1 n ( a + b ) ⋅ ⎜ ∑ ( −1) ⎧a si a ≥ 0 a =⎨ ⎩− a si a < 0 impar θ 0 30 45 60 90 senh x cosh x tgh x -3 -4 -5 0 5 FUNCIONES HIPERBÓLICAS INV ( ( ) ) sinh −1 x = ln x + x 2 + 1 , ∀x ∈ cosh −1 x = ln x ± x 2 − 1 , x ≥ 1 tgh −1 x = 1 ⎛1+ x ⎞ ln ⎜ ⎟, 2 ⎝1− x ⎠ 1 ⎛ x +1⎞ ctgh −1 x = ln ⎜ ⎟, 2 ⎝ x −1⎠ x <1 x >1 ⎛ 1 ± 1 − x2 ⎞ ⎟, 0 < x ≤ 1 sech −1 x = ln ⎜ ⎜ ⎟ x ⎝ ⎠ ⎛1 x2 + 1 ⎞ ⎟, x ≠ 0 csch −1 x = ln ⎜ + ⎜x x ⎟ ⎝ ⎠
  • 2. http://www.geocities.com/calculusjrm/ Fórmulas de Cálculo Diferencial e Integral (Página 2 de 3) IDENTIDADES DE FUNCS HIP cosh 2 x − sinh 2 x = 1 1 − tgh 2 x = sech 2 x ctgh 2 x − 1 = csch 2 x sinh ( − x ) = − sinh x cosh ( − x ) = cosh x tgh ( − x ) = − tgh x sinh ( x ± y ) = sinh x cosh y ± cosh x sinh y cosh ( x ± y ) = cosh x cosh y ± sinh x sinh y tgh x ± tgh y 1 ± tgh x tgh y sinh 2 x = 2sinh x cosh x tgh ( x ± y ) = cosh 2 x = cosh 2 x + sinh 2 x 2 tgh x tgh 2 x = 1 + tgh 2 x 1 sinh 2 x = ( cosh 2 x − 1) 2 1 cosh 2 x = ( cosh 2 x + 1) 2 cosh 2 x − 1 tgh 2 x = cosh 2 x + 1 sinh 2 x tgh x = cosh 2 x + 1 e x = cosh x + sinh x e − x = cosh x − sinh x OTRAS ax 2 + bx + c = 0 −b ± b 2 − 4ac 2a b 2 − 4ac = discriminante ⇒ x= exp (α ± i β ) = e α ( cos β ± i sin β ) si α , β ∈ LÍMITES 1 lim (1 + x ) x = e = 2.71828... x →0 x ⎛ 1⎞ lim ⎜1 + ⎟ = e x →∞ ⎝ x⎠ sen x lim =1 x →0 x 1 − cos x lim =0 x →0 x ex −1 lim =1 x →0 x x −1 lim =1 x →1 ln x DERIVADAS f ( x + ∆x ) − f ( x ) df ∆y Dx f ( x ) = = lim = lim ∆x → 0 ∆x dx ∆x →0 ∆x d (c) = 0 dx d ( cx ) = c dx d ( cx n ) = ncx n−1 dx d du dv dw (u ± v ± w ± ) = ± ± ± dx dx dx dx d du ( cu ) = c dx dx d dv du ( uv ) = u + v dx dx dx d dw dv du ( uvw ) = uv + uw + vw dx dx dx dx d ⎛ u ⎞ v ( du dx ) − u ( dv dx ) ⎜ ⎟= dx ⎝ v ⎠ v2 d n n −1 du ( u ) = nu dx dx dF dF du = ⋅ (Regla de la Cadena) dx du dx du 1 = dx dx du dF dF du = dx dx du ⎧ dy dy dt f 2′ ( t ) ⎪ x = f1 ( t ) = = donde ⎨ dx dx dt f1′( t ) ⎪ y = f2 (t ) ⎩ DERIVADA DE FUNCS LOG & EXP d du dx 1 du = ⋅ ( ln u ) = dx u u dx d log e du ⋅ ( log u ) = dx u dx log e du d ( log a u ) = a ⋅ a > 0, a ≠ 1 dx u dx d u ( e ) = eu ⋅ du dx dx d u ( a ) = au ln a ⋅ du dx dx d v ( u ) = vu v−1 du + ln u ⋅ u v ⋅ dv dx dx dx DERIVADA DE FUNCIONES TRIGO d du ( sin u ) = cos u dx dx d du ( cos u ) = − sin u dx dx d du ( tg u ) = sec2 u dx dx d du ( ctg u ) = − csc2 u dx dx d du ( sec u ) = sec u tg u dx dx d du ( csc u ) = − csc u ctg u dx dx d du ( vers u ) = sen u dx dx DERIV DE FUNCS TRIGO INVER 1 d du ⋅ ( ∠ sin u ) = dx 1 − u 2 dx 1 d du ⋅ ( ∠ cos u ) = − dx 1 − u 2 dx 1 d du ⋅ ( ∠ tg u ) = dx 1 + u 2 dx 1 d du ⋅ ( ∠ ctg u ) = − dx 1 + u 2 dx 1 d du ⎧+ si u > 1 ⋅ ⎨ ( ∠ sec u ) = ± dx u u 2 − 1 dx ⎩− si u < −1 1 d du ⎧− si u > 1 ⋅ ⎨ ( ∠ csc u ) = ∓ dx u u 2 − 1 dx ⎩+ si u < −1 1 d du ⋅ ( ∠ vers u ) = dx 2u − u 2 dx DERIVADA DE FUNCS HIPERBÓLICAS d du sinh u = cosh u dx dx d du cosh u = sinh u dx dx d du tgh u = sech 2 u dx dx d du ctgh u = − csch 2 u dx dx d du sech u = − sech u tgh u dx dx d du csch u = − csch u ctgh u dx dx DERIVADA DE FUNCS HIP INV d du 1 senh −1 u = ⋅ dx 1 + u 2 dx d du ±1 cosh −1 u = ⋅ , u >1 dx u 2 − 1 dx d 1 du ⋅ , u <1 tgh −1 u = dx 1 − u 2 dx d 1 du −1 ⋅ , u >1 ctgh u = dx 1 − u 2 dx d du ⎧− si ∓1 ⎪ sech −1 u = ⋅ ⎨ dx u 1 − u 2 dx ⎪ + si ⎩ ⎧+ si cosh -1u > 0 ⎪ ⎨ -1 ⎪− si cosh u < 0 ⎩ sech −1 u > 0, u ∈ 0,1 sech −1 u < 0, u ∈ 0,1 ∫ { f ( x ) ± g ( x )} dx = ∫ f ( x ) dx ± ∫ g ( x ) dx ∫ cf ( x ) dx = c ⋅ ∫ f ( x ) dx c ∈ ∫ f ( x ) dx = ∫ f ( x ) dx + ∫ f ( x ) dx ∫ f ( x ) dx = − ∫ f ( x ) dx ∫ f ( x ) dx = 0 m ⋅ ( b − a ) ≤ ∫ f ( x ) dx ≤ M ⋅ ( b − a ) b a b a b a b a b c b a a c b a a b a a b a ⇔ m ≤ f ( x ) ≤ M ∀x ∈ [ a, b ] , m, M ∈ ∫ f ( x ) dx ≤ ∫ g ( x ) dx b b a a ⇔ f ( x ) ≤ g ( x ) ∀x ∈ [ a , b ] ∫ f ( x ) dx ≤ ∫ f ( x ) dx si a < b b b a a INTEGRALES ∫ adx =ax ∫ af ( x ) dx = a ∫ f ( x ) dx ∫ ( u ± v ± w ± ) dx = ∫ udx ± ∫ vdx ± ∫ wdx ± ∫ udv = uv − ∫ vdu ( Integración por partes ) u n+1 ∫ u du = n + 1 n du ∫u = ln u u u au ⎧a > 0 u ∫ a du = ln a ⎨a ≠ 1 ⎩ au ⎛ −1 1 ⎞ ∫ ua du = ln a ⋅ ⎜ u − ln a ⎟ ⎝ ⎠ u ∫ ue du = e ( u − 1) ∫ ln udu =u ln u − u = u ( ln u − 1) u u 1 u ( u ln u − u ) = ( ln u − 1) ln a ln a u2 ∫ u log a udu = 4 ⋅ ( 2log a u − 1) u2 ∫ u ln udu = 4 ( 2ln u − 1) INTEGRALES DE FUNCS TRIGO ∫ log a udu = ∫ sin udu = − cos u ∫ cos udu = sin u ∫ sec udu = tg u ∫ csc udu = − ctg u ∫ sec u tg udu = sec u ∫ csc u ctg udu = − csc u ∫ tg udu = − ln cos u = ln sec u ∫ ctg udu = ln sin u ∫ sec udu = ln sec u + tg u ∫ csc udu = ln csc u − ctg u 1 = ln tgh u 2 INTEGRALES DE FRAC du 1 u ∫ u 2 + a 2 = a ∠ tg a u 1 = − ∠ ctg a a du 1 u−a 2 2 ∫ u 2 − a 2 = 2a ln u + a ( u > a ) du 1 a+u 2 2 ∫ a 2 − u 2 = 2a ln a − u ( u < a ) INTEGRALES CON ∫ du = ∠ sin a2 − u2 ∫ ∫ ctg 2 2 ( du = ln u + u 2 ± a 2 u 2 ± a2 ( ∫e udu = − ( ctg u + u ) ∫ u sin udu = sin u − u cos u ∫e ∫ u cos udu = cos u + u sin u au au sin bu du = cos bu du = INTEGRALES DE FUNCS TRIGO INV 2 2 a 2 + b2 e au ( a cos bu + b sin bu ) a2 + b2 1 1 ∫ sec u du = 2 sec u tg u + 2 ln sec u + tg u ALGUNAS SERIES + + 2 2 −1 = u∠ sec u − ∠ cosh u ∫ ∠ csc udu = u∠ csc u + ln ( u + u2 − 1 ) ) = u∠ csc u + ∠ cosh u INTEGRALES DE FUNCS HIP 2 e au ( a sin bu − b cos bu ) f '' ( x0 )( x − x0 ) f ( x ) = f ( x0 ) + f ' ( x0 )( x − x0 ) + 2 2 ) 3 ∫ ∠ sin udu = u∠ sin u + 1 − u ∫ ∠ cos udu = u∠ cos u − 1 − u ∫ ∠ tg udu = u∠ tg u − ln 1 + u ∫ ∠ ctg udu = u∠ ctg u + ln 1 + u ∫ ∠ sec udu = u∠ sec u − ln ( u + u ∫ sinh udu = cosh u ∫ cosh udu = sinh u ∫ sech udu = tgh u ∫ csch udu = − ctgh u ∫ sech u tgh udu = − sech u ∫ csch u ctgh udu = − csch u ) 1 u ∫ u a 2 ± u 2 = a ln a + a 2 ± u 2 1 du a ∫ u u 2 − a 2 = a ∠ cos u 1 u = ∠ sec a a u 2 a2 u 2 2 2 ∫ a − u du = 2 a − u + 2 ∠ sen a 2 u 2 a 2 2 2 2 2 ∫ u ± a du = 2 u ± a ± 2 ln u + u ± a MÁS INTEGRALES udu = n ≠ −1 u a du u 1 − sin 2u 2 4 u 1 2 ∫ cos udu = 2 + 4 sin 2u 2 ∫ tg udu = tg u − u ∫ sin u a = −∠ cos 2 INTEGRALES DEFINIDAS, PROPIEDADES Nota. Para todas las fórmulas de integración deberá agregarse una constante arbitraria c (constante de integración). b ∫ e du = e Jesús Rubí M. ∫ tgh udu = ln cosh u ∫ ctgh udu = ln sinh u ∫ sech udu = ∠ tg ( sinh u ) ∫ csch udu = − ctgh ( cosh u ) 2 d du 1 csch −1 u = − ⋅ , u≠0 dx u 1 + u 2 dx a INTEGRALES DE FUNCS LOG & EXP f ( n ) ( x0 )( x − x0 ) n! f ( x ) = f (0) + f ' ( 0) x + + + f ( n) ( 0 ) x n 2! n : Taylor f '' ( 0 ) x 2 2! : Maclaurin n! x 2 x3 xn + + + + n! 2! 3! x 3 x5 x 7 x 2 n −1 n −1 − + + ( −1) sin x = x − + 3! 5! 7! ( 2n − 1)! ex = 1 + x + cos x = 1 − x2 x4 x6 + + − 2! 4! 6! + ( −1) n −1 x 2 n− 2 ( 2n − 2 ) ! n x2 x3 x 4 n −1 x + − + + ( −1) n 2 3 4 2 n −1 x3 x 5 x 7 n −1 x ∠ tg x = x − + − + + ( −1) 3 5 7 2n − 1 ln (1 + x ) = x − 2
  • 3. Fórmulas de Cálculo Diferencial e Integral (Página 3 de 3) ALFABETO GRIEGO Mayúscula Minúscula Nombre 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Α Β Γ ∆ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω α β γ δ ε ζ η θ ϑ ι κ λ µ ν ξ ο π ϖ ρ ς τ υ φ ϕ χ ψ ω σ Alfa Beta Gamma Delta Epsilon Zeta Eta Teta Iota Kappa Lambda Mu Nu Xi Omicron Pi Rho Sigma Tau Ipsilon Phi Ji Psi Omega Equivalente Romano A B G D E Z H Q I K L M N X O P R S T U F C Y W NOTACIÓN sin cos tg Seno. Coseno. Tangente. sec csc ctg Secante. Cosecante. Cotangente. vers Verso seno. arcsin θ = sin θ Arco seno de un ángulo θ . u = f ( x) sinh Seno hiperbólico. cosh Coseno hiperbólico. tgh Tangente hiperbólica. ctgh Cotangente hiperbólica. sech Secante hiperbólica. csch Cosecante hiperbólica. u, v, w Funciones de x , u = u ( x ) , v = v ( x ) . Conjunto de los números reales. = {…, −2, −1,0,1, 2,…} Conjunto de enteros. Conjunto de números racionales. c Conjunto de números irracionales. = {1, 2,3,…} Conjunto de números naturales. Conjunto de números complejos. http://www.geocities.com/calculusjrm/ Jesús Rubí M.