SlideShare una empresa de Scribd logo
1 de 47
Chapter 2: Random Variables
Probability and Random Process (EEEg-2114)
Random Variables
Outline
 Introduction
 The Cumulative Distribution Function
 Probability Density and Mass Functions
 Expected Value, Variance and Moments
 Some Special Distributions
 Functions of One Random Variable
2
Introduction
 A random variable X is a function that assigns a real number
X(ω) to each outcome ω in the sample space Ω of a random
experiment.
 The sample space Ω is the domain of the random variable and the
set RX of all values taken on by X is the range of the random
variable.
 Thus, RX is the subset of all real numbers.


Line
al
Re
x
X 
)
(
x
A
B
3
Introduction Cont’d……
 If X is a random variable, then {ω: X(ω)≤ x}={X≤ x} is an event
for every X in RX.
Example: Consider a random experiment of tossing a fair coin three
times. The sequence of heads and tails is noted and the sample
space Ω is given by:
Let X be the number of heads in three coin tosses. X assigns
each possible outcome ω in the sample space Ω a number from
the set RX={0, 1, 2, 3}.
}
TTT
,
,
,
,
,
,
,
{ TTH
HTT
THT
THH
HTH
HHT
HHH


0
1
1
1
2
2
2
3
:
)
(
:


X
TTT
TTH
HTT
THT
THH
HTH
HHT
HHH
4
The Cumulative Distribution Function
 The cumulative distribution function (cdf) of a random variable
X is defined as the probability of the event {X≤ x}.
Properties of the cdf, FX(x):
 The cdf has the following properties.
1
)
(
0
i.e.,
function,
negative
-
non
a
is
)
(
.

 x
F
x
F
i
X
X
1
)
(
lim
. 


x
F
ii X
x
0
)
(
lim
. 


x
F
iii X
x
)
(
)
( x
X
P
x
FX 

5
The Cumulative Distribution Function Cont’d…..
)
(
)
(
then
,
If
i.e.,
,
of
function
decreasing
-
non
a
is
)
(
.
2
1
2
1 x
F
x
F
x
x
X
x
F
iv
X
X
X


)
(
)
(
)
(
. 1
2
2
1 x
F
x
F
x
X
x
P
v X
X 



)
(
1
)
(
. x
F
x
X
P
vi X



Example:
Find the cdf of the random variable X which is defined as the
number of heads in three tosses of a fair coin.
6
The Cumulative Distribution Function
Solution:
 We know that X takes on only the values 0, 1, 2 and 3 with
probabilities 1/8, 3/8, 3/8 and 1/8 respectively.
 Thus, FX(x) is simply the sum of the probabilities of the
outcomes from the set {0, 1, 2, 3} that are less than or equal to x.



















3
,
1
3
2
,
8
/
7
2
1
,
2
/
1
1
0
,
8
/
1
0
,
0
)
(
x
x
x
x
x
x
FX
7
Types of Random Variables
 There are two basic types of random variables.
i. Continuous Random Variable
 A continuous random variable is defined as a random variable
whose cdf, FX(x), is continuous every where and can be written as
an integral of some non-negative function f(x), i.e.,
ii. Discrete Random Variable
 A discrete random variable is defined as a random variable whose
cdf, FX(x), is a right continuous, staircase function of X with
jumps at a countable set of points x0, x1, x2,……




 du
u
f
x
FX )
(
)
(
8
The Probability Density Function
 The probability density function (pdf) of a continuous random
variable X is defined as the derivative of the cdf, FX(x), i.e.,
Properties of the pdf, fX(x):
dx
x
dF
x
f X
X
)
(
)
( 










2
1
)
(
)
(
.
1
)
(
.
0
)
(
,
of
values
all
For
.
2
1
x
x
X
X
X
dx
x
f
x
X
x
P
iii
dx
x
f
ii
x
f
X
i
9
The Probability Mass Function
 The probability mass function (pmf) of a discrete random
variable X is defined as:
Properties of the pmf, PX (xi ):
)
(
)
(
)
(
)
( 1




 i
X
i
X
i
X
i
X x
F
x
F
x
P
x
X
P
 






k
k
X
k
X
i
X
x
P
iii
k
x
x
x
P
ii
k
x
P
i
1
)
(
.
.....
2,
,
1
,
if
,
0
)
(
.
.....
2,
,
1
,
1
)
(
0
.
10
Calculating the Cumulative Distribution Function
 The cdf of a continuous random variable X can be obtained by
integrating the pdf, i.e.,
 Similarly, the cdf of a discrete random variable X can be obtained by
using the formula:



x
X
X du
u
f
x
F )
(
)
(




x
x
k
k
X
X
k
x
x
U
x
P
x
F )
(
)
(
)
(
11
Expected Value, Variance and Moments
i. Expected Value (Mean)
 The expected value (mean) of a continuous random variable X,
denoted by μX or E(X), is defined as:
 Similarly, the expected value of a discrete random variable X is
given by:
 Mean represents the average value of the random variable in a
very large number of trials.





 dx
x
xf
X
E X
X )
(
)
(




k
k
X
k
X x
P
x
X
E )
(
)
(

12
Expected Value, Variance and Moments Cont’d…..
ii. Variance
 The variance of a continuous random variable X, denoted by
σ2
X or VAR(X), is defined as:
 Expanding (x-μX )2 in the above equation and simplifying the
resulting equation, we will get:











dx
x
f
x
X
Var
X
E
X
Var
X
X
X
X
X
)
(
)
(
)
(
]
)
[(
)
(
2
2
2
2




2
2
2
)]
(
[
)
(
)
( X
E
X
E
X
Var
X 



13
Expected Value, Variance and Moments Cont’d…..
 The variance of a discrete random variable X is given by:
 The standard deviation of a random variable X, denoted by σX, is
simply the square root of the variance, i.e.,
iii.Moments
 The nth moment of a continuous random variable X is defined as:
 


k
k
X
X
k
X x
P
x
X
Var )
(
)
(
)
( 2
2


)
(
)
( 2
X
Var
X
E X
X 

 






 1
,
)
(
)
( n
dx
x
f
x
X
E X
n
n
14
Expected Value, Variance and Moments Cont’d…..
 Similarly, the nth moment of a discrete random variable X is
given by:
 Mean of X is the first moment of the random variable X.
1
,
)
(
)
( 
  n
x
P
x
X
E
k
k
X
n
k
15
Some Special Distributions
i. Continuous Probability Distributions
1. Normal (Gaussian) Distribution
 The random variable X is said to be normal or Gaussian
random variable if its pdf is given by:
 The corresponding distribution function is given by:
where
.
2
1
)
(
2
2
2
/
)
(
2





 x
X e
x
f
 








 


x
y
X
x
G
dy
e
x
F




 2
2
2
/
)
(
2
2
1
)
(
dy
e
x
G y
x
2
/
2
2
1
)
( 





16
Some Special Distributions Cont’d……
 The normal or Gaussian distribution is the most common
continuous probability distribution.
)
(x
fX
x

Fig. Normal or Gaussian Distribution
17
Some Special Distributions Cont’d……
2. Uniform Distribution
3. Exponential Distribution
)
(x
fX
x
a b
a
b 
1
Fig. Uniform Distribution








otherwise.
0,
,
0
,
1
)
(
/
x
e
x
f
x
X


)
(x
fX
x
Fig. Exponential Distribution









otherwise.
0,
,
1
)
(
b
x
a
a
b
x
fX
18
Some Special Distributions Cont’d……
4. Gamma Distribution
5. Beta Distribution
where










otherwise.
0,
,
0
,
)
(
)
(
/
1
x
e
x
x
f
x
X
















otherwise.
0,
,
1
0
,
)
1
(
)
,
(
1
)
(
1
1
x
x
x
b
a
x
f
b
a
X 





1
0
1
1
.
)
1
(
)
,
( du
u
u
b
a b
a

19
Some Special Distributions Cont’d……
6. Rayleigh Distribution
7. Cauchy Distribution
8. Laplace Distribution








otherwise.
0,
,
0
,
)
(
2
2
2
/
2
x
e
x
x
f
x
X


.
,
)
(
/
)
( 2
2







 x
x
x
fX




.
,
2
1
)
( /
|
|





 
x
e
x
f x
X


20
Some Special Distributions Cont’d….
i. Discrete Probability Distributions
1. Bernoulli Distribution
2. Binomial Distribution
3. Poisson Distribution
.
)
1
(
,
)
0
( p
X
P
q
X
P 



.
,
,
2
,
1
,
0
,
)
( n
k
q
p
k
n
k
X
P k
n
k











 
.
,
,
2
,
1
,
0
,
!
)
( 


 

k
k
e
k
X
P
k


21
Some Special Distributions Cont’d….
4. Hypergeometric Distribution
5. Geometric Distribution
6. Negative Binomial Distribution
, max(0, ) min( , )
( )
m N m
k n k
N
n
m n N k m n
P X k
 
 
 
 
   
   
 
 
 
 


   
 
.
1
,
,
,
2
,
1
,
0
,
)
( p
q
k
pq
k
X
P k





 
1
( ) , , 1, .
1
r k r
k
P X k p q k r r
r


 
   
 

 
22
Random Variable Examples
Example-1:
The pdf of a continuous random variable is given by:
.
of
variance
and
mean
the
Evaluate
.
)
1
4
/
1
(
Find
.
.
of
cdf
ing
correspond
the
Find
.
.
of
value
the
Determine
.
constant.
a
is
re
whe
otherwise
,
0
1
0
,
)
(
X
d
X
P
c
X
b
k
a
k
x
kx
x
fX






 


23
Random Variable Examples Cont’d……
Solution:
2
1
2
1
0
1
2
1
1
)
(
.
2
1
0
















 




k
k
x
k
kxdx
dx
x
f
a X
otherwise
,
0
1
0
,
2
)
(


 



x
x
x
fX
24
Random Variable Examples Cont’d……
Solution:
0
2
)
(
)
(
1
0
for
:
2
Case
0
for
,
0
)
(
since
,
0
)
(
0
for
:
1
Case
)
(
)
(
:
by
given
is
of
cdf
The
.
2
0 0
2
X
x
x
u
udu
du
u
f
x
F
x
x
x
f
x
F
x
du
u
f
x
F
X
b
x x
X
X
X
x
X
X











 
 

25
Random Variable Examples Cont’d……
Solution:
1
,
1
1
0
,
0
,
0
)
(
by
given
is
cdf
The
1
0
1
2
)
(
)
(
1
for
:
3
Case
2
1
0
1
0
2
















 
x
x
x
x
x
F
u
udu
du
u
f
x
F
x
X
X
X
26
Random Variable Examples Cont’d……
Solution:
16
/
15
)
1
4
/
1
(
16
/
15
)
4
/
1
(
1
)
1
4
/
1
(
)
4
/
1
(
)
1
(
)
1
4
/
1
(
cdf
the
Using
.
16
/
15
)
1
4
/
1
(
16
/
15
4
/
1
1
)
1
4
/
1
(
2
)
(
)
1
4
/
1
(
pdf
the
Using
.
)
1
4
/
1
(
.
2
2
1
4
/
1
1
4
/
1





























 
X
P
X
P
F
F
X
P
ii
X
P
x
X
P
dx
x
dx
x
f
X
P
i
X
P
c
X
X
X
27
Random Variable Examples Cont’d……
Solution:
18
/
1
)
3
/
2
(
2
/
1
)
(
2
/
1
2
)
(
)
(
)]
(
[
)
(
)
(
Variance
.
3
/
2
0
1
3
2
2
)
(
)
(
Mean
.
Variance
and
Mean
.
2
2
1
0
1
0
3
2
2
2
2
2
3
1
0
1
0
2

















 
 
x
Var
dx
x
dx
x
f
x
X
E
X
E
X
E
X
Var
ii
x
dx
x
dx
x
xf
X
E
i
d
X
X
X
X
X
X




28
Random Variable Examples Cont’d……..
Example-2:
Consider a discrete random variable X whose pmf is given by:
.
of
variance
and
mean
the
Find
otherwise
,
0
1
0,
,
1
,
3
/
1
)
(
X
x
x
P
k
k
X




 


29
Random Variable Examples Cont’d……
Solution:
3
/
2
)
0
(
3
/
2
)
(
3
/
2
]
)
1
(
)
0
(
)
1
[(
3
/
1
)
(
)
(
)]
(
[
)
(
)
(
Variance
.
0
)
1
0
1
(
3
/
1
)
(
)
(
Mean
.
2
2
1
1
2
2
2
2
2
2
2
2
1
1



























x
Var
x
P
x
X
E
X
E
X
E
X
Var
ii
x
P
x
X
E
i
X
k
k
X
k
X
k
k
X
k
X



30
Functions of One Random Variable
 Let X be a continuous random variable with pdf fX(x) and suppose
g(x) is a function of the random variable X defined as:
 We can determine the cdf and pdf of Y in terms of that of X.
 Consider some of the following functions.
31
)
(X
g
Y 
)
(X
g
Y 
b
aX 
2
X
|
| X
X
)
(
|
| x
U
X
X
e
X
log
X
sin
X
1
Functions of a Random Variable Cont’d…..
 Steps to determine fY(y) from fX(x):
Method I:
1. Sketch the graph of Y=g(X) and determine the range space of Y.
2. Determine the cdf of Y using the following basic approach.
3. Obtain fY(y) from FY(y) by using direct differentiation, i.e.,
32
)
(
)
)
(
(
)
( y
Y
P
y
X
g
P
y
FY 



dy
y
dF
y
f Y
Y
)
(
)
( 
Functions of a Random Variable Cont’d…..
Method II:
1. Sketch the graph of Y=g(X) and determine the range space of Y.
2. If Y=g(X) is one to one function and has an inverse
transformation x=g-1(y)=h(y), then the pdf of Y is given by:
3. Obtain Y=g(x) is not one-to-one function, then the pdf of Y can
be obtained as follows.
i. Find the real roots of the function Y=g(x) and denote them by xi
33
)]
(
[
)
(
)
(
)
( y
h
f
dy
y
dh
x
f
dy
dx
y
f X
X
Y 

Functions of a Random Variable Cont’d…..
ii. Determine the derivative of function g(xi ) at every real root xi ,
i.e. ,
iii. Find the pdf of Y by using the following formula.
34

 

i
i
X
i
i
X
i
i
Y x
f
x
g
x
f
dy
dx
y
f )
(
)
(
)
(
)
(
dy
dx
x
g i
i 
)
(
Examples on Functions of One Random Variable
Examples:
35
.
of
pdf
the
determine
,
tan
If
].
2
,
2
[
interval
in the
uniform
is
X
variable
random
The
.
).
(
Find
.
1
Let
.
).
(
Find
.
Let
.
).
(
Find
.
Let
.
2
Y
X
Y
d
y
f
X
Y
c
y
f
X
Y
b
y
f
b
aX
Y
a
Y
Y
Y








Examples on Functions of One Random Variable…..
Solutions:
36
)
(
1
)
(
)
(
)
(
)
(
)
(
)
(
0
that
Suppose
Method
Using
.
.
i
a
b
y
f
a
dy
y
dF
y
f
a
b
y
F
y
F
a
b
y
X
P
y
b
aX
P
y
Y
P
y
F
a
I
i
b
aX
Y
a
X
Y
Y
X
Y
y





 








 






 











Examples on Functions of One Random Variable…..
Solutions:
37
)
(
1
)
(
)
(
1
)
(
)
(
)
(
)
(
then
,
0
if
other
On the
Method
Using
.
.
ii
a
b
y
f
a
dy
y
dF
y
f
a
b
y
F
y
F
a
b
y
X
P
y
b
aX
P
y
Y
P
y
F
a
I
i
b
aX
Y
a
X
Y
Y
X
Y
y





 









 







 











Examples on Functions of One Random Variable…..
Solutions:
38
a
a
b
y
f
a
y
f
ii
i
I
i
b
aX
Y
a
X
Y all
for
,
1
)
(
:
obtain
we
,
)
(
and
)
(
equations
From
Method
Using
.
.





 




Examples on Functions of One Random Variable…..
Solutions:
39
    




 
















a
b
y
f
a
y
f
y
h
f
dy
y
dh
x
f
dy
dx
y
f
a
dy
dx
a
dy
y
dh
dy
dx
y
h
a
b
y
x
y
IR
Y
b
aX
Y
II
ii
b
aX
Y
a
X
Y
X
X
Y
1
)
(
)
(
)
(
)
(
1
1
)
(
solution
principal
the
is
)
(
,
any
For
is
of
space
range
the
and
one
-
to
-
one
is
function
The
Method
Using
.
.
Examples on Functions of One Random Variable…..
Solutions:
40
y
and
by
given
solutions
two
are
there
,
0
each
For
0
is
of
space
range
the
and
one
-
to
-
one
not
is
function
The
.
2
1
2






x
y
x
y
y
Y
X
Y
b
Examples on Functions of One Random Variable…..
Solutions:
41
   
 






















otherwise
y
y
f
y
f
y
y
f
x
f
dy
dx
x
f
dy
dx
y
f
x
f
dy
dx
y
f
y
dy
dx
y
dy
dx
y
dy
dx
y
dy
dx
b
X
X
Y
X
X
Y
i
X
i
i
Y
,
0
0
,
2
1
)
(
)
(
)
(
)
(
)
(
)
(
2
1
2
1
and
2
1
2
1
.
2
2
1
1
2
2
1
1
Examples on Functions of One Random Variable…..
Solutions:
42
 
   
 
0
/
,
y
1
1
)
(
1
1
)
(
)
(
)
(
)
(
1
)
(
solution
principal
the
is
)
(
1
,
any
For
0
/
is
of
space
range
the
and
one
-
to
-
one
is
1
function
The
.
2
2
2
IR
f
y
y
f
y
f
y
y
f
y
h
f
dy
y
dh
x
f
dy
dx
y
f
y
dy
y
dh
dy
dx
y
h
y
x
y
IR
Y
X
Y
c
X
Y
X
Y
X
X
Y




























Examples on Functions of One Random Variable…..
Solutions:
43
   






















y
y
y
f
y
y
f
y
h
f
dy
y
dh
x
f
dy
dx
y
f
y
dy
y
dh
dy
dx
y
h
y
x
y
Y
X
Y
d
Y
Y
X
X
Y
,
)
1
(
1
)
(
1
/
1
)
(
)
(
)
(
)
(
1
1
)
(
solution
principal
the
is
)
(
tan
,
any
For
)
,
(
is
of
space
range
the
and
one
-
to
-
one
is
tan
function
The
.
2
2
2
1


Examples on Functions of One Random Variable…..
Solutions:
44
Assignment-II
1. The continuous random variable X has the pdf given by:
.
of
variance
and
mean
the
.
)
1
(
.
.
of
cdf
the
.
.
of
value
the
.
:
Find
constant.
a
is
re
whe
otherwise
,
0
2
0
,
)
2
(
)
(
2
X
d
X
P
c
X
b
k
a
k
x
x
x
k
x
fX





 



45
Assignment-II Cont’d…..
2. The cdf of continuous random variable X is given by:
.
of
variance
and
mean
the
.
.
of
pdf
the
.
.
of
value
the
.
:
Determine
constant.
a
is
re
whe
1
1,
1
0
,
0
,
0
)
(
X
c
X
b
k
a
k
x
x
x
k
x
x
X
F












46
Assignment-II Cont’d…..
3. The random variable X is uniform in the interval [0, 1]. Find
the pdf of the random variable Y if Y=-lnX.
47

Más contenido relacionado

La actualidad más candente

The Application of Derivatives
The Application of DerivativesThe Application of Derivatives
The Application of Derivatives
divaprincess09
 
Differential equation.ypm
Differential equation.ypmDifferential equation.ypm
Differential equation.ypm
yogirajpm
 

La actualidad más candente (20)

Continuous Random Variables
Continuous Random VariablesContinuous Random Variables
Continuous Random Variables
 
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
laplace transform and inverse laplace, properties, Inverse Laplace Calculatio...
 
Derivatives and their Applications
Derivatives and their ApplicationsDerivatives and their Applications
Derivatives and their Applications
 
Qt random variables notes
Qt random variables notesQt random variables notes
Qt random variables notes
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
Roll's theorem
Roll's theoremRoll's theorem
Roll's theorem
 
The Application of Derivatives
The Application of DerivativesThe Application of Derivatives
The Application of Derivatives
 
Stat 2153 Stochastic Process and Markov chain
Stat 2153 Stochastic Process and Markov chainStat 2153 Stochastic Process and Markov chain
Stat 2153 Stochastic Process and Markov chain
 
Lagrange's method
Lagrange's methodLagrange's method
Lagrange's method
 
Probability distribution
Probability distributionProbability distribution
Probability distribution
 
DIFFERENTIATION
DIFFERENTIATIONDIFFERENTIATION
DIFFERENTIATION
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
 
ORDINARY DIFFERENTIAL EQUATION
ORDINARY DIFFERENTIAL EQUATION ORDINARY DIFFERENTIAL EQUATION
ORDINARY DIFFERENTIAL EQUATION
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Differential equation.ypm
Differential equation.ypmDifferential equation.ypm
Differential equation.ypm
 
Fourier series
Fourier series Fourier series
Fourier series
 
Z transform
Z transformZ transform
Z transform
 
Application of derivatives 2 maxima and minima
Application of derivatives 2  maxima and minimaApplication of derivatives 2  maxima and minima
Application of derivatives 2 maxima and minima
 
partial fractions calculus integration
partial fractions calculus integrationpartial fractions calculus integration
partial fractions calculus integration
 

Similar a 02-Random Variables.ppt

553_Final_Project_Bokser_Litalien
553_Final_Project_Bokser_Litalien553_Final_Project_Bokser_Litalien
553_Final_Project_Bokser_Litalien
Rory Bokser
 

Similar a 02-Random Variables.ppt (20)

Quantitative Techniques random variables
Quantitative Techniques random variablesQuantitative Techniques random variables
Quantitative Techniques random variables
 
Expectation of Discrete Random Variable.ppt
Expectation of Discrete Random Variable.pptExpectation of Discrete Random Variable.ppt
Expectation of Discrete Random Variable.ppt
 
Prob review
Prob reviewProb review
Prob review
 
Chapter7
Chapter7Chapter7
Chapter7
 
Ssp notes
Ssp notesSsp notes
Ssp notes
 
Chapter 4 part3- Means and Variances of Random Variables
Chapter 4 part3- Means and Variances of Random VariablesChapter 4 part3- Means and Variances of Random Variables
Chapter 4 part3- Means and Variances of Random Variables
 
STAT 253 Probability and Statistics UNIT II.pdf
STAT 253 Probability and Statistics UNIT II.pdfSTAT 253 Probability and Statistics UNIT II.pdf
STAT 253 Probability and Statistics UNIT II.pdf
 
Discussion about random variable ad its characterization
Discussion about random variable ad its characterizationDiscussion about random variable ad its characterization
Discussion about random variable ad its characterization
 
Doe02 statistics
Doe02 statisticsDoe02 statistics
Doe02 statistics
 
553_Final_Project_Bokser_Litalien
553_Final_Project_Bokser_Litalien553_Final_Project_Bokser_Litalien
553_Final_Project_Bokser_Litalien
 
2 random variables notes 2p3
2 random variables notes 2p32 random variables notes 2p3
2 random variables notes 2p3
 
Chapter 4-1 (1).pptx
Chapter 4-1 (1).pptxChapter 4-1 (1).pptx
Chapter 4-1 (1).pptx
 
Statistics and Probability-Random Variables and Probability Distribution
Statistics and Probability-Random Variables and Probability DistributionStatistics and Probability-Random Variables and Probability Distribution
Statistics and Probability-Random Variables and Probability Distribution
 
2 DISCRETE PROBABILITY DISTRIBUTION.pptx
2 DISCRETE PROBABILITY DISTRIBUTION.pptx2 DISCRETE PROBABILITY DISTRIBUTION.pptx
2 DISCRETE PROBABILITY DISTRIBUTION.pptx
 
Module ii sp
Module ii spModule ii sp
Module ii sp
 
138191 rvsp lecture notes
138191 rvsp lecture notes138191 rvsp lecture notes
138191 rvsp lecture notes
 
Numarical values
Numarical valuesNumarical values
Numarical values
 
Numarical values highlighted
Numarical values highlightedNumarical values highlighted
Numarical values highlighted
 
Distributions
DistributionsDistributions
Distributions
 
5 random variables
5 random variables5 random variables
5 random variables
 

Último

Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Christo Ananth
 

Último (20)

(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spain
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 

02-Random Variables.ppt

  • 1. Chapter 2: Random Variables Probability and Random Process (EEEg-2114)
  • 2. Random Variables Outline  Introduction  The Cumulative Distribution Function  Probability Density and Mass Functions  Expected Value, Variance and Moments  Some Special Distributions  Functions of One Random Variable 2
  • 3. Introduction  A random variable X is a function that assigns a real number X(ω) to each outcome ω in the sample space Ω of a random experiment.  The sample space Ω is the domain of the random variable and the set RX of all values taken on by X is the range of the random variable.  Thus, RX is the subset of all real numbers.   Line al Re x X  ) ( x A B 3
  • 4. Introduction Cont’d……  If X is a random variable, then {ω: X(ω)≤ x}={X≤ x} is an event for every X in RX. Example: Consider a random experiment of tossing a fair coin three times. The sequence of heads and tails is noted and the sample space Ω is given by: Let X be the number of heads in three coin tosses. X assigns each possible outcome ω in the sample space Ω a number from the set RX={0, 1, 2, 3}. } TTT , , , , , , , { TTH HTT THT THH HTH HHT HHH   0 1 1 1 2 2 2 3 : ) ( :   X TTT TTH HTT THT THH HTH HHT HHH 4
  • 5. The Cumulative Distribution Function  The cumulative distribution function (cdf) of a random variable X is defined as the probability of the event {X≤ x}. Properties of the cdf, FX(x):  The cdf has the following properties. 1 ) ( 0 i.e., function, negative - non a is ) ( .   x F x F i X X 1 ) ( lim .    x F ii X x 0 ) ( lim .    x F iii X x ) ( ) ( x X P x FX   5
  • 6. The Cumulative Distribution Function Cont’d….. ) ( ) ( then , If i.e., , of function decreasing - non a is ) ( . 2 1 2 1 x F x F x x X x F iv X X X   ) ( ) ( ) ( . 1 2 2 1 x F x F x X x P v X X     ) ( 1 ) ( . x F x X P vi X    Example: Find the cdf of the random variable X which is defined as the number of heads in three tosses of a fair coin. 6
  • 7. The Cumulative Distribution Function Solution:  We know that X takes on only the values 0, 1, 2 and 3 with probabilities 1/8, 3/8, 3/8 and 1/8 respectively.  Thus, FX(x) is simply the sum of the probabilities of the outcomes from the set {0, 1, 2, 3} that are less than or equal to x.                    3 , 1 3 2 , 8 / 7 2 1 , 2 / 1 1 0 , 8 / 1 0 , 0 ) ( x x x x x x FX 7
  • 8. Types of Random Variables  There are two basic types of random variables. i. Continuous Random Variable  A continuous random variable is defined as a random variable whose cdf, FX(x), is continuous every where and can be written as an integral of some non-negative function f(x), i.e., ii. Discrete Random Variable  A discrete random variable is defined as a random variable whose cdf, FX(x), is a right continuous, staircase function of X with jumps at a countable set of points x0, x1, x2,……      du u f x FX ) ( ) ( 8
  • 9. The Probability Density Function  The probability density function (pdf) of a continuous random variable X is defined as the derivative of the cdf, FX(x), i.e., Properties of the pdf, fX(x): dx x dF x f X X ) ( ) (            2 1 ) ( ) ( . 1 ) ( . 0 ) ( , of values all For . 2 1 x x X X X dx x f x X x P iii dx x f ii x f X i 9
  • 10. The Probability Mass Function  The probability mass function (pmf) of a discrete random variable X is defined as: Properties of the pmf, PX (xi ): ) ( ) ( ) ( ) ( 1      i X i X i X i X x F x F x P x X P         k k X k X i X x P iii k x x x P ii k x P i 1 ) ( . ..... 2, , 1 , if , 0 ) ( . ..... 2, , 1 , 1 ) ( 0 . 10
  • 11. Calculating the Cumulative Distribution Function  The cdf of a continuous random variable X can be obtained by integrating the pdf, i.e.,  Similarly, the cdf of a discrete random variable X can be obtained by using the formula:    x X X du u f x F ) ( ) (     x x k k X X k x x U x P x F ) ( ) ( ) ( 11
  • 12. Expected Value, Variance and Moments i. Expected Value (Mean)  The expected value (mean) of a continuous random variable X, denoted by μX or E(X), is defined as:  Similarly, the expected value of a discrete random variable X is given by:  Mean represents the average value of the random variable in a very large number of trials.       dx x xf X E X X ) ( ) (     k k X k X x P x X E ) ( ) (  12
  • 13. Expected Value, Variance and Moments Cont’d….. ii. Variance  The variance of a continuous random variable X, denoted by σ2 X or VAR(X), is defined as:  Expanding (x-μX )2 in the above equation and simplifying the resulting equation, we will get:            dx x f x X Var X E X Var X X X X X ) ( ) ( ) ( ] ) [( ) ( 2 2 2 2     2 2 2 )] ( [ ) ( ) ( X E X E X Var X     13
  • 14. Expected Value, Variance and Moments Cont’d…..  The variance of a discrete random variable X is given by:  The standard deviation of a random variable X, denoted by σX, is simply the square root of the variance, i.e., iii.Moments  The nth moment of a continuous random variable X is defined as:     k k X X k X x P x X Var ) ( ) ( ) ( 2 2   ) ( ) ( 2 X Var X E X X            1 , ) ( ) ( n dx x f x X E X n n 14
  • 15. Expected Value, Variance and Moments Cont’d…..  Similarly, the nth moment of a discrete random variable X is given by:  Mean of X is the first moment of the random variable X. 1 , ) ( ) (    n x P x X E k k X n k 15
  • 16. Some Special Distributions i. Continuous Probability Distributions 1. Normal (Gaussian) Distribution  The random variable X is said to be normal or Gaussian random variable if its pdf is given by:  The corresponding distribution function is given by: where . 2 1 ) ( 2 2 2 / ) ( 2       x X e x f               x y X x G dy e x F      2 2 2 / ) ( 2 2 1 ) ( dy e x G y x 2 / 2 2 1 ) (       16
  • 17. Some Special Distributions Cont’d……  The normal or Gaussian distribution is the most common continuous probability distribution. ) (x fX x  Fig. Normal or Gaussian Distribution 17
  • 18. Some Special Distributions Cont’d…… 2. Uniform Distribution 3. Exponential Distribution ) (x fX x a b a b  1 Fig. Uniform Distribution         otherwise. 0, , 0 , 1 ) ( / x e x f x X   ) (x fX x Fig. Exponential Distribution          otherwise. 0, , 1 ) ( b x a a b x fX 18
  • 19. Some Special Distributions Cont’d…… 4. Gamma Distribution 5. Beta Distribution where           otherwise. 0, , 0 , ) ( ) ( / 1 x e x x f x X                 otherwise. 0, , 1 0 , ) 1 ( ) , ( 1 ) ( 1 1 x x x b a x f b a X       1 0 1 1 . ) 1 ( ) , ( du u u b a b a  19
  • 20. Some Special Distributions Cont’d…… 6. Rayleigh Distribution 7. Cauchy Distribution 8. Laplace Distribution         otherwise. 0, , 0 , ) ( 2 2 2 / 2 x e x x f x X   . , ) ( / ) ( 2 2         x x x fX     . , 2 1 ) ( / | |        x e x f x X   20
  • 21. Some Special Distributions Cont’d…. i. Discrete Probability Distributions 1. Bernoulli Distribution 2. Binomial Distribution 3. Poisson Distribution . ) 1 ( , ) 0 ( p X P q X P     . , , 2 , 1 , 0 , ) ( n k q p k n k X P k n k              . , , 2 , 1 , 0 , ! ) (       k k e k X P k   21
  • 22. Some Special Distributions Cont’d…. 4. Hypergeometric Distribution 5. Geometric Distribution 6. Negative Binomial Distribution , max(0, ) min( , ) ( ) m N m k n k N n m n N k m n P X k                                 . 1 , , , 2 , 1 , 0 , ) ( p q k pq k X P k        1 ( ) , , 1, . 1 r k r k P X k p q k r r r              22
  • 23. Random Variable Examples Example-1: The pdf of a continuous random variable is given by: . of variance and mean the Evaluate . ) 1 4 / 1 ( Find . . of cdf ing correspond the Find . . of value the Determine . constant. a is re whe otherwise , 0 1 0 , ) ( X d X P c X b k a k x kx x fX           23
  • 24. Random Variable Examples Cont’d…… Solution: 2 1 2 1 0 1 2 1 1 ) ( . 2 1 0                       k k x k kxdx dx x f a X otherwise , 0 1 0 , 2 ) (        x x x fX 24
  • 25. Random Variable Examples Cont’d…… Solution: 0 2 ) ( ) ( 1 0 for : 2 Case 0 for , 0 ) ( since , 0 ) ( 0 for : 1 Case ) ( ) ( : by given is of cdf The . 2 0 0 2 X x x u udu du u f x F x x x f x F x du u f x F X b x x X X X x X X                 25
  • 26. Random Variable Examples Cont’d…… Solution: 1 , 1 1 0 , 0 , 0 ) ( by given is cdf The 1 0 1 2 ) ( ) ( 1 for : 3 Case 2 1 0 1 0 2                   x x x x x F u udu du u f x F x X X X 26
  • 27. Random Variable Examples Cont’d…… Solution: 16 / 15 ) 1 4 / 1 ( 16 / 15 ) 4 / 1 ( 1 ) 1 4 / 1 ( ) 4 / 1 ( ) 1 ( ) 1 4 / 1 ( cdf the Using . 16 / 15 ) 1 4 / 1 ( 16 / 15 4 / 1 1 ) 1 4 / 1 ( 2 ) ( ) 1 4 / 1 ( pdf the Using . ) 1 4 / 1 ( . 2 2 1 4 / 1 1 4 / 1                                X P X P F F X P ii X P x X P dx x dx x f X P i X P c X X X 27
  • 28. Random Variable Examples Cont’d…… Solution: 18 / 1 ) 3 / 2 ( 2 / 1 ) ( 2 / 1 2 ) ( ) ( )] ( [ ) ( ) ( Variance . 3 / 2 0 1 3 2 2 ) ( ) ( Mean . Variance and Mean . 2 2 1 0 1 0 3 2 2 2 2 2 3 1 0 1 0 2                      x Var dx x dx x f x X E X E X E X Var ii x dx x dx x xf X E i d X X X X X X     28
  • 29. Random Variable Examples Cont’d…….. Example-2: Consider a discrete random variable X whose pmf is given by: . of variance and mean the Find otherwise , 0 1 0, , 1 , 3 / 1 ) ( X x x P k k X         29
  • 30. Random Variable Examples Cont’d…… Solution: 3 / 2 ) 0 ( 3 / 2 ) ( 3 / 2 ] ) 1 ( ) 0 ( ) 1 [( 3 / 1 ) ( ) ( )] ( [ ) ( ) ( Variance . 0 ) 1 0 1 ( 3 / 1 ) ( ) ( Mean . 2 2 1 1 2 2 2 2 2 2 2 2 1 1                            x Var x P x X E X E X E X Var ii x P x X E i X k k X k X k k X k X    30
  • 31. Functions of One Random Variable  Let X be a continuous random variable with pdf fX(x) and suppose g(x) is a function of the random variable X defined as:  We can determine the cdf and pdf of Y in terms of that of X.  Consider some of the following functions. 31 ) (X g Y  ) (X g Y  b aX  2 X | | X X ) ( | | x U X X e X log X sin X 1
  • 32. Functions of a Random Variable Cont’d…..  Steps to determine fY(y) from fX(x): Method I: 1. Sketch the graph of Y=g(X) and determine the range space of Y. 2. Determine the cdf of Y using the following basic approach. 3. Obtain fY(y) from FY(y) by using direct differentiation, i.e., 32 ) ( ) ) ( ( ) ( y Y P y X g P y FY     dy y dF y f Y Y ) ( ) ( 
  • 33. Functions of a Random Variable Cont’d….. Method II: 1. Sketch the graph of Y=g(X) and determine the range space of Y. 2. If Y=g(X) is one to one function and has an inverse transformation x=g-1(y)=h(y), then the pdf of Y is given by: 3. Obtain Y=g(x) is not one-to-one function, then the pdf of Y can be obtained as follows. i. Find the real roots of the function Y=g(x) and denote them by xi 33 )] ( [ ) ( ) ( ) ( y h f dy y dh x f dy dx y f X X Y  
  • 34. Functions of a Random Variable Cont’d….. ii. Determine the derivative of function g(xi ) at every real root xi , i.e. , iii. Find the pdf of Y by using the following formula. 34     i i X i i X i i Y x f x g x f dy dx y f ) ( ) ( ) ( ) ( dy dx x g i i  ) (
  • 35. Examples on Functions of One Random Variable Examples: 35 . of pdf the determine , tan If ]. 2 , 2 [ interval in the uniform is X variable random The . ). ( Find . 1 Let . ). ( Find . Let . ). ( Find . Let . 2 Y X Y d y f X Y c y f X Y b y f b aX Y a Y Y Y        
  • 36. Examples on Functions of One Random Variable….. Solutions: 36 ) ( 1 ) ( ) ( ) ( ) ( ) ( ) ( 0 that Suppose Method Using . . i a b y f a dy y dF y f a b y F y F a b y X P y b aX P y Y P y F a I i b aX Y a X Y Y X Y y                                    
  • 37. Examples on Functions of One Random Variable….. Solutions: 37 ) ( 1 ) ( ) ( 1 ) ( ) ( ) ( ) ( then , 0 if other On the Method Using . . ii a b y f a dy y dF y f a b y F y F a b y X P y b aX P y Y P y F a I i b aX Y a X Y Y X Y y                                      
  • 38. Examples on Functions of One Random Variable….. Solutions: 38 a a b y f a y f ii i I i b aX Y a X Y all for , 1 ) ( : obtain we , ) ( and ) ( equations From Method Using . .           
  • 39. Examples on Functions of One Random Variable….. Solutions: 39                            a b y f a y f y h f dy y dh x f dy dx y f a dy dx a dy y dh dy dx y h a b y x y IR Y b aX Y II ii b aX Y a X Y X X Y 1 ) ( ) ( ) ( ) ( 1 1 ) ( solution principal the is ) ( , any For is of space range the and one - to - one is function The Method Using . .
  • 40. Examples on Functions of One Random Variable….. Solutions: 40 y and by given solutions two are there , 0 each For 0 is of space range the and one - to - one not is function The . 2 1 2       x y x y y Y X Y b
  • 41. Examples on Functions of One Random Variable….. Solutions: 41                             otherwise y y f y f y y f x f dy dx x f dy dx y f x f dy dx y f y dy dx y dy dx y dy dx y dy dx b X X Y X X Y i X i i Y , 0 0 , 2 1 ) ( ) ( ) ( ) ( ) ( ) ( 2 1 2 1 and 2 1 2 1 . 2 2 1 1 2 2 1 1
  • 42. Examples on Functions of One Random Variable….. Solutions: 42         0 / , y 1 1 ) ( 1 1 ) ( ) ( ) ( ) ( 1 ) ( solution principal the is ) ( 1 , any For 0 / is of space range the and one - to - one is 1 function The . 2 2 2 IR f y y f y f y y f y h f dy y dh x f dy dx y f y dy y dh dy dx y h y x y IR Y X Y c X Y X Y X X Y                            
  • 43. Examples on Functions of One Random Variable….. Solutions: 43                           y y y f y y f y h f dy y dh x f dy dx y f y dy y dh dy dx y h y x y Y X Y d Y Y X X Y , ) 1 ( 1 ) ( 1 / 1 ) ( ) ( ) ( ) ( 1 1 ) ( solution principal the is ) ( tan , any For ) , ( is of space range the and one - to - one is tan function The . 2 2 2 1  
  • 44. Examples on Functions of One Random Variable….. Solutions: 44
  • 45. Assignment-II 1. The continuous random variable X has the pdf given by: . of variance and mean the . ) 1 ( . . of cdf the . . of value the . : Find constant. a is re whe otherwise , 0 2 0 , ) 2 ( ) ( 2 X d X P c X b k a k x x x k x fX           45
  • 46. Assignment-II Cont’d….. 2. The cdf of continuous random variable X is given by: . of variance and mean the . . of pdf the . . of value the . : Determine constant. a is re whe 1 1, 1 0 , 0 , 0 ) ( X c X b k a k x x x k x x X F             46
  • 47. Assignment-II Cont’d….. 3. The random variable X is uniform in the interval [0, 1]. Find the pdf of the random variable Y if Y=-lnX. 47