SlideShare una empresa de Scribd logo
1 de 20
Identifying context-dependent
community structure across
multiple networks
Hyunghoon Cho, Gerald Quon, Bonnie Berger, Manolis Kellis
MIT CSAIL
ISMB Network Biology SIG
July 11th, 2014
Modules / communities
Cellular functions are carried out by groups of
biomolecules (e.g., proteins, RNA) acting in a
coordinated fashion.
Problem: how does this structure change under a
different condition?
Detecting changes in modules
1 2
3
1
2
3
Context
Module
1 2 Kv v v
Approaches to module detection
• Many algorithms for detecting modules in a single network
– Link clustering [Shi et al. 2013], label propagation [Gregory 2010],
Tensor decomposition [Anandkumar et al. 2013], mixed-membership
stochastic blockmodels [Airoldi et al. 2008], etc.
• Not obvious how to extend to the multiple network case:
Combine networks,
then detect modules
likely to miss
rare modules
Detect modules,
then combine results
inconsistent
module definition
Multi-MMSB
Jointly learns modules from
all networks, allow each to
be only present in a subset
of networks
Model description: SB
Note: each node belongs to a single module
Adjacency matrix
Model description: MMSB
[Airoldi et al., 2008]
Model description: Multi-MMSB
Learning the model
Goal: optimize model likelihood
Expectation-Maximization algorithm to deal with latent variables
Need variational approximation
Random restarts to alleviate local optima issue
Performance metric
• Normalized mutual information (NMI)
Sequence of
structural queries
Learned
community
structure
True
community
structure
Answers
Answers
Calculate
mutual information
[Esquivel and Rosvall, 2012]
Synthetic data: results
Normalizedmutualinformation
Synthetic data: results
Synthetic data: results
Synthetic data: results
Asthma data (GSE19301)
Microarray profiling of peripheral blood mononuclear
cells from asthma patients at 3 different stages:
• quiet: 394 samples
• exacerbation: 125 samples
• follow-up (2 weeks after exacerbation): 166 samples
[Bjornsdottir et al., 2011]
Asthma data: results
RNA decay data (GSE37451)
Microarray profiling of 70 lymphoblastoid cell lines at 5
different timepoints after transcription arrest:
• 0 hr (before transcription arrest)
• 0.5 hr
• 1 hr
• 2 hr
• 4 hr
RNA decay data: results
Summary
• We developed Multi-MMSB, a flexible way of
learning community structure over multiple
networks
• Multi-MMSB outperformed naive methods on
synthetic data
• When applied to real data, Multi-MMSB identified
context-specific modules that are biologically
plausible
Future directions
• Extending the model:
– Directed networks
– Weighted edges
• Application to other types of biological networks:
– Regulatory networks
– PPI
Acknowledgements
• Gerald Quon
• Prof. Bonnie Berger
• Prof. Manolis Kellis

Más contenido relacionado

La actualidad más candente

NetBioSIG2012 chrisevelo
NetBioSIG2012 chriseveloNetBioSIG2012 chrisevelo
NetBioSIG2012 chriseveloAlexander Pico
 
NetBioSIG2013-Talk Vuk Janjic
NetBioSIG2013-Talk Vuk JanjicNetBioSIG2013-Talk Vuk Janjic
NetBioSIG2013-Talk Vuk JanjicAlexander Pico
 
Overall Vision for NRNB: 2015-2020
Overall Vision for NRNB: 2015-2020Overall Vision for NRNB: 2015-2020
Overall Vision for NRNB: 2015-2020Alexander Pico
 
NetBioSIG2013-Talk David Amar
NetBioSIG2013-Talk David AmarNetBioSIG2013-Talk David Amar
NetBioSIG2013-Talk David AmarAlexander Pico
 
Technology R&D Theme 3: Multi-scale Network Representations
Technology R&D Theme 3: Multi-scale Network RepresentationsTechnology R&D Theme 3: Multi-scale Network Representations
Technology R&D Theme 3: Multi-scale Network RepresentationsAlexander Pico
 
NetBioSIG2013-Talk Robin Haw
NetBioSIG2013-Talk Robin Haw NetBioSIG2013-Talk Robin Haw
NetBioSIG2013-Talk Robin Haw Alexander Pico
 
NRNB Annual Report 2011
NRNB Annual Report 2011NRNB Annual Report 2011
NRNB Annual Report 2011Alexander Pico
 
NRNB Annual Report 2016: Overall
NRNB Annual Report 2016: OverallNRNB Annual Report 2016: Overall
NRNB Annual Report 2016: OverallAlexander Pico
 
Technology R&D Theme 2: From Descriptive to Predictive Networks
Technology R&D Theme 2: From Descriptive to Predictive NetworksTechnology R&D Theme 2: From Descriptive to Predictive Networks
Technology R&D Theme 2: From Descriptive to Predictive NetworksAlexander Pico
 
NetBioSIG2013-Talk Thomas Kelder
NetBioSIG2013-Talk Thomas KelderNetBioSIG2013-Talk Thomas Kelder
NetBioSIG2013-Talk Thomas KelderAlexander Pico
 
NetBioSIG2013-KEYNOTE Natasa Przulj
NetBioSIG2013-KEYNOTE Natasa PrzuljNetBioSIG2013-KEYNOTE Natasa Przulj
NetBioSIG2013-KEYNOTE Natasa PrzuljAlexander Pico
 
NetBioSIG2013-KEYNOTE Stefan Schuster
NetBioSIG2013-KEYNOTE Stefan SchusterNetBioSIG2013-KEYNOTE Stefan Schuster
NetBioSIG2013-KEYNOTE Stefan SchusterAlexander Pico
 
System biology and its tools
System biology and its toolsSystem biology and its tools
System biology and its toolsGaurav Diwakar
 
NRNB Annual Report 2012
NRNB Annual Report 2012NRNB Annual Report 2012
NRNB Annual Report 2012Alexander Pico
 
NRNB Annual Report 2018
NRNB Annual Report 2018NRNB Annual Report 2018
NRNB Annual Report 2018Alexander Pico
 
NetBioSIG2014-Talk by David Amar
NetBioSIG2014-Talk by David AmarNetBioSIG2014-Talk by David Amar
NetBioSIG2014-Talk by David AmarAlexander Pico
 
NetBioSIG2012 ugurdogrusoz-cbio
NetBioSIG2012 ugurdogrusoz-cbioNetBioSIG2012 ugurdogrusoz-cbio
NetBioSIG2012 ugurdogrusoz-cbioAlexander Pico
 
Introduction to systems biology
Introduction to systems biologyIntroduction to systems biology
Introduction to systems biologylemberger
 
Systems biology & Approaches of genomics and proteomics
 Systems biology & Approaches of genomics and proteomics Systems biology & Approaches of genomics and proteomics
Systems biology & Approaches of genomics and proteomicssonam786
 

La actualidad más candente (20)

NetBioSIG2012 chrisevelo
NetBioSIG2012 chriseveloNetBioSIG2012 chrisevelo
NetBioSIG2012 chrisevelo
 
NetBioSIG2013-Talk Vuk Janjic
NetBioSIG2013-Talk Vuk JanjicNetBioSIG2013-Talk Vuk Janjic
NetBioSIG2013-Talk Vuk Janjic
 
Overall Vision for NRNB: 2015-2020
Overall Vision for NRNB: 2015-2020Overall Vision for NRNB: 2015-2020
Overall Vision for NRNB: 2015-2020
 
NetBioSIG2013-Talk David Amar
NetBioSIG2013-Talk David AmarNetBioSIG2013-Talk David Amar
NetBioSIG2013-Talk David Amar
 
Technology R&D Theme 3: Multi-scale Network Representations
Technology R&D Theme 3: Multi-scale Network RepresentationsTechnology R&D Theme 3: Multi-scale Network Representations
Technology R&D Theme 3: Multi-scale Network Representations
 
NetBioSIG2013-Talk Robin Haw
NetBioSIG2013-Talk Robin Haw NetBioSIG2013-Talk Robin Haw
NetBioSIG2013-Talk Robin Haw
 
NRNB Annual Report 2011
NRNB Annual Report 2011NRNB Annual Report 2011
NRNB Annual Report 2011
 
NRNB Annual Report 2016: Overall
NRNB Annual Report 2016: OverallNRNB Annual Report 2016: Overall
NRNB Annual Report 2016: Overall
 
Technology R&D Theme 2: From Descriptive to Predictive Networks
Technology R&D Theme 2: From Descriptive to Predictive NetworksTechnology R&D Theme 2: From Descriptive to Predictive Networks
Technology R&D Theme 2: From Descriptive to Predictive Networks
 
NetBioSIG2013-Talk Thomas Kelder
NetBioSIG2013-Talk Thomas KelderNetBioSIG2013-Talk Thomas Kelder
NetBioSIG2013-Talk Thomas Kelder
 
NetBioSIG2013-KEYNOTE Natasa Przulj
NetBioSIG2013-KEYNOTE Natasa PrzuljNetBioSIG2013-KEYNOTE Natasa Przulj
NetBioSIG2013-KEYNOTE Natasa Przulj
 
NetBioSIG2013-KEYNOTE Stefan Schuster
NetBioSIG2013-KEYNOTE Stefan SchusterNetBioSIG2013-KEYNOTE Stefan Schuster
NetBioSIG2013-KEYNOTE Stefan Schuster
 
System biology and its tools
System biology and its toolsSystem biology and its tools
System biology and its tools
 
NRNB Annual Report 2012
NRNB Annual Report 2012NRNB Annual Report 2012
NRNB Annual Report 2012
 
NRNB EAC Meeting 2012
NRNB EAC Meeting 2012NRNB EAC Meeting 2012
NRNB EAC Meeting 2012
 
NRNB Annual Report 2018
NRNB Annual Report 2018NRNB Annual Report 2018
NRNB Annual Report 2018
 
NetBioSIG2014-Talk by David Amar
NetBioSIG2014-Talk by David AmarNetBioSIG2014-Talk by David Amar
NetBioSIG2014-Talk by David Amar
 
NetBioSIG2012 ugurdogrusoz-cbio
NetBioSIG2012 ugurdogrusoz-cbioNetBioSIG2012 ugurdogrusoz-cbio
NetBioSIG2012 ugurdogrusoz-cbio
 
Introduction to systems biology
Introduction to systems biologyIntroduction to systems biology
Introduction to systems biology
 
Systems biology & Approaches of genomics and proteomics
 Systems biology & Approaches of genomics and proteomics Systems biology & Approaches of genomics and proteomics
Systems biology & Approaches of genomics and proteomics
 

Similar a NetBioSIG2014-Talk by Hyunghoon Cho

Knowledge extraction and visualisation using rule-based machine learning
Knowledge extraction and visualisation using rule-based machine learningKnowledge extraction and visualisation using rule-based machine learning
Knowledge extraction and visualisation using rule-based machine learningjaumebp
 
System Biology and Pathway Network.pptx
System Biology and Pathway Network.pptxSystem Biology and Pathway Network.pptx
System Biology and Pathway Network.pptxssuserecbdb6
 
Introduction to biocomputing
 Introduction to biocomputing Introduction to biocomputing
Introduction to biocomputingNatalio Krasnogor
 
Intro to in silico drug discovery 2014
Intro to in silico drug discovery 2014Intro to in silico drug discovery 2014
Intro to in silico drug discovery 2014Lee Larcombe
 
Modular RADAR: Immune System Inspired Strategies for Distributed Systems
Modular RADAR: Immune System Inspired Strategies for Distributed SystemsModular RADAR: Immune System Inspired Strategies for Distributed Systems
Modular RADAR: Immune System Inspired Strategies for Distributed SystemsSoumya Banerjee
 
Session ii g2 overview chemical modeling mmc
Session ii g2 overview chemical modeling mmcSession ii g2 overview chemical modeling mmc
Session ii g2 overview chemical modeling mmcUSD Bioinformatics
 
scRNA-Seq Workshop Presentation - Stem Cell Network 2018
scRNA-Seq Workshop Presentation - Stem Cell Network 2018scRNA-Seq Workshop Presentation - Stem Cell Network 2018
scRNA-Seq Workshop Presentation - Stem Cell Network 2018David Cook
 
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing codeISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing codeKengo Sato
 
Introduction to systems biology – How systems work?
Introduction to systems biology – How systems work?Introduction to systems biology – How systems work?
Introduction to systems biology – How systems work?improvemed
 
P
 Systems 
Model 
Optimisation 
by
 Means 
of 
Evolutionary 
Based 
Search
 ...
P
 Systems 
Model 
Optimisation 
by
 Means 
of 
Evolutionary 
Based 
Search
 ...P
 Systems 
Model 
Optimisation 
by
 Means 
of 
Evolutionary 
Based 
Search
 ...
P
 Systems 
Model 
Optimisation 
by
 Means 
of 
Evolutionary 
Based 
Search
 ...Natalio Krasnogor
 
AI approaches in healthcare - targeting precise and personalized medicine
AI approaches in healthcare - targeting precise and personalized medicine AI approaches in healthcare - targeting precise and personalized medicine
AI approaches in healthcare - targeting precise and personalized medicine DayOne
 
Systems Biology Approaches to Cancer
Systems Biology Approaches to CancerSystems Biology Approaches to Cancer
Systems Biology Approaches to CancerRaunak Shrestha
 
An interactive approach to multiobjective clustering of gene expression patterns
An interactive approach to multiobjective clustering of gene expression patternsAn interactive approach to multiobjective clustering of gene expression patterns
An interactive approach to multiobjective clustering of gene expression patternsRavi Kumar
 
Maps of sparse memory networks reveal overlapping communities in network flows
Maps of sparse memory networks reveal overlapping communities in network flowsMaps of sparse memory networks reveal overlapping communities in network flows
Maps of sparse memory networks reveal overlapping communities in network flowsUmeå University
 
Cornell Pbsb 20090126 Nets
Cornell Pbsb 20090126 NetsCornell Pbsb 20090126 Nets
Cornell Pbsb 20090126 NetsMark Gerstein
 
Java tutorial: Programmatic Access to Molecular Interactions
Java tutorial: Programmatic Access to Molecular InteractionsJava tutorial: Programmatic Access to Molecular Interactions
Java tutorial: Programmatic Access to Molecular InteractionsRafael C. Jimenez
 

Similar a NetBioSIG2014-Talk by Hyunghoon Cho (20)

Knowledge extraction and visualisation using rule-based machine learning
Knowledge extraction and visualisation using rule-based machine learningKnowledge extraction and visualisation using rule-based machine learning
Knowledge extraction and visualisation using rule-based machine learning
 
System Biology and Pathway Network.pptx
System Biology and Pathway Network.pptxSystem Biology and Pathway Network.pptx
System Biology and Pathway Network.pptx
 
presentation
presentationpresentation
presentation
 
Introduction to biocomputing
 Introduction to biocomputing Introduction to biocomputing
Introduction to biocomputing
 
Intro to in silico drug discovery 2014
Intro to in silico drug discovery 2014Intro to in silico drug discovery 2014
Intro to in silico drug discovery 2014
 
Modular RADAR: Immune System Inspired Strategies for Distributed Systems
Modular RADAR: Immune System Inspired Strategies for Distributed SystemsModular RADAR: Immune System Inspired Strategies for Distributed Systems
Modular RADAR: Immune System Inspired Strategies for Distributed Systems
 
ECCB poster
ECCB posterECCB poster
ECCB poster
 
Eccb poster
Eccb posterEccb poster
Eccb poster
 
Session ii g2 overview chemical modeling mmc
Session ii g2 overview chemical modeling mmcSession ii g2 overview chemical modeling mmc
Session ii g2 overview chemical modeling mmc
 
scRNA-Seq Workshop Presentation - Stem Cell Network 2018
scRNA-Seq Workshop Presentation - Stem Cell Network 2018scRNA-Seq Workshop Presentation - Stem Cell Network 2018
scRNA-Seq Workshop Presentation - Stem Cell Network 2018
 
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing codeISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
 
Introduction to systems biology – How systems work?
Introduction to systems biology – How systems work?Introduction to systems biology – How systems work?
Introduction to systems biology – How systems work?
 
Thesis Presentation
Thesis PresentationThesis Presentation
Thesis Presentation
 
P
 Systems 
Model 
Optimisation 
by
 Means 
of 
Evolutionary 
Based 
Search
 ...
P
 Systems 
Model 
Optimisation 
by
 Means 
of 
Evolutionary 
Based 
Search
 ...P
 Systems 
Model 
Optimisation 
by
 Means 
of 
Evolutionary 
Based 
Search
 ...
P
 Systems 
Model 
Optimisation 
by
 Means 
of 
Evolutionary 
Based 
Search
 ...
 
AI approaches in healthcare - targeting precise and personalized medicine
AI approaches in healthcare - targeting precise and personalized medicine AI approaches in healthcare - targeting precise and personalized medicine
AI approaches in healthcare - targeting precise and personalized medicine
 
Systems Biology Approaches to Cancer
Systems Biology Approaches to CancerSystems Biology Approaches to Cancer
Systems Biology Approaches to Cancer
 
An interactive approach to multiobjective clustering of gene expression patterns
An interactive approach to multiobjective clustering of gene expression patternsAn interactive approach to multiobjective clustering of gene expression patterns
An interactive approach to multiobjective clustering of gene expression patterns
 
Maps of sparse memory networks reveal overlapping communities in network flows
Maps of sparse memory networks reveal overlapping communities in network flowsMaps of sparse memory networks reveal overlapping communities in network flows
Maps of sparse memory networks reveal overlapping communities in network flows
 
Cornell Pbsb 20090126 Nets
Cornell Pbsb 20090126 NetsCornell Pbsb 20090126 Nets
Cornell Pbsb 20090126 Nets
 
Java tutorial: Programmatic Access to Molecular Interactions
Java tutorial: Programmatic Access to Molecular InteractionsJava tutorial: Programmatic Access to Molecular Interactions
Java tutorial: Programmatic Access to Molecular Interactions
 

Más de Alexander Pico

NRNB Annual Report 2017
NRNB Annual Report 2017NRNB Annual Report 2017
NRNB Annual Report 2017Alexander Pico
 
2016 Cytoscape 3.3 Tutorial
2016 Cytoscape 3.3 Tutorial2016 Cytoscape 3.3 Tutorial
2016 Cytoscape 3.3 TutorialAlexander Pico
 
2015 Cytoscape 3.2 Tutorial
2015 Cytoscape 3.2 Tutorial2015 Cytoscape 3.2 Tutorial
2015 Cytoscape 3.2 TutorialAlexander Pico
 
NetBioSIG2014-FlashJournalClub by Frank Kramer
NetBioSIG2014-FlashJournalClub by Frank KramerNetBioSIG2014-FlashJournalClub by Frank Kramer
NetBioSIG2014-FlashJournalClub by Frank KramerAlexander Pico
 
NetBioSIG2014-Talk by Salvatore Loguercio
NetBioSIG2014-Talk by Salvatore LoguercioNetBioSIG2014-Talk by Salvatore Loguercio
NetBioSIG2014-Talk by Salvatore LoguercioAlexander Pico
 
NetBioSIG2014-Intro by Alex Pico
NetBioSIG2014-Intro by Alex PicoNetBioSIG2014-Intro by Alex Pico
NetBioSIG2014-Intro by Alex PicoAlexander Pico
 
NetBioSIG2014-Talk by Traver Hart
NetBioSIG2014-Talk by Traver HartNetBioSIG2014-Talk by Traver Hart
NetBioSIG2014-Talk by Traver HartAlexander Pico
 
NetBioSIG2014-Talk by Yu Xia
NetBioSIG2014-Talk by Yu XiaNetBioSIG2014-Talk by Yu Xia
NetBioSIG2014-Talk by Yu XiaAlexander Pico
 
NetBioSIG2014-Keynote by Marian Walhout
NetBioSIG2014-Keynote by Marian WalhoutNetBioSIG2014-Keynote by Marian Walhout
NetBioSIG2014-Keynote by Marian WalhoutAlexander Pico
 
NetBioSIG2014-Talk by Ashwini Patil
NetBioSIG2014-Talk by Ashwini PatilNetBioSIG2014-Talk by Ashwini Patil
NetBioSIG2014-Talk by Ashwini PatilAlexander Pico
 
NetBioSIG2014-Talk by Gerald Quon
NetBioSIG2014-Talk by Gerald QuonNetBioSIG2014-Talk by Gerald Quon
NetBioSIG2014-Talk by Gerald QuonAlexander Pico
 
Visualization and Analysis of Dynamic Networks
Visualization and Analysis of Dynamic Networks Visualization and Analysis of Dynamic Networks
Visualization and Analysis of Dynamic Networks Alexander Pico
 
NRNB Annual Report 2013
NRNB Annual Report 2013NRNB Annual Report 2013
NRNB Annual Report 2013Alexander Pico
 
Introduction to WikiPathways
Introduction to WikiPathwaysIntroduction to WikiPathways
Introduction to WikiPathwaysAlexander Pico
 
Network Visualization and Analysis with Cytoscape
Network Visualization and Analysis with CytoscapeNetwork Visualization and Analysis with Cytoscape
Network Visualization and Analysis with CytoscapeAlexander Pico
 
NetBioSIG2013-KEYNOTE Esti Yeger-Lotem
NetBioSIG2013-KEYNOTE Esti Yeger-LotemNetBioSIG2013-KEYNOTE Esti Yeger-Lotem
NetBioSIG2013-KEYNOTE Esti Yeger-LotemAlexander Pico
 

Más de Alexander Pico (16)

NRNB Annual Report 2017
NRNB Annual Report 2017NRNB Annual Report 2017
NRNB Annual Report 2017
 
2016 Cytoscape 3.3 Tutorial
2016 Cytoscape 3.3 Tutorial2016 Cytoscape 3.3 Tutorial
2016 Cytoscape 3.3 Tutorial
 
2015 Cytoscape 3.2 Tutorial
2015 Cytoscape 3.2 Tutorial2015 Cytoscape 3.2 Tutorial
2015 Cytoscape 3.2 Tutorial
 
NetBioSIG2014-FlashJournalClub by Frank Kramer
NetBioSIG2014-FlashJournalClub by Frank KramerNetBioSIG2014-FlashJournalClub by Frank Kramer
NetBioSIG2014-FlashJournalClub by Frank Kramer
 
NetBioSIG2014-Talk by Salvatore Loguercio
NetBioSIG2014-Talk by Salvatore LoguercioNetBioSIG2014-Talk by Salvatore Loguercio
NetBioSIG2014-Talk by Salvatore Loguercio
 
NetBioSIG2014-Intro by Alex Pico
NetBioSIG2014-Intro by Alex PicoNetBioSIG2014-Intro by Alex Pico
NetBioSIG2014-Intro by Alex Pico
 
NetBioSIG2014-Talk by Traver Hart
NetBioSIG2014-Talk by Traver HartNetBioSIG2014-Talk by Traver Hart
NetBioSIG2014-Talk by Traver Hart
 
NetBioSIG2014-Talk by Yu Xia
NetBioSIG2014-Talk by Yu XiaNetBioSIG2014-Talk by Yu Xia
NetBioSIG2014-Talk by Yu Xia
 
NetBioSIG2014-Keynote by Marian Walhout
NetBioSIG2014-Keynote by Marian WalhoutNetBioSIG2014-Keynote by Marian Walhout
NetBioSIG2014-Keynote by Marian Walhout
 
NetBioSIG2014-Talk by Ashwini Patil
NetBioSIG2014-Talk by Ashwini PatilNetBioSIG2014-Talk by Ashwini Patil
NetBioSIG2014-Talk by Ashwini Patil
 
NetBioSIG2014-Talk by Gerald Quon
NetBioSIG2014-Talk by Gerald QuonNetBioSIG2014-Talk by Gerald Quon
NetBioSIG2014-Talk by Gerald Quon
 
Visualization and Analysis of Dynamic Networks
Visualization and Analysis of Dynamic Networks Visualization and Analysis of Dynamic Networks
Visualization and Analysis of Dynamic Networks
 
NRNB Annual Report 2013
NRNB Annual Report 2013NRNB Annual Report 2013
NRNB Annual Report 2013
 
Introduction to WikiPathways
Introduction to WikiPathwaysIntroduction to WikiPathways
Introduction to WikiPathways
 
Network Visualization and Analysis with Cytoscape
Network Visualization and Analysis with CytoscapeNetwork Visualization and Analysis with Cytoscape
Network Visualization and Analysis with Cytoscape
 
NetBioSIG2013-KEYNOTE Esti Yeger-Lotem
NetBioSIG2013-KEYNOTE Esti Yeger-LotemNetBioSIG2013-KEYNOTE Esti Yeger-Lotem
NetBioSIG2013-KEYNOTE Esti Yeger-Lotem
 

Último

G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionPriyansha Singh
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 

Último (20)

G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorption
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 

NetBioSIG2014-Talk by Hyunghoon Cho

Notas del editor

  1. For instance, suppose we are observing an individual over the course of an environmental stress, such as a viral infection or a physical injury. In this case we expect to see some group of genes that are only temporarily co-regulated in a specific situation. For example, genes involved in immune response to injuries would be temporarily co-regulated. And this would lead to something like the blue module, which is only active in one of the networks. On the other hand, we also expect some housekeeping genes to be always turned on and highly co-regulated. This would lead to something that looks like a red module that is always present in the networks. By identifying and functionally characterizing such modules with different patterns of occurrences, one can start to reason about the biological processes that are affected or unaffected by the given context of interest. With this motivation in mind, the goal of this project was to develop an algorithm that takes as input multiple networks from different contexts, and outputs the overall community structure with the associated activity pattern that tells us in which subset of contexts each module appears in So how do we go about doing this?
  2. 2 mins First, it is important to know that there are a large number of module detection algorithms that work on a single network This includes link clustering, label propagation, spectral decomposition, stochastic block models, et cetera. However, extension of these methods to the multiple network case is not trivial. One naïve approach one might consider is to combine all the networks into a single representative network (for example, by taking the average of the adjacency matrices) and to run existing module detection algorithm on it Once we have a global set of modules, Then we can go back to individual networks and check whether each identified module is active or not While this approach is fairly simple and easy to implement, this suffers from the limitation that modules that are only active in a small number of networks are more difficult to identify in the combined network. This is because the merging process dilutes the signal in the data.   Another naïve approach, would be to apply module detection algorithms on each network independently to learn the modules, and then try to combine the outputs by matching modules detected from different networks. While this approach has no problem identifying modules that are rarely active, when the detected boundaries of a module differ between networks it is not clear how to resolve such disagreements in a principled manner.   In this talk, I present a hierarchical Bayesian model named multi-MMSB that avoids both of these issues. Our model learns a global community structure jointly from all networks, while allowing each module to be only present in a subset of networks, thereby increasing power to detect rare modules. In the following section, I will describe the details of multi-MMSB. Let’s first start with a simple Bayesian model that forms the basis of our model.
  3. Stochastic blockmodel is a probabilistic, generative model of random graphs that originates from the social network analysis literature. The basic idea is that when we look at the adjacency matrix of a graph that shows a modular pattern it will have these “blocky” structure, where each block corresponds to a single module. So the idea is to cluster the nodes such that within each cluster we see a lot of edges and not many edges are between different clusters. Now we can formalize this model as follows. First we introduce a parameter p_m that represents the connectivity level for each module m p_0 represents the background connectivity between nodes of different modules, which can be thought of as the amount of noise in the data and lastly for each node in the network, we have a latent label z_i that represents which module the node belongs to. Given these variables, each edge is sampled independently from a Bernoulli distribution with parameter p_m if both nodes belong to module m and p_0 otherwise A key limitation of stochastic blockmodel is that each node can only be assigned to a single module. However, in many applications, modules often overlap with each other. This is the motivation behind mixed-membership stochastic blockmodels, or MMSB.
  4. In this version of the model, we allow each node to have a fractional membership to modules rather than a hard assignment. This is represented by the vector c_i. In addition, we introduce a latent label z_ij for every pair of i and j to represent the conditional membership of node I with respect to node j. Intuitively speaking, this allows each node to be multi-faceted – they can change their module membership based on the node that they are interacting with. In this new setup, an edge is sampled with probability p_m when the conditional memberships on both sides agree with each other. While this model has been shown to be effective in a variety of settings, by design it only works on a single network.
  5. In order to extend this to the multiple network case we first duplicate the latent variables z_ij across the networks while keeping only a single copy of c_i so that the fractional membership of each node remains identical in every network. Furthermore, we introduce another layer of latent variables denoted as d_km, which represents context-specific activity of module m in network k. Now, when we sample the edges using p_m, in addition to checking whether the conditional memberships match, we also check whether the module is active in the given network. Note that, in practice, we are only given the edges and none of the latent variables.
  6. A standard approach to learning a Bayesian model is to optimize the likelihood function given the observed data. In this case, since there are variables that are not observed, we want to optimize what’s called a marginal likelihood. Which is the same as the complete likelihood where the latent variables are integrated out. Expectation-maximization algorithm can be used to optimize this objective. But because the posterior distribution over the latent variables is intractable in this case, we need to use variational EM, which makes a simplifying assumption that the latent variables are independent from each other. At the end of this training procedure, what we get is the optimal set of model parameters and our belief over the latent variables, from which we can extract the community structure learned by the model. Because this approach is susceptible to local optima, we typically learn the model several times for a given setting and select the one with the highest objective for further analysis
  7. Once we learn the model, we need a way to measure the accuracy, assuming the ground truth is available, which is the case in simulated data. To quantify the similarity between two community structures, we use a metric called normalized mutual information which was first developed in the context of network covers by Esquivel and Rosvall in 2012. I won’t go into too much detail here, but the basic intuition is as follows. First, we randomly generate a sequence of structural queries. [Give example] Then we send these queries through both the learned and the true community structures to get two sets of answers. Calculating mutual information between these two answer sets gives us our similarity score. In the limiting case, if the two structures are exactly the same then the answers we get would be identical in all cases and this leads to an NMI of 1. Note that this procedure does not require us to know the mapping between the modules between the two structures because mutual information doesn’t change even if we relabel the modules on either side. Now we’ve established everything about the model. In the following section I will present some results on synthetic data.