SlideShare una empresa de Scribd logo
1 de 32
The Condensate-
Feedwater System
Part 1
Assoc.Prof.Sommai Priprem, PhD.
Department of Mechanical Engineering
Khon Kaen University
รศ.ดร.สมหมาย ปรีเปรม 2
References:
1. El-Wakil, M.M., Powerplant Technology, International ed., McGraw-Hill
Book Co., 1984.
2. Kam W. Li.,and Paul Priddy A.,Power Plant System Design, John Wiley
& Sons, Inc., 1985.
3. Drbal Lawrence F.(editor),et.al., Power Plant Engineering: by Black
Veatch, Chapman & Hall Book, 1996.
4. Hicks Tyler G.(editor), Power Generation Calculations Reference Guide,
McGraw-Hill Book Co., 1985.
Related Websites:
http://www.egat.co.th/english/index.htm
http://www.egat.co.th/english/powerplants/namphong.htm
http://en.wikipedia.org/wiki/Power_plant
http://www3.toshiba.co.jp/power/english/thermal/index.htm
http://www.cheresources.com/ctowerszz.shtml
รศ.ดร.สมหมาย ปรีเปรม 3
Outline of this chapter:
• Overview of condensate & feedwater
• Direct contact condenser
• Surface condenser
• Surface condenser calculations
• Closed feedwater heater
• Open feedwater heater
• Boiler makeup and treatment
รศ.ดร.สมหมาย ปรีเปรม 4
Turbine
wt
Condenser Qc
1
2
Steam Power Plant with Feedwater Heater
Cooling
Water
3
Feedwater
Heater
Pump
4
5
6
Feedwater
Pump
7
Turbine
wt
Boiler
QB
Condenser Qc
1
2
Cooling
Water
3
7
8
Feedwater
Heater
Pump
4
6 5
Open type feedwater heater Closed type feedwater heater
Boiler
QB
รศ.ดร.สมหมาย ปรีเปรม 5
FWH 2 FWH 1
Turbine
wt
Condenser
Cooling
Water
Pump
FWH 4 FWH 3
Pump
Boiler
QB
Steam Power Plant with 4-Feedwater Heaters
Vent
Feedwater
รศ.ดร.สมหมาย ปรีเปรม 6
T
s
P1
2
3
Condenser:
2-importants functions
1. to condense exhaust steam  recover
the high-quality feedwater (reduce cost)
2. to create low back pressure (vacuum)
of the turbine.  more turbine work 
higher efficiency
Condenser
2
Cooling
Water
P2a
P2b
2
3
2-type of condenser
1. Direct Contact
2. Surface Condenser
รศ.ดร.สมหมาย ปรีเปรม 7
Feedwater Heater
Purpose: to improve cycle efficiency by heating
the condensate and feedwater, by bled steam
from stesm turbine, before returning to the
steamgenerator.
2-types of feedwater heater
1. surface or shell-and-tube type.
2. open or direct-contact or deareating type
รศ.ดร.สมหมาย ปรีเปรม 8
6-2 Direct-Contact Condenser
Non-condensable
to SJAE
Dry Cooling Tower
To plant feedwater system
Condenser
Turbine exhaust
2
Pump
3
4
5
Steam is directly mixed with
spray cooling water causes
the steam to condense and
becomes “Condensate” 5
3
3
2
3
5
2
2
5
3
5
2
3
5
2
h
h
h
h
m
m
m
m
m
:
balance
Mass
h
m
h
m
h
m
:
balance
Energy
o
o
o
o
o
o
o
o







รศ.ดร.สมหมาย ปรีเปรม 9
Example 6.1 Find the ratio of circulating water to steam
flows if the condenser pressure is 1 psia and the
coolig tower cools the water to 60 F. Assume turbine
exhaust at 90 percent quality.
5
3
3
2
3
5
2
2
5
3
5
2
3
5
2
h
h
h
h
m
m
m
m
m
:
balance
Mass
h
m
h
m
h
m
:
balance
Energy
o
o
o
o
o
o
o
o







Solution h2 = hf + xhfg
h2 = 69.73 +(0.9 x 1036.1)
= 69.73 Btu/lbm
h3 = hf @P3 = 69.73 Btu/lbm
h5 ~ hf @ 60oF = 28.06 Btu/lbm
mo
5/mo
2 = 22.38 answer
รศ.ดร.สมหมาย ปรีเปรม 10
Barometric and Jet Condenser
pipe
tail
in
drop
Pressure
ΔP
Pressure
Condenser
P
pressure
c
atmospheri
P
)
s
*
m(N
*
1kg
or
)
s
*
ft(lb
*
lbm
32.2
factor,
conversion
g
m/s
or
ft/s
acc.,
nal
gravitatio
g
m
or
ft
tailpipe,
of
height
h
kg/m
or
/ft
lb
mixture,
of
density
ρ
P
P
P
g
g
h
f
cond
atm
2
2
f
c
2
2
3
3
3
m
f
cond
atm
c









 

Barometric Condenser
Jet Condenser
รศ.ดร.สมหมาย ปรีเปรม 11
Water Box
Discharge
water outlet
Water Box
Condenser
Shell
Air-Vapor outlet
Tubes
Cold Water inlet
Condensate outlet
Steam inlet
Surface Steam Condenser
• Most common used in powerplants.
• It is shell-and-tube type heat exchanger.
• Size up to 1 million ft2 (93,000 m2) heat transfer area.
รศ.ดร.สมหมาย ปรีเปรม 12
Discharge
water outlet
Water Box
Condenser
Shell
Air-Vapor outlet
Cold Water inlet
Condensate outlet
Steam inlet
2-Pass Steam Condenser
รศ.ดร.สมหมาย ปรีเปรม 13
• Number of pass: Single pass, Two pass
• Single and Multipressure Condenser.
• Tube Sizes (appendix K)
– OD, Gage (BWG), Thickness, ID, A/ft
• Tube Materials (table 6.2)
– stainless steel, copper, Alluminum-Brass, Aluminum-Bronz
– type 304 staimless steel is most popular used.
6-3 Surface Condenser
รศ.ดร.สมหมาย ปรีเปรม 14
Table 6-1 Condenser Dimension Sheet: Westinghouse electric Corporation.
รศ.ดร.สมหมาย ปรีเปรม 15
• Noncondensable gases must be removed.
• Noncondensable ie, air :
– Leak into the system at setion that operates below Patm,
such as condenser section.
– Decomposition of water to H and O by thermal or chemical
reaction.
• Problems of having noncondensable gases:
– raise total pressure  higher condenser pressure  less
turbine output  lower plant efficiency.
– They “Blanket” the heat transfer area, ie, condenser.
– Cause chemical activities, ie. O2  corrosion.
Deaeration
รศ.ดร.สมหมาย ปรีเปรม 16
• Process to remove noncondensable gases is called
‘Deaeration’
• Most Fossil powerplants have a deaerating feedwater
heater.
• Condenser must have good deaeration.
• Good deaeration in condenser required time,
turbulence, and good venting equipment.
• Noncondensables are cooled to reduce volume before
‘Pump out’.
• Venting equipment: Reciprocating compressor (Dry
vacuum pump); Steam-Jet air Ejector (SJAE)
Deaeration
รศ.ดร.สมหมาย ปรีเปรม 17
First-stage ejector
Second-stage ejector
Intercondenser
Aftercondenser
Noncondensible in
steam
Drain
Drain
Venet
Condensate out
Condensate in
A two-stage steam-jet air ejector (SJAE)
รศ.ดร.สมหมาย ปรีเปรม 18
• Heat transfer Surface Area
– Heat Load
– Tube material and size
– Fluid properties
– Flow velocity
• Pressure drop
– Tube size
– flow velocity
6-4 Surface-Condenser Calculations
รศ.ดร.สมหมาย ปรีเปรม 19
Steam
Schematic diagram of a condenser tube.
ri ro
Water
Tw
q
Ts
(2)
)
T
T
UA(
q
(1)
A
h
kL
)
r
/
r
ln(
A
h
T
T
q
w
s
o
o
o
i
i
i
w
s






1
2
1

L
รศ.ดร.สมหมาย ปรีเปรม 20
(5)
h
U
therefore,
:
h
k
and
h
(4)
h
kL
)
r
/
r
ln(
A
A
h
A
U
(3)
A
h
A
kL
)
r
/
r
ln(
A
h
U
(2)
and
(1)
eqn
Combine
i
i
i
o
o
o
i
o
i
i
o
o
o
o
i
o
i
i
i
i









1
2
1
2
1
1


รศ.ดร.สมหมาย ปรีเปรม 21
Steam
L
T
ITD
TR
TTD
LMTD
Ts
T1
T2
Temperature variation in fluids
ITD = Internal Temperature Difference
TTD = Terminal Temperature Difference
TR = Temperature rise
LMTD = Log Mean Temperature Difference
รศ.ดร.สมหมาย ปรีเปรม 22
• Method proposed by the Heat Exchange Institute Standards for
Steam Surface Condenser:
Q = UAΔTm (6-5)
where: Q = heat load on condenser,
U = overall condenser heat-transfer coefficient, based
on outside tube area,
A = total out side tube surface area,
ΔTm = log mean temperature difference in the
condenser:
ΔTm = (ΔTi – ΔTo)/ln(ΔTi /ΔTo) (6-6)
U = C1C2C3C4 √V (6-7)
Surface-Condenser Calculations
รศ.ดร.สมหมาย ปรีเปรม 23
V cooling water velocity
C1 factor depend upon tube OD
C2 Correction factor for cooling
water inlet temp.
C3 Correction factor for tube
material and gage.
C4 Cleanliness factor
รศ.ดร.สมหมาย ปรีเปรม 24
• Heat balance: mo
w Cp(T2 – T1) = Q (6-8)
• Pressure drops
ΔPtotal = ΔPWater Box + ΔPtubes
ΔPtotal = ρh (g/gc) (6-9)
Circulating-water flow and pressure drop
รศ.ดร.สมหมาย ปรีเปรม 25
Fig 6-10 Pressure drop in a condenser
water boxes, express as head in feet, A-
one pass, B-two pass.
Fig 6-11 Pressure drop in a condenser tubes, express as
head in feet per foot length of tubes.
รศ.ดร.สมหมาย ปรีเปรม 26
Calculation Procedure
1. Select number of pass (1 or 2)
2. Selected Tube; Material, Size, Thickness.  k, h (Table K)
3. Selected Water velocity in tube
4. The value U can be determine ( Table 6-2)
5. Calculate amount of heat transfer rate, Q required (total load
in condenser)
6. Heat transfer surface area, A, can be calculated (eqn 6-8)
7. Total length of tube, L, can be calculated.
8. With given length per tube  no. of tubes is calculated
9. determine head loss in water boxes (fig 6-10)
10. determine head loss in tubes (fig 6-11)
11. Total head loss in condenser can be determined.(eqn. 6-9)
รศ.ดร.สมหมาย ปรีเปรม 27
Example 6-2 Design a condenser that would
handle 3x106 lbm/h of 90% quality steam at 1
psia, as well as 360,000 lbm/h of 112 oF drain
water from the low-pressure feedwater heater,
and 1,875 lbm/h of 440 oF drains from the jet
air ejector. Fresh water is available at 70 oF.
รศ.ดร.สมหมาย ปรีเปรม 28
Solution
Heat transfer calculations: select:
1. A two pass condenser
2. Type 304 stainless steel tubing
3. Tube: 50 ft in length, 7/8” OD, 18 BWG
4. TTD = 6 oF
5. Inlet water velocity = 7 ft/s
Heat Load Q = Turbine exhaust + Low-pressure drain + SJAE drain
= 2.802 x 109 Btu/h
ΔTi = Tsat – Twi = 101.74 – 70 = 31.74 oF
ΔT0 = TTD = 6 oF
ΔTm = (ΔTi – ΔTo)/ln(ΔTi /ΔTo) = 15.45 oF
U = 263 x 1.00 x 0.58 x 0.85 x √7 = 343.0 Btu/(h ft2 oF)
A = Q/U ΔTm = 528,675 ft2
รศ.ดร.สมหมาย ปรีเปรม 29
for 7/8” OD tube A/L = 0.2291 ft2/ft (App.K)
therefore:
total length of tube = 528,675 ft2 / 0.2291 ft2/ft
= 2,307,615 ft
and, number of tube = 2,307,615 ft / 50 ft/tube
= 46,150 tubes
Water calculation:
T2 – T1 = (ΔTi – ΔTo) = 31.74 – 6 = 25.74 oF
for Cp = 0.99 Btu/(lbm oF)
mo
w = Q / Cp(T2 – T1)
= 2.802 x 109 Btu/h /[0.99 Btu/(lbm oF) x 25.74 oF]
= 1.0996 x 108 lbm/h
รศ.ดร.สมหมาย ปรีเปรม 30
Volume flow rate, = mov
= (1.0996 x 108 lbm/h)(0.01605ft3/lbm)/(60 min/h)
= 29,414 ft3/min;
= 29,414 x 7.481 = 220,043 gal/min
Pressure drop in water box ( fig. 6-10) = 2.7 ft
Pressure drop in tubes ( fig. 6-11) = 0.32 ft/ft
Tube:allow for 1.2” thick tube sheet  actual length of each tube
= 50 + 2x(1.2/12) = 50.2 ft
total pressure drop = 0.32 ft/ft x 50.2 ft/tube x 46,150 tubes
= 741,353.6 ft
total head loss = 2.7 ft + 741,353.6 ft = 741,356.3 ft
total pressure drop ,ΔPtotal = ρh (g/gc)
= (62.3 lbm/ft3)(741,356.3 ft)(32.2/32.2)
= 46,186,497.49 psi
รศ.ดร.สมหมาย ปรีเปรม 31
Volume flow rate, = mov
= (1.0996 x 108 lbm/h)(0.01605ft3/lbm)/(60 min/h)
= 29,414 ft3/min;
= 29,414 x 7.481 = 220,043 gal/min
Pressure drop in water box ( fig. 6-10) = 2.7 ft
Pressure drop in tubes ( fig. 6-11) = 0.32 ft/ft
Tube:allow for 1.2” thick tube sheet  actual length of each tube = 50 +
2x(1.2/12) = 50.2 ft
total pressure drop = 0.32 ft/ft x 50.2 ft/tube x 2 = 32.13 ft
total head loss = 2.7 ft + 32.13 ft = 34.83 ft
total pressure drop ,ΔPtotal = ρh (g/gc)
= (62.3 lbm/ft3)(34.83 ft)(32.2/32.2)= 2,169.91 lbf/ft2
Wo = mov ΔP
= (1.0996 x 108 lbm/h)(0.01605ft3/lbm)(2,169.91 psf)
= 3.8295 x 109 ft-lbf/h = 3.8295 x 109 /(60 x 33,000) = 1,915 HP
End of Part 1

Más contenido relacionado

Similar a CondensateFeedwaterSystem Part1.ppt

Performance prediction of a thermal system using Artificial Neural Networks
Performance prediction of a thermal system using Artificial Neural NetworksPerformance prediction of a thermal system using Artificial Neural Networks
Performance prediction of a thermal system using Artificial Neural NetworksIJERD Editor
 
Experimental Study and Investigation of Helical Pipe Heat Exchanger with Vary...
Experimental Study and Investigation of Helical Pipe Heat Exchanger with Vary...Experimental Study and Investigation of Helical Pipe Heat Exchanger with Vary...
Experimental Study and Investigation of Helical Pipe Heat Exchanger with Vary...IRJET Journal
 
Vacuum pump-sizing
Vacuum pump-sizingVacuum pump-sizing
Vacuum pump-sizingBrock Lesnar
 
Comparison of Shell and Tube Heat Exchanger using Theoretical Methods, HTRI, ...
Comparison of Shell and Tube Heat Exchanger using Theoretical Methods, HTRI, ...Comparison of Shell and Tube Heat Exchanger using Theoretical Methods, HTRI, ...
Comparison of Shell and Tube Heat Exchanger using Theoretical Methods, HTRI, ...IJERA Editor
 
Process equipment numericals problems
Process equipment numericals problemsProcess equipment numericals problems
Process equipment numericals problemsAnand Upadhyay
 
Boiler doc 04 flowmetering
Boiler doc 04   flowmeteringBoiler doc 04   flowmetering
Boiler doc 04 flowmeteringMars Tsani
 
Optimization of a Shell and Tube Condenser using Numerical Method
Optimization of a Shell and Tube Condenser using Numerical MethodOptimization of a Shell and Tube Condenser using Numerical Method
Optimization of a Shell and Tube Condenser using Numerical MethodIJERA Editor
 
Process Calculation - simple distillation
Process Calculation - simple distillationProcess Calculation - simple distillation
Process Calculation - simple distillationChandran Udumbasseri
 
Aircraft propulsion combustor diffusor
Aircraft propulsion   combustor diffusorAircraft propulsion   combustor diffusor
Aircraft propulsion combustor diffusorAnurak Atthasit
 
FEEMSSD presentation on shell and tube heat exchanger75 .pptx
FEEMSSD presentation on shell and tube heat exchanger75 .pptxFEEMSSD presentation on shell and tube heat exchanger75 .pptx
FEEMSSD presentation on shell and tube heat exchanger75 .pptxAdarshPandey510683
 
thermal project # 2
thermal project # 2thermal project # 2
thermal project # 2James Li
 
1 s2.0-s1876610209000757-main
1 s2.0-s1876610209000757-main1 s2.0-s1876610209000757-main
1 s2.0-s1876610209000757-mainmanojg1990
 
project cooling tower.docx
project cooling tower.docxproject cooling tower.docx
project cooling tower.docxMahamad Jawhar
 
AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER
  AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER  AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER
AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGERIAEME Publication
 
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...Bishal Bhandari
 
Simulation and Optimization of Cooling Tubes of Transformer for Efficient Hea...
Simulation and Optimization of Cooling Tubes of Transformer for Efficient Hea...Simulation and Optimization of Cooling Tubes of Transformer for Efficient Hea...
Simulation and Optimization of Cooling Tubes of Transformer for Efficient Hea...IJAEMSJORNAL
 

Similar a CondensateFeedwaterSystem Part1.ppt (20)

Performance prediction of a thermal system using Artificial Neural Networks
Performance prediction of a thermal system using Artificial Neural NetworksPerformance prediction of a thermal system using Artificial Neural Networks
Performance prediction of a thermal system using Artificial Neural Networks
 
Experimental Study and Investigation of Helical Pipe Heat Exchanger with Vary...
Experimental Study and Investigation of Helical Pipe Heat Exchanger with Vary...Experimental Study and Investigation of Helical Pipe Heat Exchanger with Vary...
Experimental Study and Investigation of Helical Pipe Heat Exchanger with Vary...
 
Pipe Flow Optimization
Pipe Flow OptimizationPipe Flow Optimization
Pipe Flow Optimization
 
Vacuum pump-sizing
Vacuum pump-sizingVacuum pump-sizing
Vacuum pump-sizing
 
Heat exchanger
Heat exchangerHeat exchanger
Heat exchanger
 
Comparison of Shell and Tube Heat Exchanger using Theoretical Methods, HTRI, ...
Comparison of Shell and Tube Heat Exchanger using Theoretical Methods, HTRI, ...Comparison of Shell and Tube Heat Exchanger using Theoretical Methods, HTRI, ...
Comparison of Shell and Tube Heat Exchanger using Theoretical Methods, HTRI, ...
 
Process equipment numericals problems
Process equipment numericals problemsProcess equipment numericals problems
Process equipment numericals problems
 
Boiler doc 04 flowmetering
Boiler doc 04   flowmeteringBoiler doc 04   flowmetering
Boiler doc 04 flowmetering
 
Optimization of a Shell and Tube Condenser using Numerical Method
Optimization of a Shell and Tube Condenser using Numerical MethodOptimization of a Shell and Tube Condenser using Numerical Method
Optimization of a Shell and Tube Condenser using Numerical Method
 
Process Calculation - simple distillation
Process Calculation - simple distillationProcess Calculation - simple distillation
Process Calculation - simple distillation
 
Aircraft propulsion combustor diffusor
Aircraft propulsion   combustor diffusorAircraft propulsion   combustor diffusor
Aircraft propulsion combustor diffusor
 
FEEMSSD presentation on shell and tube heat exchanger75 .pptx
FEEMSSD presentation on shell and tube heat exchanger75 .pptxFEEMSSD presentation on shell and tube heat exchanger75 .pptx
FEEMSSD presentation on shell and tube heat exchanger75 .pptx
 
[IJET-V2I3P20] Authors: Pravin S.Nikam , Prof. R.Y.Patil ,Prof. P.R.Patil , P...
[IJET-V2I3P20] Authors: Pravin S.Nikam , Prof. R.Y.Patil ,Prof. P.R.Patil , P...[IJET-V2I3P20] Authors: Pravin S.Nikam , Prof. R.Y.Patil ,Prof. P.R.Patil , P...
[IJET-V2I3P20] Authors: Pravin S.Nikam , Prof. R.Y.Patil ,Prof. P.R.Patil , P...
 
thermal project # 2
thermal project # 2thermal project # 2
thermal project # 2
 
1 s2.0-s1876610209000757-main
1 s2.0-s1876610209000757-main1 s2.0-s1876610209000757-main
1 s2.0-s1876610209000757-main
 
project cooling tower.docx
project cooling tower.docxproject cooling tower.docx
project cooling tower.docx
 
AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER
  AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER  AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER
AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER
 
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
FABRICATION OF EXPERIMENTAL SETUP TO EVALUATE CONVECTIVE HEAT TRANSFER COEFFI...
 
Simulation and Optimization of Cooling Tubes of Transformer for Efficient Hea...
Simulation and Optimization of Cooling Tubes of Transformer for Efficient Hea...Simulation and Optimization of Cooling Tubes of Transformer for Efficient Hea...
Simulation and Optimization of Cooling Tubes of Transformer for Efficient Hea...
 
Mech CE6461 FMM lab_manual
Mech CE6461 FMM lab_manualMech CE6461 FMM lab_manual
Mech CE6461 FMM lab_manual
 

Último

Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086anil_gaur
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756dollysharma2066
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...tanu pandey
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...soginsider
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projectssmsksolar
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf203318pmpc
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 

Último (20)

Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 

CondensateFeedwaterSystem Part1.ppt

  • 1. The Condensate- Feedwater System Part 1 Assoc.Prof.Sommai Priprem, PhD. Department of Mechanical Engineering Khon Kaen University
  • 2. รศ.ดร.สมหมาย ปรีเปรม 2 References: 1. El-Wakil, M.M., Powerplant Technology, International ed., McGraw-Hill Book Co., 1984. 2. Kam W. Li.,and Paul Priddy A.,Power Plant System Design, John Wiley & Sons, Inc., 1985. 3. Drbal Lawrence F.(editor),et.al., Power Plant Engineering: by Black Veatch, Chapman & Hall Book, 1996. 4. Hicks Tyler G.(editor), Power Generation Calculations Reference Guide, McGraw-Hill Book Co., 1985. Related Websites: http://www.egat.co.th/english/index.htm http://www.egat.co.th/english/powerplants/namphong.htm http://en.wikipedia.org/wiki/Power_plant http://www3.toshiba.co.jp/power/english/thermal/index.htm http://www.cheresources.com/ctowerszz.shtml
  • 3. รศ.ดร.สมหมาย ปรีเปรม 3 Outline of this chapter: • Overview of condensate & feedwater • Direct contact condenser • Surface condenser • Surface condenser calculations • Closed feedwater heater • Open feedwater heater • Boiler makeup and treatment
  • 4. รศ.ดร.สมหมาย ปรีเปรม 4 Turbine wt Condenser Qc 1 2 Steam Power Plant with Feedwater Heater Cooling Water 3 Feedwater Heater Pump 4 5 6 Feedwater Pump 7 Turbine wt Boiler QB Condenser Qc 1 2 Cooling Water 3 7 8 Feedwater Heater Pump 4 6 5 Open type feedwater heater Closed type feedwater heater Boiler QB
  • 5. รศ.ดร.สมหมาย ปรีเปรม 5 FWH 2 FWH 1 Turbine wt Condenser Cooling Water Pump FWH 4 FWH 3 Pump Boiler QB Steam Power Plant with 4-Feedwater Heaters Vent Feedwater
  • 6. รศ.ดร.สมหมาย ปรีเปรม 6 T s P1 2 3 Condenser: 2-importants functions 1. to condense exhaust steam  recover the high-quality feedwater (reduce cost) 2. to create low back pressure (vacuum) of the turbine.  more turbine work  higher efficiency Condenser 2 Cooling Water P2a P2b 2 3 2-type of condenser 1. Direct Contact 2. Surface Condenser
  • 7. รศ.ดร.สมหมาย ปรีเปรม 7 Feedwater Heater Purpose: to improve cycle efficiency by heating the condensate and feedwater, by bled steam from stesm turbine, before returning to the steamgenerator. 2-types of feedwater heater 1. surface or shell-and-tube type. 2. open or direct-contact or deareating type
  • 8. รศ.ดร.สมหมาย ปรีเปรม 8 6-2 Direct-Contact Condenser Non-condensable to SJAE Dry Cooling Tower To plant feedwater system Condenser Turbine exhaust 2 Pump 3 4 5 Steam is directly mixed with spray cooling water causes the steam to condense and becomes “Condensate” 5 3 3 2 3 5 2 2 5 3 5 2 3 5 2 h h h h m m m m m : balance Mass h m h m h m : balance Energy o o o o o o o o       
  • 9. รศ.ดร.สมหมาย ปรีเปรม 9 Example 6.1 Find the ratio of circulating water to steam flows if the condenser pressure is 1 psia and the coolig tower cools the water to 60 F. Assume turbine exhaust at 90 percent quality. 5 3 3 2 3 5 2 2 5 3 5 2 3 5 2 h h h h m m m m m : balance Mass h m h m h m : balance Energy o o o o o o o o        Solution h2 = hf + xhfg h2 = 69.73 +(0.9 x 1036.1) = 69.73 Btu/lbm h3 = hf @P3 = 69.73 Btu/lbm h5 ~ hf @ 60oF = 28.06 Btu/lbm mo 5/mo 2 = 22.38 answer
  • 10. รศ.ดร.สมหมาย ปรีเปรม 10 Barometric and Jet Condenser pipe tail in drop Pressure ΔP Pressure Condenser P pressure c atmospheri P ) s * m(N * 1kg or ) s * ft(lb * lbm 32.2 factor, conversion g m/s or ft/s acc., nal gravitatio g m or ft tailpipe, of height h kg/m or /ft lb mixture, of density ρ P P P g g h f cond atm 2 2 f c 2 2 3 3 3 m f cond atm c             Barometric Condenser Jet Condenser
  • 11. รศ.ดร.สมหมาย ปรีเปรม 11 Water Box Discharge water outlet Water Box Condenser Shell Air-Vapor outlet Tubes Cold Water inlet Condensate outlet Steam inlet Surface Steam Condenser • Most common used in powerplants. • It is shell-and-tube type heat exchanger. • Size up to 1 million ft2 (93,000 m2) heat transfer area.
  • 12. รศ.ดร.สมหมาย ปรีเปรม 12 Discharge water outlet Water Box Condenser Shell Air-Vapor outlet Cold Water inlet Condensate outlet Steam inlet 2-Pass Steam Condenser
  • 13. รศ.ดร.สมหมาย ปรีเปรม 13 • Number of pass: Single pass, Two pass • Single and Multipressure Condenser. • Tube Sizes (appendix K) – OD, Gage (BWG), Thickness, ID, A/ft • Tube Materials (table 6.2) – stainless steel, copper, Alluminum-Brass, Aluminum-Bronz – type 304 staimless steel is most popular used. 6-3 Surface Condenser
  • 14. รศ.ดร.สมหมาย ปรีเปรม 14 Table 6-1 Condenser Dimension Sheet: Westinghouse electric Corporation.
  • 15. รศ.ดร.สมหมาย ปรีเปรม 15 • Noncondensable gases must be removed. • Noncondensable ie, air : – Leak into the system at setion that operates below Patm, such as condenser section. – Decomposition of water to H and O by thermal or chemical reaction. • Problems of having noncondensable gases: – raise total pressure  higher condenser pressure  less turbine output  lower plant efficiency. – They “Blanket” the heat transfer area, ie, condenser. – Cause chemical activities, ie. O2  corrosion. Deaeration
  • 16. รศ.ดร.สมหมาย ปรีเปรม 16 • Process to remove noncondensable gases is called ‘Deaeration’ • Most Fossil powerplants have a deaerating feedwater heater. • Condenser must have good deaeration. • Good deaeration in condenser required time, turbulence, and good venting equipment. • Noncondensables are cooled to reduce volume before ‘Pump out’. • Venting equipment: Reciprocating compressor (Dry vacuum pump); Steam-Jet air Ejector (SJAE) Deaeration
  • 17. รศ.ดร.สมหมาย ปรีเปรม 17 First-stage ejector Second-stage ejector Intercondenser Aftercondenser Noncondensible in steam Drain Drain Venet Condensate out Condensate in A two-stage steam-jet air ejector (SJAE)
  • 18. รศ.ดร.สมหมาย ปรีเปรม 18 • Heat transfer Surface Area – Heat Load – Tube material and size – Fluid properties – Flow velocity • Pressure drop – Tube size – flow velocity 6-4 Surface-Condenser Calculations
  • 19. รศ.ดร.สมหมาย ปรีเปรม 19 Steam Schematic diagram of a condenser tube. ri ro Water Tw q Ts (2) ) T T UA( q (1) A h kL ) r / r ln( A h T T q w s o o o i i i w s       1 2 1  L
  • 21. รศ.ดร.สมหมาย ปรีเปรม 21 Steam L T ITD TR TTD LMTD Ts T1 T2 Temperature variation in fluids ITD = Internal Temperature Difference TTD = Terminal Temperature Difference TR = Temperature rise LMTD = Log Mean Temperature Difference
  • 22. รศ.ดร.สมหมาย ปรีเปรม 22 • Method proposed by the Heat Exchange Institute Standards for Steam Surface Condenser: Q = UAΔTm (6-5) where: Q = heat load on condenser, U = overall condenser heat-transfer coefficient, based on outside tube area, A = total out side tube surface area, ΔTm = log mean temperature difference in the condenser: ΔTm = (ΔTi – ΔTo)/ln(ΔTi /ΔTo) (6-6) U = C1C2C3C4 √V (6-7) Surface-Condenser Calculations
  • 23. รศ.ดร.สมหมาย ปรีเปรม 23 V cooling water velocity C1 factor depend upon tube OD C2 Correction factor for cooling water inlet temp. C3 Correction factor for tube material and gage. C4 Cleanliness factor
  • 24. รศ.ดร.สมหมาย ปรีเปรม 24 • Heat balance: mo w Cp(T2 – T1) = Q (6-8) • Pressure drops ΔPtotal = ΔPWater Box + ΔPtubes ΔPtotal = ρh (g/gc) (6-9) Circulating-water flow and pressure drop
  • 25. รศ.ดร.สมหมาย ปรีเปรม 25 Fig 6-10 Pressure drop in a condenser water boxes, express as head in feet, A- one pass, B-two pass. Fig 6-11 Pressure drop in a condenser tubes, express as head in feet per foot length of tubes.
  • 26. รศ.ดร.สมหมาย ปรีเปรม 26 Calculation Procedure 1. Select number of pass (1 or 2) 2. Selected Tube; Material, Size, Thickness.  k, h (Table K) 3. Selected Water velocity in tube 4. The value U can be determine ( Table 6-2) 5. Calculate amount of heat transfer rate, Q required (total load in condenser) 6. Heat transfer surface area, A, can be calculated (eqn 6-8) 7. Total length of tube, L, can be calculated. 8. With given length per tube  no. of tubes is calculated 9. determine head loss in water boxes (fig 6-10) 10. determine head loss in tubes (fig 6-11) 11. Total head loss in condenser can be determined.(eqn. 6-9)
  • 27. รศ.ดร.สมหมาย ปรีเปรม 27 Example 6-2 Design a condenser that would handle 3x106 lbm/h of 90% quality steam at 1 psia, as well as 360,000 lbm/h of 112 oF drain water from the low-pressure feedwater heater, and 1,875 lbm/h of 440 oF drains from the jet air ejector. Fresh water is available at 70 oF.
  • 28. รศ.ดร.สมหมาย ปรีเปรม 28 Solution Heat transfer calculations: select: 1. A two pass condenser 2. Type 304 stainless steel tubing 3. Tube: 50 ft in length, 7/8” OD, 18 BWG 4. TTD = 6 oF 5. Inlet water velocity = 7 ft/s Heat Load Q = Turbine exhaust + Low-pressure drain + SJAE drain = 2.802 x 109 Btu/h ΔTi = Tsat – Twi = 101.74 – 70 = 31.74 oF ΔT0 = TTD = 6 oF ΔTm = (ΔTi – ΔTo)/ln(ΔTi /ΔTo) = 15.45 oF U = 263 x 1.00 x 0.58 x 0.85 x √7 = 343.0 Btu/(h ft2 oF) A = Q/U ΔTm = 528,675 ft2
  • 29. รศ.ดร.สมหมาย ปรีเปรม 29 for 7/8” OD tube A/L = 0.2291 ft2/ft (App.K) therefore: total length of tube = 528,675 ft2 / 0.2291 ft2/ft = 2,307,615 ft and, number of tube = 2,307,615 ft / 50 ft/tube = 46,150 tubes Water calculation: T2 – T1 = (ΔTi – ΔTo) = 31.74 – 6 = 25.74 oF for Cp = 0.99 Btu/(lbm oF) mo w = Q / Cp(T2 – T1) = 2.802 x 109 Btu/h /[0.99 Btu/(lbm oF) x 25.74 oF] = 1.0996 x 108 lbm/h
  • 30. รศ.ดร.สมหมาย ปรีเปรม 30 Volume flow rate, = mov = (1.0996 x 108 lbm/h)(0.01605ft3/lbm)/(60 min/h) = 29,414 ft3/min; = 29,414 x 7.481 = 220,043 gal/min Pressure drop in water box ( fig. 6-10) = 2.7 ft Pressure drop in tubes ( fig. 6-11) = 0.32 ft/ft Tube:allow for 1.2” thick tube sheet  actual length of each tube = 50 + 2x(1.2/12) = 50.2 ft total pressure drop = 0.32 ft/ft x 50.2 ft/tube x 46,150 tubes = 741,353.6 ft total head loss = 2.7 ft + 741,353.6 ft = 741,356.3 ft total pressure drop ,ΔPtotal = ρh (g/gc) = (62.3 lbm/ft3)(741,356.3 ft)(32.2/32.2) = 46,186,497.49 psi
  • 31. รศ.ดร.สมหมาย ปรีเปรม 31 Volume flow rate, = mov = (1.0996 x 108 lbm/h)(0.01605ft3/lbm)/(60 min/h) = 29,414 ft3/min; = 29,414 x 7.481 = 220,043 gal/min Pressure drop in water box ( fig. 6-10) = 2.7 ft Pressure drop in tubes ( fig. 6-11) = 0.32 ft/ft Tube:allow for 1.2” thick tube sheet  actual length of each tube = 50 + 2x(1.2/12) = 50.2 ft total pressure drop = 0.32 ft/ft x 50.2 ft/tube x 2 = 32.13 ft total head loss = 2.7 ft + 32.13 ft = 34.83 ft total pressure drop ,ΔPtotal = ρh (g/gc) = (62.3 lbm/ft3)(34.83 ft)(32.2/32.2)= 2,169.91 lbf/ft2 Wo = mov ΔP = (1.0996 x 108 lbm/h)(0.01605ft3/lbm)(2,169.91 psf) = 3.8295 x 109 ft-lbf/h = 3.8295 x 109 /(60 x 33,000) = 1,915 HP