SlideShare una empresa de Scribd logo
1 de 12
Descargar para leer sin conexión
Chapter 11
Exercise Solutions

EX11.1
 vE = −VBE ( on ) ⇒ vE = −0.7 V
I C1 = I C 2 = 0.5 mA
vC1 = vC 2 = 10 − ( 0.5 )(10 ) ⇒ vC1 = vC 2 = 5 V

EX11.2
iC 2         1
     =                = 0.99
 IQ            ⎛ vd ⎞
       1 + exp ⎜ ⎟
               ⎝ VT ⎠
        ⎛v ⎞       1
1 + exp ⎜ d ⎟ =
        ⎝ VT ⎠ 0.99
    ⎛v   ⎞     1
exp ⎜ d  ⎟=        −1
    ⎝ VT ⎠    0.99
           ⎡ 1       ⎤
vd = VT ln ⎢      − 1⎥ ⇒ vd = −119.5 mV
           ⎣ 0.99 ⎦

EX11.3
a.                v1 = v2 = 0 ⇒ vE = 0.7 V
               ΔVRC = ( 0.25 )( 8 ) = 2 V ⇒ vC1 = vC 2 = −3 V ⇒ vEC1 = 3.7 V
b.             v1 = v2 = 2.5 V ⇒ vE = 3.2 V ⇒ vEC1 = 6.2 V
c.             v1 = v2 = −2.5 V ⇒ vE = −1.8 V ⇒ vEC1 = 1.2 V

EX11.4
Let I Q = 1 mA, then I CQ1 = I CQ 2 = 0.5 mA
               0.5
g m1 = g m 2 =      = 19.23 mA / V
              0.026
               v    1
At vC 2 , Ad = c 2 = g m RC 2
               vd   2
           1
So, 150 =    (19.23) RC 2 ⇒ RC 2 = 15.6 k Ω
           2
              v       1
At vC1 , Ad = c1 = − g m RC1
              vd      2
              1
So, −100 = −    (19.23) RC1 ⇒ RC1 = 10.4 k Ω
              2
If V + = +10 V and V − = −10 V , dc biasing is OK.

EX11.5
                 ⎛ I Q RC ⎞            ⎡ ( 0.8 )(12 ) ⎤
               −⎜         ⎟          −⎢               ⎥
Acm =            ⎝ 2VT ⎠      =        ⎣ 2 ( 0.026 ) ⎦  = −0.0594
               (1 + β ) IQ RO     1+
                                     (101)( 0.8 )(100 )
          1+
                   VT β                ( 0.026 )(100 )
     vo = Acm vcm = ( −0.0594 )(1sin ω t )( mV ) = −59.4sin ω t ( μV )

EX11.6
(a)         vd = 40 μV , vcm = 0
            vo = ( 50 )( 40 ) ⇒ 2.0 mV
(b)    vd = 40 μV vcm = 200 μV
Assuming Acm > 0
                    50
60 = 20 log10
                    Acm
 Acm = 0.05
vo = ( 50 )( 40 ) + ( 0.05 )( 200 )
vo = 2.010 mV

EX11.7
                                  I Q RC
a.         Diff. Gain Ad =
                                  4VT
For v1 = v2 = 5 V ⇒ Minimum collector voltage
                    IQ
vC 2 = 5 V ⇒    ⋅ RC = 15 − 5 = 10 V or I Q RC = 20 V for max. Ad
              2
               20
Then Ad =             ⇒ Ad ( max ) = 192
          2 ( 0.026 )
b.         If I Q = 0.5 mA, RC = 40 kΩ
            ⎛ I Q RC ⎞
           −⎜        ⎟
Acm =       ⎝ 2VT ⎠
      ⎡ (1 + β ) I Q R0 ⎤
      ⎢1 +              ⎥
      ⎣        VT β     ⎦
Then
             ⎛      20 ⎞
            −⎜
             ⎜ 2 ( 0.026 ) ⎟
                           ⎟
 Acm =       ⎝             ⎠    ⇒ Acm = −0.199
       ⎡ ( 201)( 0.5 )(100 ) ⎤
       ⎢1 +
       ⎣     ( 0.026 )( 200 ) ⎥
                              ⎦
                        ⎛ 192 ⎞
and C M RRdB = 20 log10 ⎜       ⎟ ⇒ C M RRdB = 59.7 dB
                        ⎝ 0.199 ⎠

EX11.8
Rid = 2 ⎡ rπ + (1 + β ) RE ⎤
        ⎣                  ⎦
        β VT        (100 )( 0.026 )
 rπ =           =                     = 10.4 K
         I CQ             0.25
Rid = 2 ⎡10.4 + (101)( 0.5 ) ⎤ = 122 K
        ⎣                    ⎦

EX11.9
            g m RC
Ad =
        2 (1 + g m RE )
            ( 9.62 )(10 )
10 =
        2 ⎡1 + ( 9.62 ) RE ⎤
          ⎣                ⎦
1 + ( 9.62 ) RE = 4.81 ⇒ RE = 0.396 K
Rid = 2 ⎡ rπ + (1 + β ) RE ⎤ = 2 ⎡10.4 + (101)( 0.396 ) ⎤
          ⎣                  ⎦   ⎣                      ⎦
Rid = 100.8 K
EX11.10
     10 − VGS 4
                = K n 3 (VGS 4 − VTN )
                                       2
I1 =
        R1
10 − VGS 4 = ( 0.1)( 80 )(VGS 4 − 0.8 )
                                            2


10 − VGS 4 = 8 (VGS 4 − 1.6VGS 4 + 0.64 )
                  2

   2
8VGS 4 − 11.8VGS 4 − 4.88 = 0

                    (11.8) + 4 ( 8)( 4.88)
                            2
          11.8 ±
VGS 4 =                                         = 1.81 V
                        2 (8)
             10 − 1.81
I1 = I Q =             = 0.102 mA
                80
               0.102
I D1   = ID2 =        = 0.0512 mA
                  2
= K n1 (VGS 1 − VTN )
                        2



0.0512 = 0.050 (VGS 1 − 0.8 ) ⇒ VGS 1 = 1.81 V
                                     2


v01 = v02 = 5 − ( 0.0512 )( 40 ) = 2.95 V
Max vcm : VDS 1 ( sat ) = VGS1 − VTN
                                = 1.81 − 0.8 = 1.01 V
vcm ( max ) = v01 − VDS 1 ( sat ) + VGS 1
                 = 2.95 − 1.01 + 1.81
           vcm ( max )      = 3.75 V
Min vcm : VDS 4 ( sat ) = VGS 4 − VTN
                            = 1.81 − 0.8 = 1.01 V
           vcm ( min )      = VGS 1 + VDS 4 ( sat ) − 5
                            = 1.81 + 1.01 − 5
           vcm ( min )      = −2.18 V
−2.18 ≤ vcm ≤ 3.75 V

EX11.11
                   K n IQ     (1)( 2 )
g f ( max ) =               =          ⇒ g f ( max ) = 1 mA / V
                      2          ( 2)
          Ad   = g f RD = (1)( 5 ) ⇒ Ad = 5

EX11.12
iD1 1  Kn           ⎛ K                  ⎞ 2
   = +     ⋅ vd 1 − ⎜ n                  ⎟ vd
IQ 2   2IQ          ⎜ 2 IQ               ⎟
                    ⎝                    ⎠
Using the parameters in Example 11.11, K n = 0.5 mA / V 2 , I Q = 1 mA, then

iD1           1     0.5            ⎛ 0.5 ⎞ 2
    = 0.90 = +            ⋅ vd 1 − ⎜
                                   ⎜ 2 (1) ⎟ vd
                                           ⎟
IQ            2     2 (1)          ⎝       ⎠
By trial and error, vd = 0.894 V

EX11.13
a.
IQ             0.5
gm =           =               = 9.615 mA/V
        2VT        2 ( 0.026 )
        VA 2 125
r02 =        =     = 500 kΩ
        I C 2 0.25
        VA 4   85
r04 =        =     = 340 kΩ
        I C 4 0.25
Ad = g m ( r02 r04 ) = ( 9.615 ) ( 500 340 ) ⇒ Ad = 1946

b.                      (
              Ad = g m r02 r04 RL   )
              Ad = ( 9.615 ) ⎡500 340 100 ⎤ ⇒ Ad = 644
                             ⎣            ⎦
                    β VT (150 )( 0.026 )
c.             rπ =       =              = 15.6 kΩ
                     I CQ        0.25
              Rid = 2rπ ⇒ Rid = 31.2 kΩ

d.            R0 = r02 r04 = 500 340 ⇒ R0 = 202 kΩ

EX11.14
        80                       80
I REF = (10 )(VGS 4 − 0.5 ) = ( 0.33)(VGS 5 − 0.5 )
                            2                       2

         2                        2
VGS 4 + 2VGS 5 = 6
        1
VGS 5 = ( 6 − VGS 4 )
        2
    10                 1
        (VGS 4 − 0.5) = ( 6 − VGS 4 ) − 0.5
   0.33                2
6.0VGS 4 = 5.252 ⇒ VGS 4 = 0.8754 V
        80
I REF = (10 )( 0.8754 − 0.5 ) = 53.37 μ A
                               2

         2
Also I Q = I REF = 53.37 μ A
                       ⎛ 80 ⎞
g m = 2kn I Q = 2 ⎜ ⎟ (10 )( 53.37 ) ⇒ 0.2066 mA/V
                       ⎝ 2⎠
              1                1
ro1 = ro8 =      =                       = 1873.7 K
            λ ID             ⎛ 0.05337 ⎞
                    ( 0.02 ) ⎜         ⎟
                             ⎝    2    ⎠
Ad = g m ( ro1 ro8 ) = ( 0.2066 )(1873.7 1873.7 )
Ad = 194

EX11.15
 Ad = g m ( ro 2 RO )
400 = g m ( 500 101000 ) ⇒ g m = 0.8 mA / V
 g m = 2 K n I DQ

         ⎛ 0.08 ⎞ ⎛ W ⎞        ⎛W ⎞ ⎛W ⎞
 0.8 = 2 ⎜      ⎟ ⎜ ⎟ ( 0.1) ⇒ ⎜ ⎟ = ⎜ ⎟ = 40
         ⎝ 2 ⎠ ⎝ L ⎠1          ⎝ L ⎠1 ⎝ L ⎠ 2

EX11.16
I e 6 = (1 + β ) I b 6 = I b 7
I c 7 = β I b 7 = β (1 + β ) I b 6
Ic7
      = β (1 + β ) = (100 )(101) = 1.01× 104
Ib6

EX11.17
      r + 300
ROA = π A
        1+ β
        ⎛ β   ⎞
 I CA = ⎜     ⎟ I EA
        ⎝1+ β ⎠
        ⎛ β   ⎞⎛ 1 ⎞
      =⎜      ⎟⎜       ⎟ (1) ⇒ 9.803 μ A
        ⎝1+ β ⎠⎝ 1 + β ⎠
       (100 )( 0.026 )
rπ A =                 = 265.2 K
         0.009803
       265.2 + 300
ROA =                = 5.596 K
           101
       r + ROA
 RO = π B          10
         1+ β
          (100 )( 0.026 )
 rπ B =             = 2.626 K
          0.99
      2.626 + 5.596
 RO =               10
          101
 RO = 81.4 104 = 80.7 Ω

EX11.18
     10 − 0.7 − ( −10 )
I1 =                    = 0.6 ⇒ R1 = 32.2 K
            R1
               ⎛I       ⎞
I Q R2 = VT ln ⎜ 1      ⎟                          .
               ⎜I       ⎟
               ⎝ Q      ⎠

( 0.2 ) R2 = ( 0.026 ) ln ⎛
                              0.6 ⎞
                          ⎜       ⎟ ⇒ R2 = 143 Ω
                            ⎝ 0.2 ⎠
 I R 6 = I1 ⇒ R3 = 0
  10 = I C1 RC + VCE1 − 0.7
10.7 = ( 0.1) RC + 4 ⇒ RC = 67 K
 vo 2 = −0.7 + 4 = 3.3 V
 vE 4 = 3.3 − 1.4 = 1.9 V
          vE 4        1.9
I R4 =         ⇒ R4 =     ⇒ R4 = 3.17 K
          R4          0.6
vC 3 = vO 2 − 1.4 + vCE 4
     = 3.3 − 1.4 + 3 = 4.9 V
                         10 − 4.9
I R 5 = I R 4 = 0.6 =             ⇒ R5 = 8.5 K
                            R5
                                      4.2 − 0.7
vE 5 = 4.9 − 0.7 = 4.2 V ⇒ R6 =                 = 5.83 K
                                         0.6
          0 − ( −10 )
 R7 =                   ⇒ R7 = 2 K
              5
EX11.19
Ri 2 = rπ 3 + (1 + β ) rπ 4
         (100 )( 0.026 )
rπ 4 =                     = 4.333 K
                 0.6
                     (100 ) ( 0.026 )
                           2
         β 2VT
rπ 3 ≈           =                      = 433.3 K
          I R4             0.6
Ri 2 = 433.3 + (101)( 4.333) ⇒ Ri 2 = 871 K
Ri 3 = rπ 5 + (1 + β ⎡ R6 + rπ 6 + (1 + β ) R7 ⎤
                     ⎣                         ⎦
         (100 )( 0.026 )
rπ 5 =                     = 4.333 K
              0.6
         (100 )( 0.026 )
rπ 6 =                = 0.52 K
             5
Ri 3 = 4.333 + (101) ⎡5.83 + 0.52 + (101)( 2 ) ⎤
                     ⎣                         ⎦
Ri 3 = 21.0 MΩ
       gm                       0.1
Ad 1 =
        2
           ( RC Ri 2 ) g m = 0.026 = 3.846 mA/V
       3.846
Ad 1 =
          2
              ( 67 871) = 119.64
      ⎛I ⎞                      0.6
A2 = ⎜ R 4 ⎟ ( R5 Ri 3 ) =              (8.5 21000 ) = 98.037
      ⎝ 2VT ⎠               2 ( 0.026 )
A = Ad 1 ⋅ A2 = (119.64 )( 98.037 ) = 11, 729

EX11.20
            1                  1
 fz =            =
         2π RO CO 2π (10 × 106 )( 0.2 × 10−12 )
 f z = 79.6 kHz
             1
 fp =
         2π Req CO
Req = 51.98 Ω from Example 11.20
                 1
fp =
     2π ( 51.98 ) ( 0.2 × 10−12 )
 f p = 15.3 GHz

TYU11.1
 Vd = V1 − V2
    = 2 + 0.005sin ω t − ( 0.5 − 0.005sin ω t ) ⇒ Vd = 1.5 + 0.010sin ω t ( V )
       V1 + V2
Vcm =
          2
       2 + 0.005sin ω t + 0.5 − 0.005sin ω t
     =                                       ⇒ Vcm = 1.25 V
                         2

TYU11.2
For v1 = v2 = +4 V ⇒ Minimum vC1 = vC 2 = 4 V
                  IQ
   I C1 = I C 2 =    = 1 mA
                   2
          10 − 4
   RC =            ⇒ RC = 6 kΩ
              1
TYU11.3
From Equation (11.41)
          g R
CMRR = m O
        ⎛ ΔRC ⎞
        ⎜      ⎟
        ⎝ RC ⎠
For CMRR |dB = 75 dB ⇒ CMRR = 5623.4
                         ( 3.86 )(100 )
Then 5623.4 =                             ⋅ (10 )
                              ΔRC
Or ΔRC = 0.686 K

TYU11.4
From Equation (11.49)
        1 + 2 RO g m
CMRR =
           ⎛ Δg ⎞
         2⎜ m ⎟
           ⎝ gm ⎠
For CMRR |dB = 90 dB ⇒ CMRR = 31622.8
               ⎛ 1 + 2 (100 )( 3.86 ) ⎞
Then 31622.8 = ⎜                      ⎟ ( 3.86 )
               ⎝        2Δg m         ⎠
                              Δg m 0.0472
Or Δg m = 0.0472 mA/V or            =            = 0.0122 ⇒ 1.22%
                               gm         3.86

TYU11.5
For v1 = v2 = 5 V ⇒ min vC1 = vC 2 = 5 V
So I C1 RC = 10 − 5 = 0.25 RC ⇒ RC = 20 kΩ
         I Q RC         ( 0.5 )( 20 )
Ad =                =                 ⇒ Ad   = 96.2 Let I Q = 0.5 mA
          4VT           4 ( 0.026 )
                                                                     96.2
C M RRdB = 95 db ⇒ C M RR = 5.62 × 104 ⇒ Acm =                               ⇒ Acm = 1.71× 10−3
                                                                  5.62 × 104
                ⎛ I Q RC ⎞
                ⎜        ⎟
 Acm     =      ⎝ 2VT ⎠        = 1.71× 10−3
           ⎡ (1 + β ) I Q R0 ⎤
           ⎢1 +              ⎥
           ⎣         VT β    ⎦
             ⎡ ( 0.5 )( 20 ) ⎤
             ⎢               ⎥
             ⎣ 2 ( 0.026 ) ⎦     = 1.71× 10−3
         ⎡ ( 201)( 0.5 ) R0 ⎤
         ⎢1 +                  ⎥
         ⎣ ( 0.026 )( 200 ) ⎦
1 + 19.33R0 = 1.125 × 105 ⇒ R0                  = 5.82 × 103 kΩ
                                                = 5.82 MΩ
We have R0 = r04 ⎡1 + g m 4 ( R2 rπ 4 ) ⎤
                 ⎣                      ⎦
         VA 125
r04 =       =    = 250 kΩ
         I Q 0.5
          IQ         0.5
gm4 =           =         = 19.23 mA/V
          VT        0.026
         β VT         ( 200 )( 0.026 )
rπ 2 =            =                      = 10.4 kΩ
          IQ                 0.5
5.820 = 250 ⎡1 + g m 4 ( R2 rπ 4 ) ⎤
            ⎣                      ⎦
19.23 ( R2 rπ 2 ) = 22.28
(R   2   rπ 2 ) = 1.159 kΩ
R2 (10.4 )
              = 1.159
R2 + 10.4
R2 (10.4 − 1.16 ) = (1.16 )(10.4 ) ⇒ R2 = 1.30 kΩ
Let I1 = 1 mA
                       ⎛I           ⎞
I Q R2 − I1 R3 = VT ln ⎜ 1          ⎟
                       ⎜I           ⎟
                       ⎝ Q          ⎠

( 0.5)(1.304 ) − (1) R3 = ( 0.026 ) ln ⎛
                                                     1 ⎞
                                       ⎜                ⎟ ⇒ R3 = 0.634 kΩ
                                                  ⎝ 0.5 ⎠
If VBE ( Q3 ) ≅ 0.7 V
             10 − 0.7 − ( −10 )
R1 + R3 =                               = 19.3 ⇒ R1 ≅ 18.7 kΩ
                        1

TYU11.6
a.
 v0 = Ad vd + Acm vcm
 vd = v1 − v2 = 0.505sin ω t − 0.495sin ω t
    = 0.01sin ω t
      v +v       0.505sin ω t + 0.495sin ω t
vcm = 1 2 =
         2                       2
    = 0.50sin ω t
 v0 = ( 60 )( 0.01sin ω t ) + ( 0.5 )( 0.5sin ω t ) ⇒ v0 = 0.85sin ω t ( V )
b.
 vd = v1 − v2
    = 0.5 + 0.005sin ω t − ( 0.5 − 0.005sin ω t )
    = 0.01sin ω t
      v +v
vcm = 1 2
         2
      0.5 + 0.005sin ω t + 0.5 − 0.005sin ω t
    =
                            2
    = 0.5
 v0 = ( 60 )( 0.01sin ω t ) + ( 0.5 )( 0.5 ) ⇒ v0 = 0.25 + 0.6sin ω t ( V )

TYU11.7
                                  IQ / 2        1
a.           I B1 = I B 2 =                =       ⇒ I B1 = I B 2 = 6.62 μ A
                              (1 + β )         151
                      β VT      (150 )( 0.026 )
b.            rπ =            =                      = 3.9 kΩ
                      I CQ                 1
             Rid = 2rπ = 2 ( 3.9 ) = 7.8 kΩ
                      Vd 10sin ω t ( mV )
              Ib =        =               ⇒ I b = 1.28sin ω t ( μ A )
                      Rid   7.8 kΩ
c.           Ricm ≅ 2 (1 + β ) R0 = 2 (151)( 50 ) ⇒ 15.1 MΩ
                      Vcm   3sin ω t
               Ib =       =          ⇒ I b = 0.199sin ω t ( μ A )
                      Ricm 15.1 MΩ
TYU11.8
Ad = g f RD
8 = g f ( 4 ) ⇒ g f ( max ) = 2 mA / V

                      Kn IQ
g f ( max ) =
                        2
                 ⎛ 4⎞
( 2)
       2
           = K n ⎜ ⎟ ⇒ K n = 2 mA / V 2
                 ⎝ 2⎠

TYU11.9
From Example 11-10, I Q = 0.587 mA
             Kn2 IQ            ( 0.1)( 0.587 )
Ad =                  ⋅ RD =        ⋅ (16) ⇒ Ad = 2.74
               2            2
                1            1
For M 4 , R0 =       =                 ⇒ R0 = 85.2 kΩ
               λ4 I Q ( 0.02)( 0.587 )
g m = 2 K n (VGS 2 − VTN ) = 2 ( 0.1)( 2.71 − 1)
= 0.342 mA/V
              − g m RD      − ( 0.342)(16)
Acm =                   =                     ⇒ Acm = −0.0923
            1 + 2 g m R0 1 + 2 ( 0.342)(85.2)
                    ⎛ 2.74 ⎞
C M RRdB = 20 log10 ⎜        ⎟ ⇒ C M RRdB = 29.4 dB
                    ⎝ 0.0923 ⎠

TYU11.10
          1
CMRR = ⎡1 + 2 2 K n I Q ⋅ Ro ⎤
          2⎣                   ⎦
CMRRdB = 60 dB ⇒ C M RR = 1000
       1
1000 = ⎡1 + 2 2 ( 0.1)( 0.2 ) ⋅ R0 ⎤
       2⎣                          ⎦
2000 = 1 + 0.4 R0 ⇒ R0 ≅ 5 MΩ

TYU11.11
Ro = ro 4 + ro 2 (1 + g m 4 ro 4 )
Assume I REF = I O = 100 μ A and λ = 0.01 V −1
                    1          1
ro 2 = ro 4 =           =              ⇒1 MΩ
                   λ I D ( 0.01)( 0.1)
Let K n ( all devices ) = 0.1 mA / V 2
Then g m 4 = 2 K n I D = 2   ( 0.1)( 0.1) = 0.2 mA / V
Ro = 1000 + 1000 (1 + ( 0.2 )(1000 ) ) ⇒ 202 M Ω
                               ID         0.05
Now VGS1 = VGS 2 =                + VTN =      + 1 = 1.707 V
                               Kn          0.1
VDS1 ( sat ) = VGS 1 − VTN = 1.707 − 1 = 0.707 V
So vo1 ( min ) = +4 − VGS 1 + VDS 1 ( sat ) = 4 − 1.707 + 0.707
vo1 ( min ) = 3 V = 10 − I D RD = 10 − ( 0.05 ) RD ⇒ RD = 140 kΩ
For a one-sided output, the differential gain is:
1
Ad =       g m1 RD where g m1 = 2 K n I D
         2
     =2     ( 0.1)( 0.05) = 0.1414 mA / V
     1
Ad =    ( 0.1414 )(140 ) ⇒ Ad = 9.90
      2
The common-mode gain is:
            2 K n I Q ⋅ RD       2 ( 0.1)( 0.1) ⋅ (140 )
Acm =                      =                                 ⇒ Acm = 0.0003465
      1 + 2 2 K n I Q ⋅ Ro 1 + 2 2 ( 0.1)( 0.1) ⋅ ( 202000 )
                                        Ad
Then CMRRdB = 20 log10                      ⇒ CMRRdB = 89.1 dB
                                        Acm

TYU11.12
                              IQ                0.5
a.             I B5 =                   =               ⇒ 15.3 nA
                           β (1 + β )       (180 )(181)
So I 0 = 15.3 nA
b.       For a balanced condition
VEC 4 = VEC 3 = VEB 3 + VEB 5 ⇒ VEC 4 = 1.4 V
VCE 2 = VC 2 − VE 2 = (10 − 1.4 ) − ( −0.7 ) ⇒ VCE 2 = 9.3 V

TYU11.13
Ad = 2 g f ( r02 r04 )
          IQ               0.2
gf =               =               = 1.923 mA/V
         4VT           4 ( 0.026 )
         VA 2 120
 r02 =        =    = 1200 kΩ
         I C 2 0.1
         VA 4 80
 r04 =        =    = 800 kΩ
         I C 4 0.1
Ad = 2 (1.923) (1200 800 ) ⇒ Ad = 1846

TYU11.14
 P = ( I Q + I REF ) ( 5 − ( −5 ) )
10 = ( 0.1 + I REF )(10 ) ⇒ I REF = 0.9 mA
         5 − 0.7 − ( −5 )           9.3
R1 =                           =        ⇒ R1 = 10.3 k Ω
                   I REF            0.9
               ⎛I ⎞
I Q RE = VT ln ⎜ REF ⎟
               ⎜ I ⎟
               ⎝ Q ⎠
       0.026 ⎛ 0.9 ⎞
RE =         ln ⎜     ⎟ ⇒ RE = 0.571 kΩ
        0.1     ⎝ 0.1 ⎠
         VA 2 120
ro 2 =        =     ⇒ 2.4 M Ω
         I C 2 0.05
         VA 4   80
ro 4 =        =     ⇒ 1.6 M Ω
         I C 4 0.05
          0.05
gm =           = 1.923 mA / V
         0.026
               (                )              (
 Ad = g m ro 2 ro 4 RL = (1.923) 2400 1600 90 ⇒ Ad = 158      )
TYU11.15
a.
R0 = r02 r04
      120
r02 =     = 1.2 MΩ
      0.1
      80
r04 =     = 0.8 MΩ
      0.1
R0 = 1.2 0.8 ⇒ R0 = 0.48 MΩ
b.
 Ad ( open circuit ) = 2 g f ( r02 r04 )

                                (
Ad ( with load ) = 2 g f r02 r04 RL         )
                                1
For Ad ( with load ) =            Ad ( open circuit ) ⇒ RL = ( r02 r04 ) ⇒ RL = 0.48 MΩ
                                2

TYU11.16
       2Kn       1
Ad = 2      ⋅
        I Q ( λ2 + λ4 )

           2 ( 0.1)                 1
    =2                ⋅                     ⇒ Ad = 113
             0.1          ( 0.01 + 0.015)

TYU11.17
                                         75
For the MOSFET, I D = 25 −                  = 24.26 μ A
                                        101
g m1 = 2 K n I D = 2           ( 20 )( 24.26 ) = 44.05 μ A/V
For the Bipolar, I E = 100 − 25 = 75 μ A
        ⎛ 100 ⎞
  IC = ⎜      ⎟ ( 75 ) = 74.26 μ A
        ⎝ 101 ⎠
        (100 )( 0.026 )
 rπ 2 =                   = 35.0 K
           0.07426
        0.07426
gm2 =              = 2.856 mA/V
          0.026
        g (1 + g m 2 rπ ) ( 44.05 ) ⎡1 + ( 2.856 )( 35 ) ⎤
                                       ⎣                 ⎦
 g m = m1
   C
                           =
           1 + g m1rπ            1 + ( 0.04405 )( 35 )
 g m = 1.75 mA/V
   C




TYU11.18
From Figure 11.43
      80
r04 =     = 160 kΩ
      0.5
R0 ≅ β r04 = (150 )(160 ) kΩ ⇒ R0 = 24 MΩ
From Figure 11.44
        1           1
 r06 =      =                  ⇒ r06 = 160 kΩ
       λ I D ( 0.0125 )( 0.5 )
 0.5 = 0.5 (VGS − 1) ⇒ VGS = 2 V
                           2


g m 6 = 2 K n (VGS − VTN ) = 2 ( 0.5 )( 2 − 1) = 1 mA / V
  r04 = 160 kΩ
  R0 = ( g m 6 )( r06 )( β r04 ) = (1)(160 )(150 )(160 ) ⇒ R0 = 3.840 MΩ
TYU11.19
From Equation (11.126)
       2 (1 + β ) β VT 2 (121)(120 )( 0.026 )
  Ri =                =                       ⇒ Ri = 1.51 MΩ
             IQ                 0.5
           β VT           (120 )( 0.026 )
 rπ 11 =              =                     = 6.24 kΩ
            IQ                 0.5
   ′
  RE = rπ 11 R3 = 6.24 0.1 = 0.0984 kΩ
           IQ          0.5
g m11 =           =         = 19.23 mA/V
           VT         0.026
           VA 120
 r011 =       =    = 240 kΩ
           I Q 0.5
Then RC11 = r011 (1 + g m11 RE )
                             ′
                  = 240 ⎡1 + (19.23)( 0.0984 ) ⎤
                        ⎣                      ⎦
                  = 694 kΩ
           β VT       (120 )( 0.026 )
 rπ 8 =           =                     = 1.56 kΩ
           IC 8                2
Rb8 = rπ 8 + (1 + β ) R4 = 1.56 + (121)( 5 )
     = 607 kΩ
Then RL 7 = RC11 Rb8 = 694 607 = 324 kΩ
            ⎛ IQ ⎞         ⎡ 0.5 ⎤
Then Av = ⎜       ⎟ RL 7 = ⎢             ⎥ ( 324 ) ⇒ Av = 3115
            ⎝ 2VT ⎠        ⎢ 2 ( 0.026 ) ⎥
                           ⎣             ⎦
           ⎛r +Z ⎞
R0 = R4 || ⎜ π 8    ⎟
           ⎝ 1+ β ⎠
Z = RC11 RC 7
      V    120
RC 7 = A =     = 240 kΩ
      I Q 0.5
Z = 694 240 = 178 kΩ
          ⎛ 1.56 + 178 ⎞
R0 = 5 || ⎜            ⎟ = 5 1.48 ⇒ R0 = 1.14 kΩ
          ⎝ 121 ⎠

TYU11.20
      ⎛ IQ         ⎞
 Av = ⎜            ⎟ RL 7
      ⎝ 2VT        ⎠
      ⎛ 0.5 ⎞
      ⎜ 2 ( 0.026 ) ⎟ RL 7 ⇒ RL 7 = 104 kΩ
103 = ⎜             ⎟
      ⎝             ⎠

Más contenido relacionado

La actualidad más candente

Influence line for determinate structure(with detailed calculation)
Influence line for determinate structure(with detailed calculation)Influence line for determinate structure(with detailed calculation)
Influence line for determinate structure(with detailed calculation)Md. Ragib Nur Alam
 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayanbrandwin marcelo lavado
 
Power power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdfPower power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdfGabrielRodriguez171709
 
14.5.7 Example 1 Part 4
14.5.7 Example 1 Part 414.5.7 Example 1 Part 4
14.5.7 Example 1 Part 4Talia Carbis
 
Easy labs exp4-beta meter
Easy labs exp4-beta meterEasy labs exp4-beta meter
Easy labs exp4-beta metermrinal mahato
 
Cmos digital integrated circuits analysis and design 4th edition kang solutio...
Cmos digital integrated circuits analysis and design 4th edition kang solutio...Cmos digital integrated circuits analysis and design 4th edition kang solutio...
Cmos digital integrated circuits analysis and design 4th edition kang solutio...vem2001
 
Solutions manual for cmos digital integrated circuits analysis and design 4th...
Solutions manual for cmos digital integrated circuits analysis and design 4th...Solutions manual for cmos digital integrated circuits analysis and design 4th...
Solutions manual for cmos digital integrated circuits analysis and design 4th...Blitzer567
 
Original IGBT AOTF15B60D2 TF15B60D2 TF15B60 15B60 TO-220F IGBT 600V 15A New
Original IGBT AOTF15B60D2 TF15B60D2 TF15B60 15B60 TO-220F IGBT 600V 15A NewOriginal IGBT AOTF15B60D2 TF15B60D2 TF15B60 15B60 TO-220F IGBT 600V 15A New
Original IGBT AOTF15B60D2 TF15B60D2 TF15B60 15B60 TO-220F IGBT 600V 15A Newauthelectroniccom
 
UGC NET Model questions Engineering science
UGC NET Model questions Engineering scienceUGC NET Model questions Engineering science
UGC NET Model questions Engineering scienceJithesh V Nair
 
Solucionario circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6edSolucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario circuitos eléctricos - dorf, svoboda - 6edgaliap22
 
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 New
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 NewOriginal IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 New
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 NewAUTHELECTRONIC
 
Original IGBT IRG4BC20KD-S G4BC20KD 600V 9A TO-263 New
Original IGBT IRG4BC20KD-S G4BC20KD 600V 9A TO-263 NewOriginal IGBT IRG4BC20KD-S G4BC20KD 600V 9A TO-263 New
Original IGBT IRG4BC20KD-S G4BC20KD 600V 9A TO-263 NewAUTHELECTRONIC
 
Two-stage CE amplifier
Two-stage CE amplifier Two-stage CE amplifier
Two-stage CE amplifier mrinal mahato
 

La actualidad más candente (20)

Ch06p
Ch06pCh06p
Ch06p
 
Ch05p
Ch05pCh05p
Ch05p
 
Influence line for determinate structure(with detailed calculation)
Influence line for determinate structure(with detailed calculation)Influence line for determinate structure(with detailed calculation)
Influence line for determinate structure(with detailed calculation)
 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan
 
Power power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdfPower power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdf
 
Chapter 04 is
Chapter 04 isChapter 04 is
Chapter 04 is
 
14.5.7 Example 1 Part 4
14.5.7 Example 1 Part 414.5.7 Example 1 Part 4
14.5.7 Example 1 Part 4
 
Easy labs exp4-beta meter
Easy labs exp4-beta meterEasy labs exp4-beta meter
Easy labs exp4-beta meter
 
Bab 12 mekanika material
Bab 12 mekanika materialBab 12 mekanika material
Bab 12 mekanika material
 
Cmos digital integrated circuits analysis and design 4th edition kang solutio...
Cmos digital integrated circuits analysis and design 4th edition kang solutio...Cmos digital integrated circuits analysis and design 4th edition kang solutio...
Cmos digital integrated circuits analysis and design 4th edition kang solutio...
 
Solutions manual for cmos digital integrated circuits analysis and design 4th...
Solutions manual for cmos digital integrated circuits analysis and design 4th...Solutions manual for cmos digital integrated circuits analysis and design 4th...
Solutions manual for cmos digital integrated circuits analysis and design 4th...
 
Original IGBT AOTF15B60D2 TF15B60D2 TF15B60 15B60 TO-220F IGBT 600V 15A New
Original IGBT AOTF15B60D2 TF15B60D2 TF15B60 15B60 TO-220F IGBT 600V 15A NewOriginal IGBT AOTF15B60D2 TF15B60D2 TF15B60 15B60 TO-220F IGBT 600V 15A New
Original IGBT AOTF15B60D2 TF15B60D2 TF15B60 15B60 TO-220F IGBT 600V 15A New
 
UGC NET Model questions Engineering science
UGC NET Model questions Engineering scienceUGC NET Model questions Engineering science
UGC NET Model questions Engineering science
 
Solucionario circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6edSolucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario circuitos eléctricos - dorf, svoboda - 6ed
 
ECNG 3013 E
ECNG 3013 EECNG 3013 E
ECNG 3013 E
 
Asmm portal by hafiz
Asmm portal by hafizAsmm portal by hafiz
Asmm portal by hafiz
 
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 New
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 NewOriginal IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 New
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 New
 
Original IGBT IRG4BC20KD-S G4BC20KD 600V 9A TO-263 New
Original IGBT IRG4BC20KD-S G4BC20KD 600V 9A TO-263 NewOriginal IGBT IRG4BC20KD-S G4BC20KD 600V 9A TO-263 New
Original IGBT IRG4BC20KD-S G4BC20KD 600V 9A TO-263 New
 
Two-stage CE amplifier
Two-stage CE amplifier Two-stage CE amplifier
Two-stage CE amplifier
 
MOSFET Operation
MOSFET OperationMOSFET Operation
MOSFET Operation
 

Similar a Ch11p (20)

Ch10p
Ch10pCh10p
Ch10p
 
Ch15p
Ch15pCh15p
Ch15p
 
Ch16p
Ch16pCh16p
Ch16p
 
Ch09p
Ch09pCh09p
Ch09p
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
 
Ch03s
Ch03sCh03s
Ch03s
 
Ch14p
Ch14pCh14p
Ch14p
 
Ch02p
Ch02pCh02p
Ch02p
 
Ch13p
Ch13pCh13p
Ch13p
 
Ch13s
Ch13sCh13s
Ch13s
 
Ch12p
Ch12pCh12p
Ch12p
 
Ch03p
Ch03pCh03p
Ch03p
 
Ch09s
Ch09sCh09s
Ch09s
 
Electronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfElectronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdf
 
Electronic devices and circuit theory 11th copy
Electronic devices and circuit theory 11th   copyElectronic devices and circuit theory 11th   copy
Electronic devices and circuit theory 11th copy
 
Electronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th edElectronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th ed
 
Ch01p
Ch01pCh01p
Ch01p
 
Ch02s
Ch02sCh02s
Ch02s
 
ECNG 3013 D
ECNG 3013 DECNG 3013 D
ECNG 3013 D
 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...
 

Más de Bilal Sarwar (10)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
 
Ramey soft
Ramey softRamey soft
Ramey soft
 
Ch15s
Ch15sCh15s
Ch15s
 
Ch14s
Ch14sCh14s
Ch14s
 
Ch12s
Ch12sCh12s
Ch12s
 
Ch10s
Ch10sCh10s
Ch10s
 
Ch07s
Ch07sCh07s
Ch07s
 
Ch07p
Ch07pCh07p
Ch07p
 
Ch05s
Ch05sCh05s
Ch05s
 

Último

🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 

Último (20)

🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 

Ch11p

  • 1. Chapter 11 Exercise Solutions EX11.1 vE = −VBE ( on ) ⇒ vE = −0.7 V I C1 = I C 2 = 0.5 mA vC1 = vC 2 = 10 − ( 0.5 )(10 ) ⇒ vC1 = vC 2 = 5 V EX11.2 iC 2 1 = = 0.99 IQ ⎛ vd ⎞ 1 + exp ⎜ ⎟ ⎝ VT ⎠ ⎛v ⎞ 1 1 + exp ⎜ d ⎟ = ⎝ VT ⎠ 0.99 ⎛v ⎞ 1 exp ⎜ d ⎟= −1 ⎝ VT ⎠ 0.99 ⎡ 1 ⎤ vd = VT ln ⎢ − 1⎥ ⇒ vd = −119.5 mV ⎣ 0.99 ⎦ EX11.3 a. v1 = v2 = 0 ⇒ vE = 0.7 V ΔVRC = ( 0.25 )( 8 ) = 2 V ⇒ vC1 = vC 2 = −3 V ⇒ vEC1 = 3.7 V b. v1 = v2 = 2.5 V ⇒ vE = 3.2 V ⇒ vEC1 = 6.2 V c. v1 = v2 = −2.5 V ⇒ vE = −1.8 V ⇒ vEC1 = 1.2 V EX11.4 Let I Q = 1 mA, then I CQ1 = I CQ 2 = 0.5 mA 0.5 g m1 = g m 2 = = 19.23 mA / V 0.026 v 1 At vC 2 , Ad = c 2 = g m RC 2 vd 2 1 So, 150 = (19.23) RC 2 ⇒ RC 2 = 15.6 k Ω 2 v 1 At vC1 , Ad = c1 = − g m RC1 vd 2 1 So, −100 = − (19.23) RC1 ⇒ RC1 = 10.4 k Ω 2 If V + = +10 V and V − = −10 V , dc biasing is OK. EX11.5 ⎛ I Q RC ⎞ ⎡ ( 0.8 )(12 ) ⎤ −⎜ ⎟ −⎢ ⎥ Acm = ⎝ 2VT ⎠ = ⎣ 2 ( 0.026 ) ⎦ = −0.0594 (1 + β ) IQ RO 1+ (101)( 0.8 )(100 ) 1+ VT β ( 0.026 )(100 ) vo = Acm vcm = ( −0.0594 )(1sin ω t )( mV ) = −59.4sin ω t ( μV ) EX11.6
  • 2. (a) vd = 40 μV , vcm = 0 vo = ( 50 )( 40 ) ⇒ 2.0 mV (b) vd = 40 μV vcm = 200 μV Assuming Acm > 0 50 60 = 20 log10 Acm Acm = 0.05 vo = ( 50 )( 40 ) + ( 0.05 )( 200 ) vo = 2.010 mV EX11.7 I Q RC a. Diff. Gain Ad = 4VT For v1 = v2 = 5 V ⇒ Minimum collector voltage IQ vC 2 = 5 V ⇒ ⋅ RC = 15 − 5 = 10 V or I Q RC = 20 V for max. Ad 2 20 Then Ad = ⇒ Ad ( max ) = 192 2 ( 0.026 ) b. If I Q = 0.5 mA, RC = 40 kΩ ⎛ I Q RC ⎞ −⎜ ⎟ Acm = ⎝ 2VT ⎠ ⎡ (1 + β ) I Q R0 ⎤ ⎢1 + ⎥ ⎣ VT β ⎦ Then ⎛ 20 ⎞ −⎜ ⎜ 2 ( 0.026 ) ⎟ ⎟ Acm = ⎝ ⎠ ⇒ Acm = −0.199 ⎡ ( 201)( 0.5 )(100 ) ⎤ ⎢1 + ⎣ ( 0.026 )( 200 ) ⎥ ⎦ ⎛ 192 ⎞ and C M RRdB = 20 log10 ⎜ ⎟ ⇒ C M RRdB = 59.7 dB ⎝ 0.199 ⎠ EX11.8 Rid = 2 ⎡ rπ + (1 + β ) RE ⎤ ⎣ ⎦ β VT (100 )( 0.026 ) rπ = = = 10.4 K I CQ 0.25 Rid = 2 ⎡10.4 + (101)( 0.5 ) ⎤ = 122 K ⎣ ⎦ EX11.9 g m RC Ad = 2 (1 + g m RE ) ( 9.62 )(10 ) 10 = 2 ⎡1 + ( 9.62 ) RE ⎤ ⎣ ⎦ 1 + ( 9.62 ) RE = 4.81 ⇒ RE = 0.396 K Rid = 2 ⎡ rπ + (1 + β ) RE ⎤ = 2 ⎡10.4 + (101)( 0.396 ) ⎤ ⎣ ⎦ ⎣ ⎦ Rid = 100.8 K
  • 3. EX11.10 10 − VGS 4 = K n 3 (VGS 4 − VTN ) 2 I1 = R1 10 − VGS 4 = ( 0.1)( 80 )(VGS 4 − 0.8 ) 2 10 − VGS 4 = 8 (VGS 4 − 1.6VGS 4 + 0.64 ) 2 2 8VGS 4 − 11.8VGS 4 − 4.88 = 0 (11.8) + 4 ( 8)( 4.88) 2 11.8 ± VGS 4 = = 1.81 V 2 (8) 10 − 1.81 I1 = I Q = = 0.102 mA 80 0.102 I D1 = ID2 = = 0.0512 mA 2 = K n1 (VGS 1 − VTN ) 2 0.0512 = 0.050 (VGS 1 − 0.8 ) ⇒ VGS 1 = 1.81 V 2 v01 = v02 = 5 − ( 0.0512 )( 40 ) = 2.95 V Max vcm : VDS 1 ( sat ) = VGS1 − VTN = 1.81 − 0.8 = 1.01 V vcm ( max ) = v01 − VDS 1 ( sat ) + VGS 1 = 2.95 − 1.01 + 1.81 vcm ( max ) = 3.75 V Min vcm : VDS 4 ( sat ) = VGS 4 − VTN = 1.81 − 0.8 = 1.01 V vcm ( min ) = VGS 1 + VDS 4 ( sat ) − 5 = 1.81 + 1.01 − 5 vcm ( min ) = −2.18 V −2.18 ≤ vcm ≤ 3.75 V EX11.11 K n IQ (1)( 2 ) g f ( max ) = = ⇒ g f ( max ) = 1 mA / V 2 ( 2) Ad = g f RD = (1)( 5 ) ⇒ Ad = 5 EX11.12 iD1 1 Kn ⎛ K ⎞ 2 = + ⋅ vd 1 − ⎜ n ⎟ vd IQ 2 2IQ ⎜ 2 IQ ⎟ ⎝ ⎠ Using the parameters in Example 11.11, K n = 0.5 mA / V 2 , I Q = 1 mA, then iD1 1 0.5 ⎛ 0.5 ⎞ 2 = 0.90 = + ⋅ vd 1 − ⎜ ⎜ 2 (1) ⎟ vd ⎟ IQ 2 2 (1) ⎝ ⎠ By trial and error, vd = 0.894 V EX11.13 a.
  • 4. IQ 0.5 gm = = = 9.615 mA/V 2VT 2 ( 0.026 ) VA 2 125 r02 = = = 500 kΩ I C 2 0.25 VA 4 85 r04 = = = 340 kΩ I C 4 0.25 Ad = g m ( r02 r04 ) = ( 9.615 ) ( 500 340 ) ⇒ Ad = 1946 b. ( Ad = g m r02 r04 RL ) Ad = ( 9.615 ) ⎡500 340 100 ⎤ ⇒ Ad = 644 ⎣ ⎦ β VT (150 )( 0.026 ) c. rπ = = = 15.6 kΩ I CQ 0.25 Rid = 2rπ ⇒ Rid = 31.2 kΩ d. R0 = r02 r04 = 500 340 ⇒ R0 = 202 kΩ EX11.14 80 80 I REF = (10 )(VGS 4 − 0.5 ) = ( 0.33)(VGS 5 − 0.5 ) 2 2 2 2 VGS 4 + 2VGS 5 = 6 1 VGS 5 = ( 6 − VGS 4 ) 2 10 1 (VGS 4 − 0.5) = ( 6 − VGS 4 ) − 0.5 0.33 2 6.0VGS 4 = 5.252 ⇒ VGS 4 = 0.8754 V 80 I REF = (10 )( 0.8754 − 0.5 ) = 53.37 μ A 2 2 Also I Q = I REF = 53.37 μ A ⎛ 80 ⎞ g m = 2kn I Q = 2 ⎜ ⎟ (10 )( 53.37 ) ⇒ 0.2066 mA/V ⎝ 2⎠ 1 1 ro1 = ro8 = = = 1873.7 K λ ID ⎛ 0.05337 ⎞ ( 0.02 ) ⎜ ⎟ ⎝ 2 ⎠ Ad = g m ( ro1 ro8 ) = ( 0.2066 )(1873.7 1873.7 ) Ad = 194 EX11.15 Ad = g m ( ro 2 RO ) 400 = g m ( 500 101000 ) ⇒ g m = 0.8 mA / V g m = 2 K n I DQ ⎛ 0.08 ⎞ ⎛ W ⎞ ⎛W ⎞ ⎛W ⎞ 0.8 = 2 ⎜ ⎟ ⎜ ⎟ ( 0.1) ⇒ ⎜ ⎟ = ⎜ ⎟ = 40 ⎝ 2 ⎠ ⎝ L ⎠1 ⎝ L ⎠1 ⎝ L ⎠ 2 EX11.16
  • 5. I e 6 = (1 + β ) I b 6 = I b 7 I c 7 = β I b 7 = β (1 + β ) I b 6 Ic7 = β (1 + β ) = (100 )(101) = 1.01× 104 Ib6 EX11.17 r + 300 ROA = π A 1+ β ⎛ β ⎞ I CA = ⎜ ⎟ I EA ⎝1+ β ⎠ ⎛ β ⎞⎛ 1 ⎞ =⎜ ⎟⎜ ⎟ (1) ⇒ 9.803 μ A ⎝1+ β ⎠⎝ 1 + β ⎠ (100 )( 0.026 ) rπ A = = 265.2 K 0.009803 265.2 + 300 ROA = = 5.596 K 101 r + ROA RO = π B 10 1+ β (100 )( 0.026 ) rπ B = = 2.626 K 0.99 2.626 + 5.596 RO = 10 101 RO = 81.4 104 = 80.7 Ω EX11.18 10 − 0.7 − ( −10 ) I1 = = 0.6 ⇒ R1 = 32.2 K R1 ⎛I ⎞ I Q R2 = VT ln ⎜ 1 ⎟ . ⎜I ⎟ ⎝ Q ⎠ ( 0.2 ) R2 = ( 0.026 ) ln ⎛ 0.6 ⎞ ⎜ ⎟ ⇒ R2 = 143 Ω ⎝ 0.2 ⎠ I R 6 = I1 ⇒ R3 = 0 10 = I C1 RC + VCE1 − 0.7 10.7 = ( 0.1) RC + 4 ⇒ RC = 67 K vo 2 = −0.7 + 4 = 3.3 V vE 4 = 3.3 − 1.4 = 1.9 V vE 4 1.9 I R4 = ⇒ R4 = ⇒ R4 = 3.17 K R4 0.6 vC 3 = vO 2 − 1.4 + vCE 4 = 3.3 − 1.4 + 3 = 4.9 V 10 − 4.9 I R 5 = I R 4 = 0.6 = ⇒ R5 = 8.5 K R5 4.2 − 0.7 vE 5 = 4.9 − 0.7 = 4.2 V ⇒ R6 = = 5.83 K 0.6 0 − ( −10 ) R7 = ⇒ R7 = 2 K 5
  • 6. EX11.19 Ri 2 = rπ 3 + (1 + β ) rπ 4 (100 )( 0.026 ) rπ 4 = = 4.333 K 0.6 (100 ) ( 0.026 ) 2 β 2VT rπ 3 ≈ = = 433.3 K I R4 0.6 Ri 2 = 433.3 + (101)( 4.333) ⇒ Ri 2 = 871 K Ri 3 = rπ 5 + (1 + β ⎡ R6 + rπ 6 + (1 + β ) R7 ⎤ ⎣ ⎦ (100 )( 0.026 ) rπ 5 = = 4.333 K 0.6 (100 )( 0.026 ) rπ 6 = = 0.52 K 5 Ri 3 = 4.333 + (101) ⎡5.83 + 0.52 + (101)( 2 ) ⎤ ⎣ ⎦ Ri 3 = 21.0 MΩ gm 0.1 Ad 1 = 2 ( RC Ri 2 ) g m = 0.026 = 3.846 mA/V 3.846 Ad 1 = 2 ( 67 871) = 119.64 ⎛I ⎞ 0.6 A2 = ⎜ R 4 ⎟ ( R5 Ri 3 ) = (8.5 21000 ) = 98.037 ⎝ 2VT ⎠ 2 ( 0.026 ) A = Ad 1 ⋅ A2 = (119.64 )( 98.037 ) = 11, 729 EX11.20 1 1 fz = = 2π RO CO 2π (10 × 106 )( 0.2 × 10−12 ) f z = 79.6 kHz 1 fp = 2π Req CO Req = 51.98 Ω from Example 11.20 1 fp = 2π ( 51.98 ) ( 0.2 × 10−12 ) f p = 15.3 GHz TYU11.1 Vd = V1 − V2 = 2 + 0.005sin ω t − ( 0.5 − 0.005sin ω t ) ⇒ Vd = 1.5 + 0.010sin ω t ( V ) V1 + V2 Vcm = 2 2 + 0.005sin ω t + 0.5 − 0.005sin ω t = ⇒ Vcm = 1.25 V 2 TYU11.2 For v1 = v2 = +4 V ⇒ Minimum vC1 = vC 2 = 4 V IQ I C1 = I C 2 = = 1 mA 2 10 − 4 RC = ⇒ RC = 6 kΩ 1
  • 7. TYU11.3 From Equation (11.41) g R CMRR = m O ⎛ ΔRC ⎞ ⎜ ⎟ ⎝ RC ⎠ For CMRR |dB = 75 dB ⇒ CMRR = 5623.4 ( 3.86 )(100 ) Then 5623.4 = ⋅ (10 ) ΔRC Or ΔRC = 0.686 K TYU11.4 From Equation (11.49) 1 + 2 RO g m CMRR = ⎛ Δg ⎞ 2⎜ m ⎟ ⎝ gm ⎠ For CMRR |dB = 90 dB ⇒ CMRR = 31622.8 ⎛ 1 + 2 (100 )( 3.86 ) ⎞ Then 31622.8 = ⎜ ⎟ ( 3.86 ) ⎝ 2Δg m ⎠ Δg m 0.0472 Or Δg m = 0.0472 mA/V or = = 0.0122 ⇒ 1.22% gm 3.86 TYU11.5 For v1 = v2 = 5 V ⇒ min vC1 = vC 2 = 5 V So I C1 RC = 10 − 5 = 0.25 RC ⇒ RC = 20 kΩ I Q RC ( 0.5 )( 20 ) Ad = = ⇒ Ad = 96.2 Let I Q = 0.5 mA 4VT 4 ( 0.026 ) 96.2 C M RRdB = 95 db ⇒ C M RR = 5.62 × 104 ⇒ Acm = ⇒ Acm = 1.71× 10−3 5.62 × 104 ⎛ I Q RC ⎞ ⎜ ⎟ Acm = ⎝ 2VT ⎠ = 1.71× 10−3 ⎡ (1 + β ) I Q R0 ⎤ ⎢1 + ⎥ ⎣ VT β ⎦ ⎡ ( 0.5 )( 20 ) ⎤ ⎢ ⎥ ⎣ 2 ( 0.026 ) ⎦ = 1.71× 10−3 ⎡ ( 201)( 0.5 ) R0 ⎤ ⎢1 + ⎥ ⎣ ( 0.026 )( 200 ) ⎦ 1 + 19.33R0 = 1.125 × 105 ⇒ R0 = 5.82 × 103 kΩ = 5.82 MΩ We have R0 = r04 ⎡1 + g m 4 ( R2 rπ 4 ) ⎤ ⎣ ⎦ VA 125 r04 = = = 250 kΩ I Q 0.5 IQ 0.5 gm4 = = = 19.23 mA/V VT 0.026 β VT ( 200 )( 0.026 ) rπ 2 = = = 10.4 kΩ IQ 0.5
  • 8. 5.820 = 250 ⎡1 + g m 4 ( R2 rπ 4 ) ⎤ ⎣ ⎦ 19.23 ( R2 rπ 2 ) = 22.28 (R 2 rπ 2 ) = 1.159 kΩ R2 (10.4 ) = 1.159 R2 + 10.4 R2 (10.4 − 1.16 ) = (1.16 )(10.4 ) ⇒ R2 = 1.30 kΩ Let I1 = 1 mA ⎛I ⎞ I Q R2 − I1 R3 = VT ln ⎜ 1 ⎟ ⎜I ⎟ ⎝ Q ⎠ ( 0.5)(1.304 ) − (1) R3 = ( 0.026 ) ln ⎛ 1 ⎞ ⎜ ⎟ ⇒ R3 = 0.634 kΩ ⎝ 0.5 ⎠ If VBE ( Q3 ) ≅ 0.7 V 10 − 0.7 − ( −10 ) R1 + R3 = = 19.3 ⇒ R1 ≅ 18.7 kΩ 1 TYU11.6 a. v0 = Ad vd + Acm vcm vd = v1 − v2 = 0.505sin ω t − 0.495sin ω t = 0.01sin ω t v +v 0.505sin ω t + 0.495sin ω t vcm = 1 2 = 2 2 = 0.50sin ω t v0 = ( 60 )( 0.01sin ω t ) + ( 0.5 )( 0.5sin ω t ) ⇒ v0 = 0.85sin ω t ( V ) b. vd = v1 − v2 = 0.5 + 0.005sin ω t − ( 0.5 − 0.005sin ω t ) = 0.01sin ω t v +v vcm = 1 2 2 0.5 + 0.005sin ω t + 0.5 − 0.005sin ω t = 2 = 0.5 v0 = ( 60 )( 0.01sin ω t ) + ( 0.5 )( 0.5 ) ⇒ v0 = 0.25 + 0.6sin ω t ( V ) TYU11.7 IQ / 2 1 a. I B1 = I B 2 = = ⇒ I B1 = I B 2 = 6.62 μ A (1 + β ) 151 β VT (150 )( 0.026 ) b. rπ = = = 3.9 kΩ I CQ 1 Rid = 2rπ = 2 ( 3.9 ) = 7.8 kΩ Vd 10sin ω t ( mV ) Ib = = ⇒ I b = 1.28sin ω t ( μ A ) Rid 7.8 kΩ c. Ricm ≅ 2 (1 + β ) R0 = 2 (151)( 50 ) ⇒ 15.1 MΩ Vcm 3sin ω t Ib = = ⇒ I b = 0.199sin ω t ( μ A ) Ricm 15.1 MΩ
  • 9. TYU11.8 Ad = g f RD 8 = g f ( 4 ) ⇒ g f ( max ) = 2 mA / V Kn IQ g f ( max ) = 2 ⎛ 4⎞ ( 2) 2 = K n ⎜ ⎟ ⇒ K n = 2 mA / V 2 ⎝ 2⎠ TYU11.9 From Example 11-10, I Q = 0.587 mA Kn2 IQ ( 0.1)( 0.587 ) Ad = ⋅ RD = ⋅ (16) ⇒ Ad = 2.74 2 2 1 1 For M 4 , R0 = = ⇒ R0 = 85.2 kΩ λ4 I Q ( 0.02)( 0.587 ) g m = 2 K n (VGS 2 − VTN ) = 2 ( 0.1)( 2.71 − 1) = 0.342 mA/V − g m RD − ( 0.342)(16) Acm = = ⇒ Acm = −0.0923 1 + 2 g m R0 1 + 2 ( 0.342)(85.2) ⎛ 2.74 ⎞ C M RRdB = 20 log10 ⎜ ⎟ ⇒ C M RRdB = 29.4 dB ⎝ 0.0923 ⎠ TYU11.10 1 CMRR = ⎡1 + 2 2 K n I Q ⋅ Ro ⎤ 2⎣ ⎦ CMRRdB = 60 dB ⇒ C M RR = 1000 1 1000 = ⎡1 + 2 2 ( 0.1)( 0.2 ) ⋅ R0 ⎤ 2⎣ ⎦ 2000 = 1 + 0.4 R0 ⇒ R0 ≅ 5 MΩ TYU11.11 Ro = ro 4 + ro 2 (1 + g m 4 ro 4 ) Assume I REF = I O = 100 μ A and λ = 0.01 V −1 1 1 ro 2 = ro 4 = = ⇒1 MΩ λ I D ( 0.01)( 0.1) Let K n ( all devices ) = 0.1 mA / V 2 Then g m 4 = 2 K n I D = 2 ( 0.1)( 0.1) = 0.2 mA / V Ro = 1000 + 1000 (1 + ( 0.2 )(1000 ) ) ⇒ 202 M Ω ID 0.05 Now VGS1 = VGS 2 = + VTN = + 1 = 1.707 V Kn 0.1 VDS1 ( sat ) = VGS 1 − VTN = 1.707 − 1 = 0.707 V So vo1 ( min ) = +4 − VGS 1 + VDS 1 ( sat ) = 4 − 1.707 + 0.707 vo1 ( min ) = 3 V = 10 − I D RD = 10 − ( 0.05 ) RD ⇒ RD = 140 kΩ For a one-sided output, the differential gain is:
  • 10. 1 Ad = g m1 RD where g m1 = 2 K n I D 2 =2 ( 0.1)( 0.05) = 0.1414 mA / V 1 Ad = ( 0.1414 )(140 ) ⇒ Ad = 9.90 2 The common-mode gain is: 2 K n I Q ⋅ RD 2 ( 0.1)( 0.1) ⋅ (140 ) Acm = = ⇒ Acm = 0.0003465 1 + 2 2 K n I Q ⋅ Ro 1 + 2 2 ( 0.1)( 0.1) ⋅ ( 202000 ) Ad Then CMRRdB = 20 log10 ⇒ CMRRdB = 89.1 dB Acm TYU11.12 IQ 0.5 a. I B5 = = ⇒ 15.3 nA β (1 + β ) (180 )(181) So I 0 = 15.3 nA b. For a balanced condition VEC 4 = VEC 3 = VEB 3 + VEB 5 ⇒ VEC 4 = 1.4 V VCE 2 = VC 2 − VE 2 = (10 − 1.4 ) − ( −0.7 ) ⇒ VCE 2 = 9.3 V TYU11.13 Ad = 2 g f ( r02 r04 ) IQ 0.2 gf = = = 1.923 mA/V 4VT 4 ( 0.026 ) VA 2 120 r02 = = = 1200 kΩ I C 2 0.1 VA 4 80 r04 = = = 800 kΩ I C 4 0.1 Ad = 2 (1.923) (1200 800 ) ⇒ Ad = 1846 TYU11.14 P = ( I Q + I REF ) ( 5 − ( −5 ) ) 10 = ( 0.1 + I REF )(10 ) ⇒ I REF = 0.9 mA 5 − 0.7 − ( −5 ) 9.3 R1 = = ⇒ R1 = 10.3 k Ω I REF 0.9 ⎛I ⎞ I Q RE = VT ln ⎜ REF ⎟ ⎜ I ⎟ ⎝ Q ⎠ 0.026 ⎛ 0.9 ⎞ RE = ln ⎜ ⎟ ⇒ RE = 0.571 kΩ 0.1 ⎝ 0.1 ⎠ VA 2 120 ro 2 = = ⇒ 2.4 M Ω I C 2 0.05 VA 4 80 ro 4 = = ⇒ 1.6 M Ω I C 4 0.05 0.05 gm = = 1.923 mA / V 0.026 ( ) ( Ad = g m ro 2 ro 4 RL = (1.923) 2400 1600 90 ⇒ Ad = 158 )
  • 11. TYU11.15 a. R0 = r02 r04 120 r02 = = 1.2 MΩ 0.1 80 r04 = = 0.8 MΩ 0.1 R0 = 1.2 0.8 ⇒ R0 = 0.48 MΩ b. Ad ( open circuit ) = 2 g f ( r02 r04 ) ( Ad ( with load ) = 2 g f r02 r04 RL ) 1 For Ad ( with load ) = Ad ( open circuit ) ⇒ RL = ( r02 r04 ) ⇒ RL = 0.48 MΩ 2 TYU11.16 2Kn 1 Ad = 2 ⋅ I Q ( λ2 + λ4 ) 2 ( 0.1) 1 =2 ⋅ ⇒ Ad = 113 0.1 ( 0.01 + 0.015) TYU11.17 75 For the MOSFET, I D = 25 − = 24.26 μ A 101 g m1 = 2 K n I D = 2 ( 20 )( 24.26 ) = 44.05 μ A/V For the Bipolar, I E = 100 − 25 = 75 μ A ⎛ 100 ⎞ IC = ⎜ ⎟ ( 75 ) = 74.26 μ A ⎝ 101 ⎠ (100 )( 0.026 ) rπ 2 = = 35.0 K 0.07426 0.07426 gm2 = = 2.856 mA/V 0.026 g (1 + g m 2 rπ ) ( 44.05 ) ⎡1 + ( 2.856 )( 35 ) ⎤ ⎣ ⎦ g m = m1 C = 1 + g m1rπ 1 + ( 0.04405 )( 35 ) g m = 1.75 mA/V C TYU11.18 From Figure 11.43 80 r04 = = 160 kΩ 0.5 R0 ≅ β r04 = (150 )(160 ) kΩ ⇒ R0 = 24 MΩ From Figure 11.44 1 1 r06 = = ⇒ r06 = 160 kΩ λ I D ( 0.0125 )( 0.5 ) 0.5 = 0.5 (VGS − 1) ⇒ VGS = 2 V 2 g m 6 = 2 K n (VGS − VTN ) = 2 ( 0.5 )( 2 − 1) = 1 mA / V r04 = 160 kΩ R0 = ( g m 6 )( r06 )( β r04 ) = (1)(160 )(150 )(160 ) ⇒ R0 = 3.840 MΩ
  • 12. TYU11.19 From Equation (11.126) 2 (1 + β ) β VT 2 (121)(120 )( 0.026 ) Ri = = ⇒ Ri = 1.51 MΩ IQ 0.5 β VT (120 )( 0.026 ) rπ 11 = = = 6.24 kΩ IQ 0.5 ′ RE = rπ 11 R3 = 6.24 0.1 = 0.0984 kΩ IQ 0.5 g m11 = = = 19.23 mA/V VT 0.026 VA 120 r011 = = = 240 kΩ I Q 0.5 Then RC11 = r011 (1 + g m11 RE ) ′ = 240 ⎡1 + (19.23)( 0.0984 ) ⎤ ⎣ ⎦ = 694 kΩ β VT (120 )( 0.026 ) rπ 8 = = = 1.56 kΩ IC 8 2 Rb8 = rπ 8 + (1 + β ) R4 = 1.56 + (121)( 5 ) = 607 kΩ Then RL 7 = RC11 Rb8 = 694 607 = 324 kΩ ⎛ IQ ⎞ ⎡ 0.5 ⎤ Then Av = ⎜ ⎟ RL 7 = ⎢ ⎥ ( 324 ) ⇒ Av = 3115 ⎝ 2VT ⎠ ⎢ 2 ( 0.026 ) ⎥ ⎣ ⎦ ⎛r +Z ⎞ R0 = R4 || ⎜ π 8 ⎟ ⎝ 1+ β ⎠ Z = RC11 RC 7 V 120 RC 7 = A = = 240 kΩ I Q 0.5 Z = 694 240 = 178 kΩ ⎛ 1.56 + 178 ⎞ R0 = 5 || ⎜ ⎟ = 5 1.48 ⇒ R0 = 1.14 kΩ ⎝ 121 ⎠ TYU11.20 ⎛ IQ ⎞ Av = ⎜ ⎟ RL 7 ⎝ 2VT ⎠ ⎛ 0.5 ⎞ ⎜ 2 ( 0.026 ) ⎟ RL 7 ⇒ RL 7 = 104 kΩ 103 = ⎜ ⎟ ⎝ ⎠