SlideShare una empresa de Scribd logo
1 de 199
Descargar para leer sin conexión
Universidade Estadual de Campinas- UNICAMP
       School of Chemical Engineering




   EXPERIENCE ON SYSTEM
INTEGRATION AND SIMULATION
            Professor RUBENS MACIEL FILHO

   •Laboratory of Optimization, Design and Advanced Process
                             Control
     •Department of Chemical Processes, School of Chemical
 • Engineering, State University of Campinas, Campinas - Brazil

 e-mail maciel@feq.unicamp.br

 VIRTUAL SUGAR CANE BIOREFINERY-
         CTBE - August 2009
MOTIVATION
• Process Simulation
– Evaluation of several possible routes –
 routes discrimination
–Investigation of different scenarios
- Process understanding
- Impact of operation variables on process
 performance
Process Simulation (cont.)
-Preliminary evaluation of costs, water and
energy consumption
-Studies of variable interaction and process
dynamics
-Operator Training
-Dynamic simulation- process control strategies
may be evaluated
Design of Equipments and plant conceptual
design
PROCESS MODELLING
Steady State Model

Dynamic Model

Simplified versus Detailed Model

Physico-Chemisty based Models (Deterministic) versus
Empiric and or Statistical Models

Hybrid Model

Single Unit Models

Large Scale Plant Model
Process Simulation


System –can be seen a set of subsystem depending
upon of required investigation

Interaction among subsystems – made through mass
and heat transfer parameters


Subsystem 1– an important component of the process,
inside an equipment where the phenomena are
intrinsically taking place- for instance catalyst particle,
bagasse to be hydrolyzed and microorganism in
biotechnological process. When considered explicitly a
heterogeneous model is formulated.
Subsystem 2 - Equipment - peace of the plant where the
changes (reactions, mixtures or separations) are
occurring. In this category it may be place reactors,
separation columns, fermentors, etc.


Subsystem 3 – large scale plant or a set of equipments in
which there exist interest to study

Subsystem 1 and 2 – normally require software
development if detailed representation are desired.

Subsystem 3 – simulators, including the commercial
ones (Hysis , Aspen, Gproms etc)
System Integration

There exist an incentive for high
operational performance operation

Process optimization begins with better
process control

Large Plant Optimization and control
RTO: Integrate economic objectives and
control

Stability, controllability and safety
System Integration

Large Plant Optimization and Control

RTO (Real Time Operation): Integrate economic
objectives and control

Stability, controllability and safety- may be
expressed as plant restriction

Refinery process ⇒large scale units, high
products output, monitoring difficulties,
data reconciliation
Optimization Strategies

    Two main strategies are to be
           implemented:
            One layer approach


            two layers approach

   Hybrid approach may be necessary
One layer approach

 Economical optimization problem is solved
      together with the control problem

       very sensitive to model mismatch

 dimension of the optimization problem can
                   be very large
   ( on line applications can be restrictive)
 use of simplified model may not be suitable
controller/
                   optimizer




                   Estimation
                     block



                                 measured
                                  outputs
measured inputs
                   Process
                                 non-measured
  non-measured                      outputs
      inputs

              One layer approach
Two layers approach


hierarchical control structure where there
is an optimization layer that calculates set-
     points to the advanced controller


   the optimization layer is composed of an
    objective function and a process steady-
                   state model
Optimizer


                         setpoints



                  Controller




                  Estimation
                    block




measured inputs    Process           measured outputs

non-measured
                                      non-measured
    inputs
                                         outputs



          Two layer approach
Advanced Controllers
• CONTROLADORES LINEARES
• NON LINEAR CONTROLLERS
• PREDICTIVE CONTROLLERS
• ROBUST CONTROLLERS
• ADAPTIVE CONTROLLERS
• HYBRID CONTROLLERS (NEURAL
NETWORK AND FUZZY COUPLED WITH MODEL
BASED CONTROLLER)
Simulation – Applications



Subsystem 1
STRUCTURED MATHEMATICAL
         MODEL
 FOR ETHANOL PRODUCTION


Possible to handle with substrate to drive
             the fermentation
STRUCTURED MATHEMATICAL MODEL




           Representative Metabolic Route (F. Lei et al. Journal of Biotechnology 88 (2001) 205-221)
Mass balance equations and reaction rate
    of the model
     ∂S glu cos e
                         = −(R1 + R7 )X + D (S feed − S glu cos e )
            ∂t
               s glu cos e                        s glu cos e                                s glu cos e
R1 = k1l                         X a + k1h                         X a + k1e
                                                                               s glu (K 1i s acetaldehyde + 1) + K 1e
                                                                                                                        s acetaldehyde X a
           s glu cos e + K 1l                 s glu cos e + K 1h

                         s glu cos e
     R7 = k 7                            Xa
                     s glu cos e + K 7

     ∂S pyruvate
                                = (0.978 R1 − R 2 − R3 )X − D (S pyruvate )
             ∂t
                        s pyruvate                1
     R2 = k 2                                                   Xa
                  s pyruvate + K 2 K 2i s glu cos e + 1

                       s4
     R3 = k 3
                        pyruvate
                                       Xa
                 s   4
                     pyruvate   + K3
∂S acetaldehyde
                      = (0.5 R3 − R4 − R6 )X − D (S acetaldehyde )
        ∂t
                 s acetaldehyde
R4 = k 4                             X a X Acdh
             s acetaldehyde + K 4

                 s acetaldehyde − k 6 r s ethanol
R6 = k 6                                               Xa
             s acetaldehyde + K 6 + K 6 r s ethanol

∂S acetate
           = (1.363R4 − R 5 − R8 )X − D(S acetate )
   ∂t
             s acetate                   s acetate            1
R5 = k 5                 X a + k 5e                                       Xa
         s acetate + K 5            s acetate + K 5e K 5i s glu cos e + 1
              s acetate            1
R8 = k 8                                       Xa
         s acetate + K 5e K 5i s glu cos e + 1
∂S ethanol
              = (1.045 R6 )X − D(S ethanol )
      ∂t
   ∂X
      = (0.732 R7 + 0.619 R8 )X − D( X )
   ∂t

∂X a
     = (0.732 R7 + 0.619 R8 − R9 − R10 ) − (0.732 R7 + 0.619 R8 )X a
 ∂t
        
         k9
               s glu cos e               s ethanol        1                          s glu cos e
   R9 =                      + k 9e                                     X a + k 9c                   Xa
         s                                          K s
                                    s ethanol + K 9e  9i glu cos e + 1            s glu cos e + K 9
            glu cos e + K 9



                      s glu cos e                          s ethanol
   R10 = k10                          X a + k10e                       Xa
                 s glu cos e + K 10                  s ethanol + K 10e
∂X Acdh
        = (R9 − R11 ) − (0.732 R7 + 0.619 R8 )X Acdh
  ∂t
R11 = k11 X Acdh

• Mass balance equations → 8
• Kinetic parameter → 37
• Parameter adjust → Genetic Algorithm




                 X → biomass;    Xa → active cell material;
          XAcdh → Acetaldehyde dehydrogenase; D → dilution rate;
                 Ki → rate constant; Ki → affinity constant;
                         Kji → inhibition constant
CSTR simulations
TRS → Total Reductor Sugars
Batch simulations
Some Chemical Products via fermentation


                                                                            Acetaldeído
                                                                            Ácido acético
                                                                            Anidrido acético


               FERMENTATION




                                                       CHEMICAL SYNTHESIS
                              Etanol                                        Acetato de etila
                              Ácido acético                                 Acetato de vinila
  Sugar                       Ácido lático                                  Crotonaldeído

    Glycose                   Acetona Butanol Etanol                        Paraldeído

    Sacarose                                                                Butanol
                                                                            Acetato de butila
                                                                            Piridina
                                                                            Nicotinamida
                                                                            Glicol
                                                                            Butadieno
                                                                            Glioxalato


                        Produtos químicos produzidos por fermentação
 Other Products to be obtained from biomass


                                                               Etileno
                                                               Etanol
                                                               Acetaldeído




                                              FERMENTATION
                                                               Ácido acético


                   HYDROLYSIS
                                                               Propano
                                                               Propileno
BIOMASS                         Sugar
                                                             Ácido acrílico
                                 Glicose
                                                              Glicerol
                                 Sacarose
                                                               Ácido lático
                                 Xilose
                                                               Butadieno
                                 Arabinose
                                                               Butanodiol
                                                               Ácido succínico




             Produção de novos produtos químicos a partir de biomassa
 Fermentation process – piuvirate is formed in glycolysys

     GLICOSE
               ATP
               ADP

  Glicose 6-fosfato


  Frutose 6-fosfato
               ATP
               ADP

  Frutose 1,6-bifosfato



                             NAD+   NADH
                              +Pi    +H+

  Gliceraldeído 3-fosfato                  1,3-Difosfoglicerato
                                                           ADP
                                                           ATP

                                             3-fosfoglicerato
                                                                  Gli cos e + 2 NAD +  2 Piruvato + 2 NADH + 2 H +
                                                                                      →
                                             2-fosfoglicerato                                 ∆G10 = −146kJmol − 1
                                                                                                '


                                             Fosfoenolpiruvato
                                                           ADP
                                                                  2 ATP + 2 Pi  2 ATP + 2 H 2 O
                                                                               →
                                                                                                ∆G10 = 61kJmol − 1
                                                           ATP
                                                                                                  '
                                               PIRUVATO

                      Processo de glicólise
GLICOSE


                                          Rota (EMP)
                                     10 reações sucessivas

                            2 Piruvato
Condições anaeróbias
                                                             Condições anaeróbias
                       O2


   2 Etanol + 2CO2                 Condições aeróbias                 2 Lactato

                                         CO2

                        2 Acetil CoA
                                                               2 Ácido Acrílico + 2H2O
                       O2            Ciclo do
                                    ácido TCA




                       4 CO2 + H2 O


                        Rota glicolítica
Metabolic pathways for the synthesis of acrylic acid (Straathof et al., 2005)
 STRUCTURED MODEL WITH IMOBILIZED CELLS


 Structured Models based on the work of Lei et al. (2001) e Stremel (2001).

        Model of Lei et al. (2001) -a structured biochemical model
       that describes the aerobic growth of Saccharomyces
       cerevisiae in a medium limited to glucose and / or ethanol.

        Model of Stremel (2001) -alternative structured model to
       represent the dynamic simulation of a tubular bioreactor
       with immobilized cells of Saccharomyces cerevisiae for
       alcoholic fermentation.
Para desenvolvimento deste modelo foi considerado:

    Continuous isothermal process



    heterogeneous model ;

    biomass composition: CH1,82O0,576N0,146;

    spherical particles ;

    heterofermentative process
    production associated with cell growth;

    axial dispersion .

    Solution by orthogonal collocation
Metabolic route
Model Reactions
Reaction Rates

              S                S
R1 = k1           X a + k1a         Xa
           S + K1           S + K1a
              S        1
R2 = k 2                          Xa
           S + K2       L    
                    1+ 
                       K     
                              
                        2i   
              P
R3 = k 3          Xa
           P + K3
              L
R4 = k 4          Xa
           L + K4

              L      1    
R5 = k 5          1+ K S X a
                  
           L + K5         
                        5i 

          S          L               1     
R6 = k 6 
         S +K   +
                   L + K 6a        K AA + 1  X a
                                            
              6                   6i       
          S                        AA        
R7 =  k 7
      S+K           X a +  k 7a
                                              X a
                                                
            7                   AA + K 7 a   
Mass Balances for the solid phase
 Glicose
                    ∂S        D AS 1 ∂  2 ∂S 
                                               − (R1 + R2 )e A X
                                                             − K AA
                          =              r
                     ∂t       R 2 r 2 ∂r  ∂r 

 Piruvato
                    ∂P D AP 1 ∂  2 ∂P 
                                          + (0,978 R1 − R3 )e A X
                                                              − K AA
                       =            r
                    ∂t   R 2 r 2 ∂r  ∂r 
 Lactato
                    ∂L D AL 1 ∂  2 ∂L 
                                          + (1,023R3 − R4 − R5 )e A X
                                                                  − K AA
                       =            r
                    ∂t   R 2 r 2 ∂r  ∂r 
 Ácido Acrílico
                   ∂AA D A( AA ) 1 ∂  2 ∂AA 
                                              + (0,8 R4 − R7 )e A X
                                                                − K AA
                       =             r
                    ∂t   R 2 r 2 ∂r      ∂r 
 Células
                    ∂X                               X  − K A `AA
                       = (0,732 R2 + 0,821R5 )X 1 −       e       − kd X
                    ∂t                          
                                                    X sat 
                                                           
 Células ativas
                    ∂X a
                         = (0,732 R2 + 0,821R5 − R6 − R7 ) − (0,732 R2 + 0,821R5 )X a
                     ∂t

 Enzima lactato desidrogenase
                                        ∂X LADH
                                                = R6 − (0,732 R2 + 0,821R5 )X LADH
                                           ∂t
Mass Balance for the Fluid Phase
 Glicose


 Piruvato
                    ∂S
                    dt
                              ∂ 2 S   ∂S  1 − ε
                       = Daz         − u  −
                              ∂z 2   ∂z     ε
                                                          [
                                                    η (R1 + R2 )e − K A AA X   ]
                                    



                   ∂P        ∂ 2 P   ∂P  1 − ε
                      = Daz 
                             ∂z
                                     − u  +
                                  2           ε
                                                      [
                                                   η (0,978R1 − R3 )e − K A AA X   ]
                   dt                ∂z 
 Lactato


             ∂L        ∂ 2 L   ∂L  1 − ε
                = Daz 
                       ∂z
                               − u  +
                            2           ε
                                                 [
                                             η (1,023R3 − R4 − R 5 )e − K A AA X       ]
             dt                ∂z 
 Ácido Acrílico



             ∂AA
              dt
                        ∂ 2 AA   ∂AA  1 − ε
                 = Daz          − u
                        ∂z 2   ∂z   +
                                            ε
                                                      [
                                                η (0,8R4 − R7 )e − K A AA X        ]
                               
 SIMULATION RESULTS

                                  150




                                                                                             Concentração de Ácido Acrílico (kgm-3)
                                                                                        30

                                  135
Concentração de Glicose (kgm-3)




                                                                                        25
                                  120
                                                                                        20
                                  105
                                                                                        15
                                  90
                                                                                        10
                                  75
                                                                                        5
                                  60
                                                                                        0
                                        0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
                                                           Tempo (h)                                                                                                     6,00                                                   4,0




                                                                                                                                                                                                                                      Concentração de Lactato (kgm-3)
                                                                                                                                                                         5,25                                                   3,5




                                                                                                                                      Concentração de Piruvato (kgm-3)
                                                                                                                                                                         4,50                                                   3,0
                                                                                                                                                                         3,75                                                   2,5

                                                                                                                                                                         3,00                                                   2,0

                                                                                                                                                                         2,25                                                   1,5

                                                                                                                                                                         1,50                                                   1,0

                                                                                                                                                                         0,75                                                   0,5

                                                                                                                                                                         0,00                                                   0,0
                                                                                                                                                                                0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
                                                                                                                                                                                                   Tempo (h)
150
                                                                                 30




                                                                                      Concentração de Ácido Acrílico (kgm-3)
                                  135
Concentração de Glicose (kgm-3)                                                  25
                                  120
                                                                                 20
                                  105
                                                                                 15
                                  90
                                                                                 10
                                  75
                                                                                 5
                                  60
                                                                                 0
                                        0,0   0,2   0,4        0,6   0,8   1,0

                                                    Posição axial
Simulation – Applications



Subsystem 2
Multitubular Catalytic Reactor




          Tube-side : catalytic fixed bed
Detailed modeling




where: A = Parallel flow in the baffles holes
       B = Flow near the baffle end
       C = Parallel flow in the space between bundle of tubes and shell
       D = Flow between baflles and shell
       E = Cross Flow in the window zones
Multitubular Fixed Bed
    Catalitic Reactor




Co-current Design   Alternative Design
Temperature Profiles




Radial mean temperature profile along the reactor length for different
                      reactor configurations
Heat Transfer Coefficient Profiles




      Co-current Design




                          Alternative Design
R
H
Y
    REACTOR DESIGN FOR
D
R
O
        HYDROLYSE
L
Y
REACTION SYSTEM
AdsorbtionCellulase on cellulose and lignin, β-Glucosidase on lignin
R1Cellulose to Cellobiose (Catalized by cellulase adsorbed on cellulose)
R2Cellulose to Glucose (Catalized by cellulase adsorbed on cellulose)
R3Cellobiose to Glucose (Catalized by non-adsorbed β-Glucosidase)


   Enzymes
  (Cellulase,
β-glucosidase)


       Adsorption                                           R3
                                 R1



                                      R2
EXPERIMENTAL DATA AND
                                                            MASS BALANCES

                                     G-1%    G-3%        G-5%        G2-1%      G2-3%   G2-5%
                                                                                                Cellulose
                                25
Glucose [G] - Cellobiose [G2]




                                                                                                dC
                                20
                                                                                                   = −r1 − r2
                                                                                                dt
                                15
            (g/L)




                                10                                                              Cellobiose

                                5                                                               dG2
                                                                                                    = 1.056r1 − r3
                                0                                                                dt
                                     0      12      24          36         48   60      72
                                                                Time (h)
                                                                                                Glucose
                           Fig. 1 Observed time course of glucose (G) and
                           cellobiose (G2) profiles. Enzymatic hydrolysis
                                                                                                dG
                           of AHP-pretreated sugarcane bagasse at different                        = 1.111r2 + 1.053r3
                           initial solid loadings (% w/w).                                      dt
REACTION SCHEMES


Three reaction Scheme
(General)


Two reaction Scheme
(No direct glucose formation
from cellulose)




One reaction Scheme
(Nor direct glucose formation
from cellulose neither
cellobiose accumulation)
MATHEMATICAL MODELING

Enzyme adsorption on cellulose and lignin
• One site Langmuir isotherm
                                  Non-mechanistical, fit experimental data,
• Two sites Langmuir Isotherm     most used in the literature

Enzyme inhibition by cellobiose and cellulose
• Competitive
• Non-competitive      Both are used in the literature. There is no consensus

Recalcitrance
• Substrate reactivity          α(S/S0)n+cte (S:substrate)
• Substrate susceptibility      v=v0Exp(-Krec(1-(S/S0))) (v0:adsorbed enzyme)

Enzyme deativation (Thermal, mechanical)

•   First order kinetic   Very important for design of continuous reaction
                          systems at industrial scale
EXPERIMENTAL PROCEDURE AND KINETIC
              PARAMETER ESTIMATION

Adsorption                                          Enzyme Loading
• Enzyme adsorption on pretreated substrate     5 FPU –      500 FPU –
• Enzyme adsorption on hydrolyzed substrate CBU/g            CBU/g
• Enzyme adsorption on lignin                   cellulose    cellulose
Hydrolysis                                         Substrate Loading
• Hydrolysis of pretreated substrate
                                                1%(W/W)      8%(W/W)
• Hydrolysis of partially hydrolyzed susbtrate
• Hydrolysis with backgrond sugars (Cellobiose, glucose)
• Fed batch (enzyme and susbtrate) hydrolysis
Parameter estimation with global and local optimization techniques
• Genetic algorithms + quasi Newton
• Simulated annealing + quasi Newton
• Particle swarm method + quasi Newton
Model validation
CONTINUOUS REACTION SYSTEMS I
Goals
•Subs conc.
                  CSTR
•Subs conv.
•Enzy consump.    •Continuous substrate and
•Power Consump.   enzyme feeding
•Resid time       n-CSTR
                  Continuous substrate and
                  enzyme feeding at the first tank
                  n-CSTR with distributed feeding
                  •Ad hoc distributed feeding
                  strategy of substrate and/or
                  enzyme
                  •Model-based distributed
                  feeding strategy of substrate
                  and/or enzyme
CONTINUOUS REACTION SYSTEMS II


                      λ                                   λ




Goals                 PFR with or without side feeding
•Subs conc.
                      Bafled PFR with or without side feeding
•Subs conv.
•Enzy consump.        •Continuous substrate and enzyme feeding
•Power Consump.
•Resid time           •Ad hoc side feeding strategy or model-based
•Overcome viscosity   side feeding strategy of substrate and/or
limitations           enzyme
CONTINUOUS REACTION SYSTEMS III

                               Goals
                               •Subs conc.
                               •Subs conv.
                               •Enzy consump.
                               •Power Consump.
                               •Resid time
                               •Overcome viscosity
Liquefactor                    limitations


                               Reactors
                               •Liquefactor + n-CSTR
                               •Liquefactor + PFR
                               •Liquefator + Bafled PFR
               +
REACTOR MODELING

n-CSTR Microfluid model                           PFR
       VRi       S (i −1) − Si                    dVR     dS h
τi =         =                                     ϕ
                                                      =−
       ϕ            r ( Si )                             r (S h )
n-CSTR Macrofluid model
                                                  CFD based model
• Ideal residence time distribution
                                                  •Virtual tracer
             t n −1
 E (t ) =              e −t / τ i                 Experiments
          (n − 1)!τ in
                                                  •Virtual
• Substrate conversion                            determination of
                 t →∞
                     sh       
1 − X sh     = ∫   s         
                                      E (t )dt   RTD
               t =0  h 0       Batch            •Application of
                                                  macrofluid model
RESULTS FOR n-CSTR
                            Macrofluid Model
         120
         110      NR=1      NR=2                                                      Fig. 2 Total mean hydraulic
                                                                                      residence time (tao=τ) as a
                  NR=3      NR=5
         100
                  NR=20     PFR
         90
         80
                                                                                      function of cellulose conver-
                                                                                      sion (Xc) predicted by the
tao[h]




         70
         60
         50
                                                                                      macrofluid and microfluid
         40                                                                           model.
         30
         20
         10
          0,650     0,670      0,690        0,710   0,730                  0,750             Microfluid Model
                                       Xc                        120
                                                                 110               N=1       NR=2
                                                                                   NR=3      NR=5
                                                                 100
                                                                                   NR=20     PFR
                                                                  90

           Initial bagasse concentration                          80
                                                        tao[h]




                                                                  70
            ST0=50 g/L;                                           60
           initial cellulose concentration                        50
                                                                  40
            SC0=40g/L.                                            30
                                                                  20
                                                                  10
                                                                   0,650             0,670      0,690        0,710   0,730   0,750
                                                                                                        Xc
CFD APPLIED TO REACTOR DESIGN I
ANSYS CFX (of Ansys Inc., EUROPE)
xy velocity field                   Modeling approaches
                                    Pseudo-homogeneous
                                    suspension with apparent
                                    rheological properties
                                    ‘or’
                                    Multiphase
                                    •Eulerian-Eulerian
                                    approach
                                    •Eulerian-Lagrangian
                                    approach
CFD APPLIED TO REACTOR DESIGN II
                  Baffled PFR




Mesh details and
Pipe geometry
CFD APPLIED TO REACTOR DESIGN II
           Baffled PFR
  2.


  1.




  2.


  1.




       Predicted solids volume fraction distribution (1)
       and solid velocity (2)
HYDROTREATING OF MIDDLE DISTILLATES
     IN A TRICKLE BED REACTOR
The hydrodesulfurization (HDS), hydrodenitrogenation
(HDN), hydrodeoxygenation, hydrocraking and saturative
hydrogenation of middle distillates has been studied in this
work.

An adiabatic diesel hydrotreating trickle bed packed
reactor was simulated numerically by a heterogeneous
model in order to check up the behaviour of this specific
reaction system. Alternative design is proposed

The model consists of mass and heat balance equations for
the fluid phase as well as for the catalyst particles, and take
into account variations in the physical properties as well as
of the heat and mass transfer coefficients. Heterogeneous
model is developed
GAS in

LIQUID in



               Bed 1




 QUENCH


                Bed 2




             GAS out


            LIQUID out
1 - Sulfur – containing hydrocarbons:
Hydrocarbon = S + 2H 2 → Hydrocarbon = H 2 + H 2S
2 - Oxygenated hydrocarbons:
Hydrocarbon − OH + H 2 → Hydrocarbon − H + H 2O
3 - Nitrogenated hydrocarbons:
Hydrocarbon − N + 3H 2 → Hydrocarbon ≡ H 3 + NH 3

4- Hydrogenated hydrocrackable hydrocarbons:
Hydrocarbon − CH 3 + H 2 → Hydrocarbon − H + CH 4
5 - Unsaturated hydrocarbons with double bonds:
Hydrocarbon + H 2 → Hydrocarbon = H 2
REACTOR PREDICTIONS
                  780
                  770
                  760
                  750
                  740
Temperature (K)




                  730
                  720
                  710
                  700
                  690
                  680
                  670
                  660
                  650
                        0      2   4           6    8   10
                                   Bed length (m)

     Figure 1 – Temperature profile along the reactor length.
1,0

               0,9

               0,8

               0,7

               0,6
  Conversion




               0,5

               0,4

               0,3

               0,2

               0,1

               0,0
                     0   2   4           6     8         10
                             Bed length (m)

Figure 2 – Sulfur conversion profile along the reactor length.
Pressure : 96 atm
695

                  690

                  685

                  680
Temperature (K)




                  675

                  670

                  665

                  660

                  655

                  650

                        0   2   4           6    8       10
                                Bed length (m)
  Figure 3 – Temperature profile along the reactor length.
0,7


             0,6


             0,5
Conversion




             0,4


             0,3


             0,2


             0,1


             0,0
                   0   2   4           6       8         10
                           Bed length (m)
Figure 4 – Sulfur conversion profile along the reactor length.
Pressure: 68 atm
Efficient Mathematical
 Procedure for Calculating
Dynamic Adsorption Process
System for Adsorption
              Process

                  Different modelling approach


                                              Different operational
Different numerical   Different equilibrium        parameters,
      methods             relationships           and adsorbent
                                                 characteristics
Column parameters:
                                   dimensions
                                   bed porosity


     Feed Conditions:      Arrangement of the columns:   Equilibrium isotherms
     single adsorbate                  fixed              Adsorbent type and
binary or multicomponent           in sequency              characteristics
    continuos or pulse        simulated moving bed        Mass transfer model
TYPES OF RESULTS


CONCENTRATION BREAKTHROUGH CURVES    ADSORBENT LOADING BREATHROUGH CURVES
  CONCENTRATION-DISTANCE PROFILES          ADSORBENT LOADING PROFILES
       MONOCOMPONENT AND                ELUTION CURVES (CHROMATOGRAPHY)
         MULTICOMPONENT
In the developed software:

1
• different numerical methods
1 different isotherms
•

1
•


were carried out in order to be possible to
take decisions in relation to:

1   the evaluation of an operating adsorber
1   the possibility to apply this separation process for
    recovering a given component from a mixture
Model and Solution
      Simulation of packed bed adsorption columns
using the pore diffusion model, in which two mass
transfer processes were considered:
   the external mass transfer from the bulk
     liquid phase to the particle surface
   internal pore diffusion within the adsorbent
     particle itself
In the model formulation the following
            assumptions were made

• Diffusion coefficients independent of the
  mixture composition
• Spherical particles with equal sizes
• Constant temperature and porosity
• Not including axial dispersion


• Solution Procedure: orthogonal
  collocation method coupled with the DASSL
  routine
DELTA 200
         1,2                                                                1,2         DELTA 12.5
         1,0                                                                1,0
         0,8                                                                0,8
         0,6
  c/c0


                                                       10 Elem              0,6




                                                                    C/C0
         0,4                                           20 Elem
                                                       40 Elem              0,4
         0,2                                           80 Elem
                                                                                                                                10 Elem
                                                       Exper.                                                                   20 Elem
         0,0                                                                0,2                                                 40 Elem
                                                                                                                                Experim.
                                                                            0,0
                   0     2000 4000 6000 8000 10000
                                       t(s)                                             0       2000   4000           6000   8000   10000
                                                                                                              t (s)



       1,2                                                                        1,2       DELTA 100
               DELTA 25
                                                                                  1,0
       1,0
                                                                                  0,8
       0,8
                                                                                  0,6                                        10 Elem

                                                                           c/c0
       0,6                                                                                                                   20 Elem
C/C0




                                                                                  0,4                                        40 Elem
       0,4                                              10 Elem                   0,2                                        80 Elem
                                                        20 Elem                                                              Exper.
       0,2                                                                        0,0
                                                        40 Elem
       0,0                                              Experim.
                                                                                            0    2000 4000 6000 8000 10000

               0        2000   4000           6000   8000   10000                                             t(s)

                                      t (s)
Alternative Process Modeling

Fuzzy Logic

Artificial Neural Networks

Neuro Fuzzy

Hybrid Modeling
STATE UNIVERSITY OF CAMPINAS BRAZIL
      Department of Chemical Engineering




  SOFT SENSOR FOR MONITORING AND CONTROL OF AN
       INDUSTRIAL POLYMERIZATION PROCESS




OBJECTIVE:

To develop a Soft Sensor for polymer viscosity of
an industrial PET Process.
PET Plant- the liquid phase (105.000 ton/year)
RESULTS AND DISCUSSIONS




Figure 3- Schematic of virtual sensor.
The variables, related to intrinsic viscosity, used for the
        neural net training are given in Table 1.
        Table 1- Variables for neural net training

       Input variable                              Name
 1     PE temperature                              T-1
 2     SE temperature                              T-2
 3     Temperature of the LP second stage          T-4
 4     Vacuum of the LP first stage                P-1
 5     Vacuum of the LP second stage               P-2
 6     HP temperature                              T-5
 7     HP Vacuum                                   P-3
 8     Additive flow rate (catalyst).              F-1
       Output variable
 1     Measured viscosity by viscometer            V-1
Viscosimeter           Soft-Sensor

              1,020

              1,010
  Viscosity




              1,000

              0,990

              0,980
                      0   4   8     13   17       21     25   29   33   38
                                             Tim e (h)


Figure 4 Viscosimeter versus Soft-Sensor (real time measurements
- normalized values)
Polymer viscosity         Set-point

               1,050

               1,025
   Viscosity




               1,000

               0,975

               0,950
                       0   4       8       13        17      21   25
                                         Tim e (h)


Figure 5. Process controlled using viscosity values estimated by Soft-
Sensor (normalized values)
SETCIM INTEGRATION
(Industrial Test)
              1460                 Viscosímetro        Soft-Sensor

              1440

              1420
Soft-Sensor




              1400

              1380

              1360

              1340
                     1   6    11   16     21      26    31     36    41   46   51
                                            Viscosímetro
“Industrial Test”
                               Soft-Sensor     Linear (Soft-Sensor)

              1460

              1440
Soft-SEnsor




              1420

              1400
                                                         R2 = 0.9086
              1380

              1360

              1340
                 1340   1360    1380         1400       1420          1440   1460
                                       Viscosímetro
DATA DISPERSION
(“Industrial test-several months
            running ”)
H. POLIMERATION SCREEN OPERATION
HIGH POLIMERATION SCREEN
       OPERATION
Viscosimeter versus Soft-Sensor (Real Time Optimization)
Process Control by Soft-Sensor
Column Temperature- First Esterification
              Reactor
•Usual existing processes: 3 or 4 tanks in series
•Alternatives processes are under tests as flocculation and extractive




   Extractive alcoholic fermentation process
Ff

                                                            Vapour



                                                    Flash


                                                      Tf       Pf




     Feed
                                  Return


T    D      pH   Tb   Fermentor            Filter



    Purge                                           Permeate




      EXTRACTIVE FERMENTATION PLANT
Extractive Process

• This process was build up and validated for bioethanol production in
  bench scale by Atala (2004);
Development of Real-time State Estimators for
         Extractive Process - Introduction
- On-line monitoring by SS:
- Allow real time monitoring of key variables of processes;

- Off-line monitoring:
 - Leads to time delay between sampling and results;
- Requires advanced analytical instruments (including
   near infrared spectrophotometers) → difficult to calibrate
   due to presence of CO2 in the media.
Software Sensor
• Software sensor: an algorithm where several measurements are
   processed together. The interaction of the signals from on-line
   instruments can be used for calculating or to estimate new quantities
   (e.g. state variables and model parameters) that cannot be measured
   in real-time.                             POTENTIAL INPUT VARIABLES
• On-line measurements (input):           Pf   Ff     Tf T    D pH Tb
- Temperatures;
- Dilution rate;
- pH;                                        ANN-BASED       ANN-BASED
                                         SOFT-SENSOR (1) SOFT-SENSOR (2)
- Turbidity in the fermentor;
- Pressure;
- Feed flow rate in the flash vessel.        ESTIMATED       ESTIMATED
                                                Pferm           Pflash
• Off-line measurements (output):
ethanol concentration in the fermentor and in the condensed stream from
   the flash vessel.
ANN Structure Selection
•  Multilayer Perceptron (MLP) Neural Networks :
-  One of the most common ANN used in engineering;
-  understandable architecture and a simple mathematical form;
•  This NN consists of: input, output and one or more hidden
  layers.
• Numbers of neurons are N, M and K
           Input layer        Hidden layer           Output layer
                         θ1


                                                                              θj
                         w11
                                  +    f1(•)
                         ...
                         ...
                         ...
                         ...




           x1            w1N                                             x1   wj1
                         θ2                    β1
                         w21                   W11
                                                                         x2   wj2   +     f(•)   yj
                ...
                ...
                ...
                ...




                                  +    f2(•)   W12      +   F1(•)   g1
                         ...
                         ...
                         ...
                         ...




                                                                              ...
                                                                              ...
                                                                              ...
                                                                              ...
                                               ...
                                               ...
                                               ...
                                               ...




           xN
                         w2N
                                 ...




                                               W1M
                         θM
                         wM1
                                                                         xN   wjN
                                  +    fM(•)
                         ...
                         ...
                         ...
                         ...




                         wMN



                                      (a)                                           (b)
Results and Discussion
                                                  250




                                      Pf (mmHg)
                                                  200

• Even using on-line (input) data                 150
                                                  100

   with different levels of noise                   50
                                                  210


   →The software sensor described                 198




                                      Ff (L/h)
                                                  185


   accurately      the     ethanol                173
                                                  160
                                                  35.5
   concentrations.                                34.8




                                     Tf ( C)
                                                  34.0




                                     o
                                                  33.3
                                                  32.5
                                                  34.5
                                                  34.0




                                     T ( C)
                                                  33.5




                                     o
                                                  33.0
                                                  32.5
                                                    0.5
                                                    0.3


                                         D (h )
                                         -1
                                                    0.2
                                                    0.1
                                                    0.0
                                                    4.4
                                                    4.3
                                         pH




                                                    4.2
                                                    4.1
                                                    4.0
                                                    31
                                                    28
                                           Tb (%)




                                                    25
                                                    22
                                                    19
                                                      200   250   300              350   400   450
                                                                        Time (h)
(a)                             75                                                 1.0




                                                                                         Dilution factor (h-1)
  fermentor (g/L)
                                66                                                 0.8
   Ethanol in the



                                57                                                 0.6
                                48                                                 0.4
                                39       Dilution factor                           0.2
                                30                                                 0.0
      Condensed ethanol (g/L)




(b)                             430                                                1.0




                                                                                         Dilution factor (h-1)
                                412                                                0.8
                                394                                                0.6
                                376                                                0.4
                                358                                                0.2
                                340                                                0.0
                                   200        250          300      350   400   450
                                                             Time (h)


      SOFT SENSOR FOR CONCENTRATION
'
                           Kalman filter
                        training  weight
                            adjustment


                                                     Error
        Kalman filter
        (NLSTC)
                                                +
                                                     -
                            RNN
                                   N
       Substrate



       Air flow                             State measurement

                               Penicillin
                               process




The proposed non-linear Self-tuning controller scheme
35


                                       30
         Biomass concentration (g/l)




                                       25


                                       20

                                                                          Process
                                       15                                 Kalman filter

                                       10


                                       5
                                            0   20   40      60      80    100            120
                                                          Time (h)



Estimation of the biomass concentration
14000


      Penicillin concentration (g/l)   12000

                                       10000

                                       8000

                                       6000

                                       4000

                                       2000
                                                                             Process
                                          0                                  Kalman filter

                                       -2000
                                               0   20   40      60      80      100          120
                                                             Time (h)




Estimation of the Penicillin concentration with the multiple extended
Kalman filter algorithm
Fractional Brownian motion as a model
    for an industrial Air-lift Reactor

                        fBm (Mandelbrot,
                        1968) BH(t+τ)-BH(t) é
                        estatisticamente igual
                        ao [BH(t+τr)-BH(t)]/rH



                        fGn: definido como
                        derivado do fBm:
                        fGn = BH(t+1)-BH(t)
Comparação entre o sinal de
           pressão e o ruído Gaussiano
                 fracionário (fGn)
3.32                                       4


 3.3                                       3


                                           2
3.28

                                           1
3.26
                                           0
3.24
                                           -1

3.22
                                           -2

 3.2                                       -3


3.18                                       -4
       0   500   1000    1500    2000   25000      500    1000   1500   2000   2500


  Industrial Air-Lift Reactor Data              Fractional Brownian Model
                                                with H = 0.7
Synthesis of a fuzzy model for linking
   synthesis conditions with molecular
characteristics and performance properties
       of high density polyethylene
Cognitive Dynamic Model
y(k)- prediction by linear equation – Takage Sugeno
approach:
y(k) = w0i + w1iu1(k-τu1) + w2iu1(k-τu1 -1) +...+ wp1iu1(k-τu1-p1)+
     w(p1+1)iu2(k-τu2) + w(p1+2)iu2(k-τu2 -1) +...+ w(p1+p2)1iu2(k-τu2-p2)+
       w(p1+p2 +1)iy(k-1) + w(p1+p2 +2)iy(k-2) +...+w(p1+p2 +m)iy(k-m).



together with cognitive information
Implementations
• Du PONT Polymerization Process

• Rhodia Nylon-6,6 Process



   • High Non Linear Process – large scale plant
     Deterministic model – difficult to assembly
Copolymer molar fraction

             0,75
                                              PLANTA
                                              MODELO
             0,70


             0,65


             0,60
       Yap




             0,55


             0,50


             0,45


             0,40
                 -200   0   200   400   600   800   1000 1200 1400 1600 1800
                                          tempo (h)




   Teste para a fração molar do copolímero
Polymer Molecular Weight


                                               PLANTA
                       37000                   MODELO


                       36000
       Mpw (kg/kmol)




                       35000



                       34000



                       33000


                               0   200   400     600    800   1000
                                          tempo (h)




Validação para o peso molecular do copolímero
Nylon-66 Molecular weight
                              38000
                                                      par de dados da planta e do modelo
                              37000
     Mpw (kg/kmol) - modelo




                              36000



                              35000



                              34000



                              33000


                                      33000   34000    35000      36000    37000   38000
                                                  Mpw (kg/kmol) - planta
Phenol Hydrogentation Reactor




          Módulo


                    Reactants
                    Coolant
Condição             1      2       3        4        5        6
  Ordem das entradas       23     17       7        23       17       7
Ordem do estado interno     1      1       1        2        2        2
        Regras              7      7       5        7        7        5
Fator erro indexado (J) 1.19e-3 1.2 e-3 1.22 e-3 1.17 e-4 1.19 e-4 1.21 e-3


                                          1,05                                                                                           1,05




                                                                                                Temperatura adimensional dos reagentes
                                                 J = 1,21E-3
 Temperatura adimensional dos reagentes




                                                                        Modelo determinístico                                                      J = 1.2E-3                 Modelo determinístico
                                                                        Modelo Cognitivo
                                                                        Modelo Fuzzy                                                                                          Modelo Cognitivo
                                                                                                                                                                              Modelo Fuzzy
                                          1,00                                                                                           1,00



                                          0,95                                                                                           0,95



                                          0,90                                                                                           0,90



                                          0,85                                                                                           0,85



                                          0,80                                                                                           0,80
                                                  100    200   300    400    500   600    700                                                      100    200   300   400      500    600    700
                                                                     Tempo                                                                                            Tempo
                                                    Ordem 7 para a entrada e                                                                    Ordem 17 para a entrada e 1 para
                                                      1 para estado interno                                                                             estado interno
1,05
                                                                             Modelo determinístico
Temperatura adimensional dos reagentes
                                                                               Modelo Cognitivo
                                                   J = 1,19E-3               Modelo Fuzzy
                                         1,00



                                         0,95



                                         0,90



                                         0,85



                                         0,80
                                                  100   200      300   400    500    600    700
                                                                   Tempo
                                                Ordem 23 para a entrada e 1 para estado interno
Properties Correlations
                                       Molecular
Crystallinity   Weight molecular         Weight            Density         Melt index
                                       distribution




                                Correlation
                            Fuzzy model




  Mecanical         Thermic                    Tensile               Reologic
  Properties       Properties                 Properties             properties
Properties Product modelling from
operationals dates throght Fuzzy Logic
                                          Output variables
                                        control in deterministic           Performance
                                                 model                      properties



                                                                             Thermic
                                                                            properties
                      Product                 Density
                                Fuzzy                              Fuzzy
                                Model                              Model
                                                                           Rheologic
                                                                           Properties

                                                MI
                                                                           Mechanical
                                                                           Properties

                                              Weight
                                             molecular
                                                                             Tensile
                                                                            Properties
              Plant


                            Fuzzy model
Properties Product modelling from
      operationals dates throght Fuzzy Logic

Monomer                                                                     Performance Properties
Co-monomer
                                                                                      Stifness
CAT                                                                              Impact Strength
CO-CAT                                               Conversion                     Hardness
                                                        Rate                       Melt Strength
Solvent                                     Produc
                                                     production
                                               t                                   Stress Crack
H2                                                       Mn                         Resistance
               PFR                 PFR - trimer         Mw                       Tensile Strength
T PFR                                                 Density                           Tm
                          CSTR                                    Fuzzy
T CSTR                                                   Pd                              Tc
                                                                  Model -
P system                                                 MI                              Tg
                                                                  type C
                                                         SE                   crystallization percent
Feed Lateral         Process                                                        melt swell
                                                                                  softening Point

                     Fuzzy Model - type A


                     Fuzzy Model - type B
Results – Fuzzy model type A
Type A. Such model considers the linking of the property of flow stress exponent (SE)
versus the variables of the synthesis process. The SE of a polymer is a measure of
melt viscosity and is a direct measure of molecular weight distribution. The Stress
Exponent, determined by measuring the flow (expressed as weight, in grams) through a melt index
approaches (ASTM D 1238).
Optimization to achieve products
    with required properties
UFBA




   Optimization Based Polymer
       Resin Development
Introduction
                                             Output Conditions

Input Conditions                          Temperature
                                         Concentration                0.60




 Temperature
                                                                      0.50




                     Polymerization       Conversion




                                                          SE (dim.)
                                                                      0.40


                                                                      0.30


Concentrations       process model                                    0.20


                                                                      0.10


  Flow Rate                                Polymer
                                                                          0.00   0.20     0.40    0.60    0.80
                                                                                        Reactor Length (dim.)
                                                                                                                 1.00




                                          Properties




                                                           Improve Quality

                      Optimization                     Design of new products
                        model




    Goal: Determine optimal operating policies in order
         to produce pre-specified polymer resins
Braskem Ethylene continuous polymerization
   in solution with Ziegler-Natta catalyst-
               Industrial Plant

Stirred Configuration
           Ethylene
Tubular Configuration
           Hydrogen
                                                      Product
                  Solvent                      PFR2

Ethylene               Ethylene
Hydrogen               Hydrogen
Solvent                Solvent
              PFR1

                                        CSTR

                  H2

       CAT   CC                   CAT   CC
Mathematical Model
Stirred Configuration

                                            Product                              W1                   W r-1                    Wr               W R-1
                                    PFR2                    W0
                                                                      CSTR1                ....                    CSTRr                 ....                CSTRR
                                                                                 B2                   Br                       Br+1                BR
  Monomer                                                         FZ 1                                          FZ r                                     FZ R
  H2
  Solvent
                       CSTR                                  WR                    W out
                                                                      PFRJ+1


                 CAT    CC



Tubular Configuration

                                                                 W1                         Wj                                                  WJ
                                                                         PFR1                              PFRj            ....                              PFRJ
                                                  Product
 Monomer                                   PFR2
                                                                                      Fj                                                   FJ
 H2
 Solvent

       PFR1                                                                           W1                   W r-1                    Wr               W R-1
                                                             WP
                                                                         CSTR1                 ....                    CSTRr                ....                CSTRR
                             CSTR                                                     B2                   Br                       Br+1                BR


            H2
 CAT   CC                                                        WR                    W out
                                                                         PFR J+1
Polymer Specification
    Melt Index (MI): MI = α ⋅ (MW )
                                        β
                                    w
•
                                     1
                      SE =
• Stress Exponent (SE):    α + γ ⋅ exp(β ⋅ PD )
                   DS = α + β ⋅ log(MI ) + γ ⋅ SE
• Density (DS):                            Embiruçu et al. (2000)

 • Specification at the end of reaction (z=zf)
               Desired polymer properties


        end-point constraints of the optimization
Objective Function
• Different operating policies can yield the same
  resin
                    Maximize Profit

• Objective Function
 Φ = a ⋅ WPE − (bM ⋅ WM + bH ⋅ WH + bCAT ⋅ WCAT + bCC ⋅ WCC + bS ⋅ WS ) €/h
 where
 a: polyethylene sales price (€/kg)
 b: reactant costs (€/kg)
 W: mass flow rates (kg/h)
Decision Variables
Stirred Configuration                                    Tubular Configuration

                                                            M                                      PFR2
                Ws             PFR2
                                                            H2,0 Tin
     M Tin                                                       Pin
                                                            Wt
     H2,0 Pin
                                                                       PFR1
     Wt
                                                                                        CSTR
                       CSTR

                                                                            H2,j
                                                                CAT    CC
                 CAT    CC




• Side Feed (Ws)                • Monomer Input Concentration (M)             • Lateral Hydrogen injection point (j)
                               • Hydrogen Input Concentration (H2,0)          • Lateral Hydrogen Concentration (H2,j)
                               • Catalyst Input Concentration (CAT)
                               • Inlet Temperature (Tin)
                                • Inlet Pressure (Pin)
                               • Total Solution Rate (Wt)
Multi-stage Systems
• Discontinuities ⇒ new stage system
                            DAE

              Event          Event   Event                                     f k (x k , x k , y k , u k , p, z ) = 0 , z ∈ [z k -1 , z k ]
                                                                                                                                                                     k = 1,...,nk
                                                                               g k ( x k , y k , u k , p, z ) = 0
       f(1)           f(2)                           f (n k )
                                                                               x 0 ( z0 ) − x 0 = 0
                                         ( n k −1)
z(0)           z(1)           z(2)   z                      z (n k ) = z (f)
                                                                               Stage Transition
                                                                               J (j k ) (x ( k ) , x ( k ) , y ( k ) , u ( k ) , x ( j ) , x ( j ) , y ( j ) , u ( j ) , p, z ) = 0
                                                                                                                                




• Examples
              – Injection of mass along a tubular reactor
              – Reactor switch
Reactor Profile
 Tubular configuration                                                      Stirred configuration



                                                                 PFR                                                        PFR




                         PFR        PFR

                                                                                                              CSTR
                                                  CSTR

                               H2
               CAT       CC                                                                         CAT      CC


Stage nº:                1             2           3             4                             Stage nº:          1            2

              0.60                                                                      0.50


              0.50                                                                      0.45

              0.40                                                                      0.40
  MI (dim.)




              0.30                                                          MI (dim.)   0.35

              0.20                                                                      0.30

              0.10                                                                      0.25

              0.00                                                                      0.20
                  0.00         0.20        0.40   0.60    0.80       1.00                   0.00     0.20      0.40     0.60       0.80   1.00
                                      Reactor Length (dim.)                                                 Reactor Length (dim.)
Multi-stage Process
    Steady-state                                                DAE (axial coordinate)
    Analogy: axial coordinate ⇔ time
    Tubular configuration                                                                Stirred configuration

                                                         f 4 ( z )f 4 ( z 4 (fz4)( z )
                                                                        f)
                                                                 PFR2                                              PFR2
                                                    g3

                                                         g3
            f1 ( zf1 ( f1)(f 2)( z ) ( z )
                  ) z z f2
                                                         g3
                     PFR1                                g3
                                                                                                            CSTR
                                             CSTR

                             H2
        CAT        CC                                                                                CAT   CC

        z
                  f1 ( z )        f2 ( z)    g3               f4 ( z)

f k (z ) : differential equation
g k : algebraic equation
k     : stage number
z     : axial coordinate


               Dynamic Optimization Techniques for multi-stage systems
Results – Stirred Configuration
                        0.20                                                                       1.0


                                                                                                   0.8




                                                                       Concentration (dim.)
                                                                                                                                             H 2,0
                                                                                                                                             H2,0
                                                                                                                                             CAT
                        0.15




        Profit (dim.)
                                                                                                   0.6                                       Ws
                                                                                                                                             Ws
                                                                                                                                             M

                                                                                                   0.4
                        0.10

                                                                                                   0.2


                        0.05                                                                       0.0
                           0.240   0.260     0.280     0.300   0.320                                 0.240            0.260      0.280      0.300    0.320
                                           SE (dim.)                                                                           SE (dim.)




                                                                                                           0.80
                        0.80




                                                                                    Revenue, Cost (dim.)
                                                                                                           0.75
         Q, WPE(dim.)




                        0.70
                                                                                                           0.70
                                                       Q                                                                                   Revenue
                        0.60
                                                       W PE
                                                       WPE                                                 0.65                            Cost

                        0.50                                                                               0.60


                        0.40                                                                               0.55
                            0.24   0.26      0.28      0.30    0.32                                            0.24     0.26       0.28       0.30     0.32
                                           SE (dim.)                                                                            SE (dim.)
Results – Tubular Configuration

                                     One H2 injection point at a pre-specified length (4 stages)

                0.20                                                                             1.0




                                                                          Concentration (dim.)
                                                                                                 0.8

                0.15
Profit (dim.)




                                                                                                 0.6                           H 2,0
                                                                                                                               H 2,0
                                                                                                                               CAT
                                                                                                                               H 2,j
                                                                                                                                  2,j
                                                                                                 0.4
                                                                                                                               M
                0.10
                                                                                                 0.2



                0.05                                                                             0.0

                    0.40   0.45   0.50   0.55 0.60   0.65   0.70   0.75                            0.40   0.45   0.50   0.55      0.60   0.65   0.70   0.75
                                         SE (dim.)                                                                      SE (dim.)
Benefits of the developed tool
Development of a potential tool able to improve
 the polymer quality or to create new resins in a
 simple and quick manner.
  – Better customer satisfaction.

• Robust approach
  – Use of Dynamic Optimization algorithms for a
    stationary multi-stage process.

• Versatile tool, since other polymerization
  processes can be used as basis.
Large Scale Plant Simulation
MODELING A FCC UNIT
RESULTS


                   700       Through CENPES/PETROBRAS                        Molecular
                                                                           Distillation of
                             Through Molecular Distillation
                   600

                   500
                                                                              the Alfa
Temperature (oC)




                   400
                                                                            petroleum
                                                                          obteined 10 %
                   300

                   200

                   100
                                                                            of distillate
                    0                                                      acumullated
                         0    20        40         60          80   100
                              % Distillate accumulated (% w)



            The distillation curve was determined from the
            temperature and the percentage of distillate
            obtained experimentally through molecular
            distillation and using ASTM D1160.
SEPARATION SECTION OF
      THE FCCU
Product                       Industrial data (ton/day)   Simullation Result (ton/day)   Error (%)




Fuel Gas                               360.0                         360.4                 0.11


LPG                                    1167.0                       1191.4                 2.09


Gasoline                               3534.0                       3436.2                 2.77


LCO                                    667.0                         677.0                 1.50


Slurry                                 1107.0                       1067.5                 3.57




           Products recovery: industrial data and simulation results.
Green Ethyl Acrylate

                           SUBSTRATOS
       Glicose                                                              Vários
                     Lactose                       Sacarose
                                                                            C5 e C6



           O               1                                    2
                 -                  O                                           Fermentação
H3C        C O                            -
                     H3C            C O                                         1) Fermentação de ácido
      HC                                                                        Láctico (ex. Lactobacilli,
                           HC                  3                    O
         +                                                                  -   Bacilli Streptokokki).
       NH3                                              H3C         C O
                          OH                                                    2) Fermentação de ácido
 L-Alanina             Lactato                                  CH2             Propiónico.
                                                               Propianato       3) Redução Direta (ex.
                                                                                Clostridium propionicum).
                           4    5                                     6         4) Desidratação
                                                                                5) Conversão Química
                                                                                6)Caminho Oxidativo (ex.
                                                    O                           Pseudomonas aeroginosa)
                                                           -
                                        H2C         C O
                                              CH
                                          Ácido Acrílico
ETHANOL                                              R EC 3


                                                       R EC 2

                                                                                          D ISTIL 1




                                 STRIPPER                            EXTR ACT   R AF
   AC ID
                                            TOPO                                                      AC R YLATE
                                                   C OOLER
                        FEED
                                                             C OOL

            R EAC TOR
                                                                                          D ISTIL 2

                        R EC 1                                                  EXT




                                                                                                          WASTE

                                                                                  WATER




Conceptual Plant design for Green Ethyl Acrylate
Reactor Mathematical Model
 Equações adimensionalizadas
 Balanço de Massa para o Ácido Acrílico
  ∂G           ∂G      ∂ 2G 
        = B1 .
               ∂u + u. ∂u 2  + B2 .rA
                             
  ∂z ad                     
  Balanço de Energia no Tubo

 ∂θ l         ∂θ l    ∂ 2θ l   
       = B3 .
              ∂u + u. ∂u 2      + B4 .rA
                                
 ∂z ad                         
  Balanço de Energia do Fluido Térmico

        = B5 .(θ NT − θ F )
 dQ
 dz ad
      Queda de Pressão
  dP ad
                  = B7
  dz ad

      Solução por Colocação Ortogonal
Reactor simulation
Conversion for several temperatures Tubular reactor 5,0 meters long



                           0,7

                           0,6

                           0,5
               Conversão




                           0,4

                           0,3

                           0,2                                Conversão @ 75 C
                                                              Conversão @ 80 C
                           0,1                                Conversão @ 85 C

                           0,0

                                 0,0   0,2     0,4      0,6        0,8     1,0
                                             Coordenada Axial
Conceptual Plant design for Green Ethyl Acrylate
            ETHANOL                                                 R EC 3


                                                                    R EC 2

                                                                                                       D IS TIL 1




                                            STRIPP ER                             EXTR ACT   R AF
               AC ID
                                                        TOPO                                                          AC R YLATE
                                                               C OOLE R
                                   FE ED
                                                                          C OOL

                       R EAC TOR
                                                                                                       D IS TIL 2

                                   R EC 1                                                    EXT




                                                                                                                          WAS TE

                                                                                               WATER




                       FEE             REC1             TOP           COO           WAT             RAF             EXT            ACRYL   REC2     WAST     REC3
 Vazão(kmol/h)
                       D                                               L             E
 Ácido Acríl           20,82           20,82            0,00           0,00          0,00              0,00         0,00            0,00   0,0000   0,0000   0,0000
                                        0,00            20,82        20,82           0,00              0,00         20,82           0,00   0,0000   0,3790   20,440
 Etanol                20,82
                                                                                                                                                                9
                                        0,00            29,18        29,18          20,00              4,59         44,58           0,00   4,5999   36,380   8,1995
 Água                  29,18
                                                                                                                                                       4
 Acril de Etila        29,18            0,18            29,00        29,00           0,00           22,64           6,36           19,74   2,9003    0,00    6,3595
 Total (kmol/h)        100,0           21,00            79,00        79,00          20,00           27,23           71,70          19,74   7,5000   36,76    35,00
                                       1.518            4.388        4.388            360           2349            2.399          1976    373,53   672,91   1726,1
 Total (Kg/h)          5.907
                                                                                                                                                               1
 Temp. (ºC)              78,0          140,5            79,0         25,00           25,0           29,9            29,3            99,4   82,42    97,10    77,71
Green Acrylic Acid – Unicamp/CTC/Braskem


     Seleção das rotas                Cana –
       metabólicas                fonte de açúcar


  Seleção de microrganismos                      Otimização do meio de cultura



                                 Fermentação

                                 Ácido Láctico
                               Separação/purificação
                                                                Cinética


 Ácido     desidratação                                     redução        Ácido
                                      Processo                           Propiônico
Acrílico


       Cinéticas          Modelagem       Otimização dos      Controle dos processos
                                             processos
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation
Experience on System Integration and Simulation

Más contenido relacionado

Similar a Experience on System Integration and Simulation

Modelling and Simulation systems PRESENTATION.pptx
Modelling and Simulation systems PRESENTATION.pptxModelling and Simulation systems PRESENTATION.pptx
Modelling and Simulation systems PRESENTATION.pptx
1ds20ch022
 
Sherritt(2009)Advances In Steady State Process Modeling Of Oil Shale Retorting
Sherritt(2009)Advances In Steady State Process Modeling Of Oil Shale RetortingSherritt(2009)Advances In Steady State Process Modeling Of Oil Shale Retorting
Sherritt(2009)Advances In Steady State Process Modeling Of Oil Shale Retorting
rsherritt
 

Similar a Experience on System Integration and Simulation (20)

Degradation Kinetics Of A Pharmaceutical Dosage Form
Degradation Kinetics Of A Pharmaceutical Dosage FormDegradation Kinetics Of A Pharmaceutical Dosage Form
Degradation Kinetics Of A Pharmaceutical Dosage Form
 
Saponification Presentation
Saponification PresentationSaponification Presentation
Saponification Presentation
 
Modelling and Simulation systems PRESENTATION.pptx
Modelling and Simulation systems PRESENTATION.pptxModelling and Simulation systems PRESENTATION.pptx
Modelling and Simulation systems PRESENTATION.pptx
 
C6 Revision
C6 RevisionC6 Revision
C6 Revision
 
Applications of catalysis- Physical Chemistry
Applications of catalysis- Physical ChemistryApplications of catalysis- Physical Chemistry
Applications of catalysis- Physical Chemistry
 
AXIONIT Selective ion exchange resins
AXIONIT Selective ion exchange resinsAXIONIT Selective ion exchange resins
AXIONIT Selective ion exchange resins
 
Lithium-Ion Batteries towards Circular Economy: A Literature Review of Opport...
Lithium-Ion Batteries towards Circular Economy: A Literature Review of Opport...Lithium-Ion Batteries towards Circular Economy: A Literature Review of Opport...
Lithium-Ion Batteries towards Circular Economy: A Literature Review of Opport...
 
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.IB Chemistry Equilibrium constant, Kc and  Reaction quotient, Qc.
IB Chemistry Equilibrium constant, Kc and Reaction quotient, Qc.
 
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
 
Sweetening and sulfur recovery of sour associated gas in the middle east
Sweetening and sulfur recovery of sour associated gas in the middle eastSweetening and sulfur recovery of sour associated gas in the middle east
Sweetening and sulfur recovery of sour associated gas in the middle east
 
13 l1-l2-reactor design
13 l1-l2-reactor design13 l1-l2-reactor design
13 l1-l2-reactor design
 
Sherritt(2009)Advances In Steady State Process Modeling Of Oil Shale Retorting
Sherritt(2009)Advances In Steady State Process Modeling Of Oil Shale RetortingSherritt(2009)Advances In Steady State Process Modeling Of Oil Shale Retorting
Sherritt(2009)Advances In Steady State Process Modeling Of Oil Shale Retorting
 
Stereochemistry (Reactions of Chiral Molecules)
Stereochemistry (Reactions of Chiral Molecules)Stereochemistry (Reactions of Chiral Molecules)
Stereochemistry (Reactions of Chiral Molecules)
 
IA on effect of concentration of KOH on the rate of hydrogen production, betw...
IA on effect of concentration of KOH on the rate of hydrogen production, betw...IA on effect of concentration of KOH on the rate of hydrogen production, betw...
IA on effect of concentration of KOH on the rate of hydrogen production, betw...
 
11 09 21.Pearson Heatpumps Nuremburg.Dfp
11 09 21.Pearson Heatpumps  Nuremburg.Dfp11 09 21.Pearson Heatpumps  Nuremburg.Dfp
11 09 21.Pearson Heatpumps Nuremburg.Dfp
 
Alptekin_Presentation._syngas_cleaned.pdf
Alptekin_Presentation._syngas_cleaned.pdfAlptekin_Presentation._syngas_cleaned.pdf
Alptekin_Presentation._syngas_cleaned.pdf
 
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell PotentialIB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free Energy, Equilibrium constant and Cell Potential
 
Tools of the Trade
Tools of the TradeTools of the Trade
Tools of the Trade
 
Eneractive Solutions - Power Plant Solutions for NAES Conference
Eneractive Solutions - Power Plant Solutions for NAES Conference Eneractive Solutions - Power Plant Solutions for NAES Conference
Eneractive Solutions - Power Plant Solutions for NAES Conference
 
intro_to_enzymes.ppt
intro_to_enzymes.pptintro_to_enzymes.ppt
intro_to_enzymes.ppt
 

Más de CTBE - Brazilian Bioethanol Sci&Tech Laboratory

Más de CTBE - Brazilian Bioethanol Sci&Tech Laboratory (20)

Silicon Importance on Aliviating Biotic and Abiotic Stress on Sugarcane
Silicon Importance on Aliviating Biotic and Abiotic Stress on SugarcaneSilicon Importance on Aliviating Biotic and Abiotic Stress on Sugarcane
Silicon Importance on Aliviating Biotic and Abiotic Stress on Sugarcane
 
Environments of Production and Agronomic Management
Environments of Production and Agronomic ManagementEnvironments of Production and Agronomic Management
Environments of Production and Agronomic Management
 
From Genotype to Phenotype in Sugarcane: a systems biology approach to unders...
From Genotype to Phenotype in Sugarcane: a systems biology approach to unders...From Genotype to Phenotype in Sugarcane: a systems biology approach to unders...
From Genotype to Phenotype in Sugarcane: a systems biology approach to unders...
 
The Biomass, Fibre and Sucrose Dilemma in Realising the Agronomic Potential o...
The Biomass, Fibre and Sucrose Dilemma in Realising the Agronomic Potential o...The Biomass, Fibre and Sucrose Dilemma in Realising the Agronomic Potential o...
The Biomass, Fibre and Sucrose Dilemma in Realising the Agronomic Potential o...
 
Biological Network Inference via Gaussian Graphical Models
Biological Network Inference via Gaussian Graphical ModelsBiological Network Inference via Gaussian Graphical Models
Biological Network Inference via Gaussian Graphical Models
 
Procedimentos de Interação: CTBE-Indústria
Procedimentos de Interação: CTBE-IndústriaProcedimentos de Interação: CTBE-Indústria
Procedimentos de Interação: CTBE-Indústria
 
Reflexões
ReflexõesReflexões
Reflexões
 
Apresentação do CTBE
Apresentação do CTBEApresentação do CTBE
Apresentação do CTBE
 
Visão Sobre o Documento Base
Visão Sobre o Documento BaseVisão Sobre o Documento Base
Visão Sobre o Documento Base
 
Procedimentos que Regem o Relacionamento CTBE-Indústria
Procedimentos que Regem o Relacionamento CTBE-IndústriaProcedimentos que Regem o Relacionamento CTBE-Indústria
Procedimentos que Regem o Relacionamento CTBE-Indústria
 
Research Program on Sustainability of Bioethanol
Research Program on Sustainability of BioethanolResearch Program on Sustainability of Bioethanol
Research Program on Sustainability of Bioethanol
 
Sugarcane Agroecological Zoning for Ethanol and Sugar production in Brazil
Sugarcane Agroecological Zoning for Ethanol and Sugar production in BrazilSugarcane Agroecological Zoning for Ethanol and Sugar production in Brazil
Sugarcane Agroecological Zoning for Ethanol and Sugar production in Brazil
 
Remote Sensing Satellite Images for Sugarcane Crop Monitoring
Remote Sensing Satellite Images for Sugarcane Crop Monitoring Remote Sensing Satellite Images for Sugarcane Crop Monitoring
Remote Sensing Satellite Images for Sugarcane Crop Monitoring
 
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane...
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane...Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane...
Greenhouse Gas Emissions in the Production Cycle of Bioethanol from Sugarcane...
 
Research Program on Sustainability of Bioethanol: Socio economic impacts
Research Program on Sustainability of Bioethanol: Socio economic impactsResearch Program on Sustainability of Bioethanol: Socio economic impacts
Research Program on Sustainability of Bioethanol: Socio economic impacts
 
An Overview of Brazilian Actions Regarding Sustainability of Biofuels
An Overview of Brazilian Actions Regarding Sustainability of BiofuelsAn Overview of Brazilian Actions Regarding Sustainability of Biofuels
An Overview of Brazilian Actions Regarding Sustainability of Biofuels
 
Initiatives Regarding Sustainability of Biofuels in Europe and their Potencia...
Initiatives Regarding Sustainability of Biofuels in Europe and their Potencia...Initiatives Regarding Sustainability of Biofuels in Europe and their Potencia...
Initiatives Regarding Sustainability of Biofuels in Europe and their Potencia...
 
Social Externalities of Different Fuels in Brazil
Social Externalities of Different Fuels in BrazilSocial Externalities of Different Fuels in Brazil
Social Externalities of Different Fuels in Brazil
 
NGO Reporter Brasil´s Experience on Monitoring Social Impacts of Ethanol
NGO Reporter Brasil´s Experience on Monitoring Social Impacts of EthanolNGO Reporter Brasil´s Experience on Monitoring Social Impacts of Ethanol
NGO Reporter Brasil´s Experience on Monitoring Social Impacts of Ethanol
 
Greenhouse Gas (GHG) Emissions Balances of Biofuels
Greenhouse Gas (GHG) Emissions Balances of Biofuels Greenhouse Gas (GHG) Emissions Balances of Biofuels
Greenhouse Gas (GHG) Emissions Balances of Biofuels
 

Último

IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
Enterprise Knowledge
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 

Último (20)

Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 

Experience on System Integration and Simulation

  • 1. Universidade Estadual de Campinas- UNICAMP School of Chemical Engineering EXPERIENCE ON SYSTEM INTEGRATION AND SIMULATION Professor RUBENS MACIEL FILHO •Laboratory of Optimization, Design and Advanced Process Control •Department of Chemical Processes, School of Chemical • Engineering, State University of Campinas, Campinas - Brazil e-mail maciel@feq.unicamp.br VIRTUAL SUGAR CANE BIOREFINERY- CTBE - August 2009
  • 2. MOTIVATION • Process Simulation – Evaluation of several possible routes – routes discrimination –Investigation of different scenarios - Process understanding - Impact of operation variables on process performance
  • 3. Process Simulation (cont.) -Preliminary evaluation of costs, water and energy consumption -Studies of variable interaction and process dynamics -Operator Training -Dynamic simulation- process control strategies may be evaluated Design of Equipments and plant conceptual design
  • 4. PROCESS MODELLING Steady State Model Dynamic Model Simplified versus Detailed Model Physico-Chemisty based Models (Deterministic) versus Empiric and or Statistical Models Hybrid Model Single Unit Models Large Scale Plant Model
  • 5. Process Simulation System –can be seen a set of subsystem depending upon of required investigation Interaction among subsystems – made through mass and heat transfer parameters Subsystem 1– an important component of the process, inside an equipment where the phenomena are intrinsically taking place- for instance catalyst particle, bagasse to be hydrolyzed and microorganism in biotechnological process. When considered explicitly a heterogeneous model is formulated.
  • 6. Subsystem 2 - Equipment - peace of the plant where the changes (reactions, mixtures or separations) are occurring. In this category it may be place reactors, separation columns, fermentors, etc. Subsystem 3 – large scale plant or a set of equipments in which there exist interest to study Subsystem 1 and 2 – normally require software development if detailed representation are desired. Subsystem 3 – simulators, including the commercial ones (Hysis , Aspen, Gproms etc)
  • 7. System Integration There exist an incentive for high operational performance operation Process optimization begins with better process control Large Plant Optimization and control RTO: Integrate economic objectives and control Stability, controllability and safety
  • 8. System Integration Large Plant Optimization and Control RTO (Real Time Operation): Integrate economic objectives and control Stability, controllability and safety- may be expressed as plant restriction Refinery process ⇒large scale units, high products output, monitoring difficulties, data reconciliation
  • 9. Optimization Strategies Two main strategies are to be implemented:  One layer approach  two layers approach  Hybrid approach may be necessary
  • 10. One layer approach Economical optimization problem is solved together with the control problem  very sensitive to model mismatch  dimension of the optimization problem can be very large ( on line applications can be restrictive)  use of simplified model may not be suitable
  • 11. controller/ optimizer Estimation block measured outputs measured inputs Process non-measured non-measured outputs inputs One layer approach
  • 12. Two layers approach hierarchical control structure where there is an optimization layer that calculates set- points to the advanced controller  the optimization layer is composed of an objective function and a process steady- state model
  • 13. Optimizer setpoints Controller Estimation block measured inputs Process measured outputs non-measured non-measured inputs outputs Two layer approach
  • 14. Advanced Controllers • CONTROLADORES LINEARES • NON LINEAR CONTROLLERS • PREDICTIVE CONTROLLERS • ROBUST CONTROLLERS • ADAPTIVE CONTROLLERS • HYBRID CONTROLLERS (NEURAL NETWORK AND FUZZY COUPLED WITH MODEL BASED CONTROLLER)
  • 16. STRUCTURED MATHEMATICAL MODEL FOR ETHANOL PRODUCTION Possible to handle with substrate to drive the fermentation
  • 17. STRUCTURED MATHEMATICAL MODEL Representative Metabolic Route (F. Lei et al. Journal of Biotechnology 88 (2001) 205-221)
  • 18. Mass balance equations and reaction rate of the model ∂S glu cos e = −(R1 + R7 )X + D (S feed − S glu cos e ) ∂t s glu cos e s glu cos e s glu cos e R1 = k1l X a + k1h X a + k1e s glu (K 1i s acetaldehyde + 1) + K 1e s acetaldehyde X a s glu cos e + K 1l s glu cos e + K 1h s glu cos e R7 = k 7 Xa s glu cos e + K 7 ∂S pyruvate = (0.978 R1 − R 2 − R3 )X − D (S pyruvate ) ∂t s pyruvate 1 R2 = k 2 Xa s pyruvate + K 2 K 2i s glu cos e + 1 s4 R3 = k 3 pyruvate Xa s 4 pyruvate + K3
  • 19. ∂S acetaldehyde = (0.5 R3 − R4 − R6 )X − D (S acetaldehyde ) ∂t s acetaldehyde R4 = k 4 X a X Acdh s acetaldehyde + K 4 s acetaldehyde − k 6 r s ethanol R6 = k 6 Xa s acetaldehyde + K 6 + K 6 r s ethanol ∂S acetate = (1.363R4 − R 5 − R8 )X − D(S acetate ) ∂t s acetate s acetate 1 R5 = k 5 X a + k 5e Xa s acetate + K 5 s acetate + K 5e K 5i s glu cos e + 1 s acetate 1 R8 = k 8 Xa s acetate + K 5e K 5i s glu cos e + 1
  • 20. ∂S ethanol = (1.045 R6 )X − D(S ethanol ) ∂t ∂X = (0.732 R7 + 0.619 R8 )X − D( X ) ∂t ∂X a = (0.732 R7 + 0.619 R8 − R9 − R10 ) − (0.732 R7 + 0.619 R8 )X a ∂t   k9 s glu cos e s ethanol   1 s glu cos e R9 = + k 9e X a + k 9c Xa  s K s s ethanol + K 9e  9i glu cos e + 1 s glu cos e + K 9  glu cos e + K 9 s glu cos e s ethanol R10 = k10 X a + k10e Xa s glu cos e + K 10 s ethanol + K 10e
  • 21. ∂X Acdh = (R9 − R11 ) − (0.732 R7 + 0.619 R8 )X Acdh ∂t R11 = k11 X Acdh • Mass balance equations → 8 • Kinetic parameter → 37 • Parameter adjust → Genetic Algorithm X → biomass; Xa → active cell material; XAcdh → Acetaldehyde dehydrogenase; D → dilution rate; Ki → rate constant; Ki → affinity constant; Kji → inhibition constant
  • 23. TRS → Total Reductor Sugars
  • 24.
  • 26.
  • 27. Some Chemical Products via fermentation Acetaldeído Ácido acético Anidrido acético FERMENTATION CHEMICAL SYNTHESIS Etanol Acetato de etila Ácido acético Acetato de vinila Sugar Ácido lático Crotonaldeído Glycose Acetona Butanol Etanol Paraldeído Sacarose Butanol Acetato de butila Piridina Nicotinamida Glicol Butadieno Glioxalato Produtos químicos produzidos por fermentação
  • 28.  Other Products to be obtained from biomass Etileno Etanol Acetaldeído FERMENTATION Ácido acético HYDROLYSIS Propano Propileno BIOMASS Sugar Ácido acrílico Glicose Glicerol Sacarose Ácido lático Xilose Butadieno Arabinose Butanodiol Ácido succínico Produção de novos produtos químicos a partir de biomassa
  • 29.  Fermentation process – piuvirate is formed in glycolysys GLICOSE ATP ADP Glicose 6-fosfato Frutose 6-fosfato ATP ADP Frutose 1,6-bifosfato NAD+ NADH +Pi +H+ Gliceraldeído 3-fosfato 1,3-Difosfoglicerato ADP ATP 3-fosfoglicerato Gli cos e + 2 NAD +  2 Piruvato + 2 NADH + 2 H + → 2-fosfoglicerato ∆G10 = −146kJmol − 1 ' Fosfoenolpiruvato ADP 2 ATP + 2 Pi  2 ATP + 2 H 2 O → ∆G10 = 61kJmol − 1 ATP ' PIRUVATO Processo de glicólise
  • 30. GLICOSE Rota (EMP) 10 reações sucessivas 2 Piruvato Condições anaeróbias Condições anaeróbias O2 2 Etanol + 2CO2 Condições aeróbias 2 Lactato CO2 2 Acetil CoA 2 Ácido Acrílico + 2H2O O2 Ciclo do ácido TCA 4 CO2 + H2 O Rota glicolítica
  • 31. Metabolic pathways for the synthesis of acrylic acid (Straathof et al., 2005)
  • 32.  STRUCTURED MODEL WITH IMOBILIZED CELLS  Structured Models based on the work of Lei et al. (2001) e Stremel (2001). Model of Lei et al. (2001) -a structured biochemical model that describes the aerobic growth of Saccharomyces cerevisiae in a medium limited to glucose and / or ethanol. Model of Stremel (2001) -alternative structured model to represent the dynamic simulation of a tubular bioreactor with immobilized cells of Saccharomyces cerevisiae for alcoholic fermentation.
  • 33. Para desenvolvimento deste modelo foi considerado: Continuous isothermal process heterogeneous model ; biomass composition: CH1,82O0,576N0,146; spherical particles ; heterofermentative process production associated with cell growth; axial dispersion . Solution by orthogonal collocation
  • 36. Reaction Rates S S R1 = k1 X a + k1a Xa S + K1 S + K1a S 1 R2 = k 2 Xa S + K2  L  1+  K    2i  P R3 = k 3 Xa P + K3 L R4 = k 4 Xa L + K4 L  1  R5 = k 5 1+ K S X a  L + K5   5i   S L  1  R6 = k 6  S +K + L + K 6a  K AA + 1  X a    6  6i   S   AA  R7 =  k 7  S+K  X a +  k 7a   X a   7   AA + K 7 a 
  • 37. Mass Balances for the solid phase  Glicose ∂S D AS 1 ∂  2 ∂S   − (R1 + R2 )e A X − K AA = r ∂t R 2 r 2 ∂r  ∂r   Piruvato ∂P D AP 1 ∂  2 ∂P   + (0,978 R1 − R3 )e A X − K AA = r ∂t R 2 r 2 ∂r  ∂r   Lactato ∂L D AL 1 ∂  2 ∂L   + (1,023R3 − R4 − R5 )e A X − K AA = r ∂t R 2 r 2 ∂r  ∂r   Ácido Acrílico ∂AA D A( AA ) 1 ∂  2 ∂AA   + (0,8 R4 − R7 )e A X − K AA = r ∂t R 2 r 2 ∂r  ∂r   Células ∂X  X  − K A `AA = (0,732 R2 + 0,821R5 )X 1 − e − kd X ∂t   X sat    Células ativas ∂X a = (0,732 R2 + 0,821R5 − R6 − R7 ) − (0,732 R2 + 0,821R5 )X a ∂t  Enzima lactato desidrogenase ∂X LADH = R6 − (0,732 R2 + 0,821R5 )X LADH ∂t
  • 38. Mass Balance for the Fluid Phase  Glicose  Piruvato ∂S dt  ∂ 2 S   ∂S  1 − ε = Daz   − u  −  ∂z 2   ∂z  ε [ η (R1 + R2 )e − K A AA X ]   ∂P  ∂ 2 P   ∂P  1 − ε = Daz   ∂z  − u  + 2  ε [ η (0,978R1 − R3 )e − K A AA X ] dt    ∂z   Lactato ∂L  ∂ 2 L   ∂L  1 − ε = Daz   ∂z  − u  + 2  ε [ η (1,023R3 − R4 − R 5 )e − K A AA X ] dt    ∂z   Ácido Acrílico ∂AA dt  ∂ 2 AA   ∂AA  1 − ε = Daz   − u  ∂z 2   ∂z  + ε [ η (0,8R4 − R7 )e − K A AA X ]  
  • 39.  SIMULATION RESULTS 150 Concentração de Ácido Acrílico (kgm-3) 30 135 Concentração de Glicose (kgm-3) 25 120 20 105 15 90 10 75 5 60 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Tempo (h) 6,00 4,0 Concentração de Lactato (kgm-3) 5,25 3,5 Concentração de Piruvato (kgm-3) 4,50 3,0 3,75 2,5 3,00 2,0 2,25 1,5 1,50 1,0 0,75 0,5 0,00 0,0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Tempo (h)
  • 40. 150 30 Concentração de Ácido Acrílico (kgm-3) 135 Concentração de Glicose (kgm-3) 25 120 20 105 15 90 10 75 5 60 0 0,0 0,2 0,4 0,6 0,8 1,0 Posição axial
  • 42. Multitubular Catalytic Reactor Tube-side : catalytic fixed bed
  • 43. Detailed modeling where: A = Parallel flow in the baffles holes B = Flow near the baffle end C = Parallel flow in the space between bundle of tubes and shell D = Flow between baflles and shell E = Cross Flow in the window zones
  • 44. Multitubular Fixed Bed Catalitic Reactor Co-current Design Alternative Design
  • 45. Temperature Profiles Radial mean temperature profile along the reactor length for different reactor configurations
  • 46. Heat Transfer Coefficient Profiles Co-current Design Alternative Design
  • 47. R H Y REACTOR DESIGN FOR D R O HYDROLYSE L Y
  • 48. REACTION SYSTEM AdsorbtionCellulase on cellulose and lignin, β-Glucosidase on lignin R1Cellulose to Cellobiose (Catalized by cellulase adsorbed on cellulose) R2Cellulose to Glucose (Catalized by cellulase adsorbed on cellulose) R3Cellobiose to Glucose (Catalized by non-adsorbed β-Glucosidase) Enzymes (Cellulase, β-glucosidase) Adsorption R3 R1 R2
  • 49. EXPERIMENTAL DATA AND MASS BALANCES G-1% G-3% G-5% G2-1% G2-3% G2-5% Cellulose 25 Glucose [G] - Cellobiose [G2] dC 20 = −r1 − r2 dt 15 (g/L) 10 Cellobiose 5 dG2 = 1.056r1 − r3 0 dt 0 12 24 36 48 60 72 Time (h) Glucose Fig. 1 Observed time course of glucose (G) and cellobiose (G2) profiles. Enzymatic hydrolysis dG of AHP-pretreated sugarcane bagasse at different = 1.111r2 + 1.053r3 initial solid loadings (% w/w). dt
  • 50. REACTION SCHEMES Three reaction Scheme (General) Two reaction Scheme (No direct glucose formation from cellulose) One reaction Scheme (Nor direct glucose formation from cellulose neither cellobiose accumulation)
  • 51. MATHEMATICAL MODELING Enzyme adsorption on cellulose and lignin • One site Langmuir isotherm Non-mechanistical, fit experimental data, • Two sites Langmuir Isotherm most used in the literature Enzyme inhibition by cellobiose and cellulose • Competitive • Non-competitive Both are used in the literature. There is no consensus Recalcitrance • Substrate reactivity α(S/S0)n+cte (S:substrate) • Substrate susceptibility v=v0Exp(-Krec(1-(S/S0))) (v0:adsorbed enzyme) Enzyme deativation (Thermal, mechanical) • First order kinetic Very important for design of continuous reaction systems at industrial scale
  • 52. EXPERIMENTAL PROCEDURE AND KINETIC PARAMETER ESTIMATION Adsorption Enzyme Loading • Enzyme adsorption on pretreated substrate 5 FPU – 500 FPU – • Enzyme adsorption on hydrolyzed substrate CBU/g CBU/g • Enzyme adsorption on lignin cellulose cellulose Hydrolysis Substrate Loading • Hydrolysis of pretreated substrate 1%(W/W) 8%(W/W) • Hydrolysis of partially hydrolyzed susbtrate • Hydrolysis with backgrond sugars (Cellobiose, glucose) • Fed batch (enzyme and susbtrate) hydrolysis Parameter estimation with global and local optimization techniques • Genetic algorithms + quasi Newton • Simulated annealing + quasi Newton • Particle swarm method + quasi Newton Model validation
  • 53. CONTINUOUS REACTION SYSTEMS I Goals •Subs conc. CSTR •Subs conv. •Enzy consump. •Continuous substrate and •Power Consump. enzyme feeding •Resid time n-CSTR Continuous substrate and enzyme feeding at the first tank n-CSTR with distributed feeding •Ad hoc distributed feeding strategy of substrate and/or enzyme •Model-based distributed feeding strategy of substrate and/or enzyme
  • 54. CONTINUOUS REACTION SYSTEMS II λ λ Goals PFR with or without side feeding •Subs conc. Bafled PFR with or without side feeding •Subs conv. •Enzy consump. •Continuous substrate and enzyme feeding •Power Consump. •Resid time •Ad hoc side feeding strategy or model-based •Overcome viscosity side feeding strategy of substrate and/or limitations enzyme
  • 55. CONTINUOUS REACTION SYSTEMS III Goals •Subs conc. •Subs conv. •Enzy consump. •Power Consump. •Resid time •Overcome viscosity Liquefactor limitations Reactors •Liquefactor + n-CSTR •Liquefactor + PFR •Liquefator + Bafled PFR +
  • 56. REACTOR MODELING n-CSTR Microfluid model PFR VRi S (i −1) − Si dVR dS h τi = = ϕ =− ϕ r ( Si ) r (S h ) n-CSTR Macrofluid model CFD based model • Ideal residence time distribution •Virtual tracer t n −1 E (t ) = e −t / τ i Experiments (n − 1)!τ in •Virtual • Substrate conversion determination of t →∞  sh  1 − X sh = ∫ s   E (t )dt RTD t =0  h 0  Batch •Application of macrofluid model
  • 57. RESULTS FOR n-CSTR Macrofluid Model 120 110 NR=1 NR=2 Fig. 2 Total mean hydraulic residence time (tao=τ) as a NR=3 NR=5 100 NR=20 PFR 90 80 function of cellulose conver- sion (Xc) predicted by the tao[h] 70 60 50 macrofluid and microfluid 40 model. 30 20 10 0,650 0,670 0,690 0,710 0,730 0,750 Microfluid Model Xc 120 110 N=1 NR=2 NR=3 NR=5 100 NR=20 PFR 90 Initial bagasse concentration 80 tao[h] 70 ST0=50 g/L; 60 initial cellulose concentration 50 40 SC0=40g/L. 30 20 10 0,650 0,670 0,690 0,710 0,730 0,750 Xc
  • 58. CFD APPLIED TO REACTOR DESIGN I ANSYS CFX (of Ansys Inc., EUROPE) xy velocity field Modeling approaches Pseudo-homogeneous suspension with apparent rheological properties ‘or’ Multiphase •Eulerian-Eulerian approach •Eulerian-Lagrangian approach
  • 59. CFD APPLIED TO REACTOR DESIGN II Baffled PFR Mesh details and Pipe geometry
  • 60. CFD APPLIED TO REACTOR DESIGN II Baffled PFR 2. 1. 2. 1. Predicted solids volume fraction distribution (1) and solid velocity (2)
  • 61. HYDROTREATING OF MIDDLE DISTILLATES IN A TRICKLE BED REACTOR
  • 62. The hydrodesulfurization (HDS), hydrodenitrogenation (HDN), hydrodeoxygenation, hydrocraking and saturative hydrogenation of middle distillates has been studied in this work. An adiabatic diesel hydrotreating trickle bed packed reactor was simulated numerically by a heterogeneous model in order to check up the behaviour of this specific reaction system. Alternative design is proposed The model consists of mass and heat balance equations for the fluid phase as well as for the catalyst particles, and take into account variations in the physical properties as well as of the heat and mass transfer coefficients. Heterogeneous model is developed
  • 63. GAS in LIQUID in Bed 1 QUENCH Bed 2 GAS out LIQUID out
  • 64. 1 - Sulfur – containing hydrocarbons: Hydrocarbon = S + 2H 2 → Hydrocarbon = H 2 + H 2S 2 - Oxygenated hydrocarbons: Hydrocarbon − OH + H 2 → Hydrocarbon − H + H 2O 3 - Nitrogenated hydrocarbons: Hydrocarbon − N + 3H 2 → Hydrocarbon ≡ H 3 + NH 3 4- Hydrogenated hydrocrackable hydrocarbons: Hydrocarbon − CH 3 + H 2 → Hydrocarbon − H + CH 4 5 - Unsaturated hydrocarbons with double bonds: Hydrocarbon + H 2 → Hydrocarbon = H 2
  • 65. REACTOR PREDICTIONS 780 770 760 750 740 Temperature (K) 730 720 710 700 690 680 670 660 650 0 2 4 6 8 10 Bed length (m) Figure 1 – Temperature profile along the reactor length.
  • 66. 1,0 0,9 0,8 0,7 0,6 Conversion 0,5 0,4 0,3 0,2 0,1 0,0 0 2 4 6 8 10 Bed length (m) Figure 2 – Sulfur conversion profile along the reactor length. Pressure : 96 atm
  • 67. 695 690 685 680 Temperature (K) 675 670 665 660 655 650 0 2 4 6 8 10 Bed length (m) Figure 3 – Temperature profile along the reactor length.
  • 68. 0,7 0,6 0,5 Conversion 0,4 0,3 0,2 0,1 0,0 0 2 4 6 8 10 Bed length (m) Figure 4 – Sulfur conversion profile along the reactor length. Pressure: 68 atm
  • 69. Efficient Mathematical Procedure for Calculating Dynamic Adsorption Process
  • 70. System for Adsorption Process Different modelling approach Different operational Different numerical Different equilibrium parameters, methods relationships and adsorbent characteristics
  • 71. Column parameters: dimensions bed porosity Feed Conditions: Arrangement of the columns: Equilibrium isotherms single adsorbate fixed Adsorbent type and binary or multicomponent in sequency characteristics continuos or pulse simulated moving bed Mass transfer model
  • 72. TYPES OF RESULTS CONCENTRATION BREAKTHROUGH CURVES ADSORBENT LOADING BREATHROUGH CURVES CONCENTRATION-DISTANCE PROFILES ADSORBENT LOADING PROFILES MONOCOMPONENT AND ELUTION CURVES (CHROMATOGRAPHY) MULTICOMPONENT
  • 73. In the developed software: 1 • different numerical methods 1 different isotherms • 1 • were carried out in order to be possible to take decisions in relation to: 1 the evaluation of an operating adsorber 1 the possibility to apply this separation process for recovering a given component from a mixture
  • 74. Model and Solution Simulation of packed bed adsorption columns using the pore diffusion model, in which two mass transfer processes were considered:  the external mass transfer from the bulk liquid phase to the particle surface  internal pore diffusion within the adsorbent particle itself
  • 75. In the model formulation the following assumptions were made • Diffusion coefficients independent of the mixture composition • Spherical particles with equal sizes • Constant temperature and porosity • Not including axial dispersion • Solution Procedure: orthogonal collocation method coupled with the DASSL routine
  • 76. DELTA 200 1,2 1,2 DELTA 12.5 1,0 1,0 0,8 0,8 0,6 c/c0 10 Elem 0,6 C/C0 0,4 20 Elem 40 Elem 0,4 0,2 80 Elem 10 Elem Exper. 20 Elem 0,0 0,2 40 Elem Experim. 0,0 0 2000 4000 6000 8000 10000 t(s) 0 2000 4000 6000 8000 10000 t (s) 1,2 1,2 DELTA 100 DELTA 25 1,0 1,0 0,8 0,8 0,6 10 Elem c/c0 0,6 20 Elem C/C0 0,4 40 Elem 0,4 10 Elem 0,2 80 Elem 20 Elem Exper. 0,2 0,0 40 Elem 0,0 Experim. 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 t(s) t (s)
  • 77. Alternative Process Modeling Fuzzy Logic Artificial Neural Networks Neuro Fuzzy Hybrid Modeling
  • 78. STATE UNIVERSITY OF CAMPINAS BRAZIL Department of Chemical Engineering SOFT SENSOR FOR MONITORING AND CONTROL OF AN INDUSTRIAL POLYMERIZATION PROCESS OBJECTIVE: To develop a Soft Sensor for polymer viscosity of an industrial PET Process.
  • 79. PET Plant- the liquid phase (105.000 ton/year)
  • 80. RESULTS AND DISCUSSIONS Figure 3- Schematic of virtual sensor.
  • 81. The variables, related to intrinsic viscosity, used for the neural net training are given in Table 1. Table 1- Variables for neural net training Input variable Name 1 PE temperature T-1 2 SE temperature T-2 3 Temperature of the LP second stage T-4 4 Vacuum of the LP first stage P-1 5 Vacuum of the LP second stage P-2 6 HP temperature T-5 7 HP Vacuum P-3 8 Additive flow rate (catalyst). F-1 Output variable 1 Measured viscosity by viscometer V-1
  • 82. Viscosimeter Soft-Sensor 1,020 1,010 Viscosity 1,000 0,990 0,980 0 4 8 13 17 21 25 29 33 38 Tim e (h) Figure 4 Viscosimeter versus Soft-Sensor (real time measurements - normalized values)
  • 83. Polymer viscosity Set-point 1,050 1,025 Viscosity 1,000 0,975 0,950 0 4 8 13 17 21 25 Tim e (h) Figure 5. Process controlled using viscosity values estimated by Soft- Sensor (normalized values)
  • 85. (Industrial Test) 1460 Viscosímetro Soft-Sensor 1440 1420 Soft-Sensor 1400 1380 1360 1340 1 6 11 16 21 26 31 36 41 46 51 Viscosímetro
  • 86. “Industrial Test” Soft-Sensor Linear (Soft-Sensor) 1460 1440 Soft-SEnsor 1420 1400 R2 = 0.9086 1380 1360 1340 1340 1360 1380 1400 1420 1440 1460 Viscosímetro
  • 90. Viscosimeter versus Soft-Sensor (Real Time Optimization)
  • 91. Process Control by Soft-Sensor
  • 92. Column Temperature- First Esterification Reactor
  • 93. •Usual existing processes: 3 or 4 tanks in series •Alternatives processes are under tests as flocculation and extractive Extractive alcoholic fermentation process
  • 94. Ff Vapour Flash Tf Pf Feed Return T D pH Tb Fermentor Filter Purge Permeate EXTRACTIVE FERMENTATION PLANT
  • 95. Extractive Process • This process was build up and validated for bioethanol production in bench scale by Atala (2004);
  • 96. Development of Real-time State Estimators for Extractive Process - Introduction - On-line monitoring by SS: - Allow real time monitoring of key variables of processes; - Off-line monitoring: - Leads to time delay between sampling and results; - Requires advanced analytical instruments (including near infrared spectrophotometers) → difficult to calibrate due to presence of CO2 in the media.
  • 97. Software Sensor • Software sensor: an algorithm where several measurements are processed together. The interaction of the signals from on-line instruments can be used for calculating or to estimate new quantities (e.g. state variables and model parameters) that cannot be measured in real-time. POTENTIAL INPUT VARIABLES • On-line measurements (input): Pf Ff Tf T D pH Tb - Temperatures; - Dilution rate; - pH; ANN-BASED ANN-BASED SOFT-SENSOR (1) SOFT-SENSOR (2) - Turbidity in the fermentor; - Pressure; - Feed flow rate in the flash vessel. ESTIMATED ESTIMATED Pferm Pflash • Off-line measurements (output): ethanol concentration in the fermentor and in the condensed stream from the flash vessel.
  • 98. ANN Structure Selection • Multilayer Perceptron (MLP) Neural Networks : - One of the most common ANN used in engineering; - understandable architecture and a simple mathematical form; • This NN consists of: input, output and one or more hidden layers. • Numbers of neurons are N, M and K Input layer Hidden layer Output layer θ1 θj w11 + f1(•) ... ... ... ... x1 w1N x1 wj1 θ2 β1 w21 W11 x2 wj2 + f(•) yj ... ... ... ... + f2(•) W12 + F1(•) g1 ... ... ... ... ... ... ... ... ... ... ... ... xN w2N ... W1M θM wM1 xN wjN + fM(•) ... ... ... ... wMN (a) (b)
  • 99. Results and Discussion 250 Pf (mmHg) 200 • Even using on-line (input) data 150 100 with different levels of noise 50 210 →The software sensor described 198 Ff (L/h) 185 accurately the ethanol 173 160 35.5 concentrations. 34.8 Tf ( C) 34.0 o 33.3 32.5 34.5 34.0 T ( C) 33.5 o 33.0 32.5 0.5 0.3 D (h ) -1 0.2 0.1 0.0 4.4 4.3 pH 4.2 4.1 4.0 31 28 Tb (%) 25 22 19 200 250 300 350 400 450 Time (h)
  • 100. (a) 75 1.0 Dilution factor (h-1) fermentor (g/L) 66 0.8 Ethanol in the 57 0.6 48 0.4 39 Dilution factor 0.2 30 0.0 Condensed ethanol (g/L) (b) 430 1.0 Dilution factor (h-1) 412 0.8 394 0.6 376 0.4 358 0.2 340 0.0 200 250 300 350 400 450 Time (h) SOFT SENSOR FOR CONCENTRATION
  • 101. ' Kalman filter training  weight adjustment Error Kalman filter (NLSTC) + - RNN N Substrate Air flow State measurement Penicillin process The proposed non-linear Self-tuning controller scheme
  • 102. 35 30 Biomass concentration (g/l) 25 20 Process 15 Kalman filter 10 5 0 20 40 60 80 100 120 Time (h) Estimation of the biomass concentration
  • 103. 14000 Penicillin concentration (g/l) 12000 10000 8000 6000 4000 2000 Process 0 Kalman filter -2000 0 20 40 60 80 100 120 Time (h) Estimation of the Penicillin concentration with the multiple extended Kalman filter algorithm
  • 104. Fractional Brownian motion as a model for an industrial Air-lift Reactor fBm (Mandelbrot, 1968) BH(t+τ)-BH(t) é estatisticamente igual ao [BH(t+τr)-BH(t)]/rH fGn: definido como derivado do fBm: fGn = BH(t+1)-BH(t)
  • 105. Comparação entre o sinal de pressão e o ruído Gaussiano fracionário (fGn) 3.32 4 3.3 3 2 3.28 1 3.26 0 3.24 -1 3.22 -2 3.2 -3 3.18 -4 0 500 1000 1500 2000 25000 500 1000 1500 2000 2500 Industrial Air-Lift Reactor Data Fractional Brownian Model with H = 0.7
  • 106. Synthesis of a fuzzy model for linking synthesis conditions with molecular characteristics and performance properties of high density polyethylene
  • 107. Cognitive Dynamic Model y(k)- prediction by linear equation – Takage Sugeno approach: y(k) = w0i + w1iu1(k-τu1) + w2iu1(k-τu1 -1) +...+ wp1iu1(k-τu1-p1)+ w(p1+1)iu2(k-τu2) + w(p1+2)iu2(k-τu2 -1) +...+ w(p1+p2)1iu2(k-τu2-p2)+ w(p1+p2 +1)iy(k-1) + w(p1+p2 +2)iy(k-2) +...+w(p1+p2 +m)iy(k-m). together with cognitive information
  • 108. Implementations • Du PONT Polymerization Process • Rhodia Nylon-6,6 Process • High Non Linear Process – large scale plant Deterministic model – difficult to assembly
  • 109. Copolymer molar fraction 0,75 PLANTA MODELO 0,70 0,65 0,60 Yap 0,55 0,50 0,45 0,40 -200 0 200 400 600 800 1000 1200 1400 1600 1800 tempo (h) Teste para a fração molar do copolímero
  • 110. Polymer Molecular Weight PLANTA 37000 MODELO 36000 Mpw (kg/kmol) 35000 34000 33000 0 200 400 600 800 1000 tempo (h) Validação para o peso molecular do copolímero
  • 111. Nylon-66 Molecular weight 38000 par de dados da planta e do modelo 37000 Mpw (kg/kmol) - modelo 36000 35000 34000 33000 33000 34000 35000 36000 37000 38000 Mpw (kg/kmol) - planta
  • 112. Phenol Hydrogentation Reactor Módulo Reactants Coolant
  • 113. Condição 1 2 3 4 5 6 Ordem das entradas 23 17 7 23 17 7 Ordem do estado interno 1 1 1 2 2 2 Regras 7 7 5 7 7 5 Fator erro indexado (J) 1.19e-3 1.2 e-3 1.22 e-3 1.17 e-4 1.19 e-4 1.21 e-3 1,05 1,05 Temperatura adimensional dos reagentes J = 1,21E-3 Temperatura adimensional dos reagentes Modelo determinístico J = 1.2E-3 Modelo determinístico Modelo Cognitivo Modelo Fuzzy Modelo Cognitivo Modelo Fuzzy 1,00 1,00 0,95 0,95 0,90 0,90 0,85 0,85 0,80 0,80 100 200 300 400 500 600 700 100 200 300 400 500 600 700 Tempo Tempo Ordem 7 para a entrada e Ordem 17 para a entrada e 1 para 1 para estado interno estado interno
  • 114. 1,05 Modelo determinístico Temperatura adimensional dos reagentes Modelo Cognitivo J = 1,19E-3 Modelo Fuzzy 1,00 0,95 0,90 0,85 0,80 100 200 300 400 500 600 700 Tempo Ordem 23 para a entrada e 1 para estado interno
  • 115. Properties Correlations Molecular Crystallinity Weight molecular Weight Density Melt index distribution Correlation Fuzzy model Mecanical Thermic Tensile Reologic Properties Properties Properties properties
  • 116. Properties Product modelling from operationals dates throght Fuzzy Logic Output variables control in deterministic Performance model properties Thermic properties Product Density Fuzzy Fuzzy Model Model Rheologic Properties MI Mechanical Properties Weight molecular Tensile Properties Plant Fuzzy model
  • 117. Properties Product modelling from operationals dates throght Fuzzy Logic Monomer Performance Properties Co-monomer Stifness CAT Impact Strength CO-CAT Conversion Hardness Rate Melt Strength Solvent Produc production t Stress Crack H2 Mn Resistance PFR PFR - trimer Mw Tensile Strength T PFR Density Tm CSTR Fuzzy T CSTR Pd Tc Model - P system MI Tg type C SE crystallization percent Feed Lateral Process melt swell softening Point Fuzzy Model - type A Fuzzy Model - type B
  • 118. Results – Fuzzy model type A Type A. Such model considers the linking of the property of flow stress exponent (SE) versus the variables of the synthesis process. The SE of a polymer is a measure of melt viscosity and is a direct measure of molecular weight distribution. The Stress Exponent, determined by measuring the flow (expressed as weight, in grams) through a melt index approaches (ASTM D 1238).
  • 119. Optimization to achieve products with required properties
  • 120. UFBA Optimization Based Polymer Resin Development
  • 121. Introduction Output Conditions Input Conditions Temperature Concentration 0.60 Temperature 0.50 Polymerization Conversion SE (dim.) 0.40 0.30 Concentrations process model 0.20 0.10 Flow Rate Polymer 0.00 0.20 0.40 0.60 0.80 Reactor Length (dim.) 1.00 Properties Improve Quality Optimization Design of new products model Goal: Determine optimal operating policies in order to produce pre-specified polymer resins
  • 122. Braskem Ethylene continuous polymerization in solution with Ziegler-Natta catalyst- Industrial Plant Stirred Configuration Ethylene Tubular Configuration Hydrogen Product Solvent PFR2 Ethylene Ethylene Hydrogen Hydrogen Solvent Solvent PFR1 CSTR H2 CAT CC CAT CC
  • 123. Mathematical Model Stirred Configuration Product W1 W r-1 Wr W R-1 PFR2 W0 CSTR1 .... CSTRr .... CSTRR B2 Br Br+1 BR Monomer FZ 1 FZ r FZ R H2 Solvent CSTR WR W out PFRJ+1 CAT CC Tubular Configuration W1 Wj WJ PFR1 PFRj .... PFRJ Product Monomer PFR2 Fj FJ H2 Solvent PFR1 W1 W r-1 Wr W R-1 WP CSTR1 .... CSTRr .... CSTRR CSTR B2 Br Br+1 BR H2 CAT CC WR W out PFR J+1
  • 124. Polymer Specification Melt Index (MI): MI = α ⋅ (MW ) β w • 1 SE = • Stress Exponent (SE): α + γ ⋅ exp(β ⋅ PD ) DS = α + β ⋅ log(MI ) + γ ⋅ SE • Density (DS): Embiruçu et al. (2000) • Specification at the end of reaction (z=zf) Desired polymer properties end-point constraints of the optimization
  • 125. Objective Function • Different operating policies can yield the same resin Maximize Profit • Objective Function Φ = a ⋅ WPE − (bM ⋅ WM + bH ⋅ WH + bCAT ⋅ WCAT + bCC ⋅ WCC + bS ⋅ WS ) €/h where a: polyethylene sales price (€/kg) b: reactant costs (€/kg) W: mass flow rates (kg/h)
  • 126. Decision Variables Stirred Configuration Tubular Configuration M PFR2 Ws PFR2 H2,0 Tin M Tin Pin Wt H2,0 Pin PFR1 Wt CSTR CSTR H2,j CAT CC CAT CC • Side Feed (Ws) • Monomer Input Concentration (M) • Lateral Hydrogen injection point (j) • Hydrogen Input Concentration (H2,0) • Lateral Hydrogen Concentration (H2,j) • Catalyst Input Concentration (CAT) • Inlet Temperature (Tin) • Inlet Pressure (Pin) • Total Solution Rate (Wt)
  • 127. Multi-stage Systems • Discontinuities ⇒ new stage system DAE Event Event Event f k (x k , x k , y k , u k , p, z ) = 0 , z ∈ [z k -1 , z k ]  k = 1,...,nk g k ( x k , y k , u k , p, z ) = 0 f(1) f(2) f (n k ) x 0 ( z0 ) − x 0 = 0 ( n k −1) z(0) z(1) z(2) z z (n k ) = z (f) Stage Transition J (j k ) (x ( k ) , x ( k ) , y ( k ) , u ( k ) , x ( j ) , x ( j ) , y ( j ) , u ( j ) , p, z ) = 0   • Examples – Injection of mass along a tubular reactor – Reactor switch
  • 128. Reactor Profile Tubular configuration Stirred configuration PFR PFR PFR PFR CSTR CSTR H2 CAT CC CAT CC Stage nº: 1 2 3 4 Stage nº: 1 2 0.60 0.50 0.50 0.45 0.40 0.40 MI (dim.) 0.30 MI (dim.) 0.35 0.20 0.30 0.10 0.25 0.00 0.20 0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00 Reactor Length (dim.) Reactor Length (dim.)
  • 129. Multi-stage Process  Steady-state DAE (axial coordinate)  Analogy: axial coordinate ⇔ time Tubular configuration Stirred configuration f 4 ( z )f 4 ( z 4 (fz4)( z ) f) PFR2 PFR2 g3 g3 f1 ( zf1 ( f1)(f 2)( z ) ( z ) ) z z f2 g3 PFR1 g3 CSTR CSTR H2 CAT CC CAT CC z f1 ( z ) f2 ( z) g3 f4 ( z) f k (z ) : differential equation g k : algebraic equation k : stage number z : axial coordinate Dynamic Optimization Techniques for multi-stage systems
  • 130. Results – Stirred Configuration 0.20 1.0 0.8 Concentration (dim.) H 2,0 H2,0 CAT 0.15 Profit (dim.) 0.6 Ws Ws M 0.4 0.10 0.2 0.05 0.0 0.240 0.260 0.280 0.300 0.320 0.240 0.260 0.280 0.300 0.320 SE (dim.) SE (dim.) 0.80 0.80 Revenue, Cost (dim.) 0.75 Q, WPE(dim.) 0.70 0.70 Q Revenue 0.60 W PE WPE 0.65 Cost 0.50 0.60 0.40 0.55 0.24 0.26 0.28 0.30 0.32 0.24 0.26 0.28 0.30 0.32 SE (dim.) SE (dim.)
  • 131. Results – Tubular Configuration One H2 injection point at a pre-specified length (4 stages) 0.20 1.0 Concentration (dim.) 0.8 0.15 Profit (dim.) 0.6 H 2,0 H 2,0 CAT H 2,j 2,j 0.4 M 0.10 0.2 0.05 0.0 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 SE (dim.) SE (dim.)
  • 132. Benefits of the developed tool Development of a potential tool able to improve the polymer quality or to create new resins in a simple and quick manner. – Better customer satisfaction. • Robust approach – Use of Dynamic Optimization algorithms for a stationary multi-stage process. • Versatile tool, since other polymerization processes can be used as basis.
  • 133. Large Scale Plant Simulation
  • 134. MODELING A FCC UNIT
  • 135. RESULTS 700 Through CENPES/PETROBRAS Molecular Distillation of Through Molecular Distillation 600 500 the Alfa Temperature (oC) 400 petroleum obteined 10 % 300 200 100 of distillate 0 acumullated 0 20 40 60 80 100 % Distillate accumulated (% w) The distillation curve was determined from the temperature and the percentage of distillate obtained experimentally through molecular distillation and using ASTM D1160.
  • 137. Product Industrial data (ton/day) Simullation Result (ton/day) Error (%) Fuel Gas 360.0 360.4 0.11 LPG 1167.0 1191.4 2.09 Gasoline 3534.0 3436.2 2.77 LCO 667.0 677.0 1.50 Slurry 1107.0 1067.5 3.57 Products recovery: industrial data and simulation results.
  • 138. Green Ethyl Acrylate SUBSTRATOS Glicose Vários Lactose Sacarose C5 e C6 O 1 2 - O Fermentação H3C C O - H3C C O 1) Fermentação de ácido HC Láctico (ex. Lactobacilli, HC 3 O + - Bacilli Streptokokki). NH3 H3C C O OH 2) Fermentação de ácido L-Alanina Lactato CH2 Propiónico. Propianato 3) Redução Direta (ex. Clostridium propionicum). 4 5 6 4) Desidratação 5) Conversão Química 6)Caminho Oxidativo (ex. O Pseudomonas aeroginosa) - H2C C O CH Ácido Acrílico
  • 139. ETHANOL R EC 3 R EC 2 D ISTIL 1 STRIPPER EXTR ACT R AF AC ID TOPO AC R YLATE C OOLER FEED C OOL R EAC TOR D ISTIL 2 R EC 1 EXT WASTE WATER Conceptual Plant design for Green Ethyl Acrylate
  • 140. Reactor Mathematical Model Equações adimensionalizadas Balanço de Massa para o Ácido Acrílico ∂G  ∂G ∂ 2G  = B1 .  ∂u + u. ∂u 2  + B2 .rA  ∂z ad   Balanço de Energia no Tubo ∂θ l  ∂θ l ∂ 2θ l  = B3 .  ∂u + u. ∂u 2  + B4 .rA  ∂z ad   Balanço de Energia do Fluido Térmico = B5 .(θ NT − θ F ) dQ dz ad Queda de Pressão dP ad = B7 dz ad Solução por Colocação Ortogonal
  • 141. Reactor simulation Conversion for several temperatures Tubular reactor 5,0 meters long 0,7 0,6 0,5 Conversão 0,4 0,3 0,2 Conversão @ 75 C Conversão @ 80 C 0,1 Conversão @ 85 C 0,0 0,0 0,2 0,4 0,6 0,8 1,0 Coordenada Axial
  • 142. Conceptual Plant design for Green Ethyl Acrylate ETHANOL R EC 3 R EC 2 D IS TIL 1 STRIPP ER EXTR ACT R AF AC ID TOPO AC R YLATE C OOLE R FE ED C OOL R EAC TOR D IS TIL 2 R EC 1 EXT WAS TE WATER FEE REC1 TOP COO WAT RAF EXT ACRYL REC2 WAST REC3 Vazão(kmol/h) D L E Ácido Acríl 20,82 20,82 0,00 0,00 0,00 0,00 0,00 0,00 0,0000 0,0000 0,0000 0,00 20,82 20,82 0,00 0,00 20,82 0,00 0,0000 0,3790 20,440 Etanol 20,82 9 0,00 29,18 29,18 20,00 4,59 44,58 0,00 4,5999 36,380 8,1995 Água 29,18 4 Acril de Etila 29,18 0,18 29,00 29,00 0,00 22,64 6,36 19,74 2,9003 0,00 6,3595 Total (kmol/h) 100,0 21,00 79,00 79,00 20,00 27,23 71,70 19,74 7,5000 36,76 35,00 1.518 4.388 4.388 360 2349 2.399 1976 373,53 672,91 1726,1 Total (Kg/h) 5.907 1 Temp. (ºC) 78,0 140,5 79,0 25,00 25,0 29,9 29,3 99,4 82,42 97,10 77,71
  • 143. Green Acrylic Acid – Unicamp/CTC/Braskem Seleção das rotas Cana – metabólicas fonte de açúcar Seleção de microrganismos Otimização do meio de cultura Fermentação Ácido Láctico Separação/purificação Cinética Ácido desidratação redução Ácido Processo Propiônico Acrílico Cinéticas Modelagem Otimização dos Controle dos processos processos