SlideShare una empresa de Scribd logo
1 de 75
Renewable Energy
Anita Watts
• FIRST - Energy
Efficiency
• No point in
generating
renewable energy
to waste it in energy
in-efficient homes
and businesses
• Use renewables to
attract attention to
energy efficiency
Cost of energy
• Heating and
powering homes
• Price at the pumps
• Cost of food etc…
• Renewables started
to be looked at
seriously in 1970’s
Renewable energy
technologies
Heat ? Electricity ?
HEAT
•Solar water heating
panel
• Wood fuels
• Biomass crops
• Wood combined
heat and power
(CHP)
• Anaerobic digestion
Source: Easy heat systems
• Ground source heat
pump
• Air source
• Water source
• Geothermal plant
• Solar photovoltaic
panel (PV)
• Solar photovoltaic
panel (PV)
Source: Greengage
• Micro hydro plant
Source: Greengage
• Hydro dams
Source: EST
• Wave power, using
the motion of waves
on the surface of the
sea
• Pelamis Wave
Energy Converter
Source: EST
• Wave power
• Tidal power, using
the movement of
the tides.
• Tidal power, using
the movement of
the tides.
Source: EST
• Tidal Barrage in
Bretagne, France
• Wind turbine
• Wind farm
Solar water heating
Domestic hot water
• Do we get enough sun
for solar thermal
systems to work here?
• Active solar heating
systems will typically
convert 30–60% of the
solar energy falling on
the solar collectors into
useful heated water
• 4m2 system can offset
1800 kWh / year
• 25 years – 45,000 kWh
• Oil at 64p/l = 7.38p/kWh
(85% efficiency)
• £3321
1. Should face south, or between SE and SW
2. Tilted ideally 30–45 degrees
3. Avoid shading
4. Room for a larger storage cylinder
5. Keep run distances short
6. Meets about 40–60% of DHW demand
7. Needs conventional water heating as back up
8. Use accredited installers
9. RHI to follow
Premium payment grant
Renewable heat incentive
•Non Domestic
•Domestic
– TBC
– 20 years = 36,000kWh @ 8p = £2880 (index linked)
Wood fuels
Space heating & hot water
Types of wood biomass fuel
• Forestry residue or tree
thinning
• Seasoned logs burn well
• A bulky fuel which needs a
lot of storage space
• Hard to handle
• Manual processing
• Manual loading and
lighting
• Relatively cheap or free
source of fuel
• Hardwoods provide more
energy than softwoods as
they are more dense
Logs
• Made from sawdust
• Lignin binds the pellet
• High-quality fuel
• High-energy density
• Uniform
• 2.5-cm long, 6-8mm
diameter
• Moisture < 10%
• Ash < 1%
• Most processed of the
wood fuels - cost
• Pellets can also be
made from willow,
hemp, straw etc… for
multi-fuel boilers
Pellets
Source: Viesmann
Pellet system
• Pellets are delivered by
tanker usually once or
twice a year
• They are blown into
the pellet store
• The pellet are moved
from the store to the
boiler by a fully
automated feed system
• All that is left is <1% of
the pellets as ash
• The well insulated
buffer hold the hot
water until it is needed
for heating radiators or
domestic hot water
• Forestry residue,
coppicing, waste wood
• Most bulky of the wood
fuel so they need the
most storage space
• 40-km supply radius
• Supply contracts
• Moisture < 20%
• Waste wood
contamination
• Relatively cheap fuel
• Boilers are expensive
• Best for large heat
demands
Chips
Pellets example
Pellets 4.66p / kWh
Premium payment grant
Renewable Heat Incentive
•Non Domestic
•Domestic
– TBC
– 25,000 kWh heat demand
– Pellets: 4.66p / kWh = £1,165
– Oil: 7.38p / kWh = £1845
– RHI payment = £1,600 (index linked for 20 years)
Heat pumps
Space heating & maybe hot water
• Heat pumps types are
generally classified
and described based
on the source of stored
heat they tap into
• There are four main
types:
– Ground source heat pump
(horizontal and slinky)
– Bore hole heat pump
(vertical)
– Water source heat pumps
(open and closed)
– Air source heat pump
(Ambient and exhaust)
• Coefficient of
performance (CoP) is the
ratio of useful heat
energy output to
electrical energy input
• A CoP of 3 means that
for every 1kWh of
electricity input you will
get 3kWh of heat output
• The energy required to
concentrate heat is much
less than the energy
which must be liberated
by burning a fuel
• Make sure that the building is as well insulated as possible.
• Install the heat pump with low temperature underfloor heating or low
temperature radiators.
• The heat pump must be correctly sized and all elements installed to the
manufacturers recommendations
• Insist upon understandable, user-friendly controls with a detailed customer
handover.
• Keep it simple. The field trial findings categorically show that the simplest
system designs achieve the best efficiencies.
• Responsibility for the installation should be with one company, and ideally
be contractually guaranteed to ensure consistency in after-sales service.
Premium payment grant
Renewable Heat Incentive
•Non Domestic
•Domestic
– TBC
– 25,000 kWh heat demand
– Heat pump (COP:3) ~8.53/kWh (E7 85%) = £710 (+18%)
– Oil: 7.38p / kWh = £1845
– RHI payment = £2,175 (index linked for 20 years)
Solar electric PV
Source:Greengage
• PV
• Electricity generated
by the system works
hand in hand with the
existing electrical
supply to power the
household appliances
and lighting
• There will be import
and export of
electricity
• Grid connected
• Stand alone
Grid-connected systems
• NIE Network
• Connection to a high technical standard
• Upgrades may require planning permission
• Upgrades may incur costs
• An import export meter must be installed to sell electricity
• Secondly, the turbine must shut down if there is a grid power
failure.
• Current EU legislation - Protect maintenance personnel
• Not a backup in a power cut.
• Behaviour change
• Maximise usage of
electricity during
the day
• Timers and
programmers
• Clean power source
• Reduces bills
• Increases awareness
of electricity use
• Increases the value
of your property
• Extremely low
maintenance
• Long functional
lifetime of 25yr +
• Silent in operation
ROCs
•Renewable Obligation
Certificates
• 4 ROCs for every
1000kWh generated
•Tradable commodity
•17.64p / kWh
• Economics in NI
• Up to 50kWp
• ROCs = 17.64p
• Spill = 5.41p
• Save = 14-15p
(+18%)
• 4kWp system
– Approx.: 7year payback
– £20,000 lifetime savings
Wind power
Vertical-axis style
Horizontal axis
• Most large wind farm
turbines are the
traditional three blade
horizontal wind turbines
• Common sizes of
domestic wind
turbines are in the
range 2.5–20kW.
• Antrim area
hospital’s 660kW
turbine
• Offshore wind farms
• 3 – 5 MW
Site Factors
• Altitude - The higher the better – higher wind speeds
• Aspect - Ideally SW slopes, coastal, open terrain
• Obstructions/turbulence - buildings, trees, hills, cliffs
• Access - For erection, maintenance
• Space/Proximity to dwellings - Noise, flicker, room to erect
and maintain, cable run, planning, environmental, visual
• Demand profile - Load factor, timing of demand
• Grid - distance, three phase/single phase
NIROC Support bands for Wind
• Up to 250kW
• 4 ROCs - 17.64p/kWh
• 250kW – 5MW
• 1 ROC - £44.10/MWh
Micro hydro power
Source: British Hydro Association
• Power can be
captured wherever
a flow of water falls
• By the end of the
19th Century there
were over 30,000
watermills in
Britain
• Head - H
• Flow - Q
Advantages of Hydropower
• High capacity factor (typically towards 50%)
• A high efficiency (70 - 90%), by far the best of all energy
technologies.
• A high level of predictability, varying with annual rainfall
patterns
• Slow rate of change; the output power varies only gradually
from day to day (not from minute to minute).
• A good correlation with demand i.e. output is maximum in
winter
• It is a long-lasting and robust technology; systems can readily
be engineered to last for 50 years or more
Up to 20kW
4 ROCs = 17.64p/kWh
20-250kW
3 ROCs = 13.23p/kWh
250-1MW
2 ROCs
Renewable Energy
Anita Watts
watts-anita@aramark.ie
• Oil reserves to
production ratio –
54 years
• Oil reserves to
production ratio –
54 years
• Gas reserves to
production ratio –
64 years
• Oil reserves to
production ratio –
54 years
• Gas reserves to
production ratio –
64 years
• Coal reserves to
production ratio –
112 years
• Renewables
accounts for 3.9% of
global power
generation, with the
highest share in
Europe and Eurasia
• An unlimited
resource
• In abundance in
Northern Ireland
Source: Association for the study of peak oil
• Dr Colin Campbell –
peak oil expert
• As resources
become scarce the
become more
expensive
Source: Association for the study of peak oil
Security of supply
• 98% of the energy in
NI is imported
• End of a long supply
chain
• £2.3B spent on
energy in NI every
year
Source: Association for the study of peak oil
Environmental
• Carbon emissions
• Green house effect
• Global warming
• Climate change
• Weather chaos
Source: Association for the study of peak oil
Environmental
• Carbon emissions
• Green house effect
• Global warming
• Climate change
• Weather chaos
Targets
• 15% of energy,
including electricity,
heat and transport,
from renewable
sources by 2020
• 2050
decarbonisation of
the electricity
network and all
buildings are carbon
neutral

Más contenido relacionado

La actualidad más candente

Renewable installations at tory bush cottages.
Renewable installations at tory bush cottages.Renewable installations at tory bush cottages.
Renewable installations at tory bush cottages.Torybush95
 
Biomass heat and power , Volter CHP, Cogeneration 40 kWe + 100 kWth
Biomass heat and power , Volter CHP, Cogeneration 40 kWe + 100 kWthBiomass heat and power , Volter CHP, Cogeneration 40 kWe + 100 kWth
Biomass heat and power , Volter CHP, Cogeneration 40 kWe + 100 kWthRado Irgl
 
Theatre Royal Plymouth. The first Theatre in England To receive the Carbon Tr...
Theatre Royal Plymouth. The first Theatre in England To receive the Carbon Tr...Theatre Royal Plymouth. The first Theatre in England To receive the Carbon Tr...
Theatre Royal Plymouth. The first Theatre in England To receive the Carbon Tr...South West Observatory
 
Kota super thermal power station
Kota super thermal power stationKota super thermal power station
Kota super thermal power stationAshish Agarwal
 
Light fitting in poultry houses
Light fitting in poultry housesLight fitting in poultry houses
Light fitting in poultry housesADEEL ARSHAD
 
NESEA Building Energy 2015: PV and Heat Pumps
NESEA Building Energy 2015: PV and Heat PumpsNESEA Building Energy 2015: PV and Heat Pumps
NESEA Building Energy 2015: PV and Heat Pumpsfortunatmueller
 
Thermal energy storage for buildings with PCM pellets
Thermal energy storage for buildings with PCM pelletsThermal energy storage for buildings with PCM pellets
Thermal energy storage for buildings with PCM pelletsRamin Abhari
 
The Sustainability Consortium: Making Carbon-Free Living a Reality (Carbon Fr...
The Sustainability Consortium: Making Carbon-Free Living a Reality (Carbon Fr...The Sustainability Consortium: Making Carbon-Free Living a Reality (Carbon Fr...
The Sustainability Consortium: Making Carbon-Free Living a Reality (Carbon Fr...ecoconnect
 
Water purification barge
Water purification bargeWater purification barge
Water purification bargeerneeysd
 
Kota Super Thermal Power Plant
Kota Super Thermal Power PlantKota Super Thermal Power Plant
Kota Super Thermal Power PlantHimanshu Dixit
 
Kota super thermal power station, kota
Kota super thermal power station, kotaKota super thermal power station, kota
Kota super thermal power station, kotaSourabh Chourasiya
 
Biomass heat and power eco village-en
Biomass heat and power eco village-enBiomass heat and power eco village-en
Biomass heat and power eco village-enRado Irgl
 
Small Biomass CHP - compact unit 40 kW electricity / 100 kW thermal power
Small Biomass CHP  - compact unit 40 kW electricity  / 100 kW thermal powerSmall Biomass CHP  - compact unit 40 kW electricity  / 100 kW thermal power
Small Biomass CHP - compact unit 40 kW electricity / 100 kW thermal powerRado Irgl
 
Challenges implementing Green Initiatives in Tall Buildings
Challenges implementing Green Initiatives in Tall BuildingsChallenges implementing Green Initiatives in Tall Buildings
Challenges implementing Green Initiatives in Tall BuildingsTejwant Navalkar
 
Summer Training Presentation Kota Super Thermal Power Station
Summer Training Presentation Kota Super Thermal Power StationSummer Training Presentation Kota Super Thermal Power Station
Summer Training Presentation Kota Super Thermal Power StationFellowBuddy.com
 

La actualidad más candente (20)

Renewable installations at tory bush cottages.
Renewable installations at tory bush cottages.Renewable installations at tory bush cottages.
Renewable installations at tory bush cottages.
 
Biomass heat and power , Volter CHP, Cogeneration 40 kWe + 100 kWth
Biomass heat and power , Volter CHP, Cogeneration 40 kWe + 100 kWthBiomass heat and power , Volter CHP, Cogeneration 40 kWe + 100 kWth
Biomass heat and power , Volter CHP, Cogeneration 40 kWe + 100 kWth
 
Theatre Royal Plymouth. The first Theatre in England To receive the Carbon Tr...
Theatre Royal Plymouth. The first Theatre in England To receive the Carbon Tr...Theatre Royal Plymouth. The first Theatre in England To receive the Carbon Tr...
Theatre Royal Plymouth. The first Theatre in England To receive the Carbon Tr...
 
Cogeneration Of Power
Cogeneration Of PowerCogeneration Of Power
Cogeneration Of Power
 
Livestock and Poultry Presentation1.pptx Final Draft
Livestock and Poultry Presentation1.pptx Final DraftLivestock and Poultry Presentation1.pptx Final Draft
Livestock and Poultry Presentation1.pptx Final Draft
 
Kota super thermal power station
Kota super thermal power stationKota super thermal power station
Kota super thermal power station
 
Light fitting in poultry houses
Light fitting in poultry housesLight fitting in poultry houses
Light fitting in poultry houses
 
Chromagen Solar Hot Water Brochure
Chromagen Solar Hot Water BrochureChromagen Solar Hot Water Brochure
Chromagen Solar Hot Water Brochure
 
NESEA Building Energy 2015: PV and Heat Pumps
NESEA Building Energy 2015: PV and Heat PumpsNESEA Building Energy 2015: PV and Heat Pumps
NESEA Building Energy 2015: PV and Heat Pumps
 
Thermal energy storage for buildings with PCM pellets
Thermal energy storage for buildings with PCM pelletsThermal energy storage for buildings with PCM pellets
Thermal energy storage for buildings with PCM pellets
 
The Sustainability Consortium: Making Carbon-Free Living a Reality (Carbon Fr...
The Sustainability Consortium: Making Carbon-Free Living a Reality (Carbon Fr...The Sustainability Consortium: Making Carbon-Free Living a Reality (Carbon Fr...
The Sustainability Consortium: Making Carbon-Free Living a Reality (Carbon Fr...
 
Water purification barge
Water purification bargeWater purification barge
Water purification barge
 
Kota Super Thermal Power Plant
Kota Super Thermal Power PlantKota Super Thermal Power Plant
Kota Super Thermal Power Plant
 
Kota super thermal power station, kota
Kota super thermal power station, kotaKota super thermal power station, kota
Kota super thermal power station, kota
 
Biomass heat and power eco village-en
Biomass heat and power eco village-enBiomass heat and power eco village-en
Biomass heat and power eco village-en
 
Small Biomass CHP - compact unit 40 kW electricity / 100 kW thermal power
Small Biomass CHP  - compact unit 40 kW electricity  / 100 kW thermal powerSmall Biomass CHP  - compact unit 40 kW electricity  / 100 kW thermal power
Small Biomass CHP - compact unit 40 kW electricity / 100 kW thermal power
 
Challenges implementing Green Initiatives in Tall Buildings
Challenges implementing Green Initiatives in Tall BuildingsChallenges implementing Green Initiatives in Tall Buildings
Challenges implementing Green Initiatives in Tall Buildings
 
SolarWall®
SolarWall® SolarWall®
SolarWall®
 
OffTheGrid
OffTheGridOffTheGrid
OffTheGrid
 
Summer Training Presentation Kota Super Thermal Power Station
Summer Training Presentation Kota Super Thermal Power StationSummer Training Presentation Kota Super Thermal Power Station
Summer Training Presentation Kota Super Thermal Power Station
 

Destacado

REM 356 Renewable Energy Guest Lecture
REM 356 Renewable Energy Guest LectureREM 356 Renewable Energy Guest Lecture
REM 356 Renewable Energy Guest LectureMatthew Klippenstein
 
Travel @ Speed of Sound?
Travel @ Speed of Sound?Travel @ Speed of Sound?
Travel @ Speed of Sound?BISBO
 
PLoS Author Research 2010
PLoS Author Research 2010PLoS Author Research 2010
PLoS Author Research 2010Liz Allen
 
Zélia bauer parabéns
Zélia bauer parabénsZélia bauer parabéns
Zélia bauer parabénsLuzia Gabriele
 
Improve your Google search skills
Improve your Google search skillsImprove your Google search skills
Improve your Google search skillssultanarun
 
Utilizing Web 2.0 and the Cloud in RA Training
Utilizing Web 2.0 and the Cloud in RA TrainingUtilizing Web 2.0 and the Cloud in RA Training
Utilizing Web 2.0 and the Cloud in RA TrainingPaul Brown
 
Presentation For Chinese Medicine And Acupuncture Association
Presentation For Chinese Medicine And Acupuncture AssociationPresentation For Chinese Medicine And Acupuncture Association
Presentation For Chinese Medicine And Acupuncture Associationguest43929b
 
Hack In The Box (Dubai) 04172008
Hack In The Box (Dubai) 04172008Hack In The Box (Dubai) 04172008
Hack In The Box (Dubai) 04172008guesta84549
 
Susie Almaneih: Greening Your House
Susie Almaneih: Greening Your HouseSusie Almaneih: Greening Your House
Susie Almaneih: Greening Your HouseSusie Almaneih
 
La Boîte à Rêves
La Boîte à RêvesLa Boîte à Rêves
La Boîte à RêvesCapgemini
 
EHRを活用した糖尿病療養指導の質的研究
EHRを活用した糖尿病療養指導の質的研究EHRを活用した糖尿病療養指導の質的研究
EHRを活用した糖尿病療養指導の質的研究Satoshi Taniguchi
 
Web Development Company PPT Presentation - Vidushi Infotech
Web Development Company PPT Presentation - Vidushi InfotechWeb Development Company PPT Presentation - Vidushi Infotech
Web Development Company PPT Presentation - Vidushi InfotechVidushi Infotech SSP Pvt Ltd
 
Where Ideas (and creative genius) come from: HOW TO pt1 take it from Idea to...
Where Ideas (and creative genius) come from:  HOW TO pt1 take it from Idea to...Where Ideas (and creative genius) come from:  HOW TO pt1 take it from Idea to...
Where Ideas (and creative genius) come from: HOW TO pt1 take it from Idea to...Chelsea Dygert
 

Destacado (17)

REM 356 Renewable Energy Guest Lecture
REM 356 Renewable Energy Guest LectureREM 356 Renewable Energy Guest Lecture
REM 356 Renewable Energy Guest Lecture
 
Travel @ Speed of Sound?
Travel @ Speed of Sound?Travel @ Speed of Sound?
Travel @ Speed of Sound?
 
PLoS Author Research 2010
PLoS Author Research 2010PLoS Author Research 2010
PLoS Author Research 2010
 
Zélia bauer parabéns
Zélia bauer parabénsZélia bauer parabéns
Zélia bauer parabéns
 
Improve your Google search skills
Improve your Google search skillsImprove your Google search skills
Improve your Google search skills
 
Utilizing Web 2.0 and the Cloud in RA Training
Utilizing Web 2.0 and the Cloud in RA TrainingUtilizing Web 2.0 and the Cloud in RA Training
Utilizing Web 2.0 and the Cloud in RA Training
 
Presentation For Chinese Medicine And Acupuncture Association
Presentation For Chinese Medicine And Acupuncture AssociationPresentation For Chinese Medicine And Acupuncture Association
Presentation For Chinese Medicine And Acupuncture Association
 
Hack In The Box (Dubai) 04172008
Hack In The Box (Dubai) 04172008Hack In The Box (Dubai) 04172008
Hack In The Box (Dubai) 04172008
 
Susie Almaneih: Greening Your House
Susie Almaneih: Greening Your HouseSusie Almaneih: Greening Your House
Susie Almaneih: Greening Your House
 
RCEC Email 5.12.03
RCEC Email 5.12.03RCEC Email 5.12.03
RCEC Email 5.12.03
 
EEON103 Хичээл 11
EEON103 Хичээл 11EEON103 Хичээл 11
EEON103 Хичээл 11
 
La Boîte à Rêves
La Boîte à RêvesLa Boîte à Rêves
La Boîte à Rêves
 
SERA Email 2.6.03
SERA Email 2.6.03SERA Email 2.6.03
SERA Email 2.6.03
 
EHRを活用した糖尿病療養指導の質的研究
EHRを活用した糖尿病療養指導の質的研究EHRを活用した糖尿病療養指導の質的研究
EHRを活用した糖尿病療養指導の質的研究
 
Managerial speeches
Managerial speechesManagerial speeches
Managerial speeches
 
Web Development Company PPT Presentation - Vidushi Infotech
Web Development Company PPT Presentation - Vidushi InfotechWeb Development Company PPT Presentation - Vidushi Infotech
Web Development Company PPT Presentation - Vidushi Infotech
 
Where Ideas (and creative genius) come from: HOW TO pt1 take it from Idea to...
Where Ideas (and creative genius) come from:  HOW TO pt1 take it from Idea to...Where Ideas (and creative genius) come from:  HOW TO pt1 take it from Idea to...
Where Ideas (and creative genius) come from: HOW TO pt1 take it from Idea to...
 

Similar a Renewable Energy - An Introduction to Everything you Need to Know

2 Thermal Power Plants.pptx
2 Thermal Power Plants.pptx2 Thermal Power Plants.pptx
2 Thermal Power Plants.pptxTalhaKhanzada3
 
Renewables lecture garth
Renewables lecture   garthRenewables lecture   garth
Renewables lecture garthraja jbeli
 
Renewable sources of energy
Renewable sources of energyRenewable sources of energy
Renewable sources of energygrantdiecel
 
CoGeneration with boiler & stean turbine.pptx
CoGeneration with boiler & stean turbine.pptxCoGeneration with boiler & stean turbine.pptx
CoGeneration with boiler & stean turbine.pptxMadan Karki
 
Renewable energy options for leisure centres
Renewable energy options for leisure centresRenewable energy options for leisure centres
Renewable energy options for leisure centresTipperary Energy Agency
 
Introduction to greenhouse equipments, Materials of construction for traditio...
Introduction to greenhouse equipments, Materials of construction for traditio...Introduction to greenhouse equipments, Materials of construction for traditio...
Introduction to greenhouse equipments, Materials of construction for traditio...Baban Jeet
 
March3 2009-workshop-slides
March3 2009-workshop-slidesMarch3 2009-workshop-slides
March3 2009-workshop-slidesSWITCHOntario
 
Thermal and tidal energy
Thermal and tidal energy Thermal and tidal energy
Thermal and tidal energy MoonaRaja2
 
Unit 2 conventional energy
Unit 2   conventional energyUnit 2   conventional energy
Unit 2 conventional energynagendran mohan
 
Energy Storage Solutions for an Intelligent Future, Dr John Harrison, Regener...
Energy Storage Solutions for an Intelligent Future, Dr John Harrison, Regener...Energy Storage Solutions for an Intelligent Future, Dr John Harrison, Regener...
Energy Storage Solutions for an Intelligent Future, Dr John Harrison, Regener...Invest Northern Ireland
 
thermal power plant at NTPC
thermal power plant at NTPCthermal power plant at NTPC
thermal power plant at NTPCricha khatri
 
Smart energy efficiency for industrial consumer systems
Smart energy efficiency for industrial consumer systemsSmart energy efficiency for industrial consumer systems
Smart energy efficiency for industrial consumer systemsGeorges Seil, PhD
 
Smart energy efficiency for industrial consumer systems
Smart energy efficiency for industrial consumer systemsSmart energy efficiency for industrial consumer systems
Smart energy efficiency for industrial consumer systemsGeorges Seil, PhD
 
Presentazione_energia_rinnovabile.ppt
Presentazione_energia_rinnovabile.pptPresentazione_energia_rinnovabile.ppt
Presentazione_energia_rinnovabile.pptTohidGanjiwale
 

Similar a Renewable Energy - An Introduction to Everything you Need to Know (20)

2 Thermal Power Plants.pptx
2 Thermal Power Plants.pptx2 Thermal Power Plants.pptx
2 Thermal Power Plants.pptx
 
Renewables lecture garth
Renewables lecture   garthRenewables lecture   garth
Renewables lecture garth
 
Renewable sources of energy
Renewable sources of energyRenewable sources of energy
Renewable sources of energy
 
CoGeneration with boiler & stean turbine.pptx
CoGeneration with boiler & stean turbine.pptxCoGeneration with boiler & stean turbine.pptx
CoGeneration with boiler & stean turbine.pptx
 
Renewable energy options for leisure centres
Renewable energy options for leisure centresRenewable energy options for leisure centres
Renewable energy options for leisure centres
 
INVISTA
INVISTAINVISTA
INVISTA
 
Introduction to greenhouse equipments, Materials of construction for traditio...
Introduction to greenhouse equipments, Materials of construction for traditio...Introduction to greenhouse equipments, Materials of construction for traditio...
Introduction to greenhouse equipments, Materials of construction for traditio...
 
Trevor Parsons, Housing Vermont
Trevor Parsons, Housing VermontTrevor Parsons, Housing Vermont
Trevor Parsons, Housing Vermont
 
March3 2009-workshop-slides
March3 2009-workshop-slidesMarch3 2009-workshop-slides
March3 2009-workshop-slides
 
Thermal and tidal energy
Thermal and tidal energy Thermal and tidal energy
Thermal and tidal energy
 
Unit 2 conventional energy
Unit 2   conventional energyUnit 2   conventional energy
Unit 2 conventional energy
 
Energy Storage Solutions for an Intelligent Future, Dr John Harrison, Regener...
Energy Storage Solutions for an Intelligent Future, Dr John Harrison, Regener...Energy Storage Solutions for an Intelligent Future, Dr John Harrison, Regener...
Energy Storage Solutions for an Intelligent Future, Dr John Harrison, Regener...
 
thermal power plant at NTPC
thermal power plant at NTPCthermal power plant at NTPC
thermal power plant at NTPC
 
Richappt
RichapptRichappt
Richappt
 
Presentación 6
Presentación 6Presentación 6
Presentación 6
 
Smart energy efficiency for industrial consumer systems
Smart energy efficiency for industrial consumer systemsSmart energy efficiency for industrial consumer systems
Smart energy efficiency for industrial consumer systems
 
Smart energy efficiency for industrial consumer systems
Smart energy efficiency for industrial consumer systemsSmart energy efficiency for industrial consumer systems
Smart energy efficiency for industrial consumer systems
 
Introduction to Power Engineering
Introduction to Power Engineering  Introduction to Power Engineering
Introduction to Power Engineering
 
Presentazione_energia_rinnovabile.ppt
Presentazione_energia_rinnovabile.pptPresentazione_energia_rinnovabile.ppt
Presentazione_energia_rinnovabile.ppt
 
Energy conversion
Energy conversionEnergy conversion
Energy conversion
 

Último

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 

Último (20)

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 

Renewable Energy - An Introduction to Everything you Need to Know

  • 2. • FIRST - Energy Efficiency • No point in generating renewable energy to waste it in energy in-efficient homes and businesses • Use renewables to attract attention to energy efficiency
  • 3. Cost of energy • Heating and powering homes • Price at the pumps • Cost of food etc… • Renewables started to be looked at seriously in 1970’s
  • 8. • Wood combined heat and power (CHP)
  • 10. Source: Easy heat systems • Ground source heat pump • Air source • Water source
  • 16. Source: EST • Wave power, using the motion of waves on the surface of the sea • Pelamis Wave Energy Converter
  • 18. • Tidal power, using the movement of the tides.
  • 19. • Tidal power, using the movement of the tides.
  • 20. Source: EST • Tidal Barrage in Bretagne, France
  • 24. • Do we get enough sun for solar thermal systems to work here?
  • 25. • Active solar heating systems will typically convert 30–60% of the solar energy falling on the solar collectors into useful heated water • 4m2 system can offset 1800 kWh / year • 25 years – 45,000 kWh • Oil at 64p/l = 7.38p/kWh (85% efficiency) • £3321
  • 26. 1. Should face south, or between SE and SW 2. Tilted ideally 30–45 degrees 3. Avoid shading 4. Room for a larger storage cylinder 5. Keep run distances short 6. Meets about 40–60% of DHW demand 7. Needs conventional water heating as back up 8. Use accredited installers 9. RHI to follow
  • 28. Renewable heat incentive •Non Domestic •Domestic – TBC – 20 years = 36,000kWh @ 8p = £2880 (index linked)
  • 30. Types of wood biomass fuel
  • 31. • Forestry residue or tree thinning • Seasoned logs burn well • A bulky fuel which needs a lot of storage space • Hard to handle • Manual processing • Manual loading and lighting • Relatively cheap or free source of fuel • Hardwoods provide more energy than softwoods as they are more dense Logs
  • 32. • Made from sawdust • Lignin binds the pellet • High-quality fuel • High-energy density • Uniform • 2.5-cm long, 6-8mm diameter • Moisture < 10% • Ash < 1% • Most processed of the wood fuels - cost • Pellets can also be made from willow, hemp, straw etc… for multi-fuel boilers Pellets
  • 33. Source: Viesmann Pellet system • Pellets are delivered by tanker usually once or twice a year • They are blown into the pellet store • The pellet are moved from the store to the boiler by a fully automated feed system • All that is left is <1% of the pellets as ash • The well insulated buffer hold the hot water until it is needed for heating radiators or domestic hot water
  • 34. • Forestry residue, coppicing, waste wood • Most bulky of the wood fuel so they need the most storage space • 40-km supply radius • Supply contracts • Moisture < 20% • Waste wood contamination • Relatively cheap fuel • Boilers are expensive • Best for large heat demands Chips
  • 37. Renewable Heat Incentive •Non Domestic •Domestic – TBC – 25,000 kWh heat demand – Pellets: 4.66p / kWh = £1,165 – Oil: 7.38p / kWh = £1845 – RHI payment = £1,600 (index linked for 20 years)
  • 38. Heat pumps Space heating & maybe hot water
  • 39. • Heat pumps types are generally classified and described based on the source of stored heat they tap into • There are four main types: – Ground source heat pump (horizontal and slinky) – Bore hole heat pump (vertical) – Water source heat pumps (open and closed) – Air source heat pump (Ambient and exhaust)
  • 40. • Coefficient of performance (CoP) is the ratio of useful heat energy output to electrical energy input • A CoP of 3 means that for every 1kWh of electricity input you will get 3kWh of heat output • The energy required to concentrate heat is much less than the energy which must be liberated by burning a fuel
  • 41. • Make sure that the building is as well insulated as possible. • Install the heat pump with low temperature underfloor heating or low temperature radiators. • The heat pump must be correctly sized and all elements installed to the manufacturers recommendations • Insist upon understandable, user-friendly controls with a detailed customer handover. • Keep it simple. The field trial findings categorically show that the simplest system designs achieve the best efficiencies. • Responsibility for the installation should be with one company, and ideally be contractually guaranteed to ensure consistency in after-sales service.
  • 43. Renewable Heat Incentive •Non Domestic •Domestic – TBC – 25,000 kWh heat demand – Heat pump (COP:3) ~8.53/kWh (E7 85%) = £710 (+18%) – Oil: 7.38p / kWh = £1845 – RHI payment = £2,175 (index linked for 20 years)
  • 46.
  • 47. • Electricity generated by the system works hand in hand with the existing electrical supply to power the household appliances and lighting • There will be import and export of electricity • Grid connected • Stand alone
  • 48. Grid-connected systems • NIE Network • Connection to a high technical standard • Upgrades may require planning permission • Upgrades may incur costs • An import export meter must be installed to sell electricity • Secondly, the turbine must shut down if there is a grid power failure. • Current EU legislation - Protect maintenance personnel • Not a backup in a power cut.
  • 49. • Behaviour change • Maximise usage of electricity during the day • Timers and programmers
  • 50. • Clean power source • Reduces bills • Increases awareness of electricity use • Increases the value of your property • Extremely low maintenance • Long functional lifetime of 25yr + • Silent in operation
  • 51. ROCs •Renewable Obligation Certificates • 4 ROCs for every 1000kWh generated •Tradable commodity •17.64p / kWh
  • 52. • Economics in NI • Up to 50kWp • ROCs = 17.64p • Spill = 5.41p • Save = 14-15p (+18%) • 4kWp system – Approx.: 7year payback – £20,000 lifetime savings
  • 55. Horizontal axis • Most large wind farm turbines are the traditional three blade horizontal wind turbines
  • 56. • Common sizes of domestic wind turbines are in the range 2.5–20kW.
  • 58. • Offshore wind farms • 3 – 5 MW
  • 59. Site Factors • Altitude - The higher the better – higher wind speeds • Aspect - Ideally SW slopes, coastal, open terrain • Obstructions/turbulence - buildings, trees, hills, cliffs • Access - For erection, maintenance • Space/Proximity to dwellings - Noise, flicker, room to erect and maintain, cable run, planning, environmental, visual • Demand profile - Load factor, timing of demand • Grid - distance, three phase/single phase
  • 60. NIROC Support bands for Wind • Up to 250kW • 4 ROCs - 17.64p/kWh • 250kW – 5MW • 1 ROC - £44.10/MWh
  • 62. Source: British Hydro Association • Power can be captured wherever a flow of water falls • By the end of the 19th Century there were over 30,000 watermills in Britain
  • 63. • Head - H • Flow - Q
  • 64. Advantages of Hydropower • High capacity factor (typically towards 50%) • A high efficiency (70 - 90%), by far the best of all energy technologies. • A high level of predictability, varying with annual rainfall patterns • Slow rate of change; the output power varies only gradually from day to day (not from minute to minute). • A good correlation with demand i.e. output is maximum in winter • It is a long-lasting and robust technology; systems can readily be engineered to last for 50 years or more
  • 65. Up to 20kW 4 ROCs = 17.64p/kWh 20-250kW 3 ROCs = 13.23p/kWh 250-1MW 2 ROCs
  • 67. • Oil reserves to production ratio – 54 years
  • 68. • Oil reserves to production ratio – 54 years • Gas reserves to production ratio – 64 years
  • 69. • Oil reserves to production ratio – 54 years • Gas reserves to production ratio – 64 years • Coal reserves to production ratio – 112 years
  • 70. • Renewables accounts for 3.9% of global power generation, with the highest share in Europe and Eurasia • An unlimited resource • In abundance in Northern Ireland
  • 71. Source: Association for the study of peak oil • Dr Colin Campbell – peak oil expert • As resources become scarce the become more expensive
  • 72. Source: Association for the study of peak oil Security of supply • 98% of the energy in NI is imported • End of a long supply chain • £2.3B spent on energy in NI every year
  • 73. Source: Association for the study of peak oil Environmental • Carbon emissions • Green house effect • Global warming • Climate change • Weather chaos
  • 74. Source: Association for the study of peak oil Environmental • Carbon emissions • Green house effect • Global warming • Climate change • Weather chaos
  • 75. Targets • 15% of energy, including electricity, heat and transport, from renewable sources by 2020 • 2050 decarbonisation of the electricity network and all buildings are carbon neutral

Notas del editor

  1. The analogy of a pint of Guinness is useful in understanding the situation. Currently we are sitting in the pub and have drunk half of our pint. There is no way of getting any more. We can decide to continue drinking at the same rate or faster and leave early or we can sip slowly at it and make it last to the end of the night staying in the nice warm pub. If we increase our demand and production of oil as has been the trend, then the oil will run out all the sooner. As every beer drinker knows the quicker you drain the glass the sooner the beer is gone.
  2. Solar panels to provide domestic hot water.
  3. Biomass , including wood.
  4. Crops also provide biomass, and can be grown specifically to provide fuel.
  5. CHP - Combined heat and power plants using biomass fuels. This one is operated by Balcas in Northern Ireland. It is basically a power station producing electricity but also using the heat that is often wasted in conventional stations and you see escaping out the top of very large cooling towers.
  6. Anaerobic digestion uses bacteria to break down compostable materials. This releases methane gas which can be captured and burnt to produce electricity and heat.
  7. Ground source heat pumps tap into the heat stored in the ground when the sun shines on it. Also available are air and water source heat pumps.
  8. Geothermal taps into heat released due to the radioactive decay of material deep underground (a natural nuclear reaction). Dig down deep enough pretty much anywhere on earth and you’ll find dry rocks heated by the decay of radioactive minerals and heat radiating from the earth’s molten core. The basic idea is to find hot rock within drilling range, sink wells, pump water down at high pressure to open a network of fissures within the rock, then pump cold water through the fissures to absorb heat, send the water back up through the second well, transfer its heat to a liquid with a relatively low boiling point, and use the resulting steam to power electricity generating turbines.
  9. Photovoltaic (PV) solar panels provide electricity.
  10. Photovoltaic (PV) solar panels provide electricity.
  11. Hydro power , using river water usually to make electricity.
  12. Hydro power , using river water usually to make electricity.
  13. Wave power, using the motion of waves on the surface of the sea. This is the Pelamis Wave Energy Converter or sea snake.
  14. Wave bob type device
  15. Tidal power, using the movement of the tides. The amount of power available is very easy to calculate as you can predict the tides in advance for 100 years
  16. Tidal power, using the movement of the tides.
  17. Rance tidal Barrage in Bretagne, France
  18. Wind power from both large scale windfarms and small scale single turbines.
  19. Wind power from both large scale windfarms and small scale single turbines.
  20. Contrary to popular opinion the NI does receive useful amounts of solar energy. The picture shows the total annual average solar radiation falling on one square metre surface inclined at 30 degrees to the horizontal – measured in kilowatt hours Active solar heating systems will typically convert 30–60% of the solar energy falling on the solar collectors into useful heated water.
  21. It is important to note that if the hot water is not being used, the solar panel will not be able to release its captured energy into the tank. Equally so, if your boiler or immersion has heated the water in the morning and there is a full cylinder of hot water you will not be able to benefit from the energy the panel can capture. Therefore it is important to make slight behavioural changes to maximise the benefits of the system. Having showers in the evening when there is a full tank of water is one way to use the hot water produced by the system. Shutting off your backup heating in the summer can also help. Getting the most out of your system • Make sure you use your heating controls to adjust your heating running times in accordance with your needs throughout the year. • Make sure you use hot water later in the day (if possible), once the solar water heating system has had the chance to heat the water, for showering or washing the dishes. Only use back-up heating when you need it; ideally have it set to come on immediately before hot water use or at the end of the day. • Consider fitting a mixer shower, with an eco shower head (and pump if necessary) instead of an electric shower. This will be just as efficient in water use, but will be able to use solar heated water instead of electric heating. • Ensure that your hot water storage tank and pipes are adequately insulated to minimise any heat loss. Your installer should have notified you if any work needs to be done. • Be careful not to waste water just because it’s heated for free. Even before the water reaches your home it requires energy to clean and transport it.
  22. Chips Logs Pellets - wood fuels are the most common source of biomass fuels As a rule of thumb, logs are the cheapest wood fuel with wood pellets the most expensive. By contrast the wood-chip boilers are the most expensive systems to install whilst systems using pellets (room heater, pellets stoves, multi fuel boilers and pellet boilers) tend to be much cheaper.
  23. Logs Logs need to be seasoned, usually for a year, to dry them out. Wood does not burn well if it is green and wet because it take a lot of energy to turn the water into steam and, therefore, reduces the amount of useful heat. Logs are a bulky fuel and, therefore, need a lot of storage space. They are also hard to handle, needing manual loading into the boiler and may need to be cut to size and split. Most systems need to be lit manually. However, they are relatively cheap and provide good economics for heating.
  24. Pellets Made from dried sawdust – a waste product from sawmills that process virgin wood. There are now a number of manufactures in Ireland and some companies importing them. The sawdust is compressed and passed through an extruder (like a meat mincer). As it passes through friction warms it up and a natural constituent of the wood, lignin, acts as a glue to bind the pellets together. This also give the pellets their shiny surface. Pellets that haven&apos;t stuck together well will have lots of dust. This will cause problems with the combustion process and could stall the feeding mechanism. A good quality pellet will not be too dusty. Moisture content, particle size, shape and ash content are defined by guidelines and standards. They are usually about 2.5-cm long with a diameter of 6–8mm. Pellets are a homogeneous fuel (all much of a same) with a water content less than 10% and ash content less than 0.5%.
  25. Pellets are delivered by tanker usually once or twice a year in the domestic situations. They are blown into the pellet store so there is no manual handling of the fuel. The pellet are moved from the store to the boiler by a fully automated feed system. All that is left is &lt;1% of the pellets as ash. The boiler generated hot water that is stored in the buffer tank. The well insulated buffer holds the hot water until it is needed for heating radiators or domestic hot water. When the normal programmers and timers call for heat, hot water is instantaneously provided from the buffer store. This provides faster heat up times.
  26. Wood chips Wood chips come from forest residues and thinning, short rotation coppice (willow) and recycled wood waste. Wood chips are the most bulky of the wood fuels and therefore need a lot of storage space. To be cost effective, wood chip should be supplied within a 40-km radius and will generally require a contract to be set up with the supplier to ensure security of supply. Wood chips need to have a maximum moisture content of 20–30% to prevent decomposition or it will turn into compost. Waste wood runs the risk of containing contaminants. These can interfere with combustion, cause corrosion and release dangerous pollutants. It can be difficult to ensure waste wood is free from contaminants such as wood preservative, spilt chemicals, etc. As wood-chip boilers are relatively expensive, they work best in situations where there is a high heat demand. In these cases the low cost of the wood chips provides the economy of scale. Domestic installations of wood-chip boilers are not common because the heat demand is usually not large enough. It is more often a solution for buildings such as schools, hospitals, businesses, etc.
  27. It is important to note that if the hot water is not being used, the solar panel will not be able to release its captured energy into the tank. Equally so, if your boiler or immersion has heated the water in the morning and there is a full cylinder of hot water you will not be able to benefit from the energy the panel can capture. Therefore it is important to make slight behavioural changes to maximise the benefits of the system. Having showers in the evening when there is a full tank of water is one way to use the hot water produced by the system. Shutting off your backup heating in the summer can also help. Getting the most out of your system • Make sure you use your heating controls to adjust your heating running times in accordance with your needs throughout the year. • Make sure you use hot water later in the day (if possible), once the solar water heating system has had the chance to heat the water, for showering or washing the dishes. Only use back-up heating when you need it; ideally have it set to come on immediately before hot water use or at the end of the day. • Consider fitting a mixer shower, with an eco shower head (and pump if necessary) instead of an electric shower. This will be just as efficient in water use, but will be able to use solar heated water instead of electric heating. • Ensure that your hot water storage tank and pipes are adequately insulated to minimise any heat loss. Your installer should have notified you if any work needs to be done. • Be careful not to waste water just because it’s heated for free. Even before the water reaches your home it requires energy to clean and transport it.
  28. It is important to note that if the hot water is not being used, the solar panel will not be able to release its captured energy into the tank. Equally so, if your boiler or immersion has heated the water in the morning and there is a full cylinder of hot water you will not be able to benefit from the energy the panel can capture. Therefore it is important to make slight behavioural changes to maximise the benefits of the system. Having showers in the evening when there is a full tank of water is one way to use the hot water produced by the system. Shutting off your backup heating in the summer can also help. Getting the most out of your system • Make sure you use your heating controls to adjust your heating running times in accordance with your needs throughout the year. • Make sure you use hot water later in the day (if possible), once the solar water heating system has had the chance to heat the water, for showering or washing the dishes. Only use back-up heating when you need it; ideally have it set to come on immediately before hot water use or at the end of the day. • Consider fitting a mixer shower, with an eco shower head (and pump if necessary) instead of an electric shower. This will be just as efficient in water use, but will be able to use solar heated water instead of electric heating. • Ensure that your hot water storage tank and pipes are adequately insulated to minimise any heat loss. Your installer should have notified you if any work needs to be done. • Be careful not to waste water just because it’s heated for free. Even before the water reaches your home it requires energy to clean and transport it.
  29. The coefficient of performance is the key figure used with heat pump systems. It indicates the ratio of useful heat energy output to electrical energy input. Therefore if a system has a CoP of 3, for every 1kWh of electricity input (used by the compressor) you will get 3kWh of heat output. Well designed systems can achieve a CoP 3–4. For air source heat pumps you need to consider the seasonally adjusted CoP. If a heat pump has a CoP of 4 how many units of electricity will is use to provide a heat output of 8kW?
  30. Make sure that the home is as well insulated as possible before installing a heat pump. Install the heat pump with low temperature underfloor heating or properly sized low temperature radiators. The heat pump must be correctly sized and all elements installed to the manufacturers recommendations Insist upon understandable, user-friendly controls with a detailed customer handover. Keep it simple. The field trial findings categorically show that the simplest system designs achieve the best efficiencies. Responsibility for the installation should be with one company, and ideally be contractually guaranteed to ensure consistency in after-sales service. Heat pump performance can vary considerably from one installation to another and customer behaviour is a variable that was shown to impact performance. Many householders said that they had difficulties understanding the instructions for operating and using their heat pump. This highlights a need for clearer and simpler customer advice.
  31. It is important to note that if the hot water is not being used, the solar panel will not be able to release its captured energy into the tank. Equally so, if your boiler or immersion has heated the water in the morning and there is a full cylinder of hot water you will not be able to benefit from the energy the panel can capture. Therefore it is important to make slight behavioural changes to maximise the benefits of the system. Having showers in the evening when there is a full tank of water is one way to use the hot water produced by the system. Shutting off your backup heating in the summer can also help. Getting the most out of your system • Make sure you use your heating controls to adjust your heating running times in accordance with your needs throughout the year. • Make sure you use hot water later in the day (if possible), once the solar water heating system has had the chance to heat the water, for showering or washing the dishes. Only use back-up heating when you need it; ideally have it set to come on immediately before hot water use or at the end of the day. • Consider fitting a mixer shower, with an eco shower head (and pump if necessary) instead of an electric shower. This will be just as efficient in water use, but will be able to use solar heated water instead of electric heating. • Ensure that your hot water storage tank and pipes are adequately insulated to minimise any heat loss. Your installer should have notified you if any work needs to be done. • Be careful not to waste water just because it’s heated for free. Even before the water reaches your home it requires energy to clean and transport it.
  32. When light hits the silicon in a Solar PV cell, electrical energy is created.The electricity flows through a cable and is collected at a central point, often located in your roof space. At this central point the electricity is converted from Direct Current (DC) to Alternating Current (AC) and carries on into your household electricity system. The electricity generated by your system works hand in hand with your existing electrical supply to power your household appliances and lighting. During the day you may generate enough electricity from your own system for all your electrical needs. If not your needs will be supplemented by your electricity supplier. If during the day you generate more electricity than you need this excess will flow out of your home and back in to the main electricity grid.
  33. The main issues with this are... Firstly, you must seek permission from the electricity distribution company to install the turbine. They will insist on the connection being to a high technical standard with approved electrical protection equipment. In order for you to receive any payment for the electricity you must install an export meter. The cost of incorporating this power import and export metering can be high compared to the income that can be generated for small turbines. They may also limit the size of the wind turbine that may be connected in a particular area depending on the loading of the electrical distribution system in the vicinity. . If there are any necessary upgrades to the network you will have to pay the costs. These upgrades may require planning permission which can cause delays. Start this process as soon as possible. There is nothing worse than a fully installed wind turbine that you can not commission and start producing electricity from because the paper work for the grid connection has not been completed. Secondly, because your turbine is connected to the grid it must be shut down if there is a power failure on the grid. Current EU legislation requires that if there is a grid failure then the wind turbine needs to shut down. This is to protect maintenance personnel working on the line from being electrocuted by electricity spilled onto the grid from the turbine. This means that you cannot rely on your turbine as a backup to the grid should there be a power cut.
  34. Installing your own solar photovoltaic (PV) system means that you can generate your own electricity from the free and inexhaustible energy from the sun. A photovoltaic system never needs refuelling, emits no pollution, and can be expected to operate for over 30 years while requiring minimal maintenance. A typical PV system on a house roof could prevent over 34 tonnes of greenhouse gas emissions during its lifetime. The key benefits of a solar roof are: Your own clean power source that helps reduce global warming Reduces your electricity bills, since daylight is free Increases the value of your property Extremely low maintenance, with a long functional lifetime of 30 years or more Silent in operation Increases your awareness of electricity use and encourages more energy efficient behaviour PV systems will play an important part in building carbon neutral homes. Carbon neutral homes when first purchased from a developer are free from Stamp Duty.
  35. Common sizes of domestic wind turbines are in the range 2.5–20kW. Here we see wind turbines of different ratings on various heights of tower. These turbines are at the manufacturers factory. (Proven) You can put the smallest rating turbine on the highest tower if you want to capture faster wind speeds, as these increase with height.
  36. Antrim Area Hospital, in Northern Ireland, has 350 acute beds. It has installed the largest wind turbine at any UK hospital and is on track to save £90,000 a year in energy costs. The turbine cost £497,000, of which 80% was a grant from the Government Central Energy Efficiency Fund. Without a grant, it would have taken five years for the initial cost to be repaid (at 2005 energy prices). Turbines of this size make good economic sense.
  37. Wind farms at sea can harness high winds experienced offshore.
  38. Noise Flicker Environmental impact assessment Bird strikes Bat strikes Visual impact
  39. Hydraulic power can be captured wherever a flow of water falls from a higher level to a lower level. This may occur where a stream runs down a hillside, or a river passes over a waterfall or man-made weir, or where a reservoir discharges water back into the main river. A few pieces of essential information need to be obtained when a new site is being considered for hydro generation.   Firstly, you need to identify whether there is a significant energy resource. This involves estimating or measuring the flow of the river and available drop (head), and estimating what annual energy capture would result. If the potential output of a scheme is attractive, then you need to be certain that permission will be granted to use all of the land required both to develop the scheme and to have the necessary access to it. Finally, there needs to be a clear destination for the power. Is there a nearby load that needs to be supplied, or is there a convenient point of connection into the local distribution network?
  40. Actual head for a site will be the physical difference in height minus any losses in pressure through the system Actual flow for the hydro system will above the minimum permitted by the abstraction licence and below the flood flow
  41. The analogy of a pint of Guinness is useful in understanding the situation. Currently we are sitting in the pub and have drunk half of our pint. There is no way of getting any more. We can decide to continue drinking at the same rate or faster and leave early or we can sip slowly at it and make it last to the end of the night staying in the nice warm pub. If we increase our demand and production of oil as has been the trend, then the oil will run out all the sooner. As every beer drinker knows the quicker you drain the glass the sooner the beer is gone.
  42. The analogy of a pint of Guinness is useful in understanding the situation. Currently we are sitting in the pub and have drunk half of our pint. There is no way of getting any more. We can decide to continue drinking at the same rate or faster and leave early or we can sip slowly at it and make it last to the end of the night staying in the nice warm pub. If we increase our demand and production of oil as has been the trend, then the oil will run out all the sooner. As every beer drinker knows the quicker you drain the glass the sooner the beer is gone.
  43. The analogy of a pint of Guinness is useful in understanding the situation. Currently we are sitting in the pub and have drunk half of our pint. There is no way of getting any more. We can decide to continue drinking at the same rate or faster and leave early or we can sip slowly at it and make it last to the end of the night staying in the nice warm pub. If we increase our demand and production of oil as has been the trend, then the oil will run out all the sooner. As every beer drinker knows the quicker you drain the glass the sooner the beer is gone.
  44. The analogy of a pint of Guinness is useful in understanding the situation. Currently we are sitting in the pub and have drunk half of our pint. There is no way of getting any more. We can decide to continue drinking at the same rate or faster and leave early or we can sip slowly at it and make it last to the end of the night staying in the nice warm pub. If we increase our demand and production of oil as has been the trend, then the oil will run out all the sooner. As every beer drinker knows the quicker you drain the glass the sooner the beer is gone.
  45. The analogy of a pint of Guinness is useful in understanding the situation. Currently we are sitting in the pub and have drunk half of our pint. There is no way of getting any more. We can decide to continue drinking at the same rate or faster and leave early or we can sip slowly at it and make it last to the end of the night staying in the nice warm pub. If we increase our demand and production of oil as has been the trend, then the oil will run out all the sooner. As every beer drinker knows the quicker you drain the glass the sooner the beer is gone.