SlideShare una empresa de Scribd logo
1 de 30
11
 Identify the different types of solutionsIdentify the different types of solutions
 Investigate experimentally the effect of structure andInvestigate experimentally the effect of structure and
temperature on solubility of solids in watertemperature on solubility of solids in water
 Distinguish among solutions, suspensions and colloidsDistinguish among solutions, suspensions and colloids
Identify suitable separation techniques based onIdentify suitable separation techniques based on
difference in properties of the components ofdifference in properties of the components of
mixturesmixtures
 Describe the extraction of sucrose from sugar caneDescribe the extraction of sucrose from sugar cane
Mixtures and Separations
Chapter 8
Learning Outcomes
Copper(II) sulphate
Pure substances
 A pure substance is a single substance not
mixed with anything else.
 Sugar and table salt are examples of pure
substances.
 Pure substances usually exist in crystal form.
 For example, table salt, sugar and copper(II)
sulphate all exist as crystals.
 A pure substance can be an element or a
compound.
Sugar crystals
Chapter 8
Mixtures and Separations
Pure and impure substances
 A pure substance has
a fixed melting point
and boiling point.
For example, pure
water boils at 100 o
C,
and melts at 0 o
C.
b.p. 100 o
C
m.p. 0 o
C
Chapter 8
Mixtures and Separations
Impure substances or mixtures
 A mixture on the other hand, is an impure substance.
It does not have a fixed melting point and boiling point.
It melts or boils over a range of temperatures.
 For example, sea water boils at about 102 o
C and
freezes at around – 2.5o
C.
 In general, an impurity lowers the melting point and
increases the boiling point of a substance.
Chapter 8
Mixtures and Separations
Impure substances or mixtures
 In nature, most substances are impure. They consist of
two or more substances mixed together.
 Such substances are called mixtures.
 Examples of mixtures are air, sea water, petroleum
and granite rock.
 Mixtures can be purified or separated by physical
methods.
Chapter 8
Mixtures and Separations
66
A MixtureA Mixture
 Air is made up of different gases: nitrogen, oxygen, carbonAir is made up of different gases: nitrogen, oxygen, carbon
dioxide and noble gases such as argon, neon, and helium.dioxide and noble gases such as argon, neon, and helium.
 The gases in air can be easily separated by liquefaction followedThe gases in air can be easily separated by liquefaction followed
by fractional distillation.by fractional distillation.
 Air is an example of a mixture.Air is an example of a mixture.
A mixture is made up of two or more substances
not chemically combined together.
Mixtures and Separations
Chapter 8
77
Composition of a mixtureComposition of a mixture
 A mixture can be made up ofA mixture can be made up of two or moretwo or more
elementselements..
E.g. Brass is a mixture of copper andE.g. Brass is a mixture of copper and
zinc.zinc.
 A mixture can be made up of two
or more elements or compounds.
E.g. Air is a mixture which contains
both elements and compounds.
Copper
atom
Zinc
atom
Air contains both elements and
compounds.
Chapter 8
Mixtures and Separations
Brass
Element
Compound
88
3. Hold a magnet over the mixture of
iron filings and sulphur.
 The iron filings are attracted by the magnet
and can be separated from the sulphur.
4. Heat the mixture of sulphur and iron
filings strongly in an evaporating dish.
Examine the substance formed carefully.
 A black solid is formed. It does not look
like iron filings or sulphur.
Compound of iron and sulphur
Mixture of iron and sulphur
ExperimentExperiment
Chapter 8
Mixtures and Separations
99
5. Hold a magnet over the black solid. What happens?
 The black solid is not attracted by the magnet.
 The iron can no longer be separated from the sulphur in the black
solid.
6. When iron filings and sulphur are heated,
a compound called iron(II) sulphide is formed.
The equation for the reaction is:
Fe(s) + S(s)  FeS(s)
ExperimentExperiment
Chapter 8
Mixtures and Separations
Homogeneous mixtures
 A solution is a homogeneous mixture.
 Characteristics of solutions:
 When left to stand, the solute and solvent do not separate.
 Solutes are not visible (particle size ≤ 1 nm).
 All parts of the solution have the same chemical
composition, chemical and physical properties.
Chapter 8
Mixtures and Separations
Homogeneous mixtures
 Solubility of a solution refers to the amount of solute
that is able to dissolve in a given quantity of solvent at
a fixed temperature and pressure.
 The rate of dissolving of a solute depends on:
 Temperature (e.g. Solubility increases with temperature.)
 Surface area of solute (e.g. Fine sugar dissolves faster than
rock sugar.)
 Rate of agitation (e.g. Stirring the solution increases the rate
of dissolving.)
Chapter 8
Mixtures and Separations
Heterogeneous mixtures
 Heterogeneous mixtures have non-uniform
compositions which can be mechanically separated.
 Examples of heterogeneous mixtures are colloids and
suspensions.
 Colloids include fog, smoke, shaving cream, milk,
blood, styrofoam, gelatin, and cheese.
 Suspensions include muddy water, paint and chalk
powder suspended in water.
Chapter 8
Mixtures and Separations
1313
Quick check 1Quick check 1
1.1. Explain why air is a mixture but waterExplain why air is a mixture but water
is a compound.is a compound.
2.2. (a), State two reasons why a mixture of iron(a), State two reasons why a mixture of iron
filings and sulphur before heating is a mixture.filings and sulphur before heating is a mixture.
(b) When the mixture of iron filings(b) When the mixture of iron filings
and sulphur is heated strongly,and sulphur is heated strongly,
state two reasons whystate two reasons why
the solid formed is athe solid formed is a
compound.compound.
3.3. State whether the following diagrams on theState whether the following diagrams on the
right represent elements, mixtures orright represent elements, mixtures or
compounds.compounds. Solution
Chapter 8
Mixtures and Separations
1414
Solution to Quick check 1Solution to Quick check 1
1. Air is a mixture because it is made up of many gases such as oxygen,
nitrogen, etc. not chemically combined together. The gases in air can
be separated by physical means. Water is a compound because it is
made up of hydrogen and oxygen chemically joined together. We
cannot separate the gases in water by physical means.
2. (a) It is a mixture because the iron and sulphur can be separated by
physical means e.g. by using a magnet. Also, no heat or light is given
out when the iron filings and sulphur are mixed together.
(b) When the mixture of iron filings and sulphur is heated strongly, a
compound is formed because a chemical reaction occurs e.g. heat and
light are given off. Also, the sulphur and iron in the compound can no
longer be separated by physical means such as by using a magnet.
3. (a) compound, (b) compound, (c) mixture, (d) mixture
Return
Chapter 8
Mixtures and Separations
Methods of separating Mixtures
 Filtration
 Evaporation
 Crystallisation
 Sublimation
 Simple distillation
 Fractional distillation
 Use of separating funnel
 Chromatography
Chapter 8
Mixtures and Separations
Filtration
 Filtration is the method used to separate an insoluble solid from a
liquid.
 An example would be to separate a mixture of sand and water.
The liquid (water) that
has passed through
the filter paper is called
filtrate.
The solid (sand) left on the
filter paper is called residue.
Chapter 8
Mixtures and Separations
Evaporation
 Evaporation is the method used to separate a solute from a solution.
 It can only be used for solids which do not decompose under heat
e.g. table salt (sodium chloride).
 It is done by heating the solution in an evaporating dish until it is
completely dry.
Crystals of salt remain after the solution is evaporated to dryness.
Chapter 8
Mixtures and Separations
Crystallisation
 Crystallisation is the method used to obtain pure crystals from a solution.
 It is done by heating the solution in an evaporating dish until it is saturated.
 The hot solution is then allowed to cool.
 Crystals will be formed on cooling. They are then dried between sheets of
filter paper.
Chapter 8
Mixtures and Separations
Sublimation
 Sublimation is the method used to
separate a substance which
sublimes from a mixture.
 Examples of substances which
sublime are: iodine, ammonium
salts, naphthalene and dry ice.
 The mixture is heated in an
evaporating dish covered with
a filter funnel.
 The substance which sublimes
will be changed into a vapour
and then formed back on the
inside of the funnel.
To separate ammonium chloride
from sodium chloride, this
method can be employed.
Chapter 8
Mixtures and Separations
Simple distillation
 Distillation is the method used to
obtain a pure solvent from a
solution. E.g. pure water from
seawater.
 It is done by heating the solution
in a distillation flask and collecting
the vapour that boils off.
 A condenser is used to condense
the hot vapour and change it to a
liquid.
 The condenser is cooled by the
flow of cold water (in the
condenser) from the tap. The pure liquid collected from
distillation is called distillate.
Chapter 8
Mixtures and Separations
Fractional distillation
 Fractional distillation is used to
separate two or more miscible liquids
with different boiling points.
 A fractionating column and a
condenser are used.
Example: Mixture of ethanol and water
 When the thermometer reaches a
steady temperature of 78 o
C,
ethanol is collected.
 Water is collected when the
thermometer reaches a steady
temperature of 100 o
C.
Chapter 8
Mixtures and Separations
Separation of ethanol-water mixture
by fractional distillation
Use of separating funnel
 This method is used to separate a mixture
of immiscible liquids.
 The mixture is placed into a separating
funnel and allowed to settle into two layers.
Example: Mixture of oil and water
 The tap is first opened to allow the water to
drain out of the funnel.
 After all the water has drained out, another
beaker is placed below the funnel and oil is
now drained out.
Separation of oil-water mixture
by using a separating funnel
Chapter 8
Mixtures and Separations
Chromatography
 Chromatography is a method used to
separate and identify small quantities of
substances.
 There are different kinds of
chromatography techniques, such as gas
chromatography, liquid chromatography
and paper chromatography.
 It is based on the principle that
different substances have different
solubilities in the same solvent.
 The more soluble substance will get
carried along faster by the solvent
and move further ahead than the
less soluble substances.
Chromatography can be used to
detect and identify very small
quantities of substances. It is used
to detect banned dyes used in
food colourings, and detect
illegal drugs used by athletes
during major competitions.
Paper Chromatography
Chapter 8
Mixtures and Separations
Setup for paper chromatography
-The starting line must be drawn in
pencil, not ink. This is because unlike
ink, pencil lead is insoluble in the
solvent and will not interfere with the
chromatogram.
-The spots of mixtures must be placed
above the solvent level, so that they
will not immediately dissolve in the
solvent, and the solvent has time to
slowly move up.
starting line
solvent
solvent front
chromatography
paper
large
beaker
glass cover
-The solvent front must be allowed to move as far up the paper as possible to
ensure that all the dyes are separated.
Chapter 8
Mixtures and Separations
The Rf value of a substance
Rf value = distance moved by a substance
distance moved by solvent front
(7 cm)
(10 cm)
E.g. Rf value of red dye = 7 cm = 0.7
10 cm
Sometimes the chromatogram needs to be sprayed with a locating
agent to make the colourless spots in the chromatogram appear.
Chapter 8
Mixtures and Separations
Paper chromatography
Worked example
The chromatogram shows 3 single dyes
red, green and blue, and also four
unknown samples P, Q, R and S.
Identify the dyes present in each of the
samples, P, Q, R, S.
Solution
Sample P contains green dye and one unknown dye.
Sample Q contains only blue dye.
Sample R contains green, blue and red dyes.
Sample S contains green and red dyes.
Chapter 8
Mixtures and Separations
2727
Identify the various method separation methods used in the diagram below .
Chapter 8
Mixtures and Separations
Quick check
1. State the method you will use to
separate the following substances.
(a) calcium carbonate from table salt
(b) iodine from sodium chloride
(c) table salt from seawater
(d) sugar from sugar solution
(e) pure water from sewage water
(f) ethanol from beer
(g) yellow dye from durian ice cream
2. Explain the following in chromatography.
(a) Why is the starting line not drawn with ink or a ball point pen?
(b) The spots of samples on the start line should be small.
(c) What is the biggest advantage of chromatography?
3. A sample of ink was analysed using paper chromatography (see
diagram above). Identify the dyes present in the ink.
Solution
Chapter 8
Mixtures and Separations
Solution to Quick check
1. State the method you will use to separate the following substances.
(a) dissolution, followed by filtration
(b) sublimation
(c) evaporation
(d) crystallisation
(e) distillation
(f ) fractional distillation
(g) chromatography
2. Explain the following in chromatography.
(a) Ink contains dyes which could dissolve in the solvent and
interfere with the chromatogram.
(b) So that they would not smudge the paper.
(c) It can detect and identify very small amounts of substances.
3. Blue and yellow dyes
Return
Chapter 8
Mixtures and Separations
1. http://orgchem.colorado.edu/hndbksupport/filt/filtration.html
2. http://en.wikipedia.org/wiki/Distillation
3. http://orgchem.colorado.edu/hndbksupport/dist/dist.html
4. http://en.wikipedia.org/wiki/Fractional_distillation
5. http://www.chemistrydaily.com/chemistry/Chromatography
To find out more about Methods of Purification and
Analysis, click on the links below!
Chapter 8
Mixtures and Separations

Más contenido relacionado

La actualidad más candente

Transport system in plants
Transport system in plantsTransport system in plants
Transport system in plants
Henry Chinangwe
 
iGCSE Biology Section 1 Lesson 1.ppt
iGCSE Biology Section 1 Lesson 1.pptiGCSE Biology Section 1 Lesson 1.ppt
iGCSE Biology Section 1 Lesson 1.ppt
DamiraTura
 
Presentation 07 - Animal Transport and Circulation
Presentation 07 - Animal Transport and CirculationPresentation 07 - Animal Transport and Circulation
Presentation 07 - Animal Transport and Circulation
Ma'am Dawn
 
iGCSE Chemistry Section 2 Lesson 5.ppt
iGCSE Chemistry Section 2 Lesson 5.pptiGCSE Chemistry Section 2 Lesson 5.ppt
iGCSE Chemistry Section 2 Lesson 5.ppt
imen ksibi
 
Colloids2008
Colloids2008Colloids2008
Colloids2008
tams
 

La actualidad más candente (20)

Methods for separating mixtures
Methods for separating mixturesMethods for separating mixtures
Methods for separating mixtures
 
IGCSE-Biology-Lecture-13_-Human-Nutrition.pptx
IGCSE-Biology-Lecture-13_-Human-Nutrition.pptxIGCSE-Biology-Lecture-13_-Human-Nutrition.pptx
IGCSE-Biology-Lecture-13_-Human-Nutrition.pptx
 
Photosynthesis
PhotosynthesisPhotosynthesis
Photosynthesis
 
Adaptations
AdaptationsAdaptations
Adaptations
 
C08 mixtures and separations
C08 mixtures and separationsC08 mixtures and separations
C08 mixtures and separations
 
Transport system in plants
Transport system in plantsTransport system in plants
Transport system in plants
 
homogenous and heterogenous mixture
homogenous and heterogenous mixturehomogenous and heterogenous mixture
homogenous and heterogenous mixture
 
iGCSE Biology Section 1 Lesson 1.ppt
iGCSE Biology Section 1 Lesson 1.pptiGCSE Biology Section 1 Lesson 1.ppt
iGCSE Biology Section 1 Lesson 1.ppt
 
Acids and alkalis
Acids and alkalisAcids and alkalis
Acids and alkalis
 
IGCSE Photosythesis
IGCSE PhotosythesisIGCSE Photosythesis
IGCSE Photosythesis
 
Neutralization
NeutralizationNeutralization
Neutralization
 
NCERT Class - 6 Science Ch - 15 Air Around Us
NCERT Class - 6 Science Ch - 15 Air Around UsNCERT Class - 6 Science Ch - 15 Air Around Us
NCERT Class - 6 Science Ch - 15 Air Around Us
 
Presentation 07 - Animal Transport and Circulation
Presentation 07 - Animal Transport and CirculationPresentation 07 - Animal Transport and Circulation
Presentation 07 - Animal Transport and Circulation
 
C05 the mole concept
C05 the mole conceptC05 the mole concept
C05 the mole concept
 
iGCSE Chemistry Section 2 Lesson 5.ppt
iGCSE Chemistry Section 2 Lesson 5.pptiGCSE Chemistry Section 2 Lesson 5.ppt
iGCSE Chemistry Section 2 Lesson 5.ppt
 
Introduction
IntroductionIntroduction
Introduction
 
Reaction of metal with oxygen
Reaction of metal with oxygenReaction of metal with oxygen
Reaction of metal with oxygen
 
Separation of Mixtures
Separation of MixturesSeparation of Mixtures
Separation of Mixtures
 
Colloids2008
Colloids2008Colloids2008
Colloids2008
 
Classification of acids & bases
Classification of acids & bases  Classification of acids & bases
Classification of acids & bases
 

Destacado

Magnetic Art
Magnetic ArtMagnetic Art
Magnetic Art
ISBangkok
 
Separationofmixtures 100825041637-phpapp01
Separationofmixtures 100825041637-phpapp01Separationofmixtures 100825041637-phpapp01
Separationofmixtures 100825041637-phpapp01
Mohammad Abedin
 
İkiden fazla-bileşen-i̇çeren-maddelerin-ayrıştırılması
İkiden fazla-bileşen-i̇çeren-maddelerin-ayrıştırılmasıİkiden fazla-bileşen-i̇çeren-maddelerin-ayrıştırılması
İkiden fazla-bileşen-i̇çeren-maddelerin-ayrıştırılması
Berat Bozkurt
 
Separating a mixture
Separating a mixtureSeparating a mixture
Separating a mixture
foundscience
 
Simple techniques of separating mixtures
Simple techniques of separating mixturesSimple techniques of separating mixtures
Simple techniques of separating mixtures
Anand Kumar
 
Data Logger: Melting and Freezing Points of Naphthalene
Data Logger: Melting and Freezing Points of NaphthaleneData Logger: Melting and Freezing Points of Naphthalene
Data Logger: Melting and Freezing Points of Naphthalene
Rochelle Ning
 
Good Presentation
Good PresentationGood Presentation
Good Presentation
sspurlock
 
Magnetic Separation
Magnetic SeparationMagnetic Separation
Magnetic Separation
MNButt
 
C06 concentration of solutions and volumetric analysis
C06 concentration of solutions and volumetric analysisC06 concentration of solutions and volumetric analysis
C06 concentration of solutions and volumetric analysis
Chemrcwss
 
C24 the chemistry of cooking
C24 the chemistry of cookingC24 the chemistry of cooking
C24 the chemistry of cooking
Chemrcwss
 

Destacado (20)

Separating mixtures
Separating mixturesSeparating mixtures
Separating mixtures
 
Magnetic Art
Magnetic ArtMagnetic Art
Magnetic Art
 
Separationofmixtures 100825041637-phpapp01
Separationofmixtures 100825041637-phpapp01Separationofmixtures 100825041637-phpapp01
Separationofmixtures 100825041637-phpapp01
 
Separating Mixtures
Separating MixturesSeparating Mixtures
Separating Mixtures
 
Methods of Separating mixtures
Methods of Separating mixturesMethods of Separating mixtures
Methods of Separating mixtures
 
What happens when matter goes through a physical
What happens when matter goes through a physicalWhat happens when matter goes through a physical
What happens when matter goes through a physical
 
İkiden fazla-bileşen-i̇çeren-maddelerin-ayrıştırılması
İkiden fazla-bileşen-i̇çeren-maddelerin-ayrıştırılmasıİkiden fazla-bileşen-i̇çeren-maddelerin-ayrıştırılması
İkiden fazla-bileşen-i̇çeren-maddelerin-ayrıştırılması
 
Separating a mixture
Separating a mixtureSeparating a mixture
Separating a mixture
 
Simple techniques of separating mixtures
Simple techniques of separating mixturesSimple techniques of separating mixtures
Simple techniques of separating mixtures
 
Iccs science6 separatingmixtures 130701082145-phpapp01
Iccs science6 separatingmixtures 130701082145-phpapp01Iccs science6 separatingmixtures 130701082145-phpapp01
Iccs science6 separatingmixtures 130701082145-phpapp01
 
Data Logger: Melting and Freezing Points of Naphthalene
Data Logger: Melting and Freezing Points of NaphthaleneData Logger: Melting and Freezing Points of Naphthalene
Data Logger: Melting and Freezing Points of Naphthalene
 
Wearable Technologies
Wearable TechnologiesWearable Technologies
Wearable Technologies
 
C13 enthalpy change
C13 enthalpy changeC13 enthalpy change
C13 enthalpy change
 
Maddenin Yapısı Ve Özellikleri
Maddenin Yapısı Ve ÖzellikleriMaddenin Yapısı Ve Özellikleri
Maddenin Yapısı Ve Özellikleri
 
Good Presentation
Good PresentationGood Presentation
Good Presentation
 
Magnetic separation
Magnetic separationMagnetic separation
Magnetic separation
 
Magnetic Separation
Magnetic SeparationMagnetic Separation
Magnetic Separation
 
C06 concentration of solutions and volumetric analysis
C06 concentration of solutions and volumetric analysisC06 concentration of solutions and volumetric analysis
C06 concentration of solutions and volumetric analysis
 
Magnetic separation
Magnetic separationMagnetic separation
Magnetic separation
 
C24 the chemistry of cooking
C24 the chemistry of cookingC24 the chemistry of cooking
C24 the chemistry of cooking
 

Similar a C08 mixtures and separations

Full chapter redox
Full chapter redoxFull chapter redox
Full chapter redox
smitamalik
 
Ch06 elements, compounds & mixtures
Ch06 elements, compounds & mixturesCh06 elements, compounds & mixtures
Ch06 elements, compounds & mixtures
masato25
 
Investigating The Kinetics Of The Reaction Between Iodide...
 Investigating The Kinetics Of The Reaction Between Iodide... Investigating The Kinetics Of The Reaction Between Iodide...
Investigating The Kinetics Of The Reaction Between Iodide...
Jennifer Reither
 
Ch 4 elements_compounds_and_mixtures
Ch 4 elements_compounds_and_mixturesCh 4 elements_compounds_and_mixtures
Ch 4 elements_compounds_and_mixtures
charsh
 
Physical and Chemical Changes of class 7
Physical and Chemical Changes of class 7Physical and Chemical Changes of class 7
Physical and Chemical Changes of class 7
KOUNDINYAREDDY
 
Polymer ok1294992673
Polymer   ok1294992673Polymer   ok1294992673
Polymer ok1294992673
Navin Joshi
 

Similar a C08 mixtures and separations (20)

Mixtures and Separations
Mixtures and SeparationsMixtures and Separations
Mixtures and Separations
 
Important questions CLASS 9 IS MATTER AROUND US PURE
Important questions CLASS 9 IS MATTER AROUND US PUREImportant questions CLASS 9 IS MATTER AROUND US PURE
Important questions CLASS 9 IS MATTER AROUND US PURE
 
All Chem Notes 1 9
All Chem Notes 1 9All Chem Notes 1 9
All Chem Notes 1 9
 
Full chapter redox
Full chapter redoxFull chapter redox
Full chapter redox
 
Ch06 elements, compounds & mixtures
Ch06 elements, compounds & mixturesCh06 elements, compounds & mixtures
Ch06 elements, compounds & mixtures
 
Water for class 9 ICSE board
Water for class 9 ICSE boardWater for class 9 ICSE board
Water for class 9 ICSE board
 
surface chemistry
surface chemistrysurface chemistry
surface chemistry
 
Class10 science-notes-chapter1
Class10 science-notes-chapter1Class10 science-notes-chapter1
Class10 science-notes-chapter1
 
Class 10 chemical reactions and equations
Class 10 chemical reactions and equationsClass 10 chemical reactions and equations
Class 10 chemical reactions and equations
 
Notes main points FROM THE CHAPTER IS MATTER AREOUND US PURE
Notes main points FROM THE CHAPTER IS MATTER AREOUND US PURENotes main points FROM THE CHAPTER IS MATTER AREOUND US PURE
Notes main points FROM THE CHAPTER IS MATTER AREOUND US PURE
 
Investigating The Kinetics Of The Reaction Between Iodide...
 Investigating The Kinetics Of The Reaction Between Iodide... Investigating The Kinetics Of The Reaction Between Iodide...
Investigating The Kinetics Of The Reaction Between Iodide...
 
Ch 4 elements_compounds_and_mixtures
Ch 4 elements_compounds_and_mixturesCh 4 elements_compounds_and_mixtures
Ch 4 elements_compounds_and_mixtures
 
PHYSICAL AND CHEMICAL CHANGE
PHYSICAL AND CHEMICAL CHANGEPHYSICAL AND CHEMICAL CHANGE
PHYSICAL AND CHEMICAL CHANGE
 
MATTER
MATTERMATTER
MATTER
 
GENERAL CHEMISTRY 1.pptx
GENERAL CHEMISTRY 1.pptxGENERAL CHEMISTRY 1.pptx
GENERAL CHEMISTRY 1.pptx
 
Introduction
IntroductionIntroduction
Introduction
 
Classifying Matter
Classifying MatterClassifying Matter
Classifying Matter
 
chapter_13.ppt
chapter_13.pptchapter_13.ppt
chapter_13.ppt
 
Physical and Chemical Changes of class 7
Physical and Chemical Changes of class 7Physical and Chemical Changes of class 7
Physical and Chemical Changes of class 7
 
Polymer ok1294992673
Polymer   ok1294992673Polymer   ok1294992673
Polymer ok1294992673
 

Más de Chemrcwss

C05 the mole concept
C05 the mole conceptC05 the mole concept
C05 the mole concept
Chemrcwss
 
C04 elements and compounds
C04 elements and compoundsC04 elements and compounds
C04 elements and compounds
Chemrcwss
 
C03 relative masses of atoms and molecules
C03 relative masses of atoms and moleculesC03 relative masses of atoms and molecules
C03 relative masses of atoms and molecules
Chemrcwss
 
C07 chemical bonding
C07 chemical bondingC07 chemical bonding
C07 chemical bonding
Chemrcwss
 
C22 non metals
C22 non metalsC22 non metals
C22 non metals
Chemrcwss
 
C20 extraction of metals
C20 extraction of metalsC20 extraction of metals
C20 extraction of metals
Chemrcwss
 
C19 metals and their reactivity
C19 metals and their reactivityC19 metals and their reactivity
C19 metals and their reactivity
Chemrcwss
 
C26 pollution
C26 pollutionC26 pollution
C26 pollution
Chemrcwss
 
C18 polymers
C18 polymersC18 polymers
C18 polymers
Chemrcwss
 
C17 carbon compounds
C17 carbon compoundsC17 carbon compounds
C17 carbon compounds
Chemrcwss
 
C16 alcohols and carboxylic acids
C16 alcohols and carboxylic acidsC16 alcohols and carboxylic acids
C16 alcohols and carboxylic acids
Chemrcwss
 
C15 hydrocarbons
C15 hydrocarbonsC15 hydrocarbons
C15 hydrocarbons
Chemrcwss
 
C21 qualitative analysis
C21 qualitative analysisC21 qualitative analysis
C21 qualitative analysis
Chemrcwss
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
Chemrcwss
 
Presentation2
Presentation2Presentation2
Presentation2
Chemrcwss
 
Discovery of the atom
Discovery of the atomDiscovery of the atom
Discovery of the atom
Chemrcwss
 
Atomic theory chelsie
Atomic theory chelsieAtomic theory chelsie
Atomic theory chelsie
Chemrcwss
 
Models of the atom
Models of the atomModels of the atom
Models of the atom
Chemrcwss
 

Más de Chemrcwss (20)

C14 rates of reactions
C14 rates of reactionsC14 rates of reactions
C14 rates of reactions
 
C05 the mole concept
C05 the mole conceptC05 the mole concept
C05 the mole concept
 
C04 elements and compounds
C04 elements and compoundsC04 elements and compounds
C04 elements and compounds
 
C03 relative masses of atoms and molecules
C03 relative masses of atoms and moleculesC03 relative masses of atoms and molecules
C03 relative masses of atoms and molecules
 
C07 chemical bonding
C07 chemical bondingC07 chemical bonding
C07 chemical bonding
 
C22 non metals
C22 non metalsC22 non metals
C22 non metals
 
C20 extraction of metals
C20 extraction of metalsC20 extraction of metals
C20 extraction of metals
 
C19 metals and their reactivity
C19 metals and their reactivityC19 metals and their reactivity
C19 metals and their reactivity
 
C26 pollution
C26 pollutionC26 pollution
C26 pollution
 
C18 polymers
C18 polymersC18 polymers
C18 polymers
 
C17 carbon compounds
C17 carbon compoundsC17 carbon compounds
C17 carbon compounds
 
C16 alcohols and carboxylic acids
C16 alcohols and carboxylic acidsC16 alcohols and carboxylic acids
C16 alcohols and carboxylic acids
 
C15 hydrocarbons
C15 hydrocarbonsC15 hydrocarbons
C15 hydrocarbons
 
C21 qualitative analysis
C21 qualitative analysisC21 qualitative analysis
C21 qualitative analysis
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
511
511511
511
 
Presentation2
Presentation2Presentation2
Presentation2
 
Discovery of the atom
Discovery of the atomDiscovery of the atom
Discovery of the atom
 
Atomic theory chelsie
Atomic theory chelsieAtomic theory chelsie
Atomic theory chelsie
 
Models of the atom
Models of the atomModels of the atom
Models of the atom
 

Último

Último (20)

HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 

C08 mixtures and separations

  • 1. 11  Identify the different types of solutionsIdentify the different types of solutions  Investigate experimentally the effect of structure andInvestigate experimentally the effect of structure and temperature on solubility of solids in watertemperature on solubility of solids in water  Distinguish among solutions, suspensions and colloidsDistinguish among solutions, suspensions and colloids Identify suitable separation techniques based onIdentify suitable separation techniques based on difference in properties of the components ofdifference in properties of the components of mixturesmixtures  Describe the extraction of sucrose from sugar caneDescribe the extraction of sucrose from sugar cane Mixtures and Separations Chapter 8 Learning Outcomes
  • 2. Copper(II) sulphate Pure substances  A pure substance is a single substance not mixed with anything else.  Sugar and table salt are examples of pure substances.  Pure substances usually exist in crystal form.  For example, table salt, sugar and copper(II) sulphate all exist as crystals.  A pure substance can be an element or a compound. Sugar crystals Chapter 8 Mixtures and Separations
  • 3. Pure and impure substances  A pure substance has a fixed melting point and boiling point. For example, pure water boils at 100 o C, and melts at 0 o C. b.p. 100 o C m.p. 0 o C Chapter 8 Mixtures and Separations
  • 4. Impure substances or mixtures  A mixture on the other hand, is an impure substance. It does not have a fixed melting point and boiling point. It melts or boils over a range of temperatures.  For example, sea water boils at about 102 o C and freezes at around – 2.5o C.  In general, an impurity lowers the melting point and increases the boiling point of a substance. Chapter 8 Mixtures and Separations
  • 5. Impure substances or mixtures  In nature, most substances are impure. They consist of two or more substances mixed together.  Such substances are called mixtures.  Examples of mixtures are air, sea water, petroleum and granite rock.  Mixtures can be purified or separated by physical methods. Chapter 8 Mixtures and Separations
  • 6. 66 A MixtureA Mixture  Air is made up of different gases: nitrogen, oxygen, carbonAir is made up of different gases: nitrogen, oxygen, carbon dioxide and noble gases such as argon, neon, and helium.dioxide and noble gases such as argon, neon, and helium.  The gases in air can be easily separated by liquefaction followedThe gases in air can be easily separated by liquefaction followed by fractional distillation.by fractional distillation.  Air is an example of a mixture.Air is an example of a mixture. A mixture is made up of two or more substances not chemically combined together. Mixtures and Separations Chapter 8
  • 7. 77 Composition of a mixtureComposition of a mixture  A mixture can be made up ofA mixture can be made up of two or moretwo or more elementselements.. E.g. Brass is a mixture of copper andE.g. Brass is a mixture of copper and zinc.zinc.  A mixture can be made up of two or more elements or compounds. E.g. Air is a mixture which contains both elements and compounds. Copper atom Zinc atom Air contains both elements and compounds. Chapter 8 Mixtures and Separations Brass Element Compound
  • 8. 88 3. Hold a magnet over the mixture of iron filings and sulphur.  The iron filings are attracted by the magnet and can be separated from the sulphur. 4. Heat the mixture of sulphur and iron filings strongly in an evaporating dish. Examine the substance formed carefully.  A black solid is formed. It does not look like iron filings or sulphur. Compound of iron and sulphur Mixture of iron and sulphur ExperimentExperiment Chapter 8 Mixtures and Separations
  • 9. 99 5. Hold a magnet over the black solid. What happens?  The black solid is not attracted by the magnet.  The iron can no longer be separated from the sulphur in the black solid. 6. When iron filings and sulphur are heated, a compound called iron(II) sulphide is formed. The equation for the reaction is: Fe(s) + S(s)  FeS(s) ExperimentExperiment Chapter 8 Mixtures and Separations
  • 10. Homogeneous mixtures  A solution is a homogeneous mixture.  Characteristics of solutions:  When left to stand, the solute and solvent do not separate.  Solutes are not visible (particle size ≤ 1 nm).  All parts of the solution have the same chemical composition, chemical and physical properties. Chapter 8 Mixtures and Separations
  • 11. Homogeneous mixtures  Solubility of a solution refers to the amount of solute that is able to dissolve in a given quantity of solvent at a fixed temperature and pressure.  The rate of dissolving of a solute depends on:  Temperature (e.g. Solubility increases with temperature.)  Surface area of solute (e.g. Fine sugar dissolves faster than rock sugar.)  Rate of agitation (e.g. Stirring the solution increases the rate of dissolving.) Chapter 8 Mixtures and Separations
  • 12. Heterogeneous mixtures  Heterogeneous mixtures have non-uniform compositions which can be mechanically separated.  Examples of heterogeneous mixtures are colloids and suspensions.  Colloids include fog, smoke, shaving cream, milk, blood, styrofoam, gelatin, and cheese.  Suspensions include muddy water, paint and chalk powder suspended in water. Chapter 8 Mixtures and Separations
  • 13. 1313 Quick check 1Quick check 1 1.1. Explain why air is a mixture but waterExplain why air is a mixture but water is a compound.is a compound. 2.2. (a), State two reasons why a mixture of iron(a), State two reasons why a mixture of iron filings and sulphur before heating is a mixture.filings and sulphur before heating is a mixture. (b) When the mixture of iron filings(b) When the mixture of iron filings and sulphur is heated strongly,and sulphur is heated strongly, state two reasons whystate two reasons why the solid formed is athe solid formed is a compound.compound. 3.3. State whether the following diagrams on theState whether the following diagrams on the right represent elements, mixtures orright represent elements, mixtures or compounds.compounds. Solution Chapter 8 Mixtures and Separations
  • 14. 1414 Solution to Quick check 1Solution to Quick check 1 1. Air is a mixture because it is made up of many gases such as oxygen, nitrogen, etc. not chemically combined together. The gases in air can be separated by physical means. Water is a compound because it is made up of hydrogen and oxygen chemically joined together. We cannot separate the gases in water by physical means. 2. (a) It is a mixture because the iron and sulphur can be separated by physical means e.g. by using a magnet. Also, no heat or light is given out when the iron filings and sulphur are mixed together. (b) When the mixture of iron filings and sulphur is heated strongly, a compound is formed because a chemical reaction occurs e.g. heat and light are given off. Also, the sulphur and iron in the compound can no longer be separated by physical means such as by using a magnet. 3. (a) compound, (b) compound, (c) mixture, (d) mixture Return Chapter 8 Mixtures and Separations
  • 15. Methods of separating Mixtures  Filtration  Evaporation  Crystallisation  Sublimation  Simple distillation  Fractional distillation  Use of separating funnel  Chromatography Chapter 8 Mixtures and Separations
  • 16. Filtration  Filtration is the method used to separate an insoluble solid from a liquid.  An example would be to separate a mixture of sand and water. The liquid (water) that has passed through the filter paper is called filtrate. The solid (sand) left on the filter paper is called residue. Chapter 8 Mixtures and Separations
  • 17. Evaporation  Evaporation is the method used to separate a solute from a solution.  It can only be used for solids which do not decompose under heat e.g. table salt (sodium chloride).  It is done by heating the solution in an evaporating dish until it is completely dry. Crystals of salt remain after the solution is evaporated to dryness. Chapter 8 Mixtures and Separations
  • 18. Crystallisation  Crystallisation is the method used to obtain pure crystals from a solution.  It is done by heating the solution in an evaporating dish until it is saturated.  The hot solution is then allowed to cool.  Crystals will be formed on cooling. They are then dried between sheets of filter paper. Chapter 8 Mixtures and Separations
  • 19. Sublimation  Sublimation is the method used to separate a substance which sublimes from a mixture.  Examples of substances which sublime are: iodine, ammonium salts, naphthalene and dry ice.  The mixture is heated in an evaporating dish covered with a filter funnel.  The substance which sublimes will be changed into a vapour and then formed back on the inside of the funnel. To separate ammonium chloride from sodium chloride, this method can be employed. Chapter 8 Mixtures and Separations
  • 20. Simple distillation  Distillation is the method used to obtain a pure solvent from a solution. E.g. pure water from seawater.  It is done by heating the solution in a distillation flask and collecting the vapour that boils off.  A condenser is used to condense the hot vapour and change it to a liquid.  The condenser is cooled by the flow of cold water (in the condenser) from the tap. The pure liquid collected from distillation is called distillate. Chapter 8 Mixtures and Separations
  • 21. Fractional distillation  Fractional distillation is used to separate two or more miscible liquids with different boiling points.  A fractionating column and a condenser are used. Example: Mixture of ethanol and water  When the thermometer reaches a steady temperature of 78 o C, ethanol is collected.  Water is collected when the thermometer reaches a steady temperature of 100 o C. Chapter 8 Mixtures and Separations Separation of ethanol-water mixture by fractional distillation
  • 22. Use of separating funnel  This method is used to separate a mixture of immiscible liquids.  The mixture is placed into a separating funnel and allowed to settle into two layers. Example: Mixture of oil and water  The tap is first opened to allow the water to drain out of the funnel.  After all the water has drained out, another beaker is placed below the funnel and oil is now drained out. Separation of oil-water mixture by using a separating funnel Chapter 8 Mixtures and Separations
  • 23. Chromatography  Chromatography is a method used to separate and identify small quantities of substances.  There are different kinds of chromatography techniques, such as gas chromatography, liquid chromatography and paper chromatography.  It is based on the principle that different substances have different solubilities in the same solvent.  The more soluble substance will get carried along faster by the solvent and move further ahead than the less soluble substances. Chromatography can be used to detect and identify very small quantities of substances. It is used to detect banned dyes used in food colourings, and detect illegal drugs used by athletes during major competitions. Paper Chromatography Chapter 8 Mixtures and Separations
  • 24. Setup for paper chromatography -The starting line must be drawn in pencil, not ink. This is because unlike ink, pencil lead is insoluble in the solvent and will not interfere with the chromatogram. -The spots of mixtures must be placed above the solvent level, so that they will not immediately dissolve in the solvent, and the solvent has time to slowly move up. starting line solvent solvent front chromatography paper large beaker glass cover -The solvent front must be allowed to move as far up the paper as possible to ensure that all the dyes are separated. Chapter 8 Mixtures and Separations
  • 25. The Rf value of a substance Rf value = distance moved by a substance distance moved by solvent front (7 cm) (10 cm) E.g. Rf value of red dye = 7 cm = 0.7 10 cm Sometimes the chromatogram needs to be sprayed with a locating agent to make the colourless spots in the chromatogram appear. Chapter 8 Mixtures and Separations
  • 26. Paper chromatography Worked example The chromatogram shows 3 single dyes red, green and blue, and also four unknown samples P, Q, R and S. Identify the dyes present in each of the samples, P, Q, R, S. Solution Sample P contains green dye and one unknown dye. Sample Q contains only blue dye. Sample R contains green, blue and red dyes. Sample S contains green and red dyes. Chapter 8 Mixtures and Separations
  • 27. 2727 Identify the various method separation methods used in the diagram below . Chapter 8 Mixtures and Separations
  • 28. Quick check 1. State the method you will use to separate the following substances. (a) calcium carbonate from table salt (b) iodine from sodium chloride (c) table salt from seawater (d) sugar from sugar solution (e) pure water from sewage water (f) ethanol from beer (g) yellow dye from durian ice cream 2. Explain the following in chromatography. (a) Why is the starting line not drawn with ink or a ball point pen? (b) The spots of samples on the start line should be small. (c) What is the biggest advantage of chromatography? 3. A sample of ink was analysed using paper chromatography (see diagram above). Identify the dyes present in the ink. Solution Chapter 8 Mixtures and Separations
  • 29. Solution to Quick check 1. State the method you will use to separate the following substances. (a) dissolution, followed by filtration (b) sublimation (c) evaporation (d) crystallisation (e) distillation (f ) fractional distillation (g) chromatography 2. Explain the following in chromatography. (a) Ink contains dyes which could dissolve in the solvent and interfere with the chromatogram. (b) So that they would not smudge the paper. (c) It can detect and identify very small amounts of substances. 3. Blue and yellow dyes Return Chapter 8 Mixtures and Separations
  • 30. 1. http://orgchem.colorado.edu/hndbksupport/filt/filtration.html 2. http://en.wikipedia.org/wiki/Distillation 3. http://orgchem.colorado.edu/hndbksupport/dist/dist.html 4. http://en.wikipedia.org/wiki/Fractional_distillation 5. http://www.chemistrydaily.com/chemistry/Chromatography To find out more about Methods of Purification and Analysis, click on the links below! Chapter 8 Mixtures and Separations