SlideShare una empresa de Scribd logo
1 de 28
Descargar para leer sin conexión
New Nautilus: the voided biaxial slab former
rev. 2012 1.1
Voided slabs in reinforced concrete

Lightweight reinforced concrete slab:
 The necessity of decreasing the weight of RC slabs has various reasons:
 ARCHITECTURE
 * Obtain large spans, with fewer columns or walls; 
 * Avoidance of drop‐beams.

 ENGINEERING
 * Self‐weight reduction of the slab in order to:
      ‐ reduce its deformation
      ‐ reduce the weight (loads)  transmitted to the foundation
      ‐ reduce the oscillating mass, thus the movements during an earthquake

                                          The solution :
                                        to hollow out the slab
Precast concrete elements
            The use of precast elements has certain constraints:

TRANSPORT                                                          A  flatbed truck  must be used even for
                                                                   small quantities or  single  parts.  This
                                                                   may cause difficult access to jobsites in 
                                                                   city centres and with heavy trafic



LOGISTICS                                                          Precast slabs occupy a  lot of space on 
                                                                   site.  A  crane is mandatory for placing. 
                                                                   In case of polystyrene void formers the 
                                                                   precast parts must be protected from
                                                                   rain.


     USE                                                           The  precast parts are  handled with
                                                                   some difficulty above the fourth floor.
                                                                   Drop‐beams are often required.
The new
Advantages
The advantages of the new Nautilus void former are numerous:

                         TWO‐WAY  STRUCTURE:  a  two‐way slab will distribute
                         loads on  4  sides (instead of 2  for one‐way slabs), 
                         reducing the  maximum loads on  beams or  mushroom
                         posts.


                         LIGHT:  the  concrete  not essential for the  structure is
                         eliminated.  The  self‐weight of the  slab is limited, 
                         reducing the  loads transferred to the  foundation; 
                         deformation of the structure is reduced. 


                         FLEXIBLE:  it will allow to eliminate  drop‐beams and 
                         create  flat‐soffit slabs without interruptions of large
                         surface. 
Advantages
The advantages of the new Nautilus void former are numerous:

                          QUAKE  RESISTANT:  the  voids reduce  the  self‐weight of
                          the slab, reducing the seismic mass. 


                          LARGE  SPANS:    larger spans between columns are 
                          possible.  The  number of columns is reduced,  the  result
                          are archutecturally more manageable volumes.


                          COST‐EFFECTIVE:  a  slab with new Nautilus  with the  same static and 
                          seismic characteristics consume a  smaller amount of concrete  and 
                          steel than the full‐concrete equivalent slab:

                              ‐ up to 35% slab weight reduction

                              ‐ up to 50% fewer columns

                              ‐ combined saving effect: 5 to 10% cost reduction potential
new Nautilus single
The  new Nautilus  void formers are  available in  various heights,  all measure 520x520  mm  in 
plane. The “feet”, are spacers which determin the thickness of the lower slab, and are available
in height between o and 100 mm.
                                                                            H16


                                                                  Geoplast         Nuovo Nautilus h16




              Geoplast      Nuovo Nautilus



                                                                             H20


                                                                  Geoplast         Nuovo Nautilus h20




                                                                             H24



                                                                  Geoplast         Nuovo Nautilus h24
new Nautilus double
The new Nautilus “single” void formers can be combined in a “double” configuration to allow
larger void‐formers.


                                                                                                                  Geoplast         Nuovo Nautilus h20   Geoplast         Nuovo Nautilus h24

                                      Geoplast         Nuovo Nautilus h16   Geoplast         Nuovo Nautilus h20

Geoplast         Nuovo Nautilus h16




           H32                                   H36                                   H40                                   H44                                   H48
Installation
       Installation of the new Nautilus void formers is very simple and fast:


       1. The  new Nautilus  void formers don’t  have an orientation.  Installation is fast 
       and does not require any special care or attention. 

       2.  The  spacer strip  makes spacing control between void formers simple and 
       accurate.

       3. It is possible to tread on  the  new Nautilus  void formers.  This keeps the  laying
       of the upper slab armature really simple.




         The new Nautilus caissons resist up to 1500 N 
         pressure on an 80x80 mm footprint for safe job‐
         site application.
Steps 1-2
INSTALLATION




 1.  Prepare a slab formwork; lay the welded mesh on spacers.




  2. Install the new NAUTILUS void formers, spacing between caissons as per drawing. Use the spacer strip to
     check correct distance.
Steps 3-4
INSTALLATION




3.    Install all required extra  reinforcement (shear‐ and  moment‐reinforcement);  lay the  upper  slab
welded mesh.




  4.  First pouring phase: pour concrete to fill the lower slab, starting from the ribbing, up to the lower side of
  the new Nautilus void formers. Vibrate the concrete immediately. 
Step 5
INSTALLATION




5.  Second pour  phase:  after completion of the  first  pour  phase,  when concrete  has achieve
    some strenght, fill the ribbings and complete the top slab as required by the project.
TEST RESULTS
  Cross‐section of actual pour:
  concrete type: S3 poured in two lifts as per 
  instructions, vibrated with eccentric poker.



                                  NEW NAUTILUS
          Single H16, lower slab thickness 50 mm


                                                                                  No concrete ingress ;
                                                                               lower slab completely filled




                                      Typical cross‐section:
                                      NEW NAUTILUS
                                      Double H32, lower slab thickness 60 mm
Calculation
STUDY   The new NAUTILUS caissons create voids in a RC slab poured in situ.
        The condition in shich the new Nautilus void former gives the most advantage is in a two‐way
        slab configuration.  In  order to have a  two‐way behaviour the  ratio between the  sides of the 
        slab must be between 1.7  and  1:  beyond this ratio the  behaviour will become one‐way,  and 
        other methods to reduce slab weight may be more advantageous.


        SLAB THICKNESS
        The  first  step  in  the  study of a  full  concrete 
        slab is to formulate  an hypothesis of the 
        indicative thickness. 
        This thickness depends from the  type of
        structure being studied:

               Slab on columns                       d = L / 25

               Slab on beams                         d = L / 30

               Waffle slab on columns                d = L / 20
Inertia
STUDY      Once the hypothesis of the minimum slab thickness has been formulated, the voided slab with
           equivalent charactesistics of resistance and deformation must be identified.

           A full concrete and a voided slab are compared based on their inertia. 




        The inertia of the full concrete slab must be calculated, and compared with the voided slab solution.
                                        1                                           I
                               Ifull =    ⋅ 100 ⋅ H2                        Iall = full
                                       12                                         B + 52
        The inertia of the voided section is calculated according to the span of the void formers.
        Based on the inertia values of the voided section is is possible to calculate the thickness of the slab, and 
        consequently choose the size of dimensions S1, S2 and h.
Full vs voided slab
STUDY   Here below the comparison between a full concrete slab and an equivalent voided slab.




                              I=225000cm^4/m                           I=153626cm^4/i
                                                                       I=225920cm^4/m




                              I=422108cm^4/m                           I=304140cm^4/i
                                                                       I=422417cm^4/m
           The  thickness of a  voided slab is slightly greater that the  one of the  equivalent full  concrete 
           slab.
Slab support
STUDY   Once the thickness of the voided slab has been established it is possible to calculate the steel 
        reinforcement.
        Loads will be divided in two directions: this can be calculated with the Grashof formulae.


                                                        This calculation considers also the  conditions
                                                        at the limits.




                  q ⋅ l4              q ⋅ l4
         qx =          y
                              qy =         x

                k ⋅ l4 + l4
                     x    y
                                   k ⋅ l y + l4
                                         4
                                              x
Reinforcement
STUDY                The reinforcement of a voided slab with new Nautils is typically composed by:

                     ‐ a welded mesh in the lower slab, with spacers to assure the required concrete cover; 

                     ‐ additional reinforcement (bars or grids);

                     ‐ a welded mesh in the upper slab, laid directly on the void formers (which include ribbing on 
                     their upper surface that serve as spacers).




          Geoplast           Nautilus h24   Geoplast   Nautilus h24   Geoplast   Nautilus h24   Geoplast   Nautilus h24   Geoplast   Nautilus h24




        Example of additional reinforcement between the two welded meshes.
Slab profile close to support - beams
STUDY   In the case of a slab and beam system there are typically rather high values of shear stress and 
        negative moment.
        To manage these stresses is possible to use void formers of lower height close to the supports
        in order to increas the resistant section.
Slab profile close to support - columns
STUDY   In the case of a voided slab without beams it will be necessary to create  a  full concrete  zone 
        around the top of the columns (“mushrooms”).

        The  armature  must be properly calculated in  order to manage shear‐stress and  negative 
        moment.




            Geoplast     Nautilus h20
New Nautilus projects
   New Nautilus projects
realised or in development
 realised or in development
PROJECT: SHOPPING CENTRE
SITE: VITROVICA, CROATIA
PRODUCT: new NAUTILUS®
SURFACE: 30.000 m2

NOTE: with post-tension
PROJECT: DIGITEO LAB
SITE: SACLAY, FRANCE
PRODUCT: new NAUTILUS®
SURFACE: 38.590 m2
Typical project with new Nautilus + Modulo

                                                             Modulo used to fill the gap
                                                             between the slab and the
                                                                      beam.




                                                             new Nautilus to decrease
                                                             the self-weight of the slab
PROJECT: DIGITEO LAB
                                                               and allow a wide span.
SITE: SACLAY, FRANCE
PRODUCT: new NAUTILUS®
SURFACE: 38.590 m2
PROJECT: new hospital
SITE: PISTOIA, ITALY
PRODUCT: new NAUTILUS®
SURFACE: 39.000 m2
PROJECT: ERICSSON LABS
SITE: GENOVA, ITALY
PRODUCT: new NAUTILUS®
SURFACE: 20.000 m2
PROJECT: PADOVA UNIVERSITY
                SITE: PADOVA, ITALY
                PRODUCT: new NAUTILUS
                SURFACE: 20.000 m2
BIDIREZIONALE
Thank you for your attention
        www.geoplast.it

Más contenido relacionado

La actualidad más candente

Excav & Deep Foundations Fall 09
Excav & Deep Foundations Fall 09Excav & Deep Foundations Fall 09
Excav & Deep Foundations Fall 09
Richard Luxenburg
 
Coffer dams 01
Coffer dams 01Coffer dams 01
Coffer dams 01
juwes
 
Microsoft Word - BASE ISOLATION
Microsoft Word - BASE ISOLATIONMicrosoft Word - BASE ISOLATION
Microsoft Word - BASE ISOLATION
Sumit Srivastav
 

La actualidad más candente (14)

Bearing failure
Bearing failureBearing failure
Bearing failure
 
Foundations and Introduction
Foundations and IntroductionFoundations and Introduction
Foundations and Introduction
 
Retaining wall
Retaining wallRetaining wall
Retaining wall
 
Sheet pile (usefulsearch.org) (useful search)
Sheet pile (usefulsearch.org) (useful search)Sheet pile (usefulsearch.org) (useful search)
Sheet pile (usefulsearch.org) (useful search)
 
Geotechnical Aspects of EQ Resistant Design
Geotechnical Aspects of EQ Resistant DesignGeotechnical Aspects of EQ Resistant Design
Geotechnical Aspects of EQ Resistant Design
 
Excav & Deep Foundations Fall 09
Excav & Deep Foundations Fall 09Excav & Deep Foundations Fall 09
Excav & Deep Foundations Fall 09
 
Chapter 1 PILE FOUNDATIONS
Chapter 1 PILE FOUNDATIONSChapter 1 PILE FOUNDATIONS
Chapter 1 PILE FOUNDATIONS
 
Lateral Earth Pressure
Lateral Earth PressureLateral Earth Pressure
Lateral Earth Pressure
 
Braced cuts in deep excavation
Braced cuts in deep excavationBraced cuts in deep excavation
Braced cuts in deep excavation
 
4. Shallow Foundations
4. Shallow Foundations4. Shallow Foundations
4. Shallow Foundations
 
Settlement of soil/foundation
Settlement of soil/foundationSettlement of soil/foundation
Settlement of soil/foundation
 
Retaining wall
Retaining wallRetaining wall
Retaining wall
 
Coffer dams 01
Coffer dams 01Coffer dams 01
Coffer dams 01
 
Microsoft Word - BASE ISOLATION
Microsoft Word - BASE ISOLATIONMicrosoft Word - BASE ISOLATION
Microsoft Word - BASE ISOLATION
 

Similar a New nautilus eng 2012

Rcc box culvert methodology and designs including computer method
Rcc box culvert   methodology and designs including computer methodRcc box culvert   methodology and designs including computer method
Rcc box culvert methodology and designs including computer method
coolidiot07
 
Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)
Irfan Malik
 

Similar a New nautilus eng 2012 (20)

Piyush pile
Piyush pilePiyush pile
Piyush pile
 
Pile Foundations v1.00 Oct2010.pdf
Pile Foundations v1.00 Oct2010.pdfPile Foundations v1.00 Oct2010.pdf
Pile Foundations v1.00 Oct2010.pdf
 
Pile foundation
Pile foundationPile foundation
Pile foundation
 
A technical seminar bubble deck slab.pptx
A technical seminar bubble deck slab.pptxA technical seminar bubble deck slab.pptx
A technical seminar bubble deck slab.pptx
 
A technical seminar bubble deck slab.pptx
A technical seminar bubble deck slab.pptxA technical seminar bubble deck slab.pptx
A technical seminar bubble deck slab.pptx
 
Rcc box culvert methodology and designs including computer method
Rcc box culvert   methodology and designs including computer methodRcc box culvert   methodology and designs including computer method
Rcc box culvert methodology and designs including computer method
 
u-boottechnology_122321.pptx
u-boottechnology_122321.pptxu-boottechnology_122321.pptx
u-boottechnology_122321.pptx
 
Btech compile 6 oct 4am
Btech compile 6 oct 4amBtech compile 6 oct 4am
Btech compile 6 oct 4am
 
1115
11151115
1115
 
2-basics-of-foundation.ppt
2-basics-of-foundation.ppt2-basics-of-foundation.ppt
2-basics-of-foundation.ppt
 
Bubble deck slab
Bubble deck slabBubble deck slab
Bubble deck slab
 
Bubble deck slab ppt
Bubble deck slab pptBubble deck slab ppt
Bubble deck slab ppt
 
Bubbleds 170408171346
Bubbleds 170408171346Bubbleds 170408171346
Bubbleds 170408171346
 
4. Types-of Foundations.pdf
4. Types-of Foundations.pdf4. Types-of Foundations.pdf
4. Types-of Foundations.pdf
 
Bubble deck slab
Bubble deck slabBubble deck slab
Bubble deck slab
 
RIW Structureseal -Sodium Bentonite System - Typical Details
RIW Structureseal -Sodium Bentonite System - Typical DetailsRIW Structureseal -Sodium Bentonite System - Typical Details
RIW Structureseal -Sodium Bentonite System - Typical Details
 
Raft Foundation b.arch 8th sem
Raft Foundation b.arch 8th semRaft Foundation b.arch 8th sem
Raft Foundation b.arch 8th sem
 
bulding foundation for costruction (6).ppt
bulding foundation for costruction (6).pptbulding foundation for costruction (6).ppt
bulding foundation for costruction (6).ppt
 
Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)
 
Pilefoundation
PilefoundationPilefoundation
Pilefoundation
 

New nautilus eng 2012

  • 1. New Nautilus: the voided biaxial slab former rev. 2012 1.1
  • 2. Voided slabs in reinforced concrete Lightweight reinforced concrete slab: The necessity of decreasing the weight of RC slabs has various reasons: ARCHITECTURE * Obtain large spans, with fewer columns or walls;  * Avoidance of drop‐beams. ENGINEERING * Self‐weight reduction of the slab in order to: ‐ reduce its deformation ‐ reduce the weight (loads)  transmitted to the foundation ‐ reduce the oscillating mass, thus the movements during an earthquake The solution : to hollow out the slab
  • 3. Precast concrete elements The use of precast elements has certain constraints: TRANSPORT A  flatbed truck  must be used even for small quantities or  single  parts.  This may cause difficult access to jobsites in  city centres and with heavy trafic LOGISTICS Precast slabs occupy a  lot of space on  site.  A  crane is mandatory for placing.  In case of polystyrene void formers the  precast parts must be protected from rain. USE The  precast parts are  handled with some difficulty above the fourth floor. Drop‐beams are often required.
  • 5. Advantages The advantages of the new Nautilus void former are numerous: TWO‐WAY  STRUCTURE:  a  two‐way slab will distribute loads on  4  sides (instead of 2  for one‐way slabs),  reducing the  maximum loads on  beams or  mushroom posts. LIGHT:  the  concrete  not essential for the  structure is eliminated.  The  self‐weight of the  slab is limited,  reducing the  loads transferred to the  foundation;  deformation of the structure is reduced.  FLEXIBLE:  it will allow to eliminate  drop‐beams and  create  flat‐soffit slabs without interruptions of large surface. 
  • 6. Advantages The advantages of the new Nautilus void former are numerous: QUAKE  RESISTANT:  the  voids reduce  the  self‐weight of the slab, reducing the seismic mass.  LARGE  SPANS:    larger spans between columns are  possible.  The  number of columns is reduced,  the  result are archutecturally more manageable volumes. COST‐EFFECTIVE:  a  slab with new Nautilus  with the  same static and  seismic characteristics consume a  smaller amount of concrete  and  steel than the full‐concrete equivalent slab: ‐ up to 35% slab weight reduction ‐ up to 50% fewer columns ‐ combined saving effect: 5 to 10% cost reduction potential
  • 7. new Nautilus single The  new Nautilus  void formers are  available in  various heights,  all measure 520x520  mm  in  plane. The “feet”, are spacers which determin the thickness of the lower slab, and are available in height between o and 100 mm. H16 Geoplast Nuovo Nautilus h16 Geoplast Nuovo Nautilus H20 Geoplast Nuovo Nautilus h20 H24 Geoplast Nuovo Nautilus h24
  • 8. new Nautilus double The new Nautilus “single” void formers can be combined in a “double” configuration to allow larger void‐formers. Geoplast Nuovo Nautilus h20 Geoplast Nuovo Nautilus h24 Geoplast Nuovo Nautilus h16 Geoplast Nuovo Nautilus h20 Geoplast Nuovo Nautilus h16 H32 H36 H40 H44 H48
  • 9. Installation Installation of the new Nautilus void formers is very simple and fast: 1. The  new Nautilus  void formers don’t  have an orientation.  Installation is fast  and does not require any special care or attention.  2.  The  spacer strip  makes spacing control between void formers simple and  accurate. 3. It is possible to tread on  the  new Nautilus  void formers.  This keeps the  laying of the upper slab armature really simple. The new Nautilus caissons resist up to 1500 N  pressure on an 80x80 mm footprint for safe job‐ site application.
  • 10. Steps 1-2 INSTALLATION 1.  Prepare a slab formwork; lay the welded mesh on spacers. 2. Install the new NAUTILUS void formers, spacing between caissons as per drawing. Use the spacer strip to check correct distance.
  • 11. Steps 3-4 INSTALLATION 3.    Install all required extra  reinforcement (shear‐ and  moment‐reinforcement);  lay the  upper  slab welded mesh. 4.  First pouring phase: pour concrete to fill the lower slab, starting from the ribbing, up to the lower side of the new Nautilus void formers. Vibrate the concrete immediately. 
  • 12. Step 5 INSTALLATION 5.  Second pour  phase:  after completion of the  first  pour  phase,  when concrete  has achieve some strenght, fill the ribbings and complete the top slab as required by the project.
  • 13. TEST RESULTS Cross‐section of actual pour: concrete type: S3 poured in two lifts as per  instructions, vibrated with eccentric poker. NEW NAUTILUS Single H16, lower slab thickness 50 mm No concrete ingress ; lower slab completely filled Typical cross‐section: NEW NAUTILUS Double H32, lower slab thickness 60 mm
  • 14. Calculation STUDY The new NAUTILUS caissons create voids in a RC slab poured in situ. The condition in shich the new Nautilus void former gives the most advantage is in a two‐way slab configuration.  In  order to have a  two‐way behaviour the  ratio between the  sides of the  slab must be between 1.7  and  1:  beyond this ratio the  behaviour will become one‐way,  and  other methods to reduce slab weight may be more advantageous. SLAB THICKNESS The  first  step  in  the  study of a  full  concrete  slab is to formulate  an hypothesis of the  indicative thickness.  This thickness depends from the  type of structure being studied: Slab on columns d = L / 25 Slab on beams d = L / 30 Waffle slab on columns d = L / 20
  • 15. Inertia STUDY Once the hypothesis of the minimum slab thickness has been formulated, the voided slab with equivalent charactesistics of resistance and deformation must be identified. A full concrete and a voided slab are compared based on their inertia.  The inertia of the full concrete slab must be calculated, and compared with the voided slab solution. 1 I Ifull = ⋅ 100 ⋅ H2 Iall = full 12 B + 52 The inertia of the voided section is calculated according to the span of the void formers. Based on the inertia values of the voided section is is possible to calculate the thickness of the slab, and  consequently choose the size of dimensions S1, S2 and h.
  • 16. Full vs voided slab STUDY Here below the comparison between a full concrete slab and an equivalent voided slab. I=225000cm^4/m I=153626cm^4/i I=225920cm^4/m I=422108cm^4/m I=304140cm^4/i I=422417cm^4/m The  thickness of a  voided slab is slightly greater that the  one of the  equivalent full  concrete  slab.
  • 17. Slab support STUDY Once the thickness of the voided slab has been established it is possible to calculate the steel  reinforcement. Loads will be divided in two directions: this can be calculated with the Grashof formulae. This calculation considers also the  conditions at the limits. q ⋅ l4 q ⋅ l4 qx = y qy = x k ⋅ l4 + l4 x y k ⋅ l y + l4 4 x
  • 18. Reinforcement STUDY The reinforcement of a voided slab with new Nautils is typically composed by: ‐ a welded mesh in the lower slab, with spacers to assure the required concrete cover;  ‐ additional reinforcement (bars or grids); ‐ a welded mesh in the upper slab, laid directly on the void formers (which include ribbing on  their upper surface that serve as spacers). Geoplast Nautilus h24 Geoplast Nautilus h24 Geoplast Nautilus h24 Geoplast Nautilus h24 Geoplast Nautilus h24 Example of additional reinforcement between the two welded meshes.
  • 19. Slab profile close to support - beams STUDY In the case of a slab and beam system there are typically rather high values of shear stress and  negative moment. To manage these stresses is possible to use void formers of lower height close to the supports in order to increas the resistant section.
  • 20. Slab profile close to support - columns STUDY In the case of a voided slab without beams it will be necessary to create  a  full concrete  zone  around the top of the columns (“mushrooms”). The  armature  must be properly calculated in  order to manage shear‐stress and  negative  moment. Geoplast Nautilus h20
  • 21. New Nautilus projects New Nautilus projects realised or in development realised or in development
  • 22. PROJECT: SHOPPING CENTRE SITE: VITROVICA, CROATIA PRODUCT: new NAUTILUS® SURFACE: 30.000 m2 NOTE: with post-tension
  • 23. PROJECT: DIGITEO LAB SITE: SACLAY, FRANCE PRODUCT: new NAUTILUS® SURFACE: 38.590 m2
  • 24. Typical project with new Nautilus + Modulo Modulo used to fill the gap between the slab and the beam. new Nautilus to decrease the self-weight of the slab PROJECT: DIGITEO LAB and allow a wide span. SITE: SACLAY, FRANCE PRODUCT: new NAUTILUS® SURFACE: 38.590 m2
  • 25. PROJECT: new hospital SITE: PISTOIA, ITALY PRODUCT: new NAUTILUS® SURFACE: 39.000 m2
  • 26. PROJECT: ERICSSON LABS SITE: GENOVA, ITALY PRODUCT: new NAUTILUS® SURFACE: 20.000 m2
  • 27. PROJECT: PADOVA UNIVERSITY SITE: PADOVA, ITALY PRODUCT: new NAUTILUS SURFACE: 20.000 m2 BIDIREZIONALE
  • 28. Thank you for your attention www.geoplast.it