SlideShare una empresa de Scribd logo
1 de 59
Photonic Crystals (Tinh thể quang tử):
Principles , Techniques, and Applications
Outline
waves in periodic media
Photonic crystals in theory and practice
Intentional defects and devices
Index-guiding and incomplete gaps
Outline
waves in periodic media
Photonic crystals in theory and practice
Bulk crystal properties
Intentional defects and devices
Index-guiding and incomplete gaps
Perturbations, tuning, and disorder
planewave
( )
, ~ i k x t
E H e 
 
2
/
k c



 
for most , beam(s) propagate
through crystal without scattering
(scattering cancels coherently)
...but for some  (~ 2a), no light can propagate: a photonic band gap
planewave
( )
, ~ i k x t
E H e 
 
2
/
k c



 
Photonic Crystals
periodic electromagnetic media
with photonic band gaps: “optical insulators”
(need a more
complex
topology)
Photonic Crystals in Nature
wing scale:
Morpho butterfly
6.21µm
[ L. P. Biró et al.,
PRE 67, 021907
(2003) ]
Peacock feather
[J. Zi et al, Proc. Nat. Acad. Sci. USA,
100, 12576 (2003) ]
[figs: Blau, Physics Today 57, 18 (2004)]
Photonic Crystals
periodic electromagnetic media
with photonic band gaps:
“optical insulators”
for holding and controlling light
can trap light in cavities and waveguides (“wires”)
Photonic Crystals
periodic electromagnetic media
But how can we understand such complex systems?
Add up the infinite sum of scattering?
A mystery from the 19th century
A mystery from the 19th century
A mystery solved…
electrons are waves (quantum mechanics)
1
waves in a periodic medium can
propagate without scatterings)
2
The foundations do not depend on the specific wave equation.
Electronic and Photonic Crystals
atoms in diamond structure
wavevector
electron
energy
Periodic
Medium
Bloch
waves:
Band
Diagram
dielectric spheres, diamond lattice
wavevector
photon
frequency
interacting: hard problem non-interacting: “easy” problem
Fun with Math
1
1
E H i H
c t c
H E J i E
c t c
 

 
 

   
   
0
dielectric function (x) = n2(x)
First task:
get rid of this mess
eigen-operator eigen-value eigen-state
+ constraint
2
1
H H
c


 
    
 
0
H
 
Hermitian Eigenproblems
Hermitian for real (lossless) 
well-known properties from linear algebra:
 are real (lossless)
eigen-states are orthogonal
eigen-states are complete (give all solutions)
eigen-operator eigen-value eigen-state
+ constraint
2
1
H H
c


 
    
 
0
H
 
Periodic Hermitian Eigenproblems
[ G. Floquet, “Sur les équations différentielles linéaries à coefficients périodiques,” Ann. École Norm. Sup. 12, 47–88 (1883). ]
[ F. Bloch, “Über die quantenmechanik der electronen in kristallgittern,” Z. Physik 52, 555–600 (1928). ]
if eigen-operator is periodic, then Bloch-Floquet theorem applies:
can choose:
periodic “envelope”
planewave
Corollary 1: k is conserved, i.e. no scattering of Bloch wave
Corollary 2: given by finite unit cell,
so  are discrete n(k)
 
( , ) ( )
i k x t
k
H x t e H x

 

k
H
Periodic Hermitian Eigenproblems
1
2
3

k
band diagram (dispersion relation)
map of
what states
exist &
can interact
?
range of k?
Corollary 2: given by finite unit cell,
so  are discrete n(k)
k
H
Periodic Hermitian Eigenproblems in 1d
1 2 1 2 1 2 1 2 1 2 1 2
(x) = (x+a)
a
Consider k+2π/a:
periodic!
satisfies same equation as Hk
= Hk
k is periodic:
k + 2π/a equivalent to k
“quasi-phase-matching”
( ) ( )
ikx
k
H x e H x

2 2
( )
2 2
( ) ( )
i k x i x
ikx
a a
k k
a a
e H x e e H x
 
 

 
 
  
 
band gap
Periodic Hermitian Eigenproblems in 1d
1 2 1 2 1 2 1 2 1 2 1 2
(x) = (x+a)
a
k is periodic:
k + 2π/a equivalent to k
“quasi-phase-matching”
k

0 π/a
–π/a
irreducible Brillouin zone
Any 1d Periodic System has a Gap
1
k

0
[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]
Start with
a uniform (1d) medium:
1
ck



Any 1d Periodic System has a Gap
1
(x) = (x+a)
a
k

0 π/a
–π/a
[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]
Treat it as
“artificially” periodic
bands are “folded”
by 2π/a equivalence
,
cos , sin
i x i x
a a
e e
x x
a a
 
 
 
   
    
   
(x) = (x+a)
a
1
Any 1d Periodic System has a Gap

0 π/a
[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]
x = 0
Treat it as
“artificially” periodic
sin
cos
x
a
x
a


 
 
 
 
 
 
(x) = (x+a)
a
1 2 1 2 1 2 1 2 1 2 1 2
Any 1d Periodic System has a Gap

0 π/a
[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]
Add a small “real” periodicity 2 = 1 + D
x = 0
sin
cos
x
a
x
a


 
 
 
 
 
 
band gap
Any 1d Periodic System has a Gap

0 π/a
[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]
Add a small
“real” periodicity
2 = 1 + D
(x) = (x+a)
a
1 2 1 2 1 2 1 2 1 2 1 2
x = 0
Splitting of degeneracy:
state concentrated in higher index (2)
has lower frequency
sin
cos
x
a
x
a


 
 
 
 
 
 
Some 2d and 3d systems have gaps
• In general, eigen-frequencies satisfy Variational Theorem:
Inverse “potential”
“kinetic”
bands “want” to be in high-
…but are forced out by orthogonality
–> band gap (maybe)
 
1
1
2
1
2 2
1 2
1
0
( ) min
E
E
ik E
k c
E



 
  



2
2
*
1 2
2
2
0
0
( ) min " "
E
E
E E
k



 
 


A 2d Model System
a
Square lattice of dielectric rods ( = 12 ~ Si) in air ( = 1)
Solving the Maxwell Eigenproblem
H(x,y) ei(kx – t)
where:
constraint:
1
Want to solve for n(k),
& plot vs. “all” k for “all” n,
Finite cell  discrete eigenvalues n
Limit range of k: irreducible Brillouin zone
2 Limit degrees of freedom: expand H in finite basis
3 Efficiently solve eigenproblem: iterative methods
   
2
2
1 n
n n
i i
c


      
k k H H
  0
i
   
k H
Outline
Preliminaries: waves in periodic media
Photonic crystals in theory and practice
Intentional defects and devices
2d periodicity, =12:1
a
irreducible Brillouin zone
G
X
M
k
2d periodicity, =12:1
Ez
– +
Ez
(+ 90° rotated version)
gap for n > ~1.75:1
2d periodicity, =12:1
a
irreducible Brillouin zone
G
X
M
k
2d photonic crystal: TE gap, =12:1
gap for n > ~1.4:1
3d photonic crystal: complete gap , =12:1
I.
II.
[ S. G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000) ]
gap for n > ~4:1
The First 3d Bandgap Structure
K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
overlapping Si spheres
MPB tutorial, http://ab-initio.mit.edu/mpb
for gap at  = 1.55µm,
sphere diameter ~ 330nm
Layer-by-Layer Lithography
• Fabrication of 2d patterns in Si or GaAs is very advanced
(think: Pentium IV, 50 million transistors)
So, make 3d structure one layer at a time
…inter-layer alignment techniques are only slightly more exotic
Need a 3d crystal with constant cross-section layers
A Schematic
[ M. Qi, H. Smith, MIT ]
7-layer E-Beam Fabrication
[ M. Qi, et al., Nature 429, 538 (2004) ]
The Woodpile Crystal
[ S. Y. Lin et al., Nature 394, 251 (1998) ]
gap
(4 “log” layers = 1 period)
http://www.sandia.gov/media/photonic.htm
Si
[ K. Ho et al., Solid State Comm. 89, 413 (1994) ] [ H. S. Sözüer et al., J. Mod. Opt. 41, 231 (1994) ]
Two-Photon Lithography
Atom
e E0
hn = ∆E
hn
photon
hn
photon
2 2-photon probability ~ (light intensity)2
lens
some chemistry
(polymerization)
3d Lithography
…dissolve unchanged stuff
(or vice versa)
2µm
Lithography is a Beast [ S. Kawata et al., Nature 412, 697 (2001) ]
 = 780nm
resolution = 150nm
7µm
(3 hours to make)
Holographic Lithography
[ D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002) ]
absorbing material
Four beams make 3d-periodic interference pattern
(1.4µm)
k-vector differences give reciprocal lattice vectors (i.e. periodicity)
beam polarizations + amplitudes (8 parameters) give unit cell
One-Photon
Holographic Lithography
[ D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002) ]
huge volumes, long-range periodic, fcc lattice…backfill for high contrast
10µm
Mass-production II: Colloids
microspheres (diameter < 1µm)
silica (SiO2)
sediment by gravity into
close-packed fcc lattice!
(evaporate)
Inverse Opals
fcc solid spheres do not have a gap…
…but fcc spherical holes in Si do have a gap
Infiltration
sub-micron colloidal spheres
Template
(synthetic opal)
3D
Remove
Template
“Inverted Opal”
complete band gap
~ 10% gap between 8th & 9th bands
small gap, upper bands: sensitive to disorder
[ H. S. Sözüer, PRB 45, 13962 (1992) ]
In Order To Form
a More Perfect Crystal…
meniscus
silica
250nm
Convective Assembly
[ Nagayama, Velev, et al., Nature (1993)
Colvin et al., Chem. Mater. (1999) ]
• Capillary forces during drying cause assembly in the meniscus
• Extremely flat, large-area opals of controllable thickness
Heat Source
80C
65C
1 micron
silica spheres
in ethanol
evaporate
solvent
A Better Opal
Inverse-Opal Photonic Crystal
[ Y. A. Vlasov et al., Nature 414, 289 (2001). ]
Outline
Preliminaries: waves in periodic media
Photonic crystals in theory and practice
Intentional defects and devices
Intentional “defects” are good
Cavity Modes
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Help!
Cavity Modes
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
finite region –> discrete 
Cavity Modes: Smaller Change
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Cavity Modes: Smaller Change
L
Bulk Crystal Band Diagram
Cavity Modes: Smaller Change
L
Defect bands are shifted
up (less )
with discrete k
# ~ ; ( ~ 2 / )
2
L k


 
Single-Mode Cavity
A point defect
can push up
a single mode
from the band edge
0
field decay ~
curvature
 

Projected Band Diagrams
conserved k!
1d periodicity
G X
M
conserved
not
conserved
So, plot  vs. kx only…project Brillouin zone onto G–X:
gives continuum of bulk states + discrete guided band(s)
Air-waveguide Band Diagram
(Waveguides don’t really need
a complete gap)
Fabry-Perot waveguide:
This is exploited e.g. for photonic-crystal fibers…
Guiding Light in Air!
mechanism is gap only vs. standard optical fiber:
“total internal reflection”
— requires higher-index core
no hollow core!
hollow = lower absorption, lower nonlinearities, higher power

Más contenido relacionado

La actualidad más candente

Quantum dot lasers
Quantum dot lasersQuantum dot lasers
Quantum dot lasersBise Mond
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phaseClaudio Attaccalite
 
Nanotechnology in photonics
Nanotechnology in photonicsNanotechnology in photonics
Nanotechnology in photonicsMonish Verma
 
Nonlinear Optical Materials
Nonlinear Optical MaterialsNonlinear Optical Materials
Nonlinear Optical Materialskrishslide
 
Plasmonics... A ladder to futuristic technology
Plasmonics...  A ladder to futuristic technology Plasmonics...  A ladder to futuristic technology
Plasmonics... A ladder to futuristic technology Pragya
 
Plasmonic1 new
Plasmonic1 newPlasmonic1 new
Plasmonic1 newBesa Hoxha
 
Quantum dot laser
Quantum dot laserQuantum dot laser
Quantum dot laserAhmed Amer
 
PLASMONS: A modern form of super particle waves
PLASMONS: A modern form of super particle wavesPLASMONS: A modern form of super particle waves
PLASMONS: A modern form of super particle wavesDHRUVIN PATEL
 
Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"Shuvan Prashant
 
Quantum well states
Quantum well states Quantum well states
Quantum well states Jan Jose
 
Studying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear mediaStudying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear mediaIslam Kotb Ismail
 

La actualidad más candente (20)

Optoelectronics
OptoelectronicsOptoelectronics
Optoelectronics
 
Quantum dot lasers
Quantum dot lasersQuantum dot lasers
Quantum dot lasers
 
Pbg good
Pbg  goodPbg  good
Pbg good
 
What is pcf
What is  pcfWhat is  pcf
What is pcf
 
Plasmonic Chain waveguides
Plasmonic Chain waveguidesPlasmonic Chain waveguides
Plasmonic Chain waveguides
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
 
Theory of surface plasmon polaritons
Theory of surface plasmon polaritonsTheory of surface plasmon polaritons
Theory of surface plasmon polaritons
 
Nanotechnology in photonics
Nanotechnology in photonicsNanotechnology in photonics
Nanotechnology in photonics
 
Nonlinear Optical Materials
Nonlinear Optical MaterialsNonlinear Optical Materials
Nonlinear Optical Materials
 
Plasmonics
PlasmonicsPlasmonics
Plasmonics
 
Plasmonics... A ladder to futuristic technology
Plasmonics...  A ladder to futuristic technology Plasmonics...  A ladder to futuristic technology
Plasmonics... A ladder to futuristic technology
 
Plasmonic1 new
Plasmonic1 newPlasmonic1 new
Plasmonic1 new
 
Quantum dot laser
Quantum dot laserQuantum dot laser
Quantum dot laser
 
PLASMONS: A modern form of super particle waves
PLASMONS: A modern form of super particle wavesPLASMONS: A modern form of super particle waves
PLASMONS: A modern form of super particle waves
 
Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"Heterostructures, HBTs and Thyristors : Exploring the "different"
Heterostructures, HBTs and Thyristors : Exploring the "different"
 
Phototransistors
PhototransistorsPhototransistors
Phototransistors
 
Quantum well states
Quantum well states Quantum well states
Quantum well states
 
Studying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear mediaStudying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear media
 
Chap6 photodetectors
Chap6 photodetectorsChap6 photodetectors
Chap6 photodetectors
 
Perovskite Solar Cells
Perovskite Solar CellsPerovskite Solar Cells
Perovskite Solar Cells
 

Similar a photonic crystal.pptx

Small-angle X-ray Diffraction
Small-angle X-ray Diffraction Small-angle X-ray Diffraction
Small-angle X-ray Diffraction ssuser3eb6b21
 
Crystal structure analysis
Crystal structure analysisCrystal structure analysis
Crystal structure analysiszoelfalia
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notesRohan Jain
 
Bp219 04-13-2011
Bp219 04-13-2011Bp219 04-13-2011
Bp219 04-13-2011waddling
 
Bp219 2011
Bp219 2011Bp219 2011
Bp219 2011waddling
 
Electron diffraction experiment
Electron diffraction experimentElectron diffraction experiment
Electron diffraction experimentmohammedIsmael40
 
Fourier transform in X-ray crystallography .ppt
Fourier transform in X-ray crystallography .pptFourier transform in X-ray crystallography .ppt
Fourier transform in X-ray crystallography .pptRadhyesham
 
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...ABDERRAHMANE REGGAD
 
1.crystal structure using x – ray diffraction
1.crystal structure using  x – ray diffraction1.crystal structure using  x – ray diffraction
1.crystal structure using x – ray diffractionNarayan Behera
 
X ray diffraction(xrd) principle and use
X ray diffraction(xrd) principle and useX ray diffraction(xrd) principle and use
X ray diffraction(xrd) principle and useSrikumar Swain
 

Similar a photonic crystal.pptx (20)

Small-angle X-ray Diffraction
Small-angle X-ray Diffraction Small-angle X-ray Diffraction
Small-angle X-ray Diffraction
 
diffraction.pdf
diffraction.pdfdiffraction.pdf
diffraction.pdf
 
Crystal structure analysis
Crystal structure analysisCrystal structure analysis
Crystal structure analysis
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notes
 
Bp219 04-13-2011
Bp219 04-13-2011Bp219 04-13-2011
Bp219 04-13-2011
 
263 4.pdf
263 4.pdf263 4.pdf
263 4.pdf
 
263 4.pdf
263 4.pdf263 4.pdf
263 4.pdf
 
Ph 101-1
Ph 101-1Ph 101-1
Ph 101-1
 
Bp219 2011
Bp219 2011Bp219 2011
Bp219 2011
 
Bp219 2011-4.13
Bp219 2011-4.13Bp219 2011-4.13
Bp219 2011-4.13
 
Photonics Intro
Photonics IntroPhotonics Intro
Photonics Intro
 
Electron diffraction experiment
Electron diffraction experimentElectron diffraction experiment
Electron diffraction experiment
 
Fourier transform in X-ray crystallography .ppt
Fourier transform in X-ray crystallography .pptFourier transform in X-ray crystallography .ppt
Fourier transform in X-ray crystallography .ppt
 
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
 
1.crystal structure using x – ray diffraction
1.crystal structure using  x – ray diffraction1.crystal structure using  x – ray diffraction
1.crystal structure using x – ray diffraction
 
X ray diffraction(xrd) principle and use
X ray diffraction(xrd) principle and useX ray diffraction(xrd) principle and use
X ray diffraction(xrd) principle and use
 
X-Ray Topic.ppt
X-Ray Topic.pptX-Ray Topic.ppt
X-Ray Topic.ppt
 
Workshop problems solving
Workshop problems solvingWorkshop problems solving
Workshop problems solving
 
c.pdf
c.pdfc.pdf
c.pdf
 
L2 defects
L2 defectsL2 defects
L2 defects
 

Último

Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniquesugginaramesh
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxPurva Nikam
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 

Último (20)

Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniques
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptx
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 

photonic crystal.pptx

  • 1. Photonic Crystals (Tinh thể quang tử): Principles , Techniques, and Applications
  • 2. Outline waves in periodic media Photonic crystals in theory and practice Intentional defects and devices Index-guiding and incomplete gaps
  • 3. Outline waves in periodic media Photonic crystals in theory and practice Bulk crystal properties Intentional defects and devices Index-guiding and incomplete gaps Perturbations, tuning, and disorder
  • 4. planewave ( ) , ~ i k x t E H e    2 / k c     
  • 5. for most , beam(s) propagate through crystal without scattering (scattering cancels coherently) ...but for some  (~ 2a), no light can propagate: a photonic band gap planewave ( ) , ~ i k x t E H e    2 / k c     
  • 6. Photonic Crystals periodic electromagnetic media with photonic band gaps: “optical insulators” (need a more complex topology)
  • 7. Photonic Crystals in Nature wing scale: Morpho butterfly 6.21µm [ L. P. Biró et al., PRE 67, 021907 (2003) ] Peacock feather [J. Zi et al, Proc. Nat. Acad. Sci. USA, 100, 12576 (2003) ] [figs: Blau, Physics Today 57, 18 (2004)]
  • 8. Photonic Crystals periodic electromagnetic media with photonic band gaps: “optical insulators” for holding and controlling light can trap light in cavities and waveguides (“wires”)
  • 9. Photonic Crystals periodic electromagnetic media But how can we understand such complex systems? Add up the infinite sum of scattering?
  • 10. A mystery from the 19th century
  • 11. A mystery from the 19th century
  • 12. A mystery solved… electrons are waves (quantum mechanics) 1 waves in a periodic medium can propagate without scatterings) 2 The foundations do not depend on the specific wave equation.
  • 13. Electronic and Photonic Crystals atoms in diamond structure wavevector electron energy Periodic Medium Bloch waves: Band Diagram dielectric spheres, diamond lattice wavevector photon frequency interacting: hard problem non-interacting: “easy” problem
  • 14. Fun with Math 1 1 E H i H c t c H E J i E c t c                 0 dielectric function (x) = n2(x) First task: get rid of this mess eigen-operator eigen-value eigen-state + constraint 2 1 H H c            0 H  
  • 15. Hermitian Eigenproblems Hermitian for real (lossless)  well-known properties from linear algebra:  are real (lossless) eigen-states are orthogonal eigen-states are complete (give all solutions) eigen-operator eigen-value eigen-state + constraint 2 1 H H c            0 H  
  • 16. Periodic Hermitian Eigenproblems [ G. Floquet, “Sur les équations différentielles linéaries à coefficients périodiques,” Ann. École Norm. Sup. 12, 47–88 (1883). ] [ F. Bloch, “Über die quantenmechanik der electronen in kristallgittern,” Z. Physik 52, 555–600 (1928). ] if eigen-operator is periodic, then Bloch-Floquet theorem applies: can choose: periodic “envelope” planewave Corollary 1: k is conserved, i.e. no scattering of Bloch wave Corollary 2: given by finite unit cell, so  are discrete n(k)   ( , ) ( ) i k x t k H x t e H x     k H
  • 17. Periodic Hermitian Eigenproblems 1 2 3  k band diagram (dispersion relation) map of what states exist & can interact ? range of k? Corollary 2: given by finite unit cell, so  are discrete n(k) k H
  • 18. Periodic Hermitian Eigenproblems in 1d 1 2 1 2 1 2 1 2 1 2 1 2 (x) = (x+a) a Consider k+2π/a: periodic! satisfies same equation as Hk = Hk k is periodic: k + 2π/a equivalent to k “quasi-phase-matching” ( ) ( ) ikx k H x e H x  2 2 ( ) 2 2 ( ) ( ) i k x i x ikx a a k k a a e H x e e H x              
  • 19. band gap Periodic Hermitian Eigenproblems in 1d 1 2 1 2 1 2 1 2 1 2 1 2 (x) = (x+a) a k is periodic: k + 2π/a equivalent to k “quasi-phase-matching” k  0 π/a –π/a irreducible Brillouin zone
  • 20. Any 1d Periodic System has a Gap 1 k  0 [ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ] Start with a uniform (1d) medium: 1 ck   
  • 21. Any 1d Periodic System has a Gap 1 (x) = (x+a) a k  0 π/a –π/a [ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ] Treat it as “artificially” periodic bands are “folded” by 2π/a equivalence , cos , sin i x i x a a e e x x a a                   
  • 22. (x) = (x+a) a 1 Any 1d Periodic System has a Gap  0 π/a [ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ] x = 0 Treat it as “artificially” periodic sin cos x a x a              
  • 23. (x) = (x+a) a 1 2 1 2 1 2 1 2 1 2 1 2 Any 1d Periodic System has a Gap  0 π/a [ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ] Add a small “real” periodicity 2 = 1 + D x = 0 sin cos x a x a              
  • 24. band gap Any 1d Periodic System has a Gap  0 π/a [ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ] Add a small “real” periodicity 2 = 1 + D (x) = (x+a) a 1 2 1 2 1 2 1 2 1 2 1 2 x = 0 Splitting of degeneracy: state concentrated in higher index (2) has lower frequency sin cos x a x a              
  • 25. Some 2d and 3d systems have gaps • In general, eigen-frequencies satisfy Variational Theorem: Inverse “potential” “kinetic” bands “want” to be in high- …but are forced out by orthogonality –> band gap (maybe)   1 1 2 1 2 2 1 2 1 0 ( ) min E E ik E k c E            2 2 * 1 2 2 2 0 0 ( ) min " " E E E E k         
  • 26. A 2d Model System a Square lattice of dielectric rods ( = 12 ~ Si) in air ( = 1)
  • 27. Solving the Maxwell Eigenproblem H(x,y) ei(kx – t) where: constraint: 1 Want to solve for n(k), & plot vs. “all” k for “all” n, Finite cell  discrete eigenvalues n Limit range of k: irreducible Brillouin zone 2 Limit degrees of freedom: expand H in finite basis 3 Efficiently solve eigenproblem: iterative methods     2 2 1 n n n i i c          k k H H   0 i     k H
  • 28. Outline Preliminaries: waves in periodic media Photonic crystals in theory and practice Intentional defects and devices
  • 29. 2d periodicity, =12:1 a irreducible Brillouin zone G X M k
  • 30. 2d periodicity, =12:1 Ez – + Ez (+ 90° rotated version) gap for n > ~1.75:1
  • 31. 2d periodicity, =12:1 a irreducible Brillouin zone G X M k
  • 32. 2d photonic crystal: TE gap, =12:1 gap for n > ~1.4:1
  • 33. 3d photonic crystal: complete gap , =12:1 I. II. [ S. G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000) ] gap for n > ~4:1
  • 34. The First 3d Bandgap Structure K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990). overlapping Si spheres MPB tutorial, http://ab-initio.mit.edu/mpb for gap at  = 1.55µm, sphere diameter ~ 330nm
  • 35. Layer-by-Layer Lithography • Fabrication of 2d patterns in Si or GaAs is very advanced (think: Pentium IV, 50 million transistors) So, make 3d structure one layer at a time …inter-layer alignment techniques are only slightly more exotic Need a 3d crystal with constant cross-section layers
  • 36. A Schematic [ M. Qi, H. Smith, MIT ]
  • 37. 7-layer E-Beam Fabrication [ M. Qi, et al., Nature 429, 538 (2004) ]
  • 38. The Woodpile Crystal [ S. Y. Lin et al., Nature 394, 251 (1998) ] gap (4 “log” layers = 1 period) http://www.sandia.gov/media/photonic.htm Si [ K. Ho et al., Solid State Comm. 89, 413 (1994) ] [ H. S. Sözüer et al., J. Mod. Opt. 41, 231 (1994) ]
  • 39. Two-Photon Lithography Atom e E0 hn = ∆E hn photon hn photon 2 2-photon probability ~ (light intensity)2 lens some chemistry (polymerization) 3d Lithography …dissolve unchanged stuff (or vice versa)
  • 40. 2µm Lithography is a Beast [ S. Kawata et al., Nature 412, 697 (2001) ]  = 780nm resolution = 150nm 7µm (3 hours to make)
  • 41. Holographic Lithography [ D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002) ] absorbing material Four beams make 3d-periodic interference pattern (1.4µm) k-vector differences give reciprocal lattice vectors (i.e. periodicity) beam polarizations + amplitudes (8 parameters) give unit cell
  • 42. One-Photon Holographic Lithography [ D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002) ] huge volumes, long-range periodic, fcc lattice…backfill for high contrast 10µm
  • 43. Mass-production II: Colloids microspheres (diameter < 1µm) silica (SiO2) sediment by gravity into close-packed fcc lattice! (evaporate)
  • 44. Inverse Opals fcc solid spheres do not have a gap… …but fcc spherical holes in Si do have a gap Infiltration sub-micron colloidal spheres Template (synthetic opal) 3D Remove Template “Inverted Opal” complete band gap ~ 10% gap between 8th & 9th bands small gap, upper bands: sensitive to disorder [ H. S. Sözüer, PRB 45, 13962 (1992) ]
  • 45. In Order To Form a More Perfect Crystal… meniscus silica 250nm Convective Assembly [ Nagayama, Velev, et al., Nature (1993) Colvin et al., Chem. Mater. (1999) ] • Capillary forces during drying cause assembly in the meniscus • Extremely flat, large-area opals of controllable thickness Heat Source 80C 65C 1 micron silica spheres in ethanol evaporate solvent
  • 47. Inverse-Opal Photonic Crystal [ Y. A. Vlasov et al., Nature 414, 289 (2001). ]
  • 48. Outline Preliminaries: waves in periodic media Photonic crystals in theory and practice Intentional defects and devices
  • 50. Cavity Modes • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Help!
  • 51. Cavity Modes • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • finite region –> discrete 
  • 52. Cavity Modes: Smaller Change • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
  • 53. Cavity Modes: Smaller Change L Bulk Crystal Band Diagram
  • 54. Cavity Modes: Smaller Change L Defect bands are shifted up (less ) with discrete k # ~ ; ( ~ 2 / ) 2 L k    
  • 55. Single-Mode Cavity A point defect can push up a single mode from the band edge 0 field decay ~ curvature   
  • 56. Projected Band Diagrams conserved k! 1d periodicity G X M conserved not conserved So, plot  vs. kx only…project Brillouin zone onto G–X: gives continuum of bulk states + discrete guided band(s)
  • 58. (Waveguides don’t really need a complete gap) Fabry-Perot waveguide: This is exploited e.g. for photonic-crystal fibers…
  • 59. Guiding Light in Air! mechanism is gap only vs. standard optical fiber: “total internal reflection” — requires higher-index core no hollow core! hollow = lower absorption, lower nonlinearities, higher power