SlideShare una empresa de Scribd logo
1 de 16
Descargar para leer sin conexión
DEEP LEARNING JP
[DL Papers]
Adversarial Learning for Zero-shot Domain Adaptation
Yuting Lin, Kokusai Kogyo Co., Ltd.(国際航業)
http://deeplearning.jp/
1
書籍情報
• タイトル
Adversarial Learning for Zero-shot Domain Adaptation
• 著者
Jinghua Wang and Jianmin Jiang
Shenzhen University
• ECCV2020(poster)に採択
• ICCV2019にも、Zero-Shot Domain Adaptation(ZSDA)の論文を投稿した
(Conditional Coupled Generative Adversarial Networks for Zero-Shot Domain
Adaptation)
2
概要
• 手法の概要:
target domainがないzero-shot domain adaptationタスクにおいて、
domainと同じだが、他種別のデータで学習したdomain shiftを適用して
target domainのデータを生成する手法
• 提案手法のポイント
target/source domainと同じdomainの別の画像データから、domain shift
を学習
domain shiftを用いてtarget domainの画像を生成する
Co-training方策で、性能を向上する
3
• ToI(Task of Interest)において、target domainのデータが存在しない
ToIのdomainと同じかつ、取得できる画像から、IrT(irrelevant task)の学習より、domain
shiftを取得する
データの表記:
ToI source: 𝑋𝑠
𝛼
ToI target: 𝑿 𝒕
𝜶
(生成対象)
IrT source: 𝑋𝑠
𝛽
IrT target: 𝑋𝑡
𝛽
問題定義
4
既往研究
• Zero-Shot Domain Adaptationは3つの流派がある
① domain-invariant featuresを抽出することで、domainが異なっても認識できるモデルを
学習する
Domain-invariant component analysis (DICA)[1]、 multi-task autoencoder (MTAE)[2]、 Conditional
invariant deep domain generalization (CIDDG)[3]、 deep domain generalization framework (DDG) [4]
② domain情報は、潜在空間上のdomainに依存しないcommon factorとdomain specific
factorにより決定されると仮定する。 common factorが分かれば、unseen domainに適
応できる[5], [6], [7], [8]
③ target/source domainの関係性を、別のタスクにより学習し、データに適応する
 Zero-shot deep domain adaptation (ZDDA) [9]、 CoCoGAN[10]
5
[1] Muandet, K., Balduzzi, D., Sch¨olkopf, B.: Domain generalization via invariant feature representation. In: ICML (2013)
[2] Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: ICCV (2015)
[3] Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K., Tao, D.: Deep domain generalization via conditional invariant adversarial networks. In: ECCV (2018)
[4] Ding, Z., Fu, Y.: Deep domain generalization with structured low-rank constraint. IEEE Transactions on Image Processing 27(1), 304–313 (2018)
[5] Khosla, A., Zhou, T., Malisiewicz, T., Efros, A.A., Torralba, A.: Undoing the damage of dataset bias. In: ECCV (2012)
[6] Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: ICCV (2017)
[7] Yang, Y., Hospedales, T.: Zero-shot domain adaptation via kernel regression on the grassmannian (2015). https://doi.org/10.5244/C.29.DIFFCV.1
[8] Kodirov, E., Xiang, T., Fu, Z., Gong, S.: Unsupervised domain adaptation for zero-shot learning. In: ICCV (2015)
[9] Peng, K.C., Wu, Z., Ernst, J.: Zero-shot deep domain adaptation. In: ECCV (2018)
[10] Wang, J., Jiang, J.: Conditional coupled generative adversarial networks for zero- shot domain adaptation. In: ICCV (2019)
既往研究
• Coupled Generative Adversarial Networks (CoGAN)[11]
生成器と識別器の一部分のパラメータを共有する2つのGANを持つ
異なるドメインの画像を同時に生成する
提案手法は、CoGANの構造に基づく
6[11] Liu, M.Y.,Tuzel, O.: Coupled generative adversarial networks. In: NIPS (2016)
提案手法の概要
• CoGAN-IrTにより、domain shiftを取得
• CoGAN-ToIにより、取得したdomain shiftを適用すると同時に、するtarget
domainを生成
• Co-trainingにより、target domainデータの生成に制約をかける
7
提案手法
• CoGAN-IrT:
ペア画像を入力とし、 target/source domain間のjoint分布を学習
潜在空間上の特徴の違いを、domain shiftとなる
• CoGAN-ToI:
domain shiftを適用するため、2つ制約をかける
8
提案手法
• 1つ目の制約:Domain shiftが正しく適用されているか
識別器の共有部(high-level)の表現のelement-wise差分(𝛿ℎ
𝛽
= 𝑅ℎ 𝑥𝑡
𝛽
⊖ 𝑅ℎ 𝑥 𝑠
𝛽
)
をdomain shiftとする
CoGAN-IrTとCoGAN-ToIにおけるdomain shiftは一緒であるべき
分類器で、𝛿ℎ
𝛽
と𝛿ℎ
𝛼
を分類する
9
提案手法
• 2つ目の制約:Co-training classifiers
2つclassifierのconsistencyを利用して、CoGAN-ToIの学習に制約をかける
目的: 2つclassifierは異なるパラメータを持ち、違う視点から入力データを分析する
loss
入力:𝑅𝑙 𝑥 𝑠
𝛽
, 𝑅𝑙 𝑥𝑡
𝛽
, 𝑅𝑙 𝑥 𝑠
𝛼
 𝐿 𝑤:classifierの類似度を測る
 𝐿 𝑐𝑙𝑠:𝑥 𝑠
𝛼
の分類loss
 𝐿 𝑐𝑜𝑛:𝑥 𝑠
𝛽
と𝑥𝑡
𝛽
を入力とした際のconsistency
 𝐿 𝑑𝑖𝑓𝑓:以外のサンプルを入力した際のconsistency
結果、 classifiersは入力がsource/target domainに属するのかを判別できるようにな
る。CoGAN-ToIを学習する際のsupervisory signalとなる
10
提案手法
• CoGAN-ToIの学習
3つの制約で学習する:①𝑥 𝑠
𝛼のdomainに従って画像生成、②domain shift、③Co-
traning classifiers
CoGANと異なり、別々で学習する
Low-level部分のパラメータは、CoGAN-IrTで学習したもので初期化する
11
実験
• 検証データセット:
MNIST (DM), Fashion-MNIST (DF), NIST (DN), EMNIST (DE)
• 検証domain:
gray domain (G–dom), colored domain (C–dom), edge domain (E–dom), negative
domain (N–dom)
12
実験
• 既存手法より、高い精度を達した
13
実験
• 検証データセット:
Office-Home, Art (Ar), Clipart (Cl), Product (Pr), and Real-world (Rw)
14
実験
• Loss関数重みに関する検証
• 学習データに関する検証
source/target domain以外の
データは2N程度でよい
15
まとめ
• zero-shot domain adaptationタスクについて、target domain画像を生成す
る手法を提案した
• 学習したdomain shiftを生成に適用すること、Co-training classifierにより、
target domain画像の生成に制約をかけることで、性能を向上する
• Co-training classifierでは、consistency lossを活用し、supervisory signalを
作り出すことで、学習に制約をかけた
• 本提案手法は、物体認識やセグメンテーションにも適用可能
• target domainのデータがないことは、実利用する際によくある課題のため、
参加になった
16

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門
 
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
【DL輪読会】ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
 
[DL輪読会]ドメイン転移と不変表現に関するサーベイ
[DL輪読会]ドメイン転移と不変表現に関するサーベイ[DL輪読会]ドメイン転移と不変表現に関するサーベイ
[DL輪読会]ドメイン転移と不変表現に関するサーベイ
 
自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
 
【メタサーベイ】Video Transformer
 【メタサーベイ】Video Transformer 【メタサーベイ】Video Transformer
【メタサーベイ】Video Transformer
 
【DL輪読会】How Much Can CLIP Benefit Vision-and-Language Tasks?
【DL輪読会】How Much Can CLIP Benefit Vision-and-Language Tasks? 【DL輪読会】How Much Can CLIP Benefit Vision-and-Language Tasks?
【DL輪読会】How Much Can CLIP Benefit Vision-and-Language Tasks?
 
【DL輪読会】StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery
【DL輪読会】StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery【DL輪読会】StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery
【DL輪読会】StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery
 
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
 
【DL輪読会】Flamingo: a Visual Language Model for Few-Shot Learning 画像×言語の大規模基盤モ...
【DL輪読会】Flamingo: a Visual Language Model for Few-Shot Learning   画像×言語の大規模基盤モ...【DL輪読会】Flamingo: a Visual Language Model for Few-Shot Learning   画像×言語の大規模基盤モ...
【DL輪読会】Flamingo: a Visual Language Model for Few-Shot Learning 画像×言語の大規模基盤モ...
 
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
 
【DL輪読会】DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Dri...
【DL輪読会】DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Dri...【DL輪読会】DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Dri...
【DL輪読会】DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Dri...
 
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
 
[DL輪読会]Flow-based Deep Generative Models
[DL輪読会]Flow-based Deep Generative Models[DL輪読会]Flow-based Deep Generative Models
[DL輪読会]Flow-based Deep Generative Models
 
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までーDeep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
 
[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報[DL輪読会]ICLR2020の分布外検知速報
[DL輪読会]ICLR2020の分布外検知速報
 
[DL輪読会]Ensemble Distribution Distillation
[DL輪読会]Ensemble Distribution Distillation[DL輪読会]Ensemble Distribution Distillation
[DL輪読会]Ensemble Distribution Distillation
 
【論文読み会】BEiT_BERT Pre-Training of Image Transformers.pptx
【論文読み会】BEiT_BERT Pre-Training of Image Transformers.pptx【論文読み会】BEiT_BERT Pre-Training of Image Transformers.pptx
【論文読み会】BEiT_BERT Pre-Training of Image Transformers.pptx
 

Similar a [DL輪読会]Adversarial Learning for Zero-shot Domain Adaptation

大規模画像認識とその周辺
大規模画像認識とその周辺大規模画像認識とその周辺
大規模画像認識とその周辺
n_hidekey
 

Similar a [DL輪読会]Adversarial Learning for Zero-shot Domain Adaptation (20)

Deep residual learning for image recognition
Deep residual learning for image recognitionDeep residual learning for image recognition
Deep residual learning for image recognition
 
Adversarial Networks の画像生成に迫る @WBAFLカジュアルトーク#3
Adversarial Networks の画像生成に迫る @WBAFLカジュアルトーク#3Adversarial Networks の画像生成に迫る @WBAFLカジュアルトーク#3
Adversarial Networks の画像生成に迫る @WBAFLカジュアルトーク#3
 
[DL輪読会] MoCoGAN: Decomposing Motion and Content for Video Generation
[DL輪読会] MoCoGAN: Decomposing Motion and Content for Video Generation[DL輪読会] MoCoGAN: Decomposing Motion and Content for Video Generation
[DL輪読会] MoCoGAN: Decomposing Motion and Content for Video Generation
 
DLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
DLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose EstimationDLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
DLゼミ: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
 
大規模画像認識とその周辺
大規模画像認識とその周辺大規模画像認識とその周辺
大規模画像認識とその周辺
 
AGenT Zero: Zero-shot Automatic Multiple-Choice Question Generation for Skill...
AGenT Zero: Zero-shot Automatic Multiple-Choice Question Generation for Skill...AGenT Zero: Zero-shot Automatic Multiple-Choice Question Generation for Skill...
AGenT Zero: Zero-shot Automatic Multiple-Choice Question Generation for Skill...
 
「解説資料」VideoMix: Rethinking Data Augmentation for Video Classification
「解説資料」VideoMix: Rethinking Data Augmentation for  Video Classification「解説資料」VideoMix: Rethinking Data Augmentation for  Video Classification
「解説資料」VideoMix: Rethinking Data Augmentation for Video Classification
 
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
 
SfM Learner系単眼深度推定手法について
SfM Learner系単眼深度推定手法についてSfM Learner系単眼深度推定手法について
SfM Learner系単眼深度推定手法について
 
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation 「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
「解説資料」ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
 
Feature Generationg Networks for Zero-Shot Learning 論文紹介
Feature Generationg Networks for Zero-Shot Learning 論文紹介Feature Generationg Networks for Zero-Shot Learning 論文紹介
Feature Generationg Networks for Zero-Shot Learning 論文紹介
 
Rethinking Knowledge Graph Propagation for Zero-Shot Learinig 論文紹介
Rethinking Knowledge Graph Propagation for Zero-Shot Learinig 論文紹介Rethinking Knowledge Graph Propagation for Zero-Shot Learinig 論文紹介
Rethinking Knowledge Graph Propagation for Zero-Shot Learinig 論文紹介
 
Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image S...
Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image S...Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image S...
Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image S...
 
Jenkinsで始める継続的デリバリーと実践の道程
Jenkinsで始める継続的デリバリーと実践の道程Jenkinsで始める継続的デリバリーと実践の道程
Jenkinsで始める継続的デリバリーと実践の道程
 
Embedding Watermarks into Deep Neural Networks
Embedding Watermarks into Deep Neural NetworksEmbedding Watermarks into Deep Neural Networks
Embedding Watermarks into Deep Neural Networks
 
文献紹介: Shuffle and Attend: Video Domain Adaptation
文献紹介: Shuffle and Attend: Video Domain Adaptation文献紹介: Shuffle and Attend: Video Domain Adaptation
文献紹介: Shuffle and Attend: Video Domain Adaptation
 
[DL輪読会]SafePicking: Learning Safe Object Extraction via Object-Level Mapping ...
[DL輪読会]SafePicking: Learning Safe Object Extraction via Object-Level Mapping ...[DL輪読会]SafePicking: Learning Safe Object Extraction via Object-Level Mapping ...
[DL輪読会]SafePicking: Learning Safe Object Extraction via Object-Level Mapping ...
 
NIPS2013読み会 DeViSE: A Deep Visual-Semantic Embedding Model
NIPS2013読み会 DeViSE: A Deep Visual-Semantic Embedding ModelNIPS2013読み会 DeViSE: A Deep Visual-Semantic Embedding Model
NIPS2013読み会 DeViSE: A Deep Visual-Semantic Embedding Model
 
Vision and Language(メタサーベイ )
Vision and Language(メタサーベイ )Vision and Language(メタサーベイ )
Vision and Language(メタサーベイ )
 
2017年のiOSアプリ開発におけるCI事情
2017年のiOSアプリ開発におけるCI事情2017年のiOSアプリ開発におけるCI事情
2017年のiOSアプリ開発におけるCI事情
 

Más de Deep Learning JP

Más de Deep Learning JP (20)

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
 

Último

Último (7)

Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。
 
LoRaWAN スマート距離検出デバイスDS20L日本語マニュアル
LoRaWAN スマート距離検出デバイスDS20L日本語マニュアルLoRaWAN スマート距離検出デバイスDS20L日本語マニュアル
LoRaWAN スマート距離検出デバイスDS20L日本語マニュアル
 
LoRaWANスマート距離検出センサー DS20L カタログ LiDARデバイス
LoRaWANスマート距離検出センサー  DS20L  カタログ  LiDARデバイスLoRaWANスマート距離検出センサー  DS20L  カタログ  LiDARデバイス
LoRaWANスマート距離検出センサー DS20L カタログ LiDARデバイス
 
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
 
Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。
 
新人研修 後半 2024/04/26の勉強会で発表されたものです。
新人研修 後半        2024/04/26の勉強会で発表されたものです。新人研修 後半        2024/04/26の勉強会で発表されたものです。
新人研修 後半 2024/04/26の勉強会で発表されたものです。
 
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
 

[DL輪読会]Adversarial Learning for Zero-shot Domain Adaptation

  • 1. DEEP LEARNING JP [DL Papers] Adversarial Learning for Zero-shot Domain Adaptation Yuting Lin, Kokusai Kogyo Co., Ltd.(国際航業) http://deeplearning.jp/ 1
  • 2. 書籍情報 • タイトル Adversarial Learning for Zero-shot Domain Adaptation • 著者 Jinghua Wang and Jianmin Jiang Shenzhen University • ECCV2020(poster)に採択 • ICCV2019にも、Zero-Shot Domain Adaptation(ZSDA)の論文を投稿した (Conditional Coupled Generative Adversarial Networks for Zero-Shot Domain Adaptation) 2
  • 3. 概要 • 手法の概要: target domainがないzero-shot domain adaptationタスクにおいて、 domainと同じだが、他種別のデータで学習したdomain shiftを適用して target domainのデータを生成する手法 • 提案手法のポイント target/source domainと同じdomainの別の画像データから、domain shift を学習 domain shiftを用いてtarget domainの画像を生成する Co-training方策で、性能を向上する 3
  • 4. • ToI(Task of Interest)において、target domainのデータが存在しない ToIのdomainと同じかつ、取得できる画像から、IrT(irrelevant task)の学習より、domain shiftを取得する データの表記: ToI source: 𝑋𝑠 𝛼 ToI target: 𝑿 𝒕 𝜶 (生成対象) IrT source: 𝑋𝑠 𝛽 IrT target: 𝑋𝑡 𝛽 問題定義 4
  • 5. 既往研究 • Zero-Shot Domain Adaptationは3つの流派がある ① domain-invariant featuresを抽出することで、domainが異なっても認識できるモデルを 学習する Domain-invariant component analysis (DICA)[1]、 multi-task autoencoder (MTAE)[2]、 Conditional invariant deep domain generalization (CIDDG)[3]、 deep domain generalization framework (DDG) [4] ② domain情報は、潜在空間上のdomainに依存しないcommon factorとdomain specific factorにより決定されると仮定する。 common factorが分かれば、unseen domainに適 応できる[5], [6], [7], [8] ③ target/source domainの関係性を、別のタスクにより学習し、データに適応する  Zero-shot deep domain adaptation (ZDDA) [9]、 CoCoGAN[10] 5 [1] Muandet, K., Balduzzi, D., Sch¨olkopf, B.: Domain generalization via invariant feature representation. In: ICML (2013) [2] Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: ICCV (2015) [3] Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K., Tao, D.: Deep domain generalization via conditional invariant adversarial networks. In: ECCV (2018) [4] Ding, Z., Fu, Y.: Deep domain generalization with structured low-rank constraint. IEEE Transactions on Image Processing 27(1), 304–313 (2018) [5] Khosla, A., Zhou, T., Malisiewicz, T., Efros, A.A., Torralba, A.: Undoing the damage of dataset bias. In: ECCV (2012) [6] Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: ICCV (2017) [7] Yang, Y., Hospedales, T.: Zero-shot domain adaptation via kernel regression on the grassmannian (2015). https://doi.org/10.5244/C.29.DIFFCV.1 [8] Kodirov, E., Xiang, T., Fu, Z., Gong, S.: Unsupervised domain adaptation for zero-shot learning. In: ICCV (2015) [9] Peng, K.C., Wu, Z., Ernst, J.: Zero-shot deep domain adaptation. In: ECCV (2018) [10] Wang, J., Jiang, J.: Conditional coupled generative adversarial networks for zero- shot domain adaptation. In: ICCV (2019)
  • 6. 既往研究 • Coupled Generative Adversarial Networks (CoGAN)[11] 生成器と識別器の一部分のパラメータを共有する2つのGANを持つ 異なるドメインの画像を同時に生成する 提案手法は、CoGANの構造に基づく 6[11] Liu, M.Y.,Tuzel, O.: Coupled generative adversarial networks. In: NIPS (2016)
  • 7. 提案手法の概要 • CoGAN-IrTにより、domain shiftを取得 • CoGAN-ToIにより、取得したdomain shiftを適用すると同時に、するtarget domainを生成 • Co-trainingにより、target domainデータの生成に制約をかける 7
  • 8. 提案手法 • CoGAN-IrT: ペア画像を入力とし、 target/source domain間のjoint分布を学習 潜在空間上の特徴の違いを、domain shiftとなる • CoGAN-ToI: domain shiftを適用するため、2つ制約をかける 8
  • 9. 提案手法 • 1つ目の制約:Domain shiftが正しく適用されているか 識別器の共有部(high-level)の表現のelement-wise差分(𝛿ℎ 𝛽 = 𝑅ℎ 𝑥𝑡 𝛽 ⊖ 𝑅ℎ 𝑥 𝑠 𝛽 ) をdomain shiftとする CoGAN-IrTとCoGAN-ToIにおけるdomain shiftは一緒であるべき 分類器で、𝛿ℎ 𝛽 と𝛿ℎ 𝛼 を分類する 9
  • 10. 提案手法 • 2つ目の制約:Co-training classifiers 2つclassifierのconsistencyを利用して、CoGAN-ToIの学習に制約をかける 目的: 2つclassifierは異なるパラメータを持ち、違う視点から入力データを分析する loss 入力:𝑅𝑙 𝑥 𝑠 𝛽 , 𝑅𝑙 𝑥𝑡 𝛽 , 𝑅𝑙 𝑥 𝑠 𝛼  𝐿 𝑤:classifierの類似度を測る  𝐿 𝑐𝑙𝑠:𝑥 𝑠 𝛼 の分類loss  𝐿 𝑐𝑜𝑛:𝑥 𝑠 𝛽 と𝑥𝑡 𝛽 を入力とした際のconsistency  𝐿 𝑑𝑖𝑓𝑓:以外のサンプルを入力した際のconsistency 結果、 classifiersは入力がsource/target domainに属するのかを判別できるようにな る。CoGAN-ToIを学習する際のsupervisory signalとなる 10
  • 11. 提案手法 • CoGAN-ToIの学習 3つの制約で学習する:①𝑥 𝑠 𝛼のdomainに従って画像生成、②domain shift、③Co- traning classifiers CoGANと異なり、別々で学習する Low-level部分のパラメータは、CoGAN-IrTで学習したもので初期化する 11
  • 12. 実験 • 検証データセット: MNIST (DM), Fashion-MNIST (DF), NIST (DN), EMNIST (DE) • 検証domain: gray domain (G–dom), colored domain (C–dom), edge domain (E–dom), negative domain (N–dom) 12
  • 14. 実験 • 検証データセット: Office-Home, Art (Ar), Clipart (Cl), Product (Pr), and Real-world (Rw) 14
  • 16. まとめ • zero-shot domain adaptationタスクについて、target domain画像を生成す る手法を提案した • 学習したdomain shiftを生成に適用すること、Co-training classifierにより、 target domain画像の生成に制約をかけることで、性能を向上する • Co-training classifierでは、consistency lossを活用し、supervisory signalを 作り出すことで、学習に制約をかけた • 本提案手法は、物体認識やセグメンテーションにも適用可能 • target domainのデータがないことは、実利用する際によくある課題のため、 参加になった 16