SlideShare una empresa de Scribd logo
1 de 64
Descargar para leer sin conexión
7.5



                                                                                                5.0



                                                                                                2.5


Chapter 4                                                                                       0.0
                                                                      −2           −1                  0       1        2
                                                                                       x
                                                                                                −2.5


Integration                                                     4. sin x, sin x + 2, sin x − 5

                                                                                                  2

                                                                                   x
                                                                     −3       −2           −1          0   1        2   3

4.1        Antiderivatives                                                                        0




                                                                                                  −2
    x4 x4      x4
 1.   ,   + 3,    −2
    4 4        4
                                                                                                  −4


                            20

                                                                                                  −6

                            15
                                                                                                       3 5 3 2
                                                                5.        (3x4 − 3x)dx =                 x − x +c
                            10                                                                         5    2
                                                                                                 1 4
                             5                                  6.        (x3 − 2)dx =             x − 2x + c
                                                                                                 4
                                                                             √   1                                 x−3
      −3     −2        −1            1       2       3          7.          3 x− 4               dx = 2x3/2 +          +c
                                                                                x                                   3

                                                                                1
                                                                8.      2x−2 + √     dx
                                                                                 x
      x4  x2 x4   x2      x4   x2                                    = −2x−1 + 2x1/2 + c
 2.      − ,    −    − 1,    −    +4
      4   2 4     2       4    2
                                                                      x1/3 − 3
                            6                                   9.             dx = (x−1/3 − 3x−2/3 )dx
                                                                        x2/3
                            5                                         3
                                                                     = x2/3 − 9x1/3 + c
                            4
                                                                      2
                                                                      x + 2x3/4
                            3
                                                               10.              dx = (x−1/4 + 2x−1/2 )dx
                                                                        x5/4
                            2
                                                                      4
                                                                     = x3/4 + 4x1/2 + c
                            1                                         3
                            0

       −2         −1             0       1       2
                                                               11.        (2 sin x + cos x)dx = −2 cos x + sin x + c
                  x         −1


                                                               12.        (3 cos x − sin x)dx = 3 sin x + cos x + c


 3. ex , ex + 1, ex − 3                                        13.        2 sec x tan xdx = 2 sec x + c

                                                         240
4.1. ANTIDERIVATIVES                                                                                      241

                4                                                  d
14.       √          dx = 4 arcsin x + c                    30.       ln |sin x · 2|
              1 − x2                                              dx
                                                                         1      d
                                                                  =                (sin x · 2)
15.       5 sec2 xdx = 5 tan x + c                                   sin x · 2 dx
                                                                     2 cos x
                                                                  =           = cot x
                                                                     2 sin x
          4 cos x
16.               dx = −4 csc x + c
          sin2 x                                            31. (a) N/A
                                                                   (b) By Power Formula,
17.       (3ex − 2)dx = 3ex − 2x + c
                                                                            √           2
                                                                           ( x3 + 4)dx = x5/2 + 4x + c.
                                                                                        5
18.       (4x − 2ex )dx = 2x2 − 2ex + c
                                                            32. (a) By Power Formula,
                                                                      3x2 − 4
19.       (3 cos x − 1/x)dx = 3 sin x − ln |x| + c                            dx = (3 − 4x−2 )dx
                                                                         x2
                                                                    = 3x + 4x−1 + c
20.       (2x−1 + sin x)dx = 2 ln |x| − cos x + c                  (b) N/A
                                                            33. (a) N/A
            4x
21.              dx = 2 ln |x2 + 4| + c                            (b) By Reversing derivative formula,
          x2 + 4
                                                                           sec2 xdx = tan x + c
             3        3
22.               dx = tan−1 x + c
          4x2 + 4     4                                     34. (a) By Power Formula,
                                                                        1             1
          cos x                                                             − 1 dx = − − x + c
23.             dx = ln | sin x| + c                                    x 2           x
          sin x
                                                                (b) N/A
24.       (2 cos x − ex )dx = 2 sin x − ex + c              35. Finding the antiderivative,
                                                                              x2
                                                                f (x) = 3ex +    + c.
            ex                                                                2
25.              dx = ln | ex + 3| + c
          ex + 3                                                  Since f (0) = 4,
      ex + 3                                                      we have 4 = f (0) = 3 + c.
26.          dx = (1 + 3e−x )dx                                   Therefore,
        ex
    = x − 3e−x + c                                                               x2
                                                                  f (x) = 3ex +     + 1.
                                                                                 2
27.       x1/4 (x5/4 − 4)dx =     (x3/2 − 4x1/4 )dx         36. Finding the antiderivative,
          2 5/2 16 5/4                                          f (x) = 4 sin x + c.
      =     x − x +c                                            Since f (0) = 3,
          5     5
                                                                we have 3 = f (0) = c.
                                                                Therefore,
28.       x2/3 (x−4/3 − 3)dx =         (x−2/3 − 3x2/3 )dx
                                                                f (x) = 4 sin x + 3.
               9
      = 3x1/3 − x5/3 + c                                    37. Finding the antiderivative
               5
                                                                f (x) = 4x3 + 2ex + c1 .
       d                                                        Since, f (0) = 2.
29.       ln |sec x + tan x|
      dx                                                        We have 2 = f (0) = 2 + c1
                1        d
      =                    (sec x + tan x)                      and therefore
         sec x + tan x dx                                       f (x) = 4x3 + 2ex .
                           2
         sec x tan x + sec x
      =                                                         Finding the antiderivative,
            sec x + tan x                                       f (x) = x4 + 2ex + c2 .
         sec x (tan x + sec x)
      =                                                         Since f (0) = 3,
              sec x + tan x
      = sec x                                                   We have 3 = f (0) = 2 + c2
                                                                Therefore,
242                                                             CHAPTER 4. INTEGRATION

      f (x) = x4 + 2ex + 1.                                        1
                                                 f (x) = −3 sin x + x4 + c1 x + c2 .
                                                                   3
                                             42. Taking antiderivatives,
 38. Finding the antiderivative,                 f (x) = x1/2 − 2 cos x
     f (x) = 5x4 + e2x + c1 .                             2
     Since f (0) = −3,                           f (x) = x3/2 − 2 sin x + c1
                                                          3
     we have −3 = f (0) = 1 + c1                          4 5/2
                                                 f (x) =    x + 2 cos x + c1 x + c2 .
     Therefore,                                          15
     f (x) = 5x4 + e2x − 4.                  43. Taking antiderivatives,
     Finding the antiderivative,                 f (x) = 4 − 2/x3
                  e2x
     f (x) = x5 +     − 4x + c2 .                f (x) = 4x + x−2 + c1
                   2                             f (x) = 2x2 − x−1 + c1 x + c2
     Since f (0) = 2,
                          1                             2              c1
     We have 2 = f (0) = + c2                    f (x) = x3 − ln |x| + x2 + c2 x + c3
                          2                             3               2
     Therefore,                              44. Taking antiderivatives,
                  e2x         3                  f (x) = sin x − ex
     f (x) = x5 +     − 4x + .
                   2          2                  f (x) = − cos x − ex + c1
                                                 f (x) = − sin x − ex + c1 x + c2
                                                                      c1
 39. Taking antiderivatives,                     f (x) = cos x − ex + x2 + c2 x + c3
     f (t) = 2t + t2 + c1                                             2
                  t3                         45. Position is the antiderivative of velocity,
     f (t) = t2 + + c1 t + c2
                  3                              s(t) = 3t − 6t2 + c.
     Since f (0) = 2,                            Since s(0) = 3, we have c = 3. Thus,
     we have 2 = f (0) = c2                      s(t) = 3t − 6t2 + 3.
     Therefore,
                  t3                         46. Position is the antiderivative of velocity,
     f (t) = t2 + + c1 t + 2.
                  3                              s(t) = −3e−t − 2t + c.
     Since f (3) = 2,                            Since s(0) = 0, we have −3 + c = 0 and there-
     we have                                     fore c = 3. Thus,
     2 = f (3) = 9 + 9 + 3c1 + 2                 s(t) = −3e−t − 2t + 3.
     − 6 = c1
     Therefore,                              47. First we find velocity, which is the antideriva-
             t3                                  tive of acceleration,
     f (t) =    + t2 − 6t + 2.
              3                                  v(t) = −3 cos t + c1 .
                                                 Since v(0) = 0 we have
                                                 −3 + c1 = 0, c1 = 3 and
 40. Taking antiderivatives,
                                                 v(t) = −3 cos t + 3.
     f (t) = 4t + 3t2 + c1
                                                 Position is the antiderivative of velocity,
     f (t) = 2t2 + t3 + c1 t + c2
                                                 s(t) = −3 sin t + 3t + c2 .
     Since f (1) = 3,
                                                 Since s(0) = 4, we have c2 = 4. Thus,
     we have 3 = f (1) = 2 + 1 + c1 + c2
                                                 s(t) = −3 sin t + 3t + 4.
     Therefore,
     c1 + c2 = 0                             48. First we find velocity, which is the antideriva-
     Since f (−1) = −2,                          tive of acceleration,
     we have −2 = f (−1) = 2 − 1 − c1 + c2               1
                                                 v(t) = t3 + t + c1 .
     Therefore, −c1 + c2 = −3.                           3
     So, c1 = 2 and c2 = − 3
                3
                              2                  Since v(0) = 4 we have c1 = 4 and
     Hence,                                              1
                        3      3                 v(t) = t3 + t + 4.
     f (t) = t3 + 2t2 + t − .                            3
                        2      2
                                                 Position is the antiderivative of velocity,
                                                         1 4 1 2
 41. Taking antiderivatives,                     s(t) =    t + t + 4t + c2 .
                                                        12      2
     f (x) = 3 sin x + 4x2                       Since s(0) = 0, we have c2 = 0. Thus,
                        4                                1 4 1 2
     f (x) = −3 cos x + x3 + c1                  s(t) =    t + t + 4t.
                        3                               12      2
4.1. ANTIDERIVATIVES                                                                                                                           243

49. (a) There are many correct answers, but any                                                                              15

        correct answer will be a vertical shift of
        these answers.                                                                                                       10


                                                            10.0
                                                                                                                              5

                                                            7.5

                                                                                                                              0
                                                            5.0         y                                −3    −2       −1         0   1   2   3
                                                                                                                    x

                                                                                                                             −5
                                                            2.5



                                                            0.0                                                              −10

           −4.0   −3.2      −2.4     −1.6   −0.8      0.0       0.8         1.6   2.4   3.2
                                 x
                                                            −2.5
                                                                                              51. We start by taking antiderivatives:
                                                            −5.0
                                                                                                  f (x) = x2 /2 − x + c1
                                                                                                  f (x) = x3 /6 − x2 /2 + c1 x + c2 .
                                                                                                  Now, we use the data that we are given. We
     (b) There are many correct answers, but any                                                  know that f (1) = 2 and f (1) = 3, which gives
         correct answer will be a vertical shift of                                               us
         these answers.                                                                           3 = f (1) = 1/2 − 1 + c1 ,
                                                                                                  and
                                            8.8
                                                                                                  1 = f (1) = 1/6 − 1/2 + c1 + c2 .
                                            8.0
                                                                                                  Therefore c1 = 7/2 and c2 = −13/6 and the
                                            7.2
                                                                                                  function is
                                            6.4                                                           x3    x2     7x 13
                                                                                                  f (x) =     −    +      − .
                                            5.6
                                                                                                           6     2      2     6
                                            4.8

                                            4.0
                                                                                              52. We start by taking antiderivatives:
                                            3.2
                                                                                                  f (x) = 3x2 + 4x + c1
                                            2.4
                                                                                                  f (x) = x3 + 2x2 + c1 x + c2 .
                                                                                                  Now, we use the data that we are given. We
          −3           −2            −1           0             1             2         3
                             x
                                                                                                  know that f (−1) = 1 and f (−1) = 2, which
                                                                                                  gives us
                                                                                                  2 = f (−1) = −1 + c1 ,
                                                                                                  and
                                                                                                  1 = f (−1) = 1 − c1 + c2 .
50. (a) There are many correct answers, but any
                                                                                                  Therefore c1 = 3 and c2 = 3 and the function
        correct answer will be a vertical shift of
                                                                                                  is
        these answers.
                                                                                                  f (x) = x3 + 2x2 + 3x − 3.
                                                            14
                                                                                                     d
                                                            12                                53.      sin x2 = 2x cos x2
                                                                                                    dx
                                                            10
                                                                                                    Therefore,
                                                            8       y

                                                            6                                         2x cos x2 dx = sin x2 + c
                                                            4

                                                            2
                                                                                                     d                9
                                                                                              54.        (x3 + 2)3/2 = x2 (x3 + 2)1/2
                  −4                 −2                0
                                                            0
                                                                              2
                                                                                                    dx                2
                                 x
                                                            −2
                                                                                                    Therefore,
                                                            −4                                                        2
                                                                                                       x2 x3 + 2dx = (x3 + 2)3/2 + c
                                                                                                                      9

     (b) There are many correct answers, but any                                                     d
                                                                                              55.      x2 sin 2x = 2(x sin 2x + x2 cos 2x)
         correct answer will be a vertical shift of                                                 dx
         these answers.                                                                             Therefore,
244                                                                        CHAPTER 4. INTEGRATION

                                                            1            36          x2
            x sin 2x + x2 cos 2x dx                       =     3−              = 2
                                                            9        12 − 9x 2    3x − 4
           1 2                                            For 33(a): Almost the same as in Exercise 59,
       =     x sin 2x + c
           2                                              example 1.11 (b).
                                                                      1 x−1
        d x2      2xe3x − 3x2 e3x                         For 34(b): ln         +c
 56.           =                                                      2 x+1
       dx e 3x          e6x                               Verify:
       Therefore,                                          d 1 x−1
                                                                  ln
          2xe3x − 3x2 e3x        x2                       dx 2 x + 1
                 6x
                          dx = 3x + c                       1 x + 1 (x + 1) − (x − 1)
                e               e                         = ·          ·
                                                            2 x−1           (x + 1)2
           x cos(x2 )                                          1
 57.                    dx =   sin(x2 ) + c               = 2
             sin(x2 )                                       x −1
                                                      61. Use a CAS to find antiderivatives and verify by
      d   √             √         1                       computing the derivatives:
 58.     2 x sin x = 2 x cos x + √ sin x
     dx                            x
          √            1                                                  3        1     3

         2 x cos x + √ sin x dx                            (a)    x2 e−x dx = − e−x + c
                        x                                                          3
           √                                                   Verify:
        = 2 x sin x + c                                         d       1      3
                                                                     − e−x
                                                               dx       3
 59. Use a CAS to find antiderivatives and verify by                 1       3
                                                               = − e−x · (−3x2 )
     computing the derivatives:                                     3 3
     For 11.1(b):                                              = x2 e−x
                                                                      1
           sec xdx = ln | sec x + tan x| + c               (b)              dx = ln |x − 1| − ln |x| + c Verify:
                                                                  x2 − x
       Verify:                                                  d
                                                                   (ln |x − 1| − ln |x|)
        d                                                      dx
           ln | sec x + tan x|                                       1        1   x − (x − 1)
       dx                                                      =          − =
          sec x tan x + sec2 x                                    x−1 x             x(x − 1)
       =                         = sec x                               1           1
              sec x + tan x                                    =              = 2
       For 11.1(f):                                               x(x − 1)       x −x
                          sin 2x x cos 2x
          x sin 2xdx =           −        +c               (c)       sec xdx = ln | sec x + tan x| + c
                             4         2
       Verify:                                                   Verify:
        d sin 2x x cos 2x                                         d
                      −                                              [ln | sec x + tan x|]
       dx        4          2                                    dx
          2 cos 2x cos 2x − 2x sin 2x                               sec x tan x + sec2 x
       =             −                                           =
              4                 2                                       sec x + tan x
       = x sin 2x                                                   sec x(sec x + tan x)
                                                                 =                         = sec x
                                                                        sec x + tan x
 60. Use a CAS to find antiderivatives and verify by
     computing the derivatives:                       62. Use a CAS to find antiderivatives and verify
     For 31(a): The answer is too complicated to be       by computing the derivatives:
     presented here.
                                √
                 1       √     2 3 − 3x                                x          1
     For 32(b):     3x + 3 ln √            +c              (a)             dx = arctan x2 + c
                 9             2 3 + 3x                            x4 + 1         2
     Verify:                                                     Verify:
                           √                                      d 1
      d 1          √    2 3 − 3x                                         arctan x2
             3x + 3 ln √                                         dx 2
     dx 9               2 3 + 3x
                 √                                                 1      1             x
        1       2 3 + 3x                                         = · 4         · 2x = 4
     =      3+ √         ·                                         2 x +1            x +1
        9       2 3 − 3x
           √              √                                (b)       3x sin 2xdx
      −3(2 3 + 3x) − 3(2 3 − 3x)
                 √                                                   3          3x
              (2 3 + 3x)2                                        =     sin 2x −    cos 2x + c
                                                                     4           2
4.1. ANTIDERIVATIVES                                                                                      245

             Verify:                                   67. The key is to find the velocity and position
              d 3             3x                           functions. We start with constant acceleration
                     sin 2x −    cos 2x
             dx 4              2                           a, a constant. Then, v(t) = at + v0 where v0
               3            3                              is the initial velocity. The initial velocity is 30
             = cos 2x − cos 2x + 3x sin 2x
               2            2                              miles per hour, but since our time is in seconds,
             = 3x sin 2x                                   it is probably best to work in feet per second
                                                           (30mph = 44ft/s). v(t) = at + 44.
       (c)     ln xdx = x ln x − x + c                     We know that the car accelerates to 50 mph
             Verify:                                       (50mph = 73ft/s) in 4 seconds, so v(4) = 73.
              d                                                                                   29
                (x ln x − x) = ln x + 1 − 1                Therefore, a · 4 + 44 = 73 and a =        ft/s
             dx                                                                                    4
             = ln x                                        So,
                                                                   29
            −1                                             v(t) =     t + 44 and
63.     √         dx = cos−1 (x) + c1                               4
           1 − x2                                                  29 2
                                                           s(t) =     t + 44t + s0
            −1                                                      8
         √        dx = − sin−1 (x) + c2                    where s0 is the initial position. We can assume
           1 − x2                                          the the starting position is s0 = 0.
      Therefore,                                                             29 2
      cos−1 x + c1 = − sin−1 x + c2                        Then, s(t) =         t + 44t and the distance
                                                                              8
      Therefore,                                           traveled by the car during the 4 seconds is
      sin−1 x + cos−1 x = constant                         s(4) = 234 feet.
      To find the value of the constant, let x be any
      convenient value.                                68. The key is to find the velocity and position
      Suppose x = 0; then sin−1 0 = 0 and cos−1 0 =        functions. We start with constant acceleration
      π/2, so                                              a, a constant. Then, v(t) = at + v0 where v0
                          π                                is the initial velocity. The initial velocity is 60
      sin−1 x + cos−1 x =
                           2                               miles per hour, but since our time is in seconds,
                                                           it is probably best to work in feet per second
64. To derive these formulas, all that needs to be
                                                           (60mph = 88ft/s). v(t) = at + 88.
    done is to take the derivatives to see that the
                                                           We know that the car comes to rest in 3 sec-
    integrals are correct:
     d                                                     onds, so v(3) = 0.
        (tan x) = sec2 x                                   Therefore,
    dx
     d                                                     a(3) + 88 = 0 and a = −88/3ft/s (the accelera-
        (sec x) = sec x tan x                              tion should be negative since the car is actually
    dx
                                                           decelerating.
65. To derive these formulas, all that needs to be         So,
    done is to take the derivatives to see that the                  88
    integrals are correct:                                 v(t) = − t + 88 and
                                                                      3
     d x                                                             44
        (e ) = ex                                          s(t) = − t2 + 88t + s0 where s0 is the initial
    dx                                                                3
     d                                                     position. We can assume the the starting po-
         −e−x = e−x
    dx                                                     sition is s0 = 0.
                                                                              44
                1      1    1                              Then, s(t) = − t2 + 88t and the stopping
66. (a)           dx =        dx                                               3
              kx       k    x                              distance is s(3) = 132 feet.
              1
            = ln |x| + c1                              69. To estimate the acceleration over each inter-
              k
                                                           val, we estimate v (t) by computing the slope
                1      1     k
       (b)        dx =          dx                         of the tangent lines. For example, for the in-
              kx       k    kx                             terval [0, 0.5]:
              1
            = ln |kx| + c2                                      v(0.5) − v(0)
              k                                            a≈                  = −31.6 m/s2 .
                                                                   0.5 − 0
      Because                                              Notice, acceleration should be negative since
      1            1
        ln |kx| = (ln |k| + ln |x|)                        the object is falling.
      k            k
         1          1        1                             To estimate the distance traveled over the in-
      = ln |x| + ln |k| = ln |x| + c                       terval, we estimate the velocity and multiply
         k          k        k
      The two antiderivatives are both correct.            by the time (distance is rate times time). For
246                                                                                          CHAPTER 4. INTEGRATION

      an estimate for the velocity, we will use the               Time           Speed Dist
      average of the velocities at the endpoints. For               0              70     0
      example, for the interval [0, 0.5], the time inter-          0.5           69.55 34.89
      val is 0.5 and the velocity is −11.9. Therefore              1.0            70.3  69.85
      the position changed is (−11.9)(0.5) = −5.95                 1.5           70.35 105.01
      meters. The distance traveled will be 5.95 me-               2.0           70.65 104.26
      ters (distance should be positive).
       Interval Accel       Dist                            72. To estimate the speed over the interval, we first
       [0.0, 0.5] −31.6     5.95                                approximate the acceleration over the interval
       [0.5, 1.0]   −2     12.925                               by averaging the acceleration at the endpoint
       [1.0, 1.5] −11.6     17.4                                of the interval. Then, the velocity will be the
       [1.5, 2.0] −3.6      19.3                                acceleration times the length of time. the slope
                                                                of the tangent lines. For example, for the in-
                                                                terval [0.0, 0.5] the average acceleration is −0.8
                                                                and v(0.5) = 20+(−0.8)(.5) = 19.6. Of course,
                                                                speed is the absolute value of the velocity.
 70. To estimate the acceleration over each inter-
                                                                And, the distance traveled is the average speed
     val, we estimate v (t) by computing the slope
                                                                times the length of time. For the time t = 0.5,
     of the tangent lines. For example, for the in-                                        20 + 19.6
     terval [0, 1.0]:                                           the distance would be                × 0.5 = 9.9
                                                                                               2
          v(1.0) − v(0)                                         meters.
     a≈                  = −9.8 m/s2 .                           Time Speed          Dist
              1.0 − 0
     Notice, acceleration should be negative since                  0        20        0
     the object is falling.                                        0.5     19.6       9.9
     To estimate the distance traveled over the in-                1.0 17.925 19.281
     terval, we estimate the velocity and multiply                 1.5     16.5 27.888
     by the time (distance is rate times time). For                2.0 16.125 34.044
     an estimate for the velocity, we will use the av-
     erage of the velocities at the endpoints. For
     example, for the interval [0, 1.0], the time in-       4.2     Sums And Sigma Notation
     terval is 1.0 and the velocity is −4.9. Therefore
     the position changed is (−4.9)(1.0) = −4.9 me-          1. The given sum is the sum of twice the
     ters. The distance traveled will be 4.9 meters             squares of the integers from 1 to 14.
     (distance should be positive).                                                                                      14
                                                                        2                2         2                2
      Interval Accel Dist                                         2(1) + 2(2) + 2(3) + . . . + 2(14) =                         2i2
                                                                                                                         i=1
      [0.0, 1.0] −9.8       4.9
      [1.0, 2.0] −8.8 14.2                                   2. The given sum is the sum of squares
      [2.0, 3.0] −6.3 21.75                                     roots of √the integers from 1 to 14.
                                                                √                √               √
      [3.0, 4.0] −3.6 26.7                                        2 − 1 + 3 − 1 + 4 − 1 + . . . + 15 − 1
                                                                    √    √     √         √       √
                                                                 = 1 + 2 + 3 + ... + 13 + 14
                                                                        14
                                                                             √
                                                                  =              i
 71. To estimate the speed over the interval, we                      i=1
     first approximate the acceleration over the in-
     terval by averaging the acceleration at the end-                       50
                                                                                             (50)(51)(101)
     point of the interval. Then, the velocity will be       3. (a)              i2 =                      = 42, 925
                                                                                                   6
     the acceleration times the length of time. The                      i=1

     slope of the tangent lines. For example, for the                        50          2
                                                                                                           2
                                                                                                  50(51)
     interval [0, 0.5] the average acceleration is −0.9           (b)                i       =                 = 1, 625, 625
     and v(0.5) = 70 + (−0.9)(0.5) = 69.55.                                  i=1
                                                                                                    2
     And, the distance traveled is the speed times
                                                                            10
     the length of time. For the time t = 0.5, the                               √
                          70 + 69.55                         4. (a)        i
     distance would be               ×0.5 ≈ 34.89 me-                    i=1
                               2                                            √ √  √  √  √
     ters.                                                              =1+ 2+ 3+ 4+ 5+ 6
4.2. SUMS AND SIGMA NOTATION                                                                                                         247
                 √   √  √   √
               + 7 + 8 + 9 + 10                                  = 338, 350 − 15, 150 + 200 = 323, 400
             ≈ 22.47
                   10                                            140
                                   10(11) √
      (b)               i=               = 55              14.             n2 + 2n − 4
                  i=1
                                     2
                                                                 n=1
                                                                   140                      140            140
       6
                                                                 =          n2 + 2                n−                4
 5.         3i2 = 3 + 12 + 27 + 48 + 75 + 108                         n=1                  n=1             n=1
      i=1                                                          (140)(141)(281)                                  140(141)
      = 273                                                      =                 +2                                          − 4 (140)
                                                                           6                                           2
       7                                                         = 943, 670
 6.         i2 + i = 12 + 20 + 30 + 42 + 56
      i=3
                                                                 30
      = 160                                                                            2
                                                           15.             (i − 3) + i − 3
      10
                                                                 i=3
 7.         (4i + 2)                                                   30                            30
                                                                                           2
      i=6                                                        =          (i − 3) +                      (i − 3)
      = (4(6) + 2) + (4(7) + 2) + (4(8) + 2)                          i=3                         i=3
      + (4(9) + 2) + (4(10) + 2)                                       27                  27
      = 26 + 30 + 34 + 38 + 42                                   =          n2 +                n (substitute i − 3 = n)
      = 170                                                           n=0              n=0
                                                                             27                            27
       8
             2                                                   =0+               n2 + 0 +                     n
 8.         (i + 2)                                                         n=1                           n=1
      i=6                                                             27 (28) (55) 27 (28)
      = (62 + 2) + (72 + 2) + (82 + 2)                           =                +        = 7308
                                                                           6          2
      = 38 + 51 + 66 = 155
      70                           70                            20                                        20
 9.         (3i − 1) = 3 ·              i − 70             16.         (i − 3) (i + 3) =                            i2 − 9
      i=1                         i=1                            i=4                                       i=4
          70(71)                                                       20                  20
      =3·        − 70 = 7, 385
            2                                                    =          i2 − 9               1
      45                        45                45                  i=4                  i=4

10.         (3i − 4) = 3             i−4               1               20              3                  20
      i=1                     i=1             i=1                =          i2 −               i2 −9            1
                 45(46)                                               i=1          i=1                    i=4
      =3                     − 4(45) = 2925
                   2                                               20 (21) (41)
                                                                 =              − 1 − 4 − 9 − 9 (17)
      40                                40                              6
11.         (4 − i2 ) = 160 −                 i2                 = 2703
      i=1                               i=1
              (40)(41)(81)                                        n
      = 160 −
                    6                                      17.             k2 − 3
      = 160 − 22, 140 = −21, 980
                                                                 k=3
                                                                       n               n
      50                     50              50
12.         (8 − i) = 8            1−              i             =          k2 +                (−3)
                                                                      k=3          k=3
      i=1                    i=1         i=1
                                                                       n             2
                50(51)
      = 8(50) −        = −875                                    =          k2 −                k2
                  2                                                   k=1              k=1
      100                                                                          n                        2

13.          n2 − 3n + 2                                                    +              (−3) −                   (−3)
      n=1                                                                       k=1                       k=1
        100               100           100                        n (n + 1) (2n + 1)
                                                                 =                    −1−4
      =          n2 − 3         n+            2                            6
           n=1            n=1           n=1                        + (−3) n − (−3) (2)
        (100)(101)(201)    100(101)                                n (n + 1) (2n + 1)
      =                 −3          + 200                        =                    − 5 − 3n + 6
               6              2                                            6
248                                                                              CHAPTER 4. INTEGRATION

            n (n + 1) (2n + 1)                      = ((2.05)3 + 4)(0.1) + . . .
       =                       − 3n + 1
                    6                                 + ((2.95)3 + 4)(0.1)
        n                                           = (202.4375)(0.1)
 18.             k2 + 5                             = 20.24375
       k=0                                           n                       2
             n            n                               1            i                  i
                                              23.                                +2
       =          k2 +          5                         n            n                  n
                                                    i=1
            k=0           k=0
                    n               n                            n                    n
                                                         1             i2        i
       =0+              k2 + 5 +          5         =                     +2
                  k=1               k=1
                                                         n       i=1
                                                                       n2    i=1
                                                                                 n
         n (n + 1) (2n + 1)                                            n                   n
       =                    + 5 + 5n                     1 1                          2
                 6                                  =                        i2 +               i
                                                         n n2          i=1
                                                                                      n   i=1
        n
 19.         f (xi )∆x                                   1 1               n(n + 1)(2n + 1)
                                                    =
       i=1                                               n n2                     6
             5
       =          (x2 + 4xi ) · 0.2
                    i
                                                             2       n(n + 1)
                                                         +
            i=1                                              n          2
       = (0.22 + 4(0.2))(0.2) + . . .
                                                         n(n + 1)(2n + 1) n(n + 1)
         + (12 + 4)(0.2)                            =                    +
                                                               6n3           n2
       = (0.84)(0.2) + (1.76)(0.2)
                                                                 n                    2
         + (2.76)(0.2) + (3.84)(0.2)                                 1           i                  i
                                                    lim                                   +2
         + (5)(0.2)                                 n→∞              n           n                  n
                                                             i=1
       = 2.84
        n                                                            n(n + 1)(2n + 1) n(n + 1)
                                                    = lim                            +
 20.         f (xi )∆x                                   n→∞               6n3           n2
       i=1                                               2     4
             5                                      =      +1=
       =          (3xi + 5) · 0.4                        6     3
            i=1                                      n                       2
       = (3(0.4) + 5)(0.4) + . . .                        1            i                  i
                                              24.                                −5
         + (3(2) + 5)(0.4)                          i=1
                                                          n            n                  n
       = (6.2)(0.4) + (7.4)(0.4)                                 n                    n
         + (8.6)(0.4) + (9.8)(0.4)                       1             i2        i
                                                    =                     −5
         + (11)(0.4)                                     n       i=1
                                                                       n2    i=1
                                                                                 n
       = 17.2                                                          n                   n
        n                                                1 1                          5
                                                    =                        i2 −               i
 21.         f (xi )∆x                                   n n2          i=1
                                                                                      n   i=1
       i=1
             10                                          1 1               n(n + 1)(2n + 1)
                                                    =
       =          (4x2 − 2) · 0.1
                     i                                   n n2                     6
            i=1
       = (4(2.1)2 − 2)(0.1) + . . .                          5       n(n + 1)
                                                         −
         + (4(3)2 − 2)(0.1)                                  n          2
       = (15.64)(0.1) + (17.36)(0.1)                   n(n + 1)(2n + 1) 5n(n + 1)
         + (19.16)(0.1) + (21.04)(0.1)              =                  −
                                                              6n3          2n2
         + (23)(0.1) + (25.04)(0.1)                         2
                                                       −13n − 12n + 1
         + (27.16)(0.1) + (29.36)(0.1)              =
                                                              6n2
         + (31.64)(0.1) + (34)(0.1)                       n          2
                                                              1   i       i
       = 24.34                                       lim               −5
        n
                                                    n→∞
                                                         i=1
                                                              n   n       n
 22.         f (xi )∆x                                    −13n2 − 12n + 1
       i=1                                          = lim
             10                                      n→∞       6n2
       =          (x3 + 4) · 0.1                           13   12     1
                                                    = lim − −      + 2
            i=1                                      n→∞    6   6n 6n
4.2. SUMS AND SIGMA NOTATION                                                                                            249

              13                                                        n
      =−                                                                         n2 (n + 1)2
               6                                                             i3 =
                                                                       i=1
                                                                                        4
      n
            1              2i
                                     2
                                                  2i                   is true for all integers n ≥ 1.
25.           4                          −                             For n = 1, we have
            n              n                      n                      1
      i=1                                                                              12 (1 + 1)2
                        n                         n                         i3 = 1 =               ,
          1        i2        i                                         i=1
                                                                                             4
      =     16        −2
          n    i=1
                   n2    i=1
                             n                                         as desired.
                                                                       So the proposition is true for n = 1.
                         n                            n
          1 16                                2                        Next, assume that
      =                          i2 −                     i              k
          n n2                                n                                  k 2 (k + 1)2
                        i=1                       i=1                       i3 =               ,
          1 16              n(n + 1)(2n + 1)                           i=1
                                                                                       4
      =                                                                for some integer k ≥ 1.
          n n2                     6
                                                                       In this case, we have by the induction assump-
              2        n(n + 1)                                        tion that for n = k + 1,
          −
              n           2                                             n           k+1          k
                                                                             i3 =         i3 =         i3 + (k + 1)3
        16n(n + 1)(2n + 1) n(n + 1)
      =                   −                                            i=1          i=1          i=1
               6n3            n2                                          k 2 (k + 1)2
                  n                               2                    =               + (k + 1)3
                       1                 2i                   2i                4
      lim                4                            −                   k 2 (k + 1)2 + 4(k + 1)3
      n→∞
              i=1
                       n                 n                    n        =
                                                                                       4
                       16n(n + 1)(2n + 1) n(n + 1)                        (k + 1)2 (k 2 + 4k + 4)
      = lim                              −                             =
          n→∞                 6n3            n2                                       4
                                                                          (k + 1)2 (k + 2)2
          16     13                                                    =
      =      −1=                                                                   4
           3      3                                                       n2 (n + 1)2
                                                                       =
      n                          2                                               4
            1           2i                        i                    as desired.
26.                                  +4
      i=1
            n           n                         n
                                                                   28. Want to prove that
                   n                          n                          n
        1               4i2        i                                             n2 (n + 1)2 (2n2 + 2n − 1)
      =                     +4                                              i5 =
        n         i=1
                        n2     i=1
                                   n                                                           12
                                                                       i=1
                         n                            n                is true for all integers n ≥ 1.
          1 4                                 4                        For n = 1, we have
      =                          i2 +                     i
          n n2          i=1
                                              n   i=1
                                                                         1
                                                                                       12 (1 + 1)2 (2 + 2 − 1)
                                                                            i3 = 1 =                           ,
          1 4               n(n + 1)(2n + 1)                           i=1
                                                                                                  12
      =
          n n2                     6                                   as desired.
                                                                       So the proposition is true for n = 1.
              4        n(n + 1)
          +                                                            Next, assume that
              n           2                                              k
                                                                                 k 2 (k + 1)2 (2k 2 + 2k − 1)
        4n(n + 1)(2n + 1) 4n(n + 1)                                         i5 =                              ,
      =                  +                                             i=1
                                                                                               12
              6n3            2n2                                       for some integer k ≥ 1.
           2
        10n + 12n + 2                                                  In this case, we have by the induction assump-
      =
             3n2                                                       tion that for n = k + 1,
                  n                           2                         n           k+1          k
                       1             2i                       i
      lim                                         +4                         i5 =         i5 =         i5 + (k + 1)5
      n→∞
              i=1
                       n             n                        n        i=1          i=1          i=1
                                                                         k 2 (k + 1)2 (2k 2 + 2k − 1)
            10n + 12n + 2    2
                                                                       =                              + (k + 1)5
      = lim                                                                            12
          n→∞    3n2
            10   12    2    10                                           k 2 (k + 1)2 (2k 2 + 2k − 1) + 12(k + 1)5
      = lim    +    +     =                                            =
       n→∞ 3     3n 3n2     3                                                                 12
                                                                         (k + 1)2 [k 2 (2k 2 + 2k − 1) + 12(k + 1)3 ]
27. Want to prove that                                                 =
                                                                                               12
250                                                                                           CHAPTER 4. INTEGRATION

          (k + 1)2 [2k 4 + 14k 3 + 35k 2 + 36k + 12]                                      a − ar
       =                                                        34. When n = 0, a =              .
                              12                                                           1−r
                                                                      Assume the formula holds for n = k − 1, which
          (k + 1) (k + 4k + 4)(2k 2 + 6k + 3)
                 2 2
                                                                      gives
       =
                             12                                                              a − ark
                                                                      a + ar + · · · ark−1 =         .
          n2 (n + 1)2 (2n2 + 2n − 1)                                                          1−r
       =                                                              Then for n = k,
                       12
       as desired.                                                    we have a + ar + · · · ark
       10
                                                                      = a + ar + · · · ark−1 + ark
                                                                         a − ark
 29.         (i3 − 3i + 1)                                            =           + ark
                                                                          1−r
       i=1
             10             10                                           a − ark + ark (1 − r)
                                                                      =
       =          i3 − 3          i + 10                                         1−r
            i=1             i=1                                          a − ark + ark − ark+1
                                                                      =
         100(11)2    10(11)                                                        1−r
       =          −3        + 10                                         a − ark+1
              4        2                                              =
       = 2, 870                                                             1−r
                                                                         a − arn+1
                                                                      =
       20                                                                   1−r
 30.         (i3 + 2i)                                                as desired.
       i=1
             20             20
                                                                       n
       =          i3 + 2          i                                                    6
                                                                35.         e6i/n
            i=1             i=1
                                                                      i=1
                                                                                       n
            400(21)2    20(21)                                                 n
       =             +2        = 44, 520                                   6
               4          2                                           =              e6i/n
                                                                           n   i=1
       100
 31.         (i5 − 2i2 )                                                   6    e6/n − e6
                                                                      =
       i=1                                                                 n    1 − e6/n
          100               100
       =          5
                  i −2            i2                                       6     1 − e6
                                                                      =                  −1
            i=1             i=1                                            n    1 − e6/n
         (100 )(1012 )[2(1002 ) + 2(100) − 1]
                    2                                                    6 1 − e6      6
       =                                                              =              −
                           12                                            n 1 − e6/n    n
                                                                                 6
            100(101)(201)                                             Now lim = 0, and
         −2                                                                 x→∞ n
                    6
       = 171, 707, 655, 800                                                6 1 − e6
                                                                       lim
                                                                      x→∞ n 1 − e6/n
       100
                                                                                         1/n
 32.         (2i5 + 2i + 1)                                           = 6(1 − e6 ) lim
                                                                                  x→∞ 1 − e6/n
       i=1
              100            100                                                          1
                                                                      = 6(1 − e6 ) lim
       =2           i5 + 2            i + 100                                     x→∞ −6e6/n
              i=1            i=1
                                                                      = e6 − 1.
                        2     2              2                                            n
          (100 )(101 )[2(100 ) + 2(100) − 1]                                                          6
       =2                                                             Thus lim                e6i/n     = e6 − 1.
                            12                                                 x→∞                    n
                                                                                       i=1
               100(101)
         +2·             + 100
                   2                                                   n
       = 343, 416, 675, 200                                                           2
                                                                36.         e(2i)/n
                                                                      i=1
                                                                                      n
        n                              n            n
 33.         (cai + dbi ) =                 cai +         dbi              2    e2/n − e2
                                                                      =
       i=1                            i=1           i=1                    n    1 − e2/n
              n                  n
       =c           ai + d            bi                                   2     1 − e2
                                                                      =                  −1
             i=1             i=1                                           n    1 − e2/n
4.3. AREA                                                                                                                251

         2 1 − e2      2                                        Notice that ∆x = 0.25.
      =              −
         n 1 − e2/n    n                                        A4 = [f (0.125) + f (0.375) + f (0.625)
                 2                                                    + f (0.875)](0.25)
      Now lim = 0, and
            x→∞ n                                               = [(0.125)2 + 1 + (0.375)2 + 1
           2 1 − e2                                               + (0.625)2 + 1 + (0.875)2 + 1](0.25)
       lim
      x→∞ n 1 − e2/n                                            = 1.38125.
                         1/n
      = 2(1 − e2 ) lim                                             2

                  x→∞ 1 − e2/n

                          1
      = 2(1 − e2 ) lim
                                                                 1.5

                  x→∞ −2e2/n

      = e2 − 1.                                                    1
                  n
                        2
      Thus lim     e2i/n = e2 − 1.
           x→∞
               i=1
                        n                                        0.5




37. Distance                                                       0
    = 50(2) + 60(1) + 70(1/2) + 60(3)                                  0   0.2     0.4   0.6
                                                                                          x
                                                                                               0.8        1       1.2


    = 375 miles.

38. Distance
    = 50(1) + 40(1) + 60(1/2) + 55(3)
    = 285 miles.                                            (b) Evaluation points:
                                                                0.25, 0.75, 1.25, 1.75.
39. On the time interval [0, 0.25], the estimated ve-           Notice that ∆x = 0.5.
                                    120 + 116                   A4 = [f (0.25) + f (0.75) + f (1.25)
    locity is the average velocity             = 118
                                         2                            + f (1.75)](0.5)
    feet per second.                                            = [(0.25)2 + 1 + (0.75)2 + 1 + (1.25)2
    We estimate the distance traveled during the                  + 1 + (1.75)2 + 1](0.5)
    time interval [0, 0.25] to be                               = 4.625.
    (118)(0.25 − 0) = 29.5 feet.
    Altogether, the distance traveled is estimated                         7

    as
                                                                           6
    = (236/2)(0.25) + (229/2)(0.25)
       + (223/2)(0.25) + (218/2)(0.25)                                     5



       + (214/2)(0.25) + (210/2)(0.25)                                     4


       + (207/2)(0.25) + (205/2)(0.25)                                     3

    = 217.75 feet.                                                         2



40. On the time interval [0, 0.5], the estimated ve-                       1


                                   10 + 14.9                               0
    locity is the average velocity            = 12.45              -0.5        0   0.5    1     1.5           2    2.5
                                       2                                                              x

    meters per second. We estimate the distance
    fallen during the time interval [0, 0.5] to be
    (12.45)(0.5 − 0) = 6.225 meters.
    Altogether, the distance fallen (estimated)
    = (12.45)(0.5) + (17.35)(0.5)
       + (22.25)(0.5) + (27.15)(0.5)
       + (32.05)(0.5) + (36.95)(0.5)
       + (41.85)(0.5) + (46.75)(0.5)                    2. (a) Evaluation points:
    = 118.4 meters.                                            1.125, 1.375, 1.625, 1.875.
                                                               Notice that ∆x = 0.25.
                                                               A4 = [f (1.125) + f (1.375) + f (1.625)
4.3       Area                                                       + f (1.875)](0.25)
                                                               = [(1.125)3 − 1 + (1.375)3 − 1
 1. (a) Evaluation points:                                       + (1.625)3 − 1 + (1.875)3 − 1](0.25)
        0.125, 0.375, 0.625, 0.875.                            = 2.7265625.
252                                                                                                CHAPTER 4. INTEGRATION

                                                                                         11π/16, 13π/16, 15π/16.
             7
                                                                                         Notice that ∆x = π/8.
             6                                                                           A4 = [f (π/16) + f (3π/16) + f (5π/16)
             5                                                                                 + f (7π/16) + f (9π/16) + f (11π/16)
             4
                                                                                               + f (13π/16) + f (15π/16)](π/8)
                                                                                         = [sin(π/16) + sin(3π/16) + sin(5π/16)
             3
                                                                                           + sin(7π/16) + sin(9π/16)
             2                                                                             + sin(11π/16) + sin(13π/16)
             1                                                                             + sin(15π/16)](π/8)
                                                                                         = 2.0129.
             0
                 1        1.2         1.4         1.6         1.8           2
                                             x                                             1



      (b) Evaluation points:                                                              0.8
          1.25, 1.75, 2.25, 2.75.
          Notice that ∆x = 0.5.                                                           0.6

          A4 = [f (1.25) + f (1.75) + f (2.25)
                + f (2.75)](0.5)                                                          0.4


          = [(1.25)3 − 1 + (1.75)3 − 1
            + (2.25)3 − 1 + (2.75)3 − 1](0.5)
                                                                                          0.2


          = 17.75.                                                                         0
                                                                                               0   0.5      1   1.5     2    2.5   3
                                                                                                                    x

            30



            25



            20



            15
                                                                                 4. (a) Evaluation points:
                                                                                        −0.75, −0.25, 0.25, 0.75.
            10
                                                                                        Notice that ∆x = 0.5.
             5
                                                                                        A4 = [f (−0.75) + f (−0.25) + f (0.25)
             0                                                                               + f (0.75)](0.5)
                     1          1.5          2          2.5         3
                                             x                                          = [4 − (−0.75)2 + 4 − (−0.25)2 + 4
                                                                                          − (0.25)2 + 4 − (0.75)2 ](0.5)
  3. (a) Evaluation points:                                                             = 7.375.
         π/8, 3π/8, 5π/8, 7π/8.                                                                                 4

         Notice that ∆x = π/4.
         A4 = [f (π/8) + f (3π/8) + f (5π/8)                                                                    3
               + f (7π/8)](π/4)
         = [sin(π/8) + sin(3π/8) + sin(5π/8)
                                                                                                                2
           + sin(7π/8)](π/4)
         = 2.05234.
                                                                                                                1
             1


                                                                                                                0
            0.8                                                                             -1           -0.5       0       0.5        1
                                                                                                                    x

            0.6



            0.4                                                                     (b) Evaluation points:
                                                                                        −2.75, −2.25, −1.75, −1.25.
            0.2
                                                                                        Notice that ∆x = 0.5.
             0
                                                                                        A4 = [f (−2.75) + f (−2.25) + f (−1.75)
                 0       0.5      1         1.5
                                             x
                                                    2         2.5       3
                                                                                             + f (−1.25)](0.5)
                                                                                        = [4 − (−2.75)2 + 4 − (−2.25)2 + 4
      (b) Evaluation points:                                                              − (−1.75)2 + 4 − (−1.25)2 ](0.5)
          π/16, 3π/16, 5π/16,                           7π/16,          9π/16,          = −0.625.
4.3. AREA                                                                                                                    253

                                                                                      15
                                                                       A16 = ∆x             f (ci )
                                                           2
                                                                                      i=0
                                                                                15                        2
                                      x                                    1           i   1
                -3     -2.5           -2       -1.5   -1               =                 +                    + 1 ≈ 4.6640
                                                           0
                                                                           8   i=0
                                                                                       8 16
                                                           -2
                                                                    (c) There are 16 rectangles and the evalua-
                                                                        tion points are given by ci = i∆x + ∆x
                                                           -4
                                                                        where i is from 0 to 15.
                                                                                      15
                                                           -6
                                                                       A16 = ∆x             f (ci )
                                                                                      i=0
                                                                                15                    2
                                                                         1             i   1
                                                                       =                 +                + 1 ≈ 4.9219
 5. (a) There are 16 rectangles and the evalua-                          8     i=0
                                                                                       8 8
        tion points are given by ci = i∆x where i
        is from 0 to 15.                                        7. (a) There are 16 rectangles and the evalua-
                     15
                                                                       tion points are the left endpoints which
        A16 = ∆x           f (ci )
                                                                       are given by
                     i=0
                15                2                                    ci = 1 + i∆x where i is from 0 to 15.
           1            i                                                             15
        =                             + 1 ≈ 1.3027
          16           16                                              A16 = ∆x             f (ci )
               i=0
                                                                                      i=0
    (b) There are 16 rectangles and the evalua-                             3
                                                                                 15
                                                                                              3i
                                            ∆x                         =               1+        + 2 ≈ 6.2663
        tion points are given by ci = i∆x +                                16                 16
                                             2                                  i=0
        where i is from 0 to 15.
                     15                                            (b) There are 16 rectangles and the evalua-
        A16 = ∆x           f (ci )                                     tion points are the midpoints which are
                     i=0                                               given by
                15                         2                                           ∆x
           1            i   1                                          ci = 1 + i∆x +      where i is from 0 to
        =                 +                    +1                                       2
          16   i=0
                       16 32                                           15.
                                                                                      15
        ≈ 1.3330                                                       A16 = ∆x             f (ci )
     (c) There are 16 rectangles and the evalua-                                      i=0
                                                                                 15
         tion points are given by ci = i∆x + ∆x                             3                 3i   3
                                                                       =               1+        +   +2
         where i is from 0 to 15.                                          16                 16 32
                     15                                                         i=0
        A16 = ∆x           f (ci )                                     ≈ 6.3340
                     i=0
                15                         2                        (c) There are 16 rectangles and the evalua-
           1            i   1
        =                 +                    +1                       tion points are the right endpoints which
          16   i=0
                       16 16                                            are given by
        ≈ 1.3652                                                        ci = 1 + i∆x where i is from 1 to 16.
                                                                                      16
                                                                       A16 = ∆x             f (ci )
 6. (a) There are 16 rectangles and the evalua-
                                                                                      i=1
        tion points are given by ci = i∆x where i                                16
                                                                            3                 3i
        is from 0 to 15.                                               =               1+        + 2 ≈ 6.4009
                     15                                                    16   i=1
                                                                                              16
        A16 = ∆x           f (ci )
                     i=0
               15             2                                 8. (a) There are 16 rectangles and the evalua-
          1           i                                                tion points are the left endpoints which
        =                         + 1 ≈ 4.4219
          8   i=0
                      8                                                are given by
                                                                       ci = −1 + i∆x − ∆x
    (b) There are 16 rectangles and the evalua-
                                                                       where i is from 1 to 16.
                                            ∆x                                        16
        tion points are given by ci = i∆x +
                                             2                         A16 = ∆x             f (ci )
        where i is from 0 to 15.                                                      i=1
254                                                                              CHAPTER 4. INTEGRATION

                  16
              1                      i      1                      given by ci = −1 + i∆x − ∆x where i is
          =             e−2(−1+ 8 − 8 ) ≈ 4.0991                   from 1 to 100.
              8   i=1                                                               100

      (b) There are 16 rectangles and the evalua-                  A100 = ∆x              f (ci )
          tion points are the midpoints which are                                   i=1
                                                                             100                               3
          given by                                                      2                         2i   2
                            ∆x                                     =                   −1 +          −             −1
          ci = −1 + i∆x −                                              100   i=1
                                                                                                 100 100
                             2
          where i is from 1 to 16.                                 ≈ −2.02
                            16
          A16 = ∆x                f (ci )                      (b) There are 100 rectangles and the evalua-
                            i=1
                                                                   tion points are midpoints which are given
                  16                                                                   ∆x
              1                      i      1                      by ci = −1 + i∆x −      where i is from 1
          =             e−2(−1+ 8 − 16 ) ≈ 3.6174                                       2
              8                                                    to 100.
                  i=1                                                               100
      (c) There are 16 rectangles and the evalua-                  A100 = ∆x              f (ci )
          tion points are the right endpoints which                                 i=1
                                                                             100                               3
          are given by                                                  2                         2i   1
          ci = −1 + i∆x where i is from 1 to 16.                   =                   −1 +          −             −1
                                                                       100   i=1
                                                                                                 100 100
                            16
          A16 = ∆x                f (ci )                          = −2
                            i=1
                  16
                                                               (c) There are 100 rectangles and the evalua-
              1                      i
                                                                   tion points are right endpoints which are
          =             e−2(−1+ 8 ) ≈ 3.1924
              8   i=1
                                                                   given by ci = −1 + i∆x where i is from 1
                                                                   to 100.
  9. (a) There are 50 rectangles and the evalua-                                    100

         tion points are given by ci = i∆x where i                 A100 = ∆x              f (ci )
         is from 0 to 49.                                                           i=1
                            50                                               100                       3
                                                                        2                         2i
          A50 = ∆x                f (ci )                          =                   −1 +                − 1 ≈ −1.98
                                                                       100   i=1
                                                                                                 100
                            i=0
                       50
               π                     πi                                   1
          =                 cos                 ≈ 1.0156   11. (a) ∆x =     . We will use right endpoints as
              100   i=0
                                    100                                   n
                                                                                           i
      (b) There are 50 rectangles and the evalua-                  evaluation points, xi = .
                                                                                           n
                                        ∆x                                   n
          tion points are given by ci =    + i∆x                   An =            f (xi )∆x
                                         2
          where i is from 0 to 49.                                           i=1
                            50                                                 n             2                n
                                                                        1      i            1
          A50 = ∆x                f (ci )                              =           +1 = 3         i2 + 1
                            i=0
                                                                        n i=1  n            n i=1
                       50                                                1 n(n + 1)(2n + 1)
               π                     π   πi                            = 3                    +1
          =                 cos        +                                n         6
              100   i=0
                                    200 100
          ≈ 1.00004                                                      8n2 + 3n + 1
                                                                     =
                                                                             6n2
      (c) There are 50 rectangles and the evalua-                  Now to compute the exact area, we take
          tion points are given by ci = ∆x + i∆x                   the limit as n → ∞:
          where i is from 0 to 49.                                                         8n2 + 3n + 1
                            50                                     A = lim An = lim
                                                                        n→∞          n→∞       6n2
          A50 = ∆x                f (ci )
                                                                              8    3     1     4
                            i=0                                      = lim +          +      =
                       50                                               n→∞ 6     6n 6n2       3
               π                     π   πi                                2
          =                 cos        +                       (b) ∆x = . We will use right endpoints as
              100   i=0
                                    100 100                               n
                                                                                            2i
          ≈ 0.9842                                                 evaluation points, xi = .
                                                                                            n
                                                                             n
 10. (a) There are 100 rectangles and the evalu-                   An =            f (xi )∆x
         ation points are left endpoints which are                           i=1
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8
answers tutor 8

Más contenido relacionado

La actualidad más candente

Mth 4108-1 a (ans)
Mth 4108-1 a (ans)Mth 4108-1 a (ans)
Mth 4108-1 a (ans)outdoorjohn
 
09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grauWollker Colares
 
Systems%20of%20 equations%20by%20graphing
Systems%20of%20 equations%20by%20graphingSystems%20of%20 equations%20by%20graphing
Systems%20of%20 equations%20by%20graphingNene Thomas
 
9-8 Graphing Equations
9-8 Graphing Equations9-8 Graphing Equations
9-8 Graphing EquationsRudy Alfonso
 
9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate PlaneRudy Alfonso
 
Algebra 2 benchmark 3 review
Algebra 2 benchmark 3 reviewAlgebra 2 benchmark 3 review
Algebra 2 benchmark 3 reviewjackieeee
 
9-10 Writing Equations
9-10 Writing Equations9-10 Writing Equations
9-10 Writing EquationsRudy Alfonso
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equationsErik Tjersland
 
solucionario de purcell 3
solucionario de purcell 3solucionario de purcell 3
solucionario de purcell 3José Encalada
 
Ecuaciones de primer grado
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer gradoPamela2306
 
Day 1 intro to functions
Day 1 intro to functionsDay 1 intro to functions
Day 1 intro to functionsErik Tjersland
 
Day 3 graphing linear equations
Day 3 graphing linear equationsDay 3 graphing linear equations
Day 3 graphing linear equationsErik Tjersland
 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberAPEX INSTITUTE
 

La actualidad más candente (19)

Mth 4108-1 a (ans)
Mth 4108-1 a (ans)Mth 4108-1 a (ans)
Mth 4108-1 a (ans)
 
09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau
 
Systems%20of%20 equations%20by%20graphing
Systems%20of%20 equations%20by%20graphingSystems%20of%20 equations%20by%20graphing
Systems%20of%20 equations%20by%20graphing
 
9-8 Graphing Equations
9-8 Graphing Equations9-8 Graphing Equations
9-8 Graphing Equations
 
9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane
 
Algebra 2 benchmark 3 review
Algebra 2 benchmark 3 reviewAlgebra 2 benchmark 3 review
Algebra 2 benchmark 3 review
 
9-10 Writing Equations
9-10 Writing Equations9-10 Writing Equations
9-10 Writing Equations
 
Sect1 1
Sect1 1Sect1 1
Sect1 1
 
Factoring notes
Factoring notesFactoring notes
Factoring notes
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equations
 
Stepenovanje
StepenovanjeStepenovanje
Stepenovanje
 
solucionario de purcell 3
solucionario de purcell 3solucionario de purcell 3
solucionario de purcell 3
 
Ecuaciones de primer grado
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer grado
 
Ecuaciones de primer grado
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer grado
 
Add Maths 2
Add Maths 2Add Maths 2
Add Maths 2
 
Em02 im
Em02 imEm02 im
Em02 im
 
Day 1 intro to functions
Day 1 intro to functionsDay 1 intro to functions
Day 1 intro to functions
 
Day 3 graphing linear equations
Day 3 graphing linear equationsDay 3 graphing linear equations
Day 3 graphing linear equations
 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex number
 

Similar a answers tutor 8

EJERCICIOS DE VERANO PARA SEGUNDO DE ESO
EJERCICIOS DE VERANO PARA SEGUNDO DE ESOEJERCICIOS DE VERANO PARA SEGUNDO DE ESO
EJERCICIOS DE VERANO PARA SEGUNDO DE ESOangusoo
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialZerick Lucernas
 
Ecuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo gradoEcuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo gradoterzaga
 
Factorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de EvaluaciónFactorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de EvaluaciónWuendy Garcia
 
2.2-2.5 review (2)
2.2-2.5 review (2)2.2-2.5 review (2)
2.2-2.5 review (2)lgemgnani
 
A2 Chapter 6 Study Guide
A2 Chapter 6 Study GuideA2 Chapter 6 Study Guide
A2 Chapter 6 Study Guidevhiggins1
 
Factorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de EvaluaciónFactorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de EvaluaciónWuendy Garcia
 
Precal 20 S Adding And Subtracting Rational Expressions
Precal 20 S Adding And Subtracting Rational ExpressionsPrecal 20 S Adding And Subtracting Rational Expressions
Precal 20 S Adding And Subtracting Rational ExpressionsDMCI
 
เอกนาม
เอกนามเอกนาม
เอกนามkrookay2012
 
Solving quadratic equations by completing a square
Solving quadratic equations by completing a squareSolving quadratic equations by completing a square
Solving quadratic equations by completing a squarezwanenkosinathi
 
Math 17 midterm exam review jamie
Math 17 midterm exam review jamieMath 17 midterm exam review jamie
Math 17 midterm exam review jamielittrpgaddict
 

Similar a answers tutor 8 (20)

EJERCICIOS DE VERANO PARA SEGUNDO DE ESO
EJERCICIOS DE VERANO PARA SEGUNDO DE ESOEJERCICIOS DE VERANO PARA SEGUNDO DE ESO
EJERCICIOS DE VERANO PARA SEGUNDO DE ESO
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus official
 
Ecuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo gradoEcuaciones de primer y de segundo grado
Ecuaciones de primer y de segundo grado
 
Maximum and minimum
Maximum and minimumMaximum and minimum
Maximum and minimum
 
Ecuaciones de primer grado
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer grado
 
Factorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de EvaluaciónFactorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de Evaluación
 
2.2-2.5 review (2)
2.2-2.5 review (2)2.2-2.5 review (2)
2.2-2.5 review (2)
 
A2 ch6sg
A2 ch6sgA2 ch6sg
A2 ch6sg
 
A2 Chapter 6 Study Guide
A2 Chapter 6 Study GuideA2 Chapter 6 Study Guide
A2 Chapter 6 Study Guide
 
Factorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de EvaluaciónFactorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de Evaluación
 
Precal 20 S Adding And Subtracting Rational Expressions
Precal 20 S Adding And Subtracting Rational ExpressionsPrecal 20 S Adding And Subtracting Rational Expressions
Precal 20 S Adding And Subtracting Rational Expressions
 
เอกนาม
เอกนามเอกนาม
เอกนาม
 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
 
Ism et chapter_6
Ism et chapter_6Ism et chapter_6
Ism et chapter_6
 
125 5.2
125 5.2125 5.2
125 5.2
 
πιασαμε τα ορια
πιασαμε τα ορια πιασαμε τα ορια
πιασαμε τα ορια
 
Solving quadratic equations by completing a square
Solving quadratic equations by completing a squareSolving quadratic equations by completing a square
Solving quadratic equations by completing a square
 
Slide share
Slide shareSlide share
Slide share
 
Unit 7 Review A
Unit 7 Review AUnit 7 Review A
Unit 7 Review A
 
Math 17 midterm exam review jamie
Math 17 midterm exam review jamieMath 17 midterm exam review jamie
Math 17 midterm exam review jamie
 

Más de Drradz Maths

Más de Drradz Maths (20)

Figures
FiguresFigures
Figures
 
Formulas
FormulasFormulas
Formulas
 
Revision 7.1 7.3
Revision 7.1 7.3Revision 7.1 7.3
Revision 7.1 7.3
 
Tutorial 9
Tutorial 9Tutorial 9
Tutorial 9
 
Tutorial 8
Tutorial 8Tutorial 8
Tutorial 8
 
MTH3101 Tutor 7 lagrange multiplier
MTH3101  Tutor 7 lagrange multiplierMTH3101  Tutor 7 lagrange multiplier
MTH3101 Tutor 7 lagrange multiplier
 
Tutorial 6 en.mughti important
Tutorial 6 en.mughti importantTutorial 6 en.mughti important
Tutorial 6 en.mughti important
 
Figures
FiguresFigures
Figures
 
Formulas
FormulasFormulas
Formulas
 
Figures
FiguresFigures
Figures
 
First_attachment MTH3101
First_attachment MTH3101First_attachment MTH3101
First_attachment MTH3101
 
Tutorial 9 mth 3201
Tutorial 9 mth 3201Tutorial 9 mth 3201
Tutorial 9 mth 3201
 
Tutorial 8 mth 3201
Tutorial 8 mth 3201Tutorial 8 mth 3201
Tutorial 8 mth 3201
 
Tutorial 7 mth 3201
Tutorial 7 mth 3201Tutorial 7 mth 3201
Tutorial 7 mth 3201
 
Tutorial 6 mth 3201
Tutorial 6 mth 3201Tutorial 6 mth 3201
Tutorial 6 mth 3201
 
Tutorial 5 mth 3201
Tutorial 5 mth 3201Tutorial 5 mth 3201
Tutorial 5 mth 3201
 
Tutorial 4 mth 3201
Tutorial 4 mth 3201Tutorial 4 mth 3201
Tutorial 4 mth 3201
 
Tutorial 2, 2(e), no. 7
Tutorial 2,  2(e),  no. 7Tutorial 2,  2(e),  no. 7
Tutorial 2, 2(e), no. 7
 
Tutorial 3 mth 3201
Tutorial 3 mth 3201Tutorial 3 mth 3201
Tutorial 3 mth 3201
 
Tutorial 2 mth 3201
Tutorial 2 mth 3201Tutorial 2 mth 3201
Tutorial 2 mth 3201
 

Último

ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 

Último (20)

ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 

answers tutor 8

  • 1. 7.5 5.0 2.5 Chapter 4 0.0 −2 −1 0 1 2 x −2.5 Integration 4. sin x, sin x + 2, sin x − 5 2 x −3 −2 −1 0 1 2 3 4.1 Antiderivatives 0 −2 x4 x4 x4 1. , + 3, −2 4 4 4 −4 20 −6 15 3 5 3 2 5. (3x4 − 3x)dx = x − x +c 10 5 2 1 4 5 6. (x3 − 2)dx = x − 2x + c 4 √ 1 x−3 −3 −2 −1 1 2 3 7. 3 x− 4 dx = 2x3/2 + +c x 3 1 8. 2x−2 + √ dx x x4 x2 x4 x2 x4 x2 = −2x−1 + 2x1/2 + c 2. − , − − 1, − +4 4 2 4 2 4 2 x1/3 − 3 6 9. dx = (x−1/3 − 3x−2/3 )dx x2/3 5 3 = x2/3 − 9x1/3 + c 4 2 x + 2x3/4 3 10. dx = (x−1/4 + 2x−1/2 )dx x5/4 2 4 = x3/4 + 4x1/2 + c 1 3 0 −2 −1 0 1 2 11. (2 sin x + cos x)dx = −2 cos x + sin x + c x −1 12. (3 cos x − sin x)dx = 3 sin x + cos x + c 3. ex , ex + 1, ex − 3 13. 2 sec x tan xdx = 2 sec x + c 240
  • 2. 4.1. ANTIDERIVATIVES 241 4 d 14. √ dx = 4 arcsin x + c 30. ln |sin x · 2| 1 − x2 dx 1 d = (sin x · 2) 15. 5 sec2 xdx = 5 tan x + c sin x · 2 dx 2 cos x = = cot x 2 sin x 4 cos x 16. dx = −4 csc x + c sin2 x 31. (a) N/A (b) By Power Formula, 17. (3ex − 2)dx = 3ex − 2x + c √ 2 ( x3 + 4)dx = x5/2 + 4x + c. 5 18. (4x − 2ex )dx = 2x2 − 2ex + c 32. (a) By Power Formula, 3x2 − 4 19. (3 cos x − 1/x)dx = 3 sin x − ln |x| + c dx = (3 − 4x−2 )dx x2 = 3x + 4x−1 + c 20. (2x−1 + sin x)dx = 2 ln |x| − cos x + c (b) N/A 33. (a) N/A 4x 21. dx = 2 ln |x2 + 4| + c (b) By Reversing derivative formula, x2 + 4 sec2 xdx = tan x + c 3 3 22. dx = tan−1 x + c 4x2 + 4 4 34. (a) By Power Formula, 1 1 cos x − 1 dx = − − x + c 23. dx = ln | sin x| + c x 2 x sin x (b) N/A 24. (2 cos x − ex )dx = 2 sin x − ex + c 35. Finding the antiderivative, x2 f (x) = 3ex + + c. ex 2 25. dx = ln | ex + 3| + c ex + 3 Since f (0) = 4, ex + 3 we have 4 = f (0) = 3 + c. 26. dx = (1 + 3e−x )dx Therefore, ex = x − 3e−x + c x2 f (x) = 3ex + + 1. 2 27. x1/4 (x5/4 − 4)dx = (x3/2 − 4x1/4 )dx 36. Finding the antiderivative, 2 5/2 16 5/4 f (x) = 4 sin x + c. = x − x +c Since f (0) = 3, 5 5 we have 3 = f (0) = c. Therefore, 28. x2/3 (x−4/3 − 3)dx = (x−2/3 − 3x2/3 )dx f (x) = 4 sin x + 3. 9 = 3x1/3 − x5/3 + c 37. Finding the antiderivative 5 f (x) = 4x3 + 2ex + c1 . d Since, f (0) = 2. 29. ln |sec x + tan x| dx We have 2 = f (0) = 2 + c1 1 d = (sec x + tan x) and therefore sec x + tan x dx f (x) = 4x3 + 2ex . 2 sec x tan x + sec x = Finding the antiderivative, sec x + tan x f (x) = x4 + 2ex + c2 . sec x (tan x + sec x) = Since f (0) = 3, sec x + tan x = sec x We have 3 = f (0) = 2 + c2 Therefore,
  • 3. 242 CHAPTER 4. INTEGRATION f (x) = x4 + 2ex + 1. 1 f (x) = −3 sin x + x4 + c1 x + c2 . 3 42. Taking antiderivatives, 38. Finding the antiderivative, f (x) = x1/2 − 2 cos x f (x) = 5x4 + e2x + c1 . 2 Since f (0) = −3, f (x) = x3/2 − 2 sin x + c1 3 we have −3 = f (0) = 1 + c1 4 5/2 f (x) = x + 2 cos x + c1 x + c2 . Therefore, 15 f (x) = 5x4 + e2x − 4. 43. Taking antiderivatives, Finding the antiderivative, f (x) = 4 − 2/x3 e2x f (x) = x5 + − 4x + c2 . f (x) = 4x + x−2 + c1 2 f (x) = 2x2 − x−1 + c1 x + c2 Since f (0) = 2, 1 2 c1 We have 2 = f (0) = + c2 f (x) = x3 − ln |x| + x2 + c2 x + c3 2 3 2 Therefore, 44. Taking antiderivatives, e2x 3 f (x) = sin x − ex f (x) = x5 + − 4x + . 2 2 f (x) = − cos x − ex + c1 f (x) = − sin x − ex + c1 x + c2 c1 39. Taking antiderivatives, f (x) = cos x − ex + x2 + c2 x + c3 f (t) = 2t + t2 + c1 2 t3 45. Position is the antiderivative of velocity, f (t) = t2 + + c1 t + c2 3 s(t) = 3t − 6t2 + c. Since f (0) = 2, Since s(0) = 3, we have c = 3. Thus, we have 2 = f (0) = c2 s(t) = 3t − 6t2 + 3. Therefore, t3 46. Position is the antiderivative of velocity, f (t) = t2 + + c1 t + 2. 3 s(t) = −3e−t − 2t + c. Since f (3) = 2, Since s(0) = 0, we have −3 + c = 0 and there- we have fore c = 3. Thus, 2 = f (3) = 9 + 9 + 3c1 + 2 s(t) = −3e−t − 2t + 3. − 6 = c1 Therefore, 47. First we find velocity, which is the antideriva- t3 tive of acceleration, f (t) = + t2 − 6t + 2. 3 v(t) = −3 cos t + c1 . Since v(0) = 0 we have −3 + c1 = 0, c1 = 3 and 40. Taking antiderivatives, v(t) = −3 cos t + 3. f (t) = 4t + 3t2 + c1 Position is the antiderivative of velocity, f (t) = 2t2 + t3 + c1 t + c2 s(t) = −3 sin t + 3t + c2 . Since f (1) = 3, Since s(0) = 4, we have c2 = 4. Thus, we have 3 = f (1) = 2 + 1 + c1 + c2 s(t) = −3 sin t + 3t + 4. Therefore, c1 + c2 = 0 48. First we find velocity, which is the antideriva- Since f (−1) = −2, tive of acceleration, we have −2 = f (−1) = 2 − 1 − c1 + c2 1 v(t) = t3 + t + c1 . Therefore, −c1 + c2 = −3. 3 So, c1 = 2 and c2 = − 3 3 2 Since v(0) = 4 we have c1 = 4 and Hence, 1 3 3 v(t) = t3 + t + 4. f (t) = t3 + 2t2 + t − . 3 2 2 Position is the antiderivative of velocity, 1 4 1 2 41. Taking antiderivatives, s(t) = t + t + 4t + c2 . 12 2 f (x) = 3 sin x + 4x2 Since s(0) = 0, we have c2 = 0. Thus, 4 1 4 1 2 f (x) = −3 cos x + x3 + c1 s(t) = t + t + 4t. 3 12 2
  • 4. 4.1. ANTIDERIVATIVES 243 49. (a) There are many correct answers, but any 15 correct answer will be a vertical shift of these answers. 10 10.0 5 7.5 0 5.0 y −3 −2 −1 0 1 2 3 x −5 2.5 0.0 −10 −4.0 −3.2 −2.4 −1.6 −0.8 0.0 0.8 1.6 2.4 3.2 x −2.5 51. We start by taking antiderivatives: −5.0 f (x) = x2 /2 − x + c1 f (x) = x3 /6 − x2 /2 + c1 x + c2 . Now, we use the data that we are given. We (b) There are many correct answers, but any know that f (1) = 2 and f (1) = 3, which gives correct answer will be a vertical shift of us these answers. 3 = f (1) = 1/2 − 1 + c1 , and 8.8 1 = f (1) = 1/6 − 1/2 + c1 + c2 . 8.0 Therefore c1 = 7/2 and c2 = −13/6 and the 7.2 function is 6.4 x3 x2 7x 13 f (x) = − + − . 5.6 6 2 2 6 4.8 4.0 52. We start by taking antiderivatives: 3.2 f (x) = 3x2 + 4x + c1 2.4 f (x) = x3 + 2x2 + c1 x + c2 . Now, we use the data that we are given. We −3 −2 −1 0 1 2 3 x know that f (−1) = 1 and f (−1) = 2, which gives us 2 = f (−1) = −1 + c1 , and 1 = f (−1) = 1 − c1 + c2 . 50. (a) There are many correct answers, but any Therefore c1 = 3 and c2 = 3 and the function correct answer will be a vertical shift of is these answers. f (x) = x3 + 2x2 + 3x − 3. 14 d 12 53. sin x2 = 2x cos x2 dx 10 Therefore, 8 y 6 2x cos x2 dx = sin x2 + c 4 2 d 9 54. (x3 + 2)3/2 = x2 (x3 + 2)1/2 −4 −2 0 0 2 dx 2 x −2 Therefore, −4 2 x2 x3 + 2dx = (x3 + 2)3/2 + c 9 (b) There are many correct answers, but any d 55. x2 sin 2x = 2(x sin 2x + x2 cos 2x) correct answer will be a vertical shift of dx these answers. Therefore,
  • 5. 244 CHAPTER 4. INTEGRATION 1 36 x2 x sin 2x + x2 cos 2x dx = 3− = 2 9 12 − 9x 2 3x − 4 1 2 For 33(a): Almost the same as in Exercise 59, = x sin 2x + c 2 example 1.11 (b). 1 x−1 d x2 2xe3x − 3x2 e3x For 34(b): ln +c 56. = 2 x+1 dx e 3x e6x Verify: Therefore, d 1 x−1 ln 2xe3x − 3x2 e3x x2 dx 2 x + 1 6x dx = 3x + c 1 x + 1 (x + 1) − (x − 1) e e = · · 2 x−1 (x + 1)2 x cos(x2 ) 1 57. dx = sin(x2 ) + c = 2 sin(x2 ) x −1 61. Use a CAS to find antiderivatives and verify by d √ √ 1 computing the derivatives: 58. 2 x sin x = 2 x cos x + √ sin x dx x √ 1 3 1 3 2 x cos x + √ sin x dx (a) x2 e−x dx = − e−x + c x 3 √ Verify: = 2 x sin x + c d 1 3 − e−x dx 3 59. Use a CAS to find antiderivatives and verify by 1 3 = − e−x · (−3x2 ) computing the derivatives: 3 3 For 11.1(b): = x2 e−x 1 sec xdx = ln | sec x + tan x| + c (b) dx = ln |x − 1| − ln |x| + c Verify: x2 − x Verify: d (ln |x − 1| − ln |x|) d dx ln | sec x + tan x| 1 1 x − (x − 1) dx = − = sec x tan x + sec2 x x−1 x x(x − 1) = = sec x 1 1 sec x + tan x = = 2 For 11.1(f): x(x − 1) x −x sin 2x x cos 2x x sin 2xdx = − +c (c) sec xdx = ln | sec x + tan x| + c 4 2 Verify: Verify: d sin 2x x cos 2x d − [ln | sec x + tan x|] dx 4 2 dx 2 cos 2x cos 2x − 2x sin 2x sec x tan x + sec2 x = − = 4 2 sec x + tan x = x sin 2x sec x(sec x + tan x) = = sec x sec x + tan x 60. Use a CAS to find antiderivatives and verify by computing the derivatives: 62. Use a CAS to find antiderivatives and verify For 31(a): The answer is too complicated to be by computing the derivatives: presented here. √ 1 √ 2 3 − 3x x 1 For 32(b): 3x + 3 ln √ +c (a) dx = arctan x2 + c 9 2 3 + 3x x4 + 1 2 Verify: Verify: √ d 1 d 1 √ 2 3 − 3x arctan x2 3x + 3 ln √ dx 2 dx 9 2 3 + 3x √ 1 1 x 1 2 3 + 3x = · 4 · 2x = 4 = 3+ √ · 2 x +1 x +1 9 2 3 − 3x √ √ (b) 3x sin 2xdx −3(2 3 + 3x) − 3(2 3 − 3x) √ 3 3x (2 3 + 3x)2 = sin 2x − cos 2x + c 4 2
  • 6. 4.1. ANTIDERIVATIVES 245 Verify: 67. The key is to find the velocity and position d 3 3x functions. We start with constant acceleration sin 2x − cos 2x dx 4 2 a, a constant. Then, v(t) = at + v0 where v0 3 3 is the initial velocity. The initial velocity is 30 = cos 2x − cos 2x + 3x sin 2x 2 2 miles per hour, but since our time is in seconds, = 3x sin 2x it is probably best to work in feet per second (30mph = 44ft/s). v(t) = at + 44. (c) ln xdx = x ln x − x + c We know that the car accelerates to 50 mph Verify: (50mph = 73ft/s) in 4 seconds, so v(4) = 73. d 29 (x ln x − x) = ln x + 1 − 1 Therefore, a · 4 + 44 = 73 and a = ft/s dx 4 = ln x So, 29 −1 v(t) = t + 44 and 63. √ dx = cos−1 (x) + c1 4 1 − x2 29 2 s(t) = t + 44t + s0 −1 8 √ dx = − sin−1 (x) + c2 where s0 is the initial position. We can assume 1 − x2 the the starting position is s0 = 0. Therefore, 29 2 cos−1 x + c1 = − sin−1 x + c2 Then, s(t) = t + 44t and the distance 8 Therefore, traveled by the car during the 4 seconds is sin−1 x + cos−1 x = constant s(4) = 234 feet. To find the value of the constant, let x be any convenient value. 68. The key is to find the velocity and position Suppose x = 0; then sin−1 0 = 0 and cos−1 0 = functions. We start with constant acceleration π/2, so a, a constant. Then, v(t) = at + v0 where v0 π is the initial velocity. The initial velocity is 60 sin−1 x + cos−1 x = 2 miles per hour, but since our time is in seconds, it is probably best to work in feet per second 64. To derive these formulas, all that needs to be (60mph = 88ft/s). v(t) = at + 88. done is to take the derivatives to see that the We know that the car comes to rest in 3 sec- integrals are correct: d onds, so v(3) = 0. (tan x) = sec2 x Therefore, dx d a(3) + 88 = 0 and a = −88/3ft/s (the accelera- (sec x) = sec x tan x tion should be negative since the car is actually dx decelerating. 65. To derive these formulas, all that needs to be So, done is to take the derivatives to see that the 88 integrals are correct: v(t) = − t + 88 and 3 d x 44 (e ) = ex s(t) = − t2 + 88t + s0 where s0 is the initial dx 3 d position. We can assume the the starting po- −e−x = e−x dx sition is s0 = 0. 44 1 1 1 Then, s(t) = − t2 + 88t and the stopping 66. (a) dx = dx 3 kx k x distance is s(3) = 132 feet. 1 = ln |x| + c1 69. To estimate the acceleration over each inter- k val, we estimate v (t) by computing the slope 1 1 k (b) dx = dx of the tangent lines. For example, for the in- kx k kx terval [0, 0.5]: 1 = ln |kx| + c2 v(0.5) − v(0) k a≈ = −31.6 m/s2 . 0.5 − 0 Because Notice, acceleration should be negative since 1 1 ln |kx| = (ln |k| + ln |x|) the object is falling. k k 1 1 1 To estimate the distance traveled over the in- = ln |x| + ln |k| = ln |x| + c terval, we estimate the velocity and multiply k k k The two antiderivatives are both correct. by the time (distance is rate times time). For
  • 7. 246 CHAPTER 4. INTEGRATION an estimate for the velocity, we will use the Time Speed Dist average of the velocities at the endpoints. For 0 70 0 example, for the interval [0, 0.5], the time inter- 0.5 69.55 34.89 val is 0.5 and the velocity is −11.9. Therefore 1.0 70.3 69.85 the position changed is (−11.9)(0.5) = −5.95 1.5 70.35 105.01 meters. The distance traveled will be 5.95 me- 2.0 70.65 104.26 ters (distance should be positive). Interval Accel Dist 72. To estimate the speed over the interval, we first [0.0, 0.5] −31.6 5.95 approximate the acceleration over the interval [0.5, 1.0] −2 12.925 by averaging the acceleration at the endpoint [1.0, 1.5] −11.6 17.4 of the interval. Then, the velocity will be the [1.5, 2.0] −3.6 19.3 acceleration times the length of time. the slope of the tangent lines. For example, for the in- terval [0.0, 0.5] the average acceleration is −0.8 and v(0.5) = 20+(−0.8)(.5) = 19.6. Of course, speed is the absolute value of the velocity. 70. To estimate the acceleration over each inter- And, the distance traveled is the average speed val, we estimate v (t) by computing the slope times the length of time. For the time t = 0.5, of the tangent lines. For example, for the in- 20 + 19.6 terval [0, 1.0]: the distance would be × 0.5 = 9.9 2 v(1.0) − v(0) meters. a≈ = −9.8 m/s2 . Time Speed Dist 1.0 − 0 Notice, acceleration should be negative since 0 20 0 the object is falling. 0.5 19.6 9.9 To estimate the distance traveled over the in- 1.0 17.925 19.281 terval, we estimate the velocity and multiply 1.5 16.5 27.888 by the time (distance is rate times time). For 2.0 16.125 34.044 an estimate for the velocity, we will use the av- erage of the velocities at the endpoints. For example, for the interval [0, 1.0], the time in- 4.2 Sums And Sigma Notation terval is 1.0 and the velocity is −4.9. Therefore the position changed is (−4.9)(1.0) = −4.9 me- 1. The given sum is the sum of twice the ters. The distance traveled will be 4.9 meters squares of the integers from 1 to 14. (distance should be positive). 14 2 2 2 2 Interval Accel Dist 2(1) + 2(2) + 2(3) + . . . + 2(14) = 2i2 i=1 [0.0, 1.0] −9.8 4.9 [1.0, 2.0] −8.8 14.2 2. The given sum is the sum of squares [2.0, 3.0] −6.3 21.75 roots of √the integers from 1 to 14. √ √ √ [3.0, 4.0] −3.6 26.7 2 − 1 + 3 − 1 + 4 − 1 + . . . + 15 − 1 √ √ √ √ √ = 1 + 2 + 3 + ... + 13 + 14 14 √ = i 71. To estimate the speed over the interval, we i=1 first approximate the acceleration over the in- terval by averaging the acceleration at the end- 50 (50)(51)(101) point of the interval. Then, the velocity will be 3. (a) i2 = = 42, 925 6 the acceleration times the length of time. The i=1 slope of the tangent lines. For example, for the 50 2 2 50(51) interval [0, 0.5] the average acceleration is −0.9 (b) i = = 1, 625, 625 and v(0.5) = 70 + (−0.9)(0.5) = 69.55. i=1 2 And, the distance traveled is the speed times 10 the length of time. For the time t = 0.5, the √ 70 + 69.55 4. (a) i distance would be ×0.5 ≈ 34.89 me- i=1 2 √ √ √ √ √ ters. =1+ 2+ 3+ 4+ 5+ 6
  • 8. 4.2. SUMS AND SIGMA NOTATION 247 √ √ √ √ + 7 + 8 + 9 + 10 = 338, 350 − 15, 150 + 200 = 323, 400 ≈ 22.47 10 140 10(11) √ (b) i= = 55 14. n2 + 2n − 4 i=1 2 n=1 140 140 140 6 = n2 + 2 n− 4 5. 3i2 = 3 + 12 + 27 + 48 + 75 + 108 n=1 n=1 n=1 i=1 (140)(141)(281) 140(141) = 273 = +2 − 4 (140) 6 2 7 = 943, 670 6. i2 + i = 12 + 20 + 30 + 42 + 56 i=3 30 = 160 2 15. (i − 3) + i − 3 10 i=3 7. (4i + 2) 30 30 2 i=6 = (i − 3) + (i − 3) = (4(6) + 2) + (4(7) + 2) + (4(8) + 2) i=3 i=3 + (4(9) + 2) + (4(10) + 2) 27 27 = 26 + 30 + 34 + 38 + 42 = n2 + n (substitute i − 3 = n) = 170 n=0 n=0 27 27 8 2 =0+ n2 + 0 + n 8. (i + 2) n=1 n=1 i=6 27 (28) (55) 27 (28) = (62 + 2) + (72 + 2) + (82 + 2) = + = 7308 6 2 = 38 + 51 + 66 = 155 70 70 20 20 9. (3i − 1) = 3 · i − 70 16. (i − 3) (i + 3) = i2 − 9 i=1 i=1 i=4 i=4 70(71) 20 20 =3· − 70 = 7, 385 2 = i2 − 9 1 45 45 45 i=4 i=4 10. (3i − 4) = 3 i−4 1 20 3 20 i=1 i=1 i=1 = i2 − i2 −9 1 45(46) i=1 i=1 i=4 =3 − 4(45) = 2925 2 20 (21) (41) = − 1 − 4 − 9 − 9 (17) 40 40 6 11. (4 − i2 ) = 160 − i2 = 2703 i=1 i=1 (40)(41)(81) n = 160 − 6 17. k2 − 3 = 160 − 22, 140 = −21, 980 k=3 n n 50 50 50 12. (8 − i) = 8 1− i = k2 + (−3) k=3 k=3 i=1 i=1 i=1 n 2 50(51) = 8(50) − = −875 = k2 − k2 2 k=1 k=1 100 n 2 13. n2 − 3n + 2 + (−3) − (−3) n=1 k=1 k=1 100 100 100 n (n + 1) (2n + 1) = −1−4 = n2 − 3 n+ 2 6 n=1 n=1 n=1 + (−3) n − (−3) (2) (100)(101)(201) 100(101) n (n + 1) (2n + 1) = −3 + 200 = − 5 − 3n + 6 6 2 6
  • 9. 248 CHAPTER 4. INTEGRATION n (n + 1) (2n + 1) = ((2.05)3 + 4)(0.1) + . . . = − 3n + 1 6 + ((2.95)3 + 4)(0.1) n = (202.4375)(0.1) 18. k2 + 5 = 20.24375 k=0 n 2 n n 1 i i 23. +2 = k2 + 5 n n n i=1 k=0 k=0 n n n n 1 i2 i =0+ k2 + 5 + 5 = +2 k=1 k=1 n i=1 n2 i=1 n n (n + 1) (2n + 1) n n = + 5 + 5n 1 1 2 6 = i2 + i n n2 i=1 n i=1 n 19. f (xi )∆x 1 1 n(n + 1)(2n + 1) = i=1 n n2 6 5 = (x2 + 4xi ) · 0.2 i 2 n(n + 1) + i=1 n 2 = (0.22 + 4(0.2))(0.2) + . . . n(n + 1)(2n + 1) n(n + 1) + (12 + 4)(0.2) = + 6n3 n2 = (0.84)(0.2) + (1.76)(0.2) n 2 + (2.76)(0.2) + (3.84)(0.2) 1 i i lim +2 + (5)(0.2) n→∞ n n n i=1 = 2.84 n n(n + 1)(2n + 1) n(n + 1) = lim + 20. f (xi )∆x n→∞ 6n3 n2 i=1 2 4 5 = +1= = (3xi + 5) · 0.4 6 3 i=1 n 2 = (3(0.4) + 5)(0.4) + . . . 1 i i 24. −5 + (3(2) + 5)(0.4) i=1 n n n = (6.2)(0.4) + (7.4)(0.4) n n + (8.6)(0.4) + (9.8)(0.4) 1 i2 i = −5 + (11)(0.4) n i=1 n2 i=1 n = 17.2 n n n 1 1 5 = i2 − i 21. f (xi )∆x n n2 i=1 n i=1 i=1 10 1 1 n(n + 1)(2n + 1) = = (4x2 − 2) · 0.1 i n n2 6 i=1 = (4(2.1)2 − 2)(0.1) + . . . 5 n(n + 1) − + (4(3)2 − 2)(0.1) n 2 = (15.64)(0.1) + (17.36)(0.1) n(n + 1)(2n + 1) 5n(n + 1) + (19.16)(0.1) + (21.04)(0.1) = − 6n3 2n2 + (23)(0.1) + (25.04)(0.1) 2 −13n − 12n + 1 + (27.16)(0.1) + (29.36)(0.1) = 6n2 + (31.64)(0.1) + (34)(0.1) n 2 1 i i = 24.34 lim −5 n n→∞ i=1 n n n 22. f (xi )∆x −13n2 − 12n + 1 i=1 = lim 10 n→∞ 6n2 = (x3 + 4) · 0.1 13 12 1 = lim − − + 2 i=1 n→∞ 6 6n 6n
  • 10. 4.2. SUMS AND SIGMA NOTATION 249 13 n =− n2 (n + 1)2 6 i3 = i=1 4 n 1 2i 2 2i is true for all integers n ≥ 1. 25. 4 − For n = 1, we have n n n 1 i=1 12 (1 + 1)2 n n i3 = 1 = , 1 i2 i i=1 4 = 16 −2 n i=1 n2 i=1 n as desired. So the proposition is true for n = 1. n n 1 16 2 Next, assume that = i2 − i k n n2 n k 2 (k + 1)2 i=1 i=1 i3 = , 1 16 n(n + 1)(2n + 1) i=1 4 = for some integer k ≥ 1. n n2 6 In this case, we have by the induction assump- 2 n(n + 1) tion that for n = k + 1, − n 2 n k+1 k i3 = i3 = i3 + (k + 1)3 16n(n + 1)(2n + 1) n(n + 1) = − i=1 i=1 i=1 6n3 n2 k 2 (k + 1)2 n 2 = + (k + 1)3 1 2i 2i 4 lim 4 − k 2 (k + 1)2 + 4(k + 1)3 n→∞ i=1 n n n = 4 16n(n + 1)(2n + 1) n(n + 1) (k + 1)2 (k 2 + 4k + 4) = lim − = n→∞ 6n3 n2 4 (k + 1)2 (k + 2)2 16 13 = = −1= 4 3 3 n2 (n + 1)2 = n 2 4 1 2i i as desired. 26. +4 i=1 n n n 28. Want to prove that n n n 1 4i2 i n2 (n + 1)2 (2n2 + 2n − 1) = +4 i5 = n i=1 n2 i=1 n 12 i=1 n n is true for all integers n ≥ 1. 1 4 4 For n = 1, we have = i2 + i n n2 i=1 n i=1 1 12 (1 + 1)2 (2 + 2 − 1) i3 = 1 = , 1 4 n(n + 1)(2n + 1) i=1 12 = n n2 6 as desired. So the proposition is true for n = 1. 4 n(n + 1) + Next, assume that n 2 k k 2 (k + 1)2 (2k 2 + 2k − 1) 4n(n + 1)(2n + 1) 4n(n + 1) i5 = , = + i=1 12 6n3 2n2 for some integer k ≥ 1. 2 10n + 12n + 2 In this case, we have by the induction assump- = 3n2 tion that for n = k + 1, n 2 n k+1 k 1 2i i lim +4 i5 = i5 = i5 + (k + 1)5 n→∞ i=1 n n n i=1 i=1 i=1 k 2 (k + 1)2 (2k 2 + 2k − 1) 10n + 12n + 2 2 = + (k + 1)5 = lim 12 n→∞ 3n2 10 12 2 10 k 2 (k + 1)2 (2k 2 + 2k − 1) + 12(k + 1)5 = lim + + = = n→∞ 3 3n 3n2 3 12 (k + 1)2 [k 2 (2k 2 + 2k − 1) + 12(k + 1)3 ] 27. Want to prove that = 12
  • 11. 250 CHAPTER 4. INTEGRATION (k + 1)2 [2k 4 + 14k 3 + 35k 2 + 36k + 12] a − ar = 34. When n = 0, a = . 12 1−r Assume the formula holds for n = k − 1, which (k + 1) (k + 4k + 4)(2k 2 + 6k + 3) 2 2 gives = 12 a − ark a + ar + · · · ark−1 = . n2 (n + 1)2 (2n2 + 2n − 1) 1−r = Then for n = k, 12 as desired. we have a + ar + · · · ark 10 = a + ar + · · · ark−1 + ark a − ark 29. (i3 − 3i + 1) = + ark 1−r i=1 10 10 a − ark + ark (1 − r) = = i3 − 3 i + 10 1−r i=1 i=1 a − ark + ark − ark+1 = 100(11)2 10(11) 1−r = −3 + 10 a − ark+1 4 2 = = 2, 870 1−r a − arn+1 = 20 1−r 30. (i3 + 2i) as desired. i=1 20 20 n = i3 + 2 i 6 35. e6i/n i=1 i=1 i=1 n 400(21)2 20(21) n = +2 = 44, 520 6 4 2 = e6i/n n i=1 100 31. (i5 − 2i2 ) 6 e6/n − e6 = i=1 n 1 − e6/n 100 100 = 5 i −2 i2 6 1 − e6 = −1 i=1 i=1 n 1 − e6/n (100 )(1012 )[2(1002 ) + 2(100) − 1] 2 6 1 − e6 6 = = − 12 n 1 − e6/n n 6 100(101)(201) Now lim = 0, and −2 x→∞ n 6 = 171, 707, 655, 800 6 1 − e6 lim x→∞ n 1 − e6/n 100 1/n 32. (2i5 + 2i + 1) = 6(1 − e6 ) lim x→∞ 1 − e6/n i=1 100 100 1 = 6(1 − e6 ) lim =2 i5 + 2 i + 100 x→∞ −6e6/n i=1 i=1 = e6 − 1. 2 2 2 n (100 )(101 )[2(100 ) + 2(100) − 1] 6 =2 Thus lim e6i/n = e6 − 1. 12 x→∞ n i=1 100(101) +2· + 100 2 n = 343, 416, 675, 200 2 36. e(2i)/n i=1 n n n n 33. (cai + dbi ) = cai + dbi 2 e2/n − e2 = i=1 i=1 i=1 n 1 − e2/n n n =c ai + d bi 2 1 − e2 = −1 i=1 i=1 n 1 − e2/n
  • 12. 4.3. AREA 251 2 1 − e2 2 Notice that ∆x = 0.25. = − n 1 − e2/n n A4 = [f (0.125) + f (0.375) + f (0.625) 2 + f (0.875)](0.25) Now lim = 0, and x→∞ n = [(0.125)2 + 1 + (0.375)2 + 1 2 1 − e2 + (0.625)2 + 1 + (0.875)2 + 1](0.25) lim x→∞ n 1 − e2/n = 1.38125. 1/n = 2(1 − e2 ) lim 2 x→∞ 1 − e2/n 1 = 2(1 − e2 ) lim 1.5 x→∞ −2e2/n = e2 − 1. 1 n 2 Thus lim e2i/n = e2 − 1. x→∞ i=1 n 0.5 37. Distance 0 = 50(2) + 60(1) + 70(1/2) + 60(3) 0 0.2 0.4 0.6 x 0.8 1 1.2 = 375 miles. 38. Distance = 50(1) + 40(1) + 60(1/2) + 55(3) = 285 miles. (b) Evaluation points: 0.25, 0.75, 1.25, 1.75. 39. On the time interval [0, 0.25], the estimated ve- Notice that ∆x = 0.5. 120 + 116 A4 = [f (0.25) + f (0.75) + f (1.25) locity is the average velocity = 118 2 + f (1.75)](0.5) feet per second. = [(0.25)2 + 1 + (0.75)2 + 1 + (1.25)2 We estimate the distance traveled during the + 1 + (1.75)2 + 1](0.5) time interval [0, 0.25] to be = 4.625. (118)(0.25 − 0) = 29.5 feet. Altogether, the distance traveled is estimated 7 as 6 = (236/2)(0.25) + (229/2)(0.25) + (223/2)(0.25) + (218/2)(0.25) 5 + (214/2)(0.25) + (210/2)(0.25) 4 + (207/2)(0.25) + (205/2)(0.25) 3 = 217.75 feet. 2 40. On the time interval [0, 0.5], the estimated ve- 1 10 + 14.9 0 locity is the average velocity = 12.45 -0.5 0 0.5 1 1.5 2 2.5 2 x meters per second. We estimate the distance fallen during the time interval [0, 0.5] to be (12.45)(0.5 − 0) = 6.225 meters. Altogether, the distance fallen (estimated) = (12.45)(0.5) + (17.35)(0.5) + (22.25)(0.5) + (27.15)(0.5) + (32.05)(0.5) + (36.95)(0.5) + (41.85)(0.5) + (46.75)(0.5) 2. (a) Evaluation points: = 118.4 meters. 1.125, 1.375, 1.625, 1.875. Notice that ∆x = 0.25. A4 = [f (1.125) + f (1.375) + f (1.625) 4.3 Area + f (1.875)](0.25) = [(1.125)3 − 1 + (1.375)3 − 1 1. (a) Evaluation points: + (1.625)3 − 1 + (1.875)3 − 1](0.25) 0.125, 0.375, 0.625, 0.875. = 2.7265625.
  • 13. 252 CHAPTER 4. INTEGRATION 11π/16, 13π/16, 15π/16. 7 Notice that ∆x = π/8. 6 A4 = [f (π/16) + f (3π/16) + f (5π/16) 5 + f (7π/16) + f (9π/16) + f (11π/16) 4 + f (13π/16) + f (15π/16)](π/8) = [sin(π/16) + sin(3π/16) + sin(5π/16) 3 + sin(7π/16) + sin(9π/16) 2 + sin(11π/16) + sin(13π/16) 1 + sin(15π/16)](π/8) = 2.0129. 0 1 1.2 1.4 1.6 1.8 2 x 1 (b) Evaluation points: 0.8 1.25, 1.75, 2.25, 2.75. Notice that ∆x = 0.5. 0.6 A4 = [f (1.25) + f (1.75) + f (2.25) + f (2.75)](0.5) 0.4 = [(1.25)3 − 1 + (1.75)3 − 1 + (2.25)3 − 1 + (2.75)3 − 1](0.5) 0.2 = 17.75. 0 0 0.5 1 1.5 2 2.5 3 x 30 25 20 15 4. (a) Evaluation points: −0.75, −0.25, 0.25, 0.75. 10 Notice that ∆x = 0.5. 5 A4 = [f (−0.75) + f (−0.25) + f (0.25) 0 + f (0.75)](0.5) 1 1.5 2 2.5 3 x = [4 − (−0.75)2 + 4 − (−0.25)2 + 4 − (0.25)2 + 4 − (0.75)2 ](0.5) 3. (a) Evaluation points: = 7.375. π/8, 3π/8, 5π/8, 7π/8. 4 Notice that ∆x = π/4. A4 = [f (π/8) + f (3π/8) + f (5π/8) 3 + f (7π/8)](π/4) = [sin(π/8) + sin(3π/8) + sin(5π/8) 2 + sin(7π/8)](π/4) = 2.05234. 1 1 0 0.8 -1 -0.5 0 0.5 1 x 0.6 0.4 (b) Evaluation points: −2.75, −2.25, −1.75, −1.25. 0.2 Notice that ∆x = 0.5. 0 A4 = [f (−2.75) + f (−2.25) + f (−1.75) 0 0.5 1 1.5 x 2 2.5 3 + f (−1.25)](0.5) = [4 − (−2.75)2 + 4 − (−2.25)2 + 4 (b) Evaluation points: − (−1.75)2 + 4 − (−1.25)2 ](0.5) π/16, 3π/16, 5π/16, 7π/16, 9π/16, = −0.625.
  • 14. 4.3. AREA 253 15 A16 = ∆x f (ci ) 2 i=0 15 2 x 1 i 1 -3 -2.5 -2 -1.5 -1 = + + 1 ≈ 4.6640 0 8 i=0 8 16 -2 (c) There are 16 rectangles and the evalua- tion points are given by ci = i∆x + ∆x -4 where i is from 0 to 15. 15 -6 A16 = ∆x f (ci ) i=0 15 2 1 i 1 = + + 1 ≈ 4.9219 5. (a) There are 16 rectangles and the evalua- 8 i=0 8 8 tion points are given by ci = i∆x where i is from 0 to 15. 7. (a) There are 16 rectangles and the evalua- 15 tion points are the left endpoints which A16 = ∆x f (ci ) are given by i=0 15 2 ci = 1 + i∆x where i is from 0 to 15. 1 i 15 = + 1 ≈ 1.3027 16 16 A16 = ∆x f (ci ) i=0 i=0 (b) There are 16 rectangles and the evalua- 3 15 3i ∆x = 1+ + 2 ≈ 6.2663 tion points are given by ci = i∆x + 16 16 2 i=0 where i is from 0 to 15. 15 (b) There are 16 rectangles and the evalua- A16 = ∆x f (ci ) tion points are the midpoints which are i=0 given by 15 2 ∆x 1 i 1 ci = 1 + i∆x + where i is from 0 to = + +1 2 16 i=0 16 32 15. 15 ≈ 1.3330 A16 = ∆x f (ci ) (c) There are 16 rectangles and the evalua- i=0 15 tion points are given by ci = i∆x + ∆x 3 3i 3 = 1+ + +2 where i is from 0 to 15. 16 16 32 15 i=0 A16 = ∆x f (ci ) ≈ 6.3340 i=0 15 2 (c) There are 16 rectangles and the evalua- 1 i 1 = + +1 tion points are the right endpoints which 16 i=0 16 16 are given by ≈ 1.3652 ci = 1 + i∆x where i is from 1 to 16. 16 A16 = ∆x f (ci ) 6. (a) There are 16 rectangles and the evalua- i=1 tion points are given by ci = i∆x where i 16 3 3i is from 0 to 15. = 1+ + 2 ≈ 6.4009 15 16 i=1 16 A16 = ∆x f (ci ) i=0 15 2 8. (a) There are 16 rectangles and the evalua- 1 i tion points are the left endpoints which = + 1 ≈ 4.4219 8 i=0 8 are given by ci = −1 + i∆x − ∆x (b) There are 16 rectangles and the evalua- where i is from 1 to 16. ∆x 16 tion points are given by ci = i∆x + 2 A16 = ∆x f (ci ) where i is from 0 to 15. i=1
  • 15. 254 CHAPTER 4. INTEGRATION 16 1 i 1 given by ci = −1 + i∆x − ∆x where i is = e−2(−1+ 8 − 8 ) ≈ 4.0991 from 1 to 100. 8 i=1 100 (b) There are 16 rectangles and the evalua- A100 = ∆x f (ci ) tion points are the midpoints which are i=1 100 3 given by 2 2i 2 ∆x = −1 + − −1 ci = −1 + i∆x − 100 i=1 100 100 2 where i is from 1 to 16. ≈ −2.02 16 A16 = ∆x f (ci ) (b) There are 100 rectangles and the evalua- i=1 tion points are midpoints which are given 16 ∆x 1 i 1 by ci = −1 + i∆x − where i is from 1 = e−2(−1+ 8 − 16 ) ≈ 3.6174 2 8 to 100. i=1 100 (c) There are 16 rectangles and the evalua- A100 = ∆x f (ci ) tion points are the right endpoints which i=1 100 3 are given by 2 2i 1 ci = −1 + i∆x where i is from 1 to 16. = −1 + − −1 100 i=1 100 100 16 A16 = ∆x f (ci ) = −2 i=1 16 (c) There are 100 rectangles and the evalua- 1 i tion points are right endpoints which are = e−2(−1+ 8 ) ≈ 3.1924 8 i=1 given by ci = −1 + i∆x where i is from 1 to 100. 9. (a) There are 50 rectangles and the evalua- 100 tion points are given by ci = i∆x where i A100 = ∆x f (ci ) is from 0 to 49. i=1 50 100 3 2 2i A50 = ∆x f (ci ) = −1 + − 1 ≈ −1.98 100 i=1 100 i=0 50 π πi 1 = cos ≈ 1.0156 11. (a) ∆x = . We will use right endpoints as 100 i=0 100 n i (b) There are 50 rectangles and the evalua- evaluation points, xi = . n ∆x n tion points are given by ci = + i∆x An = f (xi )∆x 2 where i is from 0 to 49. i=1 50 n 2 n 1 i 1 A50 = ∆x f (ci ) = +1 = 3 i2 + 1 i=0 n i=1 n n i=1 50 1 n(n + 1)(2n + 1) π π πi = 3 +1 = cos + n 6 100 i=0 200 100 ≈ 1.00004 8n2 + 3n + 1 = 6n2 (c) There are 50 rectangles and the evalua- Now to compute the exact area, we take tion points are given by ci = ∆x + i∆x the limit as n → ∞: where i is from 0 to 49. 8n2 + 3n + 1 50 A = lim An = lim n→∞ n→∞ 6n2 A50 = ∆x f (ci ) 8 3 1 4 i=0 = lim + + = 50 n→∞ 6 6n 6n2 3 π π πi 2 = cos + (b) ∆x = . We will use right endpoints as 100 i=0 100 100 n 2i ≈ 0.9842 evaluation points, xi = . n n 10. (a) There are 100 rectangles and the evalu- An = f (xi )∆x ation points are left endpoints which are i=1