SlideShare una empresa de Scribd logo
1 de 10
Descargar para leer sin conexión
A
A severity characterisation of trauma (ASCOT).                    pressure via a bladder catheter or nasogastric tube, using a
Trauma scale derived from the Glasgow coma scale, sys-            water column manometer.
tolic BP, revised trauma score, abbreviated injury scale              Management includes laparotomy and leaving the abdomen
and age. A logistic regression equation is used to provide a      open and/or using silastic material to cover the abdominal
probability of mortality. Excludes patients with a very poor or   contents. Paracentesis may be effective if raised intra-abdom-
very good prognosis. Has been claimed to be superior to the       inal pressure is due to accumulation of fluid, e.g. ascites. Full
trauma revised injury severity score system although more         resuscitation must be performed before decompression as rapid
complex.                                                          release of pressure may result in sudden washout of inflamma-
Champion HR, Copes WS, Sacco WJ, et al (1996). J Trauma;          tory mediators from ischaemic tissues, causing acidosis and
40: 42–8                                                          hypotension.
                                                                  Malbrain ML, Cheatham ML, Kirkpatrick A, et al (2006).
A–adO2, see Alveolar–arterial oxygen difference                   Intensive Care Med; 32: 1722–1732, and Cheatham ML,
                                                                  Malbrain ML, Kirkpatrick A (2007). Intensive Care Med;
ABA, see American Board of Anesthesiology                         33: 951–62
                                                                  See also, Compartment syndromes
Abbott, Edward Gilbert, see Morton, William
                                                                  Abdominal decompression. Technique in obstetric anal-
Abbreviated injury scale (AIS). Trauma scale first                 gesia whereby negative pressure is applied to the abdomen in
described in 1971 and updated many times since. Comprises         order to reduce labour pain and possibly shorten labour.
a classification of injuries with each given a 6-digit code (the   Thought to act by making the uterus more spherical during
last indicating severity, with 1 ¼ minor and 6 ¼ fatal). The      contractions, thus contracting with less force. Now rarely
codes are linked to International Classification of Diseases       used.
codes, thus aiding standardisation of records. The anatomical     See also, Obstetric analgesia and anaesthesia
profile is a refinement in which the locations of injuries are
divided into four categories; the AIS scores are added and the    Abdominal field block. Technique using 100–200 ml local
square root taken to minimise the contribution of less severe     anaesthetic agent, involving infiltration of the skin, subcuta-
injuries.                                                         neous tissues, abdominal muscles and fascia. Provides anal-
Copes WS, Lawnick M, Champion HR, Sacco WJ (1988).                gesia of the abdominal wall and anterior peritoneum, but not
J Trauma; 28: 78–86                                               of the viscera. Now rarely used. Rectus sheath block, trans-
                                                                  versus abdominis plane block, iliac crest block and
Abciximab. Monoclonal antibody preparation used as an             inguinal hernia field block are more specific blocks.
antiplatelet drug and adjunct to aspirin and heparin in
high risk patients undergoing percutaneous transluminal           Abdominal sepsis, see Intra-abdominal sepsis
coronary angioplasty. Consists of Fab fragments of
immunoglobulin directed against the glycoprotein IIb/IIIa         Abdominal trauma. May be blunt (e.g. road traffic acci-
receptor on the platelet surface. Inhibits platelet aggregation   dents) or penetrating (e.g. stabbing, bullet wounds). Often
and thrombus formation; effects last 24–48 h after infusion.      carries a high morbidity and mortality because injuries may
Careful consideration of risks and benefits should precede use     go undetected. May lead to massive intra-abdominal blood
since risk of bleeding is increased. Licensed for single use      loss or abdominal compartment syndrome. The abdomen
only.                                                             can be divided into three areas:
l Dosage: 250 mg/min iv 10–60 min (up to 24 h in unstable            w intrathoracic: protected by the bony thoracic cage. Con-
   angina) before angioplasty with 125 mg/kg/min (up to                 tains the spleen, liver, stomach and diaphragm. Injury
   10 mg/min for 12 h afterwards).                                      may be associated with rib fractures. The diaphragm
l Side effects: bleeding, hypotension, nausea, bradycardia.             may also be injured by blows to the lower abdomen
   Thrombocytopenia occurs rarely.                                      (which impart pressure waves to the diaphragm) or by
                                                                        penetrating injuries of the chest.
Abdominal compartment syndrome. Combination of                       w true abdomen: contains the small and large bowel,
increased intra-abdominal pressure and organ dysfunction,               bladder and, in the female, uterus, fallopian tubes and
e.g. following abdominal trauma or extensive surgery,                   ovaries.
resulting from haemorrhage, leakage of oedema fluid and/or            w retroperitoneal: contains the kidneys, ureters, pancreas
massive intestinal oedema. May also follow liver transplant-            and duodenum. May result in massive blood loss from
ation and acute pancreatitis. Intra-abdominal pressures                 retroperitoneal venous injury.
above 20–25 cmH2O may be associated with reduced venous           l Management:
return and cardiac output, impaired ventilation, reduced renal       w basic resuscitation as for trauma generally.
blood flow and oliguria. Increased CVP may lead to raised             w initial assessment: examination of the anterior abdom-
ICP. Diagnosed clinically and by measuring intra-abdominal              inal wall, both flanks, back, buttocks, perineum (and in

                                                                                                                                 I
2      ABO blood groups



         men, the urethral meatus) for bruises, lacerations, entry          Abuse of anaesthetic agents. May occur because of easy
         and exit wounds. Signs may be masked by unconscious-               access to potent drugs by operating theatre or ICU staff.
         ness, spinal cord injury or the effects of alcohol or              Opioid analgesic drugs are the most commonly abused
         drugs. Abdominal swelling usually indicates intra-                 agents, but others include benzodiazepines and inhalational
         abdominal haemorrhage; abdominal guarding or rigidity              anaesthetic agents. Abuse may be suggested by behavioural
         usually indicates visceral injury. Absence of bowel                or mood changes, or excessive and inappropriate requests for
         sounds may indicate intra-peritoneal haemorrhage or                opioids. Main considerations include the safety of patients,
         peritoneal soiling with bowel contents. Colonic or rectal          counselling and psychiatric therapy for the abuser, and legal
         injuries may cause blood pr. A high index of suspicion is          aspects of drug abuse. May be associated with alcoholism.
         required for retroperitoneal injuries since examination is         Berry CB, Crome IB, Plant M, Plant M (2000). Anaesthesia;
         difficult.                                                          55: 946–52
       w imaging: abdominal X-ray may reveal free gas under the             See also, Misuse of Drugs Act; Sick doctor scheme; Substance
         diaphragm (erect or semi-erect; may also be visible on             abuse
         chest X-ray) or laterally (lateral decubitus X-ray); other
         investigations include pelvic X-ray and urological radi-           Acarbose. Inhibitor of intestinal alpha glucosidases and
         ology if indicated (e.g. iv urogram, etc.), CT and MRI             pancreatic amylase; used in the treatment of diabetes melli-
         scanning and ultrasound.                                           tus, usually in combination with a biguanide or sulfony-
       w peritoneal lavage is indicated in blunt abdominal trauma           lurea. Delays digestion and absorption of starch and
         associated with:                                                   sucrose. Has a small blood glucose lowering effect.
         - altered pain response (head injury, spinal cord injury,          l Dosage: 50 mg orally once daily, increasing up to 200 mg
           drugs, etc.).                                                       8 hourly.
         - unexplained hypovolaemia following multiple trauma.              l Side effects include flatulence and diarrhoea, and rarely
         - equivocal diagnostic findings.                                       hepatic dysfunction. Contraindicated in pregnancy and
       w insertion of a nasogastric tube and urinary catheter (pro-            inflammatory bowel disease.
         vided no urethral injury; a suprapubic catheter may be             See also, Meglitinides; Thiazolidinediones
         necessary).
       w indications for laparotomy include penetrating injuries,           Accessory nerve block. Performed for spasm of trapezius
         obvious intra-abdominal haemorrhage, signs of bowel                and sternomastoid muscles (there is no sensory component to
         perforation or a positive peritoneal lavage.                       the nerve). 5–10 ml local anaesthetic agent is injected 2 cm
    See also, Pelvic trauma                                                 below the mastoid process into the sternomastoid muscle,
                                                                            through which the nerve runs.
    ABO blood groups. Discovered in 1900 by Landsteiner in
    Vienna. Antigens may be present on red blood cells, with                Accident, major, see Incident, major
    antibodies in the plasma (Table 1). The antibodies, mostly
    type-M immunoglobulins, develop within the first few                     ACD, Acid–citrate–dextrose solution, see Blood storage
    months of life, presumably in response to naturally occurring
    antigens of similar structure to the blood antigens. Infusion of        ACD-CPR, Active compression decompression CPR,
    blood containing an ABO antigen into a patient who already              see Cardiac massage; Cardiopulmonary resuscitation
    has the corresponding antibody may lead to an adverse reac-
    tion; hence the description of group O individuals as universal         ACE, Angiotensin converting enzyme, see Renin/angioten-
    donors, and of group AB individuals as universal recipients.            sin system
    [Karl Landsteiner (1868–1943), Austrian-born US patholo-
    gist]                                                                   ACE anaesthetic mixture. Mixture of alcohol, chloroform
    See also, Blood cross-matching; Blood groups; Blood trans-              and diethyl ether, in a ratio of 1:2:3 parts, suggested in 1860 as
    fusion                                                                  an alternative to chloroform alone. Popular into the 1900s as a
                                                                            means of reducing total dose and side effects of any one of the
    ABPI, see Ankle Brachial Pressure Index                                 three drugs.

    Abruption, see Antepartum haemorrhage                                   ACE inhibitors, see Angiotensin converting enzyme
                                                                            inhibitors
    Absolute risk reduction. Indicator of treatment effect in
    clinical trials. For a reduction in incidence of events from a%         Acetaminophen, see Paracetamol
    to b%, it equals (a–b)%. Does not give an indication of the
    magnitude of a or b.                                                    Acetazolamide. Carbonic anhydrase inhibitor, which
    See also, Meta-analysis; Number needed to treat; Odds ratio;            reduces bicarbonate formation and hydrogen ion excretion,
    Relative risk reduction                                                 thereby creating a metabolic acidosis. Also a weak diuretic,
                                                                            but rarely used as such. Used to treat glaucoma, metabolic
                                                                            alkalosis, altitude sickness and childhood epilepsy. Useful in
     Table 1 Antigens and antibodies in ABO blood groups                    the treatment of severe hyperphosphataemia because it
                                                                            leads to urinary excretion of phosphate. May be used to
      Group    Incidence in UK (%)   Red cell antigen   Plasma antibody     lower ICP by reducing CSF production. Has been used to
                                                                            alkalinise the urine in tumour lysis syndrome or to enhance
      A        42                    A                  Anti-B              excretion in drug intoxications, e.g. with salicylates.
      B         8                    B                  Anti-A              l Dosage: 0.25–0.5 g orally/iv, once/twice daily.
      AB        3                    A and B            None
      O        47                    None               Anti-A and anti-B   Acetylcholine (ACh). Neurotransmitter, the acetyl ester
                                                                            of the base choline (Fig. 1). Synthesised from acetylcoenzyme
Acetylcholinesterase           3



                CH3                           O                      (a)

                                                                                                                                        Nicotinic
          CH3         N+   CH2      CH2   O   C   CH3                Somatic muscle

                CH3                                                                                                      Nicotinic Muscarinic
                                                                     Parasympathetic
Fig. 1 Structure of acetylcholine
                                                                                                                    Nicotinic          Adrenergic
                                                                                          Most nerves
A and choline in nerve ending cytoplasm; the reaction is
catalysed by choline acetyltransferase. Choline is actively                                   To sweat              Nicotinic          Muscarinic
transported into the nerve and acetylcoenzyme A is formed in         Sympathetic
                                                                                              glands
mitochondria. ACh is stored in vesicles.
l ACh is the transmitter at:                                                                  To adrenal            Nicotinic
    w autonomic ganglia.                                                                      medulla
    w parasympathetic postganglionic nerve endings.
                                                                     (b)
    w sympathetic postganglionic nerve endings at sweat
      glands and some muscle blood vessels.
    w the neuromuscular junction.                                                     ε δ
                                                                                 α               α
    w many parts of the CNS where it has a prominent role in
                                                                                          β
      learning.
                                                                                                                                           10 nm
Has either muscarinic or nicotinic actions, depending on the
acetylcholine receptors involved. ACh is hydrolysed to cho-
line and acetate by acetylcholinesterase on the postsynaptic
membrane. Other esterases also exist, e.g. plasma cholines-
terase.
See also, Muscarine and muscarinic receptors; Neuromuscu-
lar transmission; Nicotine and nicotinic receptors; Parasym-           Lipids
pathetic nervous system; Sympathetic nervous system;
Synaptic transmission
                                                                                                                            Cytoskeleton
Acetylcholine receptors. Transmembrane proteins acti-
vated by acetylcholine (ACh). ACh receptors may be mus-          Fig. 2 (a) Types of acetylcholine receptors. (b) Structure of nicotinic
carinic or nicotinic (Fig. 2a). Injected ACh first stimulates     acetylcholine receptor
muscarinic receptors. As the dose is increased, nicotinic
receptors are stimulated; i.e. parasympathetic stimulation
and sweating precedes effects at ganglia and the neuromus-
cular junction (NMJ).
    The structure of the postsynaptic (nicotinic) receptors at
the NMJ has been identified largely through work on the
electric eel. Each receptor consists of five glycosylated pro-                                    Acetylcholine
tein subunits which project into the synaptic cleft. The sub-                                                           O
units have been designated a (mw 40 000), b (mw 49 000),                              +
g (mw 60 000) and d (mw 67 000). The g subunit is thought to                 (CH3)3 N          CH2       CH2    O       C       CH3
be replaced by an e subunit in mammals. The subunits span                                                               H
the postsynaptic membrane and form a cylinder around a                                                                  O
central ion channel (Fig. 2b). The two a subunits of each
receptor carry the binding sites for ACh. Occupation of
these sites causes a configurational change of the subunits,                     Anionic site                    Esteratic site
thus opening the ion channel; cations (mainly sodium, potas-
sium and calcium) flow through the channel according to their                      Choline                               O             Acetylated
concentration gradients and thus generate an action potential.                    +                                                    enzyme
Non-depolarising neuromuscular blocking drugs at normal                    (CH3)3 N       CH2        CH2       OH       C       CH3
doses reduce the number of receptors available to ACh. At
                                                                                                                        O
higher doses they may also block the ion channel. Muscarinic
receptors are G protein-coupled receptors.
    Neuronal forms of ACh receptors are more heterogenous
with a large number of subunit configurations.
See also, Muscarine and muscarinic receptors; Neuromuscu-                                                                   O
lar transmission; Nicotine and nicotinic receptors; Parasym-                                                                            Acetate
                                                                                                                            C    CH3
pathetic nervous system; Sympathetic nervous system;
Synaptic transmission                                                                                                       O
                                                                                                                        H
Acetylcholinesterase. Enzyme present in the basement                                                                    O
postsynaptic membranes of cholinergic synapses and
neuromuscular junctions. Also found in red blood cells
and the placenta. Converts acetylcholine (ACh) into acetate      Fig. 3 Action of acetylcholinesterase
4      Acetylcholinesterase inhibitors



    and choline, thus terminating its action. The N(CH3)3þ part        l   Dosage:
    of ACh binds to the anionic site of the enzyme, and the                w paracetamol poisoning: 150 mg/kg (to a maximum of
    acetate end of ACh forms an intermediate bond at the esteratic           12 g) in 200 ml 5% dextrose iv over 15 min, followed by
    site. Choline is liberated, and the intermediate substrate/en-           50 mg/kg in 500 ml dextrose over 4 h, then 100 mg/kg
    zyme complex is then hydrolysed to release acetate (Fig. 3).             in 1 litre dextrose over 16 h.
    See also, Acetylcholinesterase inhibitors; Neuromuscular               w to reduce viscosity of airway secretions: 200 mg
    transmission; Synaptic transmission                                      8 hourly, orally. Has been delivered by nebuliser.
                                                                       l   Side effects: rashes, anaphylaxis. Has been associated with
    Acetylcholinesterase inhibitors. Substances which                      bronchospasm in asthmatics.
    increase acetylcholine (ACh) concentrations by inhibiting
    acetylcholinesterase. Used clinically for their action at the      Achalasia. Disorder of oesophageal motility caused by idio-
    neuromuscular junction in myasthenia gravis and in the             pathic degeneration of nerve cells in the myenteric plexus or
    reversal of non-depolarising neuromuscular blockade.               vagal nuclei. Results in dysphagia and oesophageal dilatation.
    Concurrent administration of an antimuscarinic agent, e.g.         A similar condition may result from American trypanosomal
    atropine or glycopyrronium, reduces unwanted effects of            infection (Chagas’ disease). Aspiration pneumonitis or
    increased ACh concentrations at muscarinic receptors. Ef-          repeated chest infections may occur. Achalasia is treated by
    fects at ganglia are minimal at normal doses. Central effects      mechanical distension of the lower oesophagus or by surgery.
    may occur if the drug readily crosses the blood–brain bar-         Heller’s cardiomyotomy (longitudinal myotomy leaving the
    rier, e.g. physostigmine (used to treat the central anticholi-     mucosa intact) may be undertaken via abdominal or thoracic
    nergic syndrome).                                                  approaches. Preoperative respiratory assessment is essential.
    Have also been used to treat tachyarrhythmias.                     Patients are at high risk of aspirating oesophageal contents,
    l Classification:                                                   and rapid sequence induction must be performed.
        w prosthetic: competitive inhibition at the anionic site of    [Carlos Chagas (1879–1934), Brazilian physician; Ernst Hel-
          the enzyme prevents binding of ACh, e.g. edropho-            ler (1877–1964), German surgeon]
          nium, tetrahydroaminocrine.                                  See also, Aspiration of gastric contents; Induction, rapid
        w oxydiaphoretic: acts as a substrate for the enzyme; the      sequence
          reaction proceeds as far as the intermediate substrate/
          enzyme complex. Hydrolysis of the complex and thus           Achondroplasia. Skeletal disorder, inherited as an autoso-
          reactivation of the enzyme is slow.                          mal dominant gene, although most cases arise by spontaneous
    Examples:                                                          mutation. Results in dwarfism, with normally sized trunk and
    - neostigmine, physostigmine (few hours).                          shortened limbs. Flat face, bulging skull vault and spinal
    - pyridostigmine (several hours).                                  deformity may make tracheal intubation difficult, and the
    - distigmine (up to a day).                                        larynx may be smaller than normal. Obstructive sleep apnoea
        Organophosphorus compounds act as oxydiaphoretic               may occur. Foramen magnum and spinal canal stenoses may
    inhibitors, but the substrate/enzyme complex is minimally          be present. The former may result in cord compression on
    hydrolysed; inhibition lasts for weeks until new enzyme is         neck extension; the latter may make central regional blockade
    synthesised.                                                       difficult and reduce volume requirements for epidural
        Acetylcholinesterase inhibitors augment depolarising           anaesthesia.
    neuromuscular blockade and may cause depolarising block-
    ade in overdose. They may also cause bradycardia, hypoten-         Aciclovir. Antiviral drug; an analogue of nucleoside
    sion, agitation, miosis, increased GIT activity, sweating and      2’-deoxyguanosine. Inhibits viral DNA polymerase; active
    salivation.                                                        against herpes viruses and used in the treatment of encephal-
        Centrally acting acetylcholinesterase inhibitors (e.g. done-   itis, varicella zoster (chickenpox/shingles) and postherpetic
    pezil, rivastigmine, galantamine) are used for symptomatic         neuralgia, and for prophylaxis and treatment of herpes infec-
    treatment of Alzheimer’s dementia. Of potential anaesthetic        tions in immunocompromised patients. Treatment should
    relevance because of their side effects (including nausea,         start at onset of infection; the drug does not eradicate the
    vomiting, fatigue, muscle cramps, increased creatine kinase,       virus but may markedly attenuate the clinical infection.
    convulsions, bradycardia, confusion) and enhancement of the        l Dosage:
    actions of suxamethonium.                                              w as topical cream, 5 times daily.
    [Alois Alzheimer (1864–1915), German neurologist and                   w 200–800 mg orally, 2–5 times daily in adults.
    pathologist]                                                           w 5–10 mg/kg 8 hourly iv, infused over 1 h.
    See also, Neuromuscular transmission; Organophosphorus             l Side effects: rashes, GIT disturbances, hepatic and renal
    poisoning                                                              impairment, blood dyscrasias, headache, dizziness, severe
                                                                           local inflammation after iv use, confusion, convulsions,
    N-Acetylcysteine. Derivative of the naturally occurring                coma.
    amino acid, l-cysteine. A free radical scavenger, it acts as
    an antidote in paracetamol poisoning, probably by restoring        Acid. Substance which yields hydrogen ions in solution.
    depleted hepatic stores of glutathione or by acting as an
    alternative substrate for a toxic metabolite of paracetamol.       Acidaemia. Arterial pH < 7.35 or hydrogen ion concen-
    Also used as an ocular lubricant.                                  tration > 45 nmol/l.
        Has been investigated for a possible role in protection        See also, Acid–base balance; Acidosis
    against myocardial reperfusion injury, treatment of ful-
    minant hepatic failure, and treatment of MODS, acute               Acid–base balance. Maintenance of stable pH in body fluids
    lung injury and neuropsychiatric complications of carbon           is necessary for normal enzyme activity, ion distribution and
    monoxide poisoning. Has also been used as a mucolytic              protein structure. Normally, blood pH is maintained at 7.35–
    because of its ability to split disulphide bonds in mucus          7.45 (hydrogen ion (Hþ) concentration 35–45 nmol/l); intra-
    glycoprotein.                                                      cellular pH changes with extracellular pH. During normal
Acidosis, metabolic          5



metabolism of neutral substances, organic acids are produced        See also, Acid; Base; Blood gas tensions; Breathing, control
which generate hydrogen ions.                                       of; Davenport diagram; Siggaard-Andersen nomogram
l Maintenance of pH depends on:
    w buffers in tissues and blood, which minimise the in-
                                                                    Acid–citrate–dextrose solution, see Blood storage
      crease of Hþ concentration.                                   Acidosis. A process in which arterial pH < 7.35 (or hydro-
    w regulation by kidneys and lungs; the kidneys excrete          gen ion > 45 mmol/l), or would be < 7.35 if there were no
      about 60–80 mmol and the lungs about 15–20 000                compensatory mechanisms of acid–base balance.
      mmol Hþ per day.                                              See also, Acidosis, metabolic; Acidosis, respiratory
Because of the relationship between CO2, carbonic acid,
bicarbonate (HCO3À) and Hþ, and the ability to excrete              Acidosis, metabolic. Acidosis due to metabolic causes,
CO2 rapidly from the lungs, respiratory function is important       resulting in an inappropriately low pH for the measured
in acid–base balance:                                               arterial Pco2.
                                                                    l Caused by:
           H2 O þ CO2 Ð H2 CO3 Ð HCOÀ þ Hþ
                                    3                                   w increased acid production:
Thus hyper- and hypoventilation cause alkalosis and acidosis              - ketone bodies, e.g. in diabetes mellitus.
respectively. Similarly, hyper- or hypoventilation may com-               - lactate, e.g. in shock, exercise.
pensate for non-respiratory acidosis or alkalosis respectively,         w acid ingestion: e.g. salicylate poisoning.
                                                                                                               þ
by returning pH towards normal.                                         w failure to excrete hydrogen ion (H ):
   Sources of Hþ excreted via the kidneys include lactic acid             - renal failure.
from blood cells, muscle and brain, sulphuric acid from me-               - distal renal tubular acidosis.
tabolism of sulphur-containing proteins, and acetoacetic acid             - carbonic anhydrase inhibitors.
from fatty acid metabolism.                                             w loss of bicarbonate:
l The kidney can compensate for acid–base disturbances in                 - diarrhoea.
   three ways:                                                            - gastrointestinal fistulae.
                                            À
    w by regulating the amount of HCO3 reabsorbed. 80–                    - proximal renal tubular acidosis.
      90% of filtered HCO3À is reabsorbed in the proximal                  - ureteroenterostomy.
      tubule:                                                       l May be differentiated by the presence or absence of an
      - filtered sodium ion is exchanged for Hþ across the              anion gap:
        tubule cell membrane.                                           w anion gap metabolic acidosis occurs in renal failure,
      - filtered HCO3À and excreted Hþ form carbonic acid.                 lactic acidosis, ketoacidosis, rhabdomyolysis and fol-
      - carbonic acid is converted to CO2 and water by car-               lowing ingestion of certain toxins (e.g. salicylates,
        bonic anhydrase on the cell membrane.                             methanol, ethylene glycol).
      - CO2 and water reform carbonic acid (catalysed again             w non-anion gap (hyperchloraemic) metabolic acidosis is
        by carbonic anhydrase) within the cell.                           caused by the administration of chloride-containing
      - carbonic acid releases HCO3À and Hþ.                              solutions (e.g. saline) in large volumes, amino acid
      - HCO3À passes into the blood; Hþ is exchanged for                  solutions, diarrhoea, pancreatic fistulae, ileal loop pro-
        sodium ion, etc.                                                  cedures, after rapid correction of a chronically compen-
    w by forming dihydrogen phosphate from monohydrogen                   sated respiratory alkalosis or renal tubular acidosis.
                                                                                                       þ
      phosphate in the distal tubule (HPO42ÀþHþ!H2PO4À).            l Primary change: increased H /decreased bicarbonate.
      The Hþ is supplied from carbonic acid, leaving HCO3À          l Compensation:
      which passes into the blood.                                      w hyperventilation: plasma bicarbonate falls by about
    w by combination of ammonia, passing out of the cells,                1.3 mmol/l for every 1 kPa acute decrease in arterial
      with Hþ, supplied as above. The resultant ammonium                  Pco2, which usually does not fall below 1.3–1.9 kPa
      ions cannot pass back into the cells.                               (10–15 mmHg).
                                                                                              þ
In acid–base disorders, the primary change determines                   w increased renal H secretion.
whether a disturbance is respiratory or metabolic. The direc-       l Effects:
tion of change in Hþ concentration determines acidosis or               w hyperventilation (Kussmaul breathing).
alkalosis. Renal or respiratory compensation attempts to                w confusion, weakness, coma.
restore normal pH, not reverse the primary change. For                  w cardiac depression.
example, in the Henderson–Hasselbalch equation:                         w hyperkalaemia.
                                                                    l Treatment:
                                     [HCOÀ ]
                   pH ¼ pKa þ log         3                             w of underlying cause.
                                      [CO2 ]                            w bicarbonate therapy is reserved for treatment of severe
adjustment of the HCO3À/CO2 concentration ratio restores                  acidaemia (e.g. pH under 7.1) because of problems
pH towards its normal value, e.g.:                                        associated with its use.
    w primary change: increased CO2; leads to decreased pH                If bicarbonate is required, a formula for iv infusion is:
      (respiratory acidosis).                                              base excess  body weight (kg)
                             À
    w compensation: HCO3 retention by kidneys; increased                                                  mmol
      ammonium secretion, etc.                                                            3
An ‘alternative approach’ suggested by Stewart in 1983 focuses           Half this amount is given initially.
on the strong ion difference to explain the underlying pro-            w other agents under investigation include sodium
cesses rather than the above ‘traditional approach’ which con-           dichloroacetate, Carbicarb (sodium bicarbonate and
centrates more on interpretation of measurements. It is based on         carbonate in equimolar concentrations) and THAM
the degree of dissociation of ions in solution, in particular the        (2-amino-2-hydroxymethyl-1,3-propanediol).
effects of strong ions and weak acids, and the role of bicarbon-    Morris CG, Low J (2008). Anaesthesia; 63: 294–301 and
ate as a marker of acid–base imbalance rather than a cause.         396–411
[Peter Stewart (1921–1993), Canadian physiologist]                  See also, Acidaemia; Acid–base balance
6      Acidosis, respiratory



    Acidosis, respiratory. Acidosis due to increased arterial
                                                                           (a)
    Pco2. Caused by alveolar hypoventilation.
    l Primary change: increased arterial Pco2.
    l Compensation:
                                                                            +40
       w initial rise in plasma bicarbonate due to increased car-
         bonic acid formation and dissociation.
       w increased acid secretion/bicarbonate retention by the
                                                                                  0
         kidneys. In acute hypercapnia, bicarbonate concentra-




                                                                           mV
                                                                                                        C
         tion increases by about 0.7 mmol/l per 1 kPa rise in                                       B
         arterial Pco2. In chronic hypercapnia it increases by
         2.6 mmol/l per 1 kPa.                                                 –55
    l Effects: those of hypercapnia.                                           –70                                 D
    l Treatment: of underlying cause.
                                                                                                A
                                                                                                                               E
    See also, Acidaemia; Acid–base balance

    ACLS, see Advanced Cardiac Life Support                                                     0       1          2       3
                                                                                                            Time (ms)
    Acquired immune deficiency syndrome (AIDS), see                        (b)
    Human immunodeficiency viral infection
                                                                               +20              1
                                                                                                        2
    Acromegaly. Disease caused by excessive growth hor-
    mone secretion after puberty; usually caused by a pituitary                   0
    adenoma but ectopic secretion may also occur. Incidence is
    6–8 per million population.
    l Features:                                                                                                                    3
       w enlarged jaw, tongue and larynx; widespread increase in          mV            0
         soft tissue mass; enlarged feet and hands. Nerve entrap-
         ment may occur, e.g. carpal tunnel syndrome.
       w respiratory obstruction, including sleep apnoea.
       w tendency towards diabetes mellitus, hypertension and                                                                          4
                                                                                 –90
         cardiac failure (may be due to cardiomyopathy).
         Thyroid and adrenal impairment may occur.
       Apart from the above diseases, acromegaly may present                                0               100           200
       difficulties with tracheal intubation and maintenance of                                              Time (ms)
       the airway.
    Treatment is primarily pituitary surgery with or without sub-      Fig. 4 (a) Nerve action potential (solid) showing changes in sodium
                                                                       (dotted) and potassium (dashed) conductance. (b) Cardiac action
    sequent radiotherapy. Some patients respond to bromocrip-
                                                                       potential (see text)
    tine or somatostatin analogues.
    Smith M, Hirsch NP (2000). Br J Anaesth; 85: 3–14
                                                                       polarisation. Sodium permeability then falls. Potassium
    ACT, Activated clotting time, see Coagulation studies              permeability increases slowly and helps bring about repolar-
                                                                       isation. Normal ion distribution is restored due to action of the
    Acta Anaesthesiologica Scandinavica. Official journal of            sodium/potassium pump. The action potential is followed
    the Scandinavian Society of Anaesthesiology and Intensive          by a refractory period.
    Care Medicine, first published in 1957.                                 Action potentials in nerve and other cells involve similar
                                                                       changes; in cardiac muscle, however, a plateau follows
    ACTH, see Adrenocorticotrophic hormone                             depolarisation, brought about by calcium entry. The refractory
                                                                       period is thus lengthened (Fig. 4b).
    Actin. One of the protein components of muscle (mw                 l There are five phases of the cardiac action potential:
    43 000). In muscle, arranged into a double strand of thin              w phase 0: fast depolarisation and sodium entry.
    filaments (F-actin) with globular ‘beads’ (G-actin), to which           w phase 1: onset of repolarisation due to sodium channel
    myosin binds, along their length. Present in all cells as micro-         closure.
    filaments.                                                              w phase 2: plateau due to calcium entry.
    See also, Muscle contraction                                           w phase 3: repolarisation.
                                                                           w phase 4: resting membrane potential. In pacemaker
    Action potential. Sequential changes in transmembrane                    cells, there is slow spontaneous depolarisation, due to
    potential that result in the propagation of electrical impulses          decreased potassium permeability, leading to initiation
    in excitable cells (Fig. 4a).                                            of impulses.
    l Stages involved are summarised as follows:                       See also, Nerve conduction
        w A: depolarisation of the membrane by 15 mV (threshold
          level).                                                      Activated charcoal, see Charcoal, activated
        w B: rapid depolarisation to þ40 mV.
                                                                       Activated clotting time, see Coagulation studies
        w C: repolarisation, rapid at first then slow.
        w D: hyperpolarisation.                                        Activated protein C, see Drotrecogin alfa; Protein C
        w E: return to the resting membrane potential.
    Depolarisation causes opening of sodium channels and               Activation energy. Energy required to initiate a chemical
    entry of sodium ions into the cell, which causes further de-       reaction. For ignition of explosive mixtures of anaesthetic
Acute lung injury         7



agents the energy may be provided by sparks, e.g. from build-     Acute demyelinating encephalomyelopathy, see De-
up of static electricity or electrical equipment. Combustion of   myelinating diseases
cyclopropane requires less activation energy than that
of diethyl ether. Activation energy is less for mixtures with     Acute life-threatening events – recognition and treat-
O2 than with air, and least for stoichiometric mixtures of        ment (ALERT). Multiprofessional course developed in an
reactants.                                                        effort to reduce the incidence of potentially avoidable car-
See also, Explosions and fires                                     diac arrests, admissions to ICU and in-hospital deaths.
                                                                  Aimed especially at pre-registration house officers, ward
Active compression/decompression cardiopulmon-                    nurses and physiotherapists, but suitable for other clinical
ary resuscitation, see Cardiac massage; Cardiopulmonary           groups. Based on principles of many life-support training
resuscitation                                                     programmes (e.g. ALS, ATLS, APLS, CCrISP), its devel-
                                                                  opment embraces both clinical governance and multiprofes-
Active transport. Energy-requiring transport of particles         sional education. Uses a structured and prioritised system of
across cell membranes. Protein ‘pumps’ within the mem-            patient assessment and management to assist ward staff to
branes utilise energy which is usually supplied by ATP            recognise patients at risk of deterioration and those who are
metabolism, in order to move ions and molecules, often            already seriously ill. Using a system of assessment similar to
against concentration gradients. A typical example is the         that of CCrISP, participants are taught to manage life-threat-
sodium/potassium pump.                                            ening events and to organise subsequent care.
                                                                  Smith GB, Osgood VM, Crane S (2002). Resuscitation; 52:
Acupuncture. Use of fine needles (usually 30–33 G) to              281–6
produce healing and pain relief. Originated in China thou-        See also, Early warning scores; Medical emergency team;
sands of years ago, and closely linked with the philosophy and    Outreach team
practice of traditional Chinese medicine. Thus abnormalities
in the flow of Qi (Chi: the life energy that circulates around     Acute lung injury (ALI). Syndrome of inflammation and
the body along meridians, nourishing the internal organs)         increased permeability of lung tissue associated with a variety
result in imbalance between Yin and Yang, the two polar           of clinical, radiological and physiological abnormalities that
opposites present in all aspects of the universe. Internal        cannot be explained by, but may coexist with, left atrial or
abnormalities may be diagnosed by pulse diagnosis (palpation      pulmonary capillary hypertension. Associated with sepsis,
of the radial arteries at different positions and depths).        multiple trauma, aspiration pneumonitis, multiple blood
The appropriate organ is then treated by acupuncture at           transfusion, pancreatitis, cardiopulmonary bypass and fat
specific points on the skin, often along the meridian named        embolism. Onset is usually within 2–3 days of the precipitat-
after, and related to, that organ. Yin and Yang, and flow of Qi,   ing illness or injury, although direct lung insults usually have
are thus restored.                                                a shorter insult-to-onset time. Acute respiratory distress
    Modern Western acupuncture involves needle insertion at       syndrome (ARDS) is now regarded to be the most severe
sites chosen for more ‘scientific’ reasons; e.g. around an         form of ALI. Both ARDS and ALI have similar diagnostic
affected area, at trigger points found nearby, or more prox-      features which include:
imally but within the appropriate dermatome. These may be            w acute onset.
combined with distant or local traditional points, although          w bilateral diffuse infiltrates seen on the chest X-ray.
conclusive evidence for the existence of acupuncture points          w pulmonary wedge pressure £ 18 mmHg or absence of
and meridians has never been shown. The needles may be left             clinical evidence of left atrial hypertension.
inserted and stimulated manually, electrically or thermally to       w arterial hypoxaemia resistant to oxygen therapy alone
increase intensity of stimulation. Pressure at acupuncture              (Pao2/FIo2 < 39.9 kPa [300 mmHg] for definition of
points (acupressure) may produce similar but less intense               ALI; < 26.6 kPa [200 mmHg] for definition of
stimulation.                                                            ARDS), regardless of the level of PEEP.
l Possible mechanisms:                                            The definitions of ALI and ARDS are increasingly being
    w local reflex pathways at spinal level.                       challenged.
    w closure of the ‘gate’ in the gate control theory of pain.   Other features:
    w central release of endorphins/enkephalins, and pos-            w reduced respiratory compliance, lung volumes and
      sibly involvement of other neurotransmitters.                     increased work of breathing.
                                                                         · ·
    w modulation of the ‘memory’ of pain.                            w V/Q mismatch and increased shunt.
Still used widely in China. Increasingly used in the West for        w pulmonary vascular resistance may be raised.
chronic pain, musculoskeletal disorders, headache and mi-            w an air bronchogram may be seen on the chest X-ray.
graine, and other disorders in which modern Western medi-            w in uncomplicated ALI, plasma oncotic pressure is
cine has had little success. Claims that acupuncture may be             normal.
employed alone to provide analgesia for surgery are now              w MODS may occur and is a common cause of death.
viewed with scepticism, although it has been used to provide      l Pathophysiology: ALI results from damage to either the
analgesia and reduce PONV (e.g. 5 minutes’ stimulation at            lung epithelium or endothelium. Two pathways of injury
the point P6 (Pericardium 6: 1–2 inches (2.5–5 cm) proximal          exist:
to the distal wrist crease, between flexor carpi radialis and         w direct effects of an insult on lung cells, e.g. aspiration,
palmaris longus tendons).                                               smoke inhalation.
Wang SM, Kain ZN, White P (2008). Anesth Analg; 106:                 w indirect result of an acute systemic inflammatory
602–10 and 611–21                                                       response involving both humoral (activation of comple-
                                                                        ment, coagulation and kinin systems; release of
Acute cortical necrosis, see Renal failure                              mediators including cytokines, oxidants, nitric oxide,
                                                                        etc.) and cellular (neutrophils, macrophages and
Acute crisis resource management, see Crisis resource                   lymphocytes) components. Pulmonary infiltration by
management                                                              neutrophils leads to interstitial fibrosis, possibly as a
8      Acute phase response



        result of damage caused by free radicals. Examples             Acute physiology, age, chronic health evaluation, see
        include sepsis, pancreatitis, fat embolism, etc.               APACHE III scoring system
      Histopathological findings can be divided into three
      phases: exudative (oedema and haemorrhage), prolifera-           Acute physiology and chronic health evaluation, see
      tive (organisation and repair) and fibrotic.                      APACHE/APACHE II scoring systems
    l Treatment is largely supportive:
      w general support: nutrition, DVT prophylaxis, preven-           Acute physiology score (APS). Physiological component
        tion of infection, etc.                                        of severity of illness scoring systems, such as APACHE II/III
      w O2 therapy (trying where possible to keep FIo2 below           and Simplified APS. Weighted values (e.g. 0 to 4 in APACHE
        0.6). CPAP is often helpful as it improves FRC.                II) are assigned to each of a range of physiological variables
      w ventilatory support: IPPV may be necessary if CPAP             (e.g. temperature, mean arterial blood pressure, serum creati-
        is ineffective. PEEP is often required, but airway             nine) on the basis of its derangement from an established
        pressure is often already high because of reduced              ‘normal’ range, as measured either upon ICU admission or
        compliance, increasing the risk of barotrauma and              within 24 h of entry. The sum of all assigned weighted values
        impaired cardiac output. CO2 elimination may demand            for the physiological variables that comprise a given scoring
        increasing minute volumes but this too risks ventila-          system constitutes the acute physiological score. The higher
        tor-associated lung injury. This has led to the devel-         the acute physiology score, the sicker the patient.
        opment of lung protection strategies including                 See also, Mortality/survival prediction on intensive care unit;
        low-frequency minute volume ventilation with extra-            Simplified acute physiology score
        corporeal CO2 removal, permissive hypercapnia
        and the use of smaller than normal tidal volumes.              Acute respiratory distress syndrome (ARDS). Previ-
        Other ventilatory strategies used to minimise ventila-         ously termed adult respiratory distress syndrome, despite the
        tor-associated lung injury in ALI include inverse ratio        process also occurring in children. First described in 1967 as
        ventilation (at I:E ratios of up to 4:1), airway pres-         non-cardiogenic pulmonary oedema secondary to condi-
        sure release ventilation and high frequency ventila-           tions not primarily affecting the lungs (e.g. shock, sepsis,
        tion. Extracorporeal membrane oxygenation has                  pancreatitis, massive blood transfusion, fat embolism).
        been used with varying success.                                Now regarded as the most severe form of acute lung injury
      w posture of the patient: prone ventilation may improve          (ALI). Distinguished from ALI purely on the Pao2/FIo2 ratio
        oxygenation in some patients.                                  which is < 26.6 kPa (200 mmHg) for ARDS.
      w fluid restriction is usually instituted to reduce lung             Pathophysiology, treatment, etc. is as for ALI. Histo-
        water, although avoidance of initial fluid overload is          logical appearances are similar to respiratory distress syn-
        thought to be more important. Diuretics have been              drome of the newborn, hence its name. Overall mortality of
        used, with careful monitoring of renal function.               ARDS is approximately 50–60% but depends on the under-
      w vasodilator drugs have been used to decrease pul-              lying cause; it is highest following aspiration pneumonitis
        monary vascular resistance, e.g. prostacyclin. Nitric          or sepsis. Early deaths are rare, and patients dying late in the
        oxide has also been used to produce pulmonary vaso-            course of the illness usually die with hypoxaemia not because
        dilatation, but there is, as yet, little evidence of long-     of it. For survivors, residual pulmonary impairment is pos-
        term benefit.                                                   sible but rarely severe.
      w fears over leakage of colloids into pulmonary interstitial     Wheeler AP, Bernard GR (2007). Lancet; 369: 1553–64
        spaces, with subsequent exacerbation of oedema, are
        balanced by possible advantages of colloids in maintain-       Acute tubular necrosis, see Renal failure
        ing oncotic pressure.
      w corticosteroid therapy is controversial. There appears         Acyclovir, see Aciclovir
        to be no benefit to their prophylactic administration, nor
        in high-dose, short-term therapy at the onset of ALI/          Addiction, see Alcoholism; Substance abuse
        ARDS. However, corticosteroids may have a role in
        non-resolving ARDS.                                            Addison’s disease, see Adrenocortical insufficiency
      w free radical scavengers, antiprostaglandins and antipro-
        teases have been investigated.                                 ADEM, Acute demyelinating encephalomyelopathy, see
    Wheeler AP, Bernard GR (2007). Lancet; 369: 1553–64                Demyelinating diseases

    Acute phase response. A reaction of the haemopoietic and           Adenosine. Nucleoside, of importance in energy homeo-
    hepatic systems to inflammation or tissue injury, assumed to        stasis at the cellular level. Reduces O2 consumption, increases
    be of benefit to the host. There is a rise in the number/activity   coronary blood flow, causes vasodilatation and slows atrio-
    of certain cells (neutrophils, platelets) and plasma proteins      ventricular conduction (possibly via increased potassium
    (e.g. fibrinogen, complement, C-reactive protein, plasmino-         conductance and reduced calcium conductance). Also an
    gen, haptoglobin) involved in host defence, whilst there is a      inhibitory CNS neurotransmitter.
    reduction in proteins which have transport and binding func-          Has become the drug of choice for treatment of SVT
    tions (e.g. albumin, haemoglobin, transferrin). Initiated by       (including that associated with Wolff–Parkinson–White
    actions of cytokine mediators such as interleukins (IL-1a,         syndrome) and diagnosis of other tachyarrhythmias by slow-
    IL-1b, IL-6 and IL-11), tumour necrosis factors (a and b) and      ing atrioventricular conduction. Its short half-life (8–10 s)
    leukaemia inhibitory factor.                                       and lack of negative inotropism make it an attractive alterna-
        Serum levels of acute phase proteins (e.g. C-reactive pro-     tive to verapamil. Unclassified as an antiarrhythmic drug.
    tein) can be helpful in diagnosis, monitoring and prognosis of        Has also been used as a directly acting vasodilator drug in
    certain diseases. The rise in fibrinogen levels causes an ele-      hypotensive anaesthesia. Increases cardiac output, with
    vation in ESR. The fall in albumin is due to redistribution and    stable heart rate. Its effects are rapidly reversible on stopping
    decreased hepatic synthesis.                                       the infusion.
Adrenal gland          9



l   Dosage:                                                          Adenylate cyclase, see Adenosine monophosphate, cyclic
    w SVT: 3 mg by rapid iv injection; if unsuccessful after 1–
      2 min this is followed by 6 mg and then 12 mg.                 ADH, Antidiuretic hormone, see Vasopressin
    w hypotensive anaesthesia: 50–300 mg/kg/min. ATP has
      also been used.                                                Adhesion molecules. Molecules normally sited on cell
l   Side effects are usually mild and include flushing, dys-          surfaces, involved in embryogenesis, cell growth and differ-
    pnoea and nausea. Bronchoconstriction may occur in asth-         entiation, and wound repair. Also mediate endothelial cell/
    matics. Bradycardia is resistant to atropine. Adenosine’s        leucocyte adhesion, transendothelial migration and cytotoxic
    action is prolonged in dipyridamole therapy (because             T cell-induced lysis. Four major families exist: integrins,
    uptake of adenosine is inhibited) and reduced by theo-           cadherins, selectins (named after the tissues in which they
    phylline and other xanthines (because of competitive             were discovered: L-selectin (leucocytes), E-selectin (endo-
    antagonism). Transplanted hearts are particularly sensitive      thelial cells), P-selectin (platelets)) and members of the
    to adenosine’s effects.                                          immunoglobulin superfamily.
                                                                         In general, contact between an adhesion receptor and the
Adenosine monophosphate, cyclic (cAMP). Cyclic                       extracellular milieu results in the transmission of information
adenosine 3’,5’-monophosphate, formed from ATP by the                allowing the cell to interact with its environment. Defective
enzyme adenylate cyclase. Activation of surface receptors            interactions involving adhesion molecules are implicated in
may cause a guanine nucleotide regulatory protein (G pro-            disease (e.g. certain skin diseases, metastasis of cancer cells).
tein) to interact with adenylate cyclase with resultant              Many pathogens use adhesion receptors to penetrate tissue
increases in intracellular cAMP levels (Fig. 5). Many sub-           cells. Overexpression of intravascular adhesion molecules or
stances act on surface receptors in this way, including cat-         receptors has been implicated in rheumatoid arthritis and
echolamines (b effects), vasopressin, ACTH, histamine,               rejection of transplanted organs. Control of vascular integrity
glucagon, parathyroid hormone and calcitonin.                        and defence against invasive pathogens requires regulation of
   Some substances inhibit adenylate cyclase via an inhibitory       adhesive interactions among blood cells and between blood
regulatory protein, e.g. noradrenaline at a2-adrenergic receptors.   cells and the vessel walls. Circulating leucocytes bind to the
   cAMP causes phosphorylation of proteins, particularly             selectins of activated endothelial cells, become activated by
enzymes, by activating protein kinases. Phosphorylation              chemoattractants and migrate through intracellular gaps to the
changes enzyme activity and therefore cell metabolism; thus          site of inflammation. Thus adhesion molecules play a part in
the intracellular concentration of cAMP determines cell              the inflammatory response in sepsis.
activity, and cAMP acts as a ‘second messenger’.
   cAMP is inactivated by phosphodiesterase to 5’-AMP.               Adiabatic change. Volume change of a gas in which there is
Phosphodiesterase inhibitors, e.g. aminophylline and                 no transfer of heat to or from the system. Sudden compression
enoximone, increase cAMP levels.                                     of a gas without removal of resultant heat causes a rise in
                                                                     temperature. This may occur in the gas already present in the
Adenosine triphosphate and diphosphate (ATP and                      valves and pipes of an anaesthetic machine when a cylinder
ADP). ATP is the most important high-energy phosphate                is turned on (hence the danger of explosion if oil or grease is
compound. When hydrolysed to form ADP, it releases large             present). Sudden adiabatic expansion of a gas results in cool-
amounts of energy which may be utilised in many cellular             ing, as in the cryoprobe.
processes, e.g. active transport, muscle contraction, etc. Its       See also, Isothermal change
phosphate bonds are formed using energy from catabolism;
aerobic glycolysis generates 38 moles of ATP per mole of             Adjustable pressure-limiting valves. Valves which open
glucose, and anaerobic glycolysis yields 2 moles of ATP.             to allow passage of expired and surplus fresh gas from a
   Other high-energy phosphate compounds include phos-               breathing system, but close to prevent indrawing of air.
phorylcreatine (in muscle), ADP itself, and other nucleotides.       Ideally the opening pressure should be as low as possible to
See also, Cytochrome oxidase system; Metabolism; Tricar-             reduce resistance to expiration, but not so low as to allow the
boxylic acid cycle                                                   reservoir bag to empty through it. Most contain a thin disc
                                                                     held against its seating by a spring, as in the original Heid-
                                                                     brink valve. Adjusting the tension in the spring, usually by
                β-Receptor α2-Receptor                               screwing the valve top, alters the pressure at which the valve
                                                                     opens. The valve must be vertical in order to function
                                                                     correctly.
                                                   Cell membrane        Modern valves, even when screwed fully down, will open
                Gs                  Gi                               at high pressures (60 cmH2O). Most are now encased in a
                       Adenylate
                                                                     hood for scavenging of waste gases.
                        cyclase
                                         Phosphodiesterase
                                                                     [Jay A Heidbrink (1875–1957), US anaesthetist]
                                                                     See also, Anaesthetic breathing systems; Non-rebreathing
                                                                     valves
             ATP                    cAMP              5'-AMP
                                                                     ADP, see Adenosine triphosphate and diphosphate
                                               Phosphorylation
                   Protein kinase               of enzymes +
                                                other proteins
                                                                     Adrenal gland. Situated on the upper pole of the kidney,
                                                                     each gland is composed of an outer cortex and an inner
    Gs, stimulatory guanine nucleotide regulatory protein            medulla. The cortex consists of the outer zona glomerulosa
    Gi, inhibitory guanine nucleotide regulatory protein             (secreting aldosterone), the middle zona fasciculata (secret-
                                                                     ing glucocorticoids) and inner zona reticularis (secreting sex
                                                                     hormones). Hypersecretion may result in hyperaldosteron-
Fig. 5 cAMP involvement in transmembrane signalling                  ism, Cushing’s syndrome and virilisation/feminisation
10      Adrenaline



     respectively. Hyposecretion causes adrenocortical insuffi-          for general anaesthetics and have also been used for sedation
     ciency.                                                            in ICU. Other a2-receptor agonists (e.g. xylazine, detomidine
         The adrenal medulla is thought to be derived from a sym-       and medetomidine) have been used in veterinary practice as
     pathetic ganglion in which the postganglionic neurones have        anaesthetic agents for many years.
     lost their axons, and secrete catecholamines into the blood-
     stream. Hypersecretion results in phaeochromocytoma.               b-Adrenergic receptor agonists. Agonists include
     See also, Sympathetic nervous system                               adrenaline and isoprenaline which stimulate both b1- and
                                                                        b2-adrenergic receptors. Dopamine and dobutamine act
     Adrenaline (Epinephrine). Catecholamine, acting as a hor-          mainly at b1-receptors.
     mone and neurotransmitter in the sympathetic nervous                   Salbutamol and terbutaline predominantly affect
     system and brainstem pathways. Synthesised and released            b2-receptors, and are used clinically to cause bronchodilatation
     from the adrenal gland medulla and central adrenergic neur-        in asthma, and as tocolytic drugs in premature labour. For-
     ones ( for structure, synthesis and metabolism, see Catechol-      oterol and salmeterol are longer acting agents given by inhal-
     amines). Called epinephrine in the USA because the name            ation for chronic asthma. Ritodrine is also used as a tocolytic
     adrenaline, used in other countries, was too similar to            drug. Some b1-receptor effects are seen at high doses, e.g.
     the US-registered trade name Adrenalin that referred to a          tachycardia. They have been used in the treatment of cardiac
     specific product (both adrenaline (Latin) and epinephrine           failure and cardiogenic shock; stimulation of vascular
     (Greek) referring to the location of the adrenal gland ‘on the     b2-receptors causes vasodilatation and reduces afterload.
     kidney’).
        Stimulates both a- and b-adrenergic receptors; displays         a-Adrenergic receptor antagonists (a-Blockers). Usu-
     predominantly b-effects at low doses, a- at higher doses. Low      ally refer to antagonists which act exclusively at a-adrenergic
     dose infusion may lower BP by causing vasodilatation in            receptors.
     muscle via b2-receptors, despite increased cardiac output via      l Drugs may be:
     b1-receptors. Higher doses cause a-mediated vasoconstric-              w selective:
     tion and increased systolic BP, although diastolic pressure        - a1-receptors, e.g. prazosin, doxazosin, terazosin, indora-
     may still decrease.                                                  min, phenoxybenzamine. Tamsulosin acts specifically at
     l Clinical uses:                                                     a1A-receptors and is used in benign prostatic hypertrophy.
         w with local anaesthetic agents, as a vasoconstrictor.         - a2-receptors: yohimbine.
         w in anaphylactic reaction, cardiac arrest, bronchos-              w non-selective, e.g. phentolamine.
           pasm.                                                        Labetalol and carvedilol (a drug with similar effects) are
         w as an inotropic drug.                                        antagonists at both a- and b-receptors. Other drugs may also
         w in glaucoma (reduces aqueous humour production).             act at a-receptors as part of a range of effects, e.g. chlorpro-
         w in croup.                                                    mazine, droperidol.
     Adrenaline may cause cardiac arrhythmias, especially in the            Antagonism may be competitive, e.g. phentolamine, or
     presence of hypercapnia, hypoxia and certain drugs, e.g.           non-competitive and therefore longer-lasting, e.g. phenoxy-
     halothane, cyclopropane and cocaine. During halothane              benzamine.
     anaesthesia, suggested maximal dosage of adrenaline is                 Used to lower BP and reduce afterload by causing vaso-
     10 ml 1:100 000 solution (100 mg) in 10 min, or 30 ml              dilatation. Compensatory tachycardia may occur.
     (300 mg) in 1 h. More dilute solutions should be used if           l Side effects: postural hypotension, dizziness, tachycardia
     possible. Adrenaline should not be used for ring blocks of             (less so with the selective a1-antagonists, possibly because
     digits or for penile nerve blocks, because of possible ischae-         the negative feedback of noradrenaline at a2-receptors is
     mia to distal tissues.                                                 unaffected). Tachyphylaxis may occur.
     l Dosage:
         w anaphylaxis: 0.1 mg iv (1 ml 1:10 000 solution),             b-Adrenergic receptor antagonists (b-Blockers). Com-
           repeated as required. The recommended initial route in       petitive antagonists at b-adrenergic receptors.
           general medical guidelines is usually im (0.5–1.0 ml         l Actions:
           1:1000 solution), reflecting the risks of iv administration      w reduce heart rate, force of contraction and myocardial
           without appropriate monitoring.                                    O2 consumption.
         w cardiac arrest: 1 mg (10 ml 1:10 000) iv.                       w increase coronary blood flow by increasing diastolic
         w by infusion: 0.01–0.15 mg/kg/min initially, increasing             filling time.
           as required.                                                    w antiarrhythmic action results from b-receptor antagonism
         w croup: 0.4 ml/kg nebulised up to 5 ml maximum,                     and possibly a membrane-stabilising effect at high doses.
           repeated after 30 min if required.                              w antihypertensive action (not fully understood but may
        Subcutaneous injection in shocked patients results in un-             involve reductions in cardiac output, central sympa-
        reliable absorption. Adrenaline may be administered via a             thetic activity, and renin levels).
        tracheal tube in 2–3 times the iv dose.                            w some have partial agonist activity (intrinsic sympatho-
     See also, Tracheal administration of drugs                               mimetic activity), e.g. pindolol, acebutolol, celiprolol
                                                                              and oxprenolol.
     a-Adrenergic receptor agonists. Naturally occurring                   w practolol, atenolol, metoprolol, betaxolol, bisoprolol,
     agonists include adrenaline and noradrenaline which                      nebivolol and acebutolol are relatively cardioselective,
     stimulate both a1- and a2-adrenergic receptors.                          but all will block b2-receptors at high doses. Celiprolol
        Methoxamine and phenylephrine are synthetic a1-receptor               has b1-receptor antagonist and b2-receptor agonist prop-
     agonists, used to cause vasoconstriction, e.g. to correct                erties, thus causing peripheral vasodilatation in addition
     hypotension in spinal anaesthesia.                                       to cardiac effects.
        Clonidine acts on central a2-receptors. Clonidine and              w labetalol and carvedilol have a- and b-receptor blocking
     other a2-receptor agonists (e.g. dexmedetomidine) have                   properties. The former is available for iv administration
     been shown to reduce pain sensation and reduce requirements              and is widely used for acute reduction in BP.

Más contenido relacionado

La actualidad más candente

Non surgical mimics of appendicitis on imaging
Non surgical mimics of appendicitis on imagingNon surgical mimics of appendicitis on imaging
Non surgical mimics of appendicitis on imagingSumiya Arshad
 
General surgery and abdominal emergencies revision
General surgery and abdominal emergencies revisionGeneral surgery and abdominal emergencies revision
General surgery and abdominal emergencies revisionULVAN OZAD
 
Acute abdomen
Acute abdomenAcute abdomen
Acute abdomenairwave12
 
Surgical complications of Gastrectomy
Surgical complications of GastrectomySurgical complications of Gastrectomy
Surgical complications of GastrectomyBala Sankar
 
Surgery Esophagus Tg
Surgery Esophagus TgSurgery Esophagus Tg
Surgery Esophagus TgMiami Dade
 
Acute abdomen
Acute abdomenAcute abdomen
Acute abdomentaem
 
Appendicitis and role of ultrasound scan in diagnosis Nchanji Nkeh Keneth
Appendicitis and role of ultrasound scan in diagnosis Nchanji Nkeh KenethAppendicitis and role of ultrasound scan in diagnosis Nchanji Nkeh Keneth
Appendicitis and role of ultrasound scan in diagnosis Nchanji Nkeh KenethNchanji Nkeh Keneth
 
Acute appendicitis in adults - Hoang Cuong HMU
Acute appendicitis in adults - Hoang Cuong HMUAcute appendicitis in adults - Hoang Cuong HMU
Acute appendicitis in adults - Hoang Cuong HMUCường Hoàng
 
Abdominal pain- all quadrants- case based learning
Abdominal pain-  all quadrants- case based learningAbdominal pain-  all quadrants- case based learning
Abdominal pain- all quadrants- case based learningSelvaraj Balasubramani
 

La actualidad más candente (20)

Non surgical mimics of appendicitis on imaging
Non surgical mimics of appendicitis on imagingNon surgical mimics of appendicitis on imaging
Non surgical mimics of appendicitis on imaging
 
Appendicitis
AppendicitisAppendicitis
Appendicitis
 
General surgery and abdominal emergencies revision
General surgery and abdominal emergencies revisionGeneral surgery and abdominal emergencies revision
General surgery and abdominal emergencies revision
 
Achalasia
AchalasiaAchalasia
Achalasia
 
Acute abdomen
Acute abdomenAcute abdomen
Acute abdomen
 
Surgical complications of Gastrectomy
Surgical complications of GastrectomySurgical complications of Gastrectomy
Surgical complications of Gastrectomy
 
Surgery Esophagus Tg
Surgery Esophagus TgSurgery Esophagus Tg
Surgery Esophagus Tg
 
1 esophageal motility disorders
1 esophageal motility disorders1 esophageal motility disorders
1 esophageal motility disorders
 
Peptic ulcer disease
Peptic ulcer diseasePeptic ulcer disease
Peptic ulcer disease
 
Acute abdomen
Acute abdomenAcute abdomen
Acute abdomen
 
Appendicitis and role of ultrasound scan in diagnosis Nchanji Nkeh Keneth
Appendicitis and role of ultrasound scan in diagnosis Nchanji Nkeh KenethAppendicitis and role of ultrasound scan in diagnosis Nchanji Nkeh Keneth
Appendicitis and role of ultrasound scan in diagnosis Nchanji Nkeh Keneth
 
Acute abdomen
Acute abdomenAcute abdomen
Acute abdomen
 
Appendicitis
AppendicitisAppendicitis
Appendicitis
 
Appendix, Surgery
Appendix, SurgeryAppendix, Surgery
Appendix, Surgery
 
Acute Appendicitis
Acute AppendicitisAcute Appendicitis
Acute Appendicitis
 
Acute appendicitis in adults - Hoang Cuong HMU
Acute appendicitis in adults - Hoang Cuong HMUAcute appendicitis in adults - Hoang Cuong HMU
Acute appendicitis in adults - Hoang Cuong HMU
 
Acute abdomen
Acute abdomenAcute abdomen
Acute abdomen
 
Acute abdomen
Acute abdomenAcute abdomen
Acute abdomen
 
Abdominal pain- all quadrants- case based learning
Abdominal pain-  all quadrants- case based learningAbdominal pain-  all quadrants- case based learning
Abdominal pain- all quadrants- case based learning
 
Bariatric copy
Bariatric   copyBariatric   copy
Bariatric copy
 

Similar a ASCOT trauma scale characterizes severity

abdominal compartment syndrome
abdominal compartment syndromeabdominal compartment syndrome
abdominal compartment syndromeAhmad RT
 
Abdominal trauma
Abdominal traumaAbdominal trauma
Abdominal traumawanted1361
 
Surgerystomachduodenumtg hegazy
Surgerystomachduodenumtg hegazySurgerystomachduodenumtg hegazy
Surgerystomachduodenumtg hegazymostafa hegazy
 
Intra Abdominal hypertension&Abdominal Compartment Syndrome
Intra Abdominal hypertension&Abdominal Compartment SyndromeIntra Abdominal hypertension&Abdominal Compartment Syndrome
Intra Abdominal hypertension&Abdominal Compartment SyndromeAbdulgafoor MT
 
abdominal solid organ injuries
abdominal solid organ injuriesabdominal solid organ injuries
abdominal solid organ injuriesSaleh Yasin
 
Benigne Diseases Of Stomach...
Benigne Diseases Of Stomach...Benigne Diseases Of Stomach...
Benigne Diseases Of Stomach...biswanath das
 
Acs0604 Acute Mesenteric Ischemia
Acs0604 Acute Mesenteric IschemiaAcs0604 Acute Mesenteric Ischemia
Acs0604 Acute Mesenteric Ischemiamedbookonline
 
Blunt trauma abdomen
Blunt trauma abdomenBlunt trauma abdomen
Blunt trauma abdomenpune2013
 
Intestinal perforation
Intestinal perforationIntestinal perforation
Intestinal perforationSara Memon
 
Git Abd Pain Lec.
Git Abd Pain Lec.Git Abd Pain Lec.
Git Abd Pain Lec.Shaikhani.
 
Gynecological surgical emergencies
Gynecological surgical emergenciesGynecological surgical emergencies
Gynecological surgical emergenciesDavid Howard
 
Abdominal trauma, an outlined management
Abdominal trauma, an outlined managementAbdominal trauma, an outlined management
Abdominal trauma, an outlined managementmostafa hegazy
 
Abdominal trauma, an outlined management
Abdominal trauma, an outlined managementAbdominal trauma, an outlined management
Abdominal trauma, an outlined managementmostafa hegazy
 
GI8. Abdominal Traumtmnagement in adulta.pptx
GI8. Abdominal Traumtmnagement in adulta.pptxGI8. Abdominal Traumtmnagement in adulta.pptx
GI8. Abdominal Traumtmnagement in adulta.pptxBedrumohammed2
 
Necrotizing Entero Colitis.. Dr.Padmesh
Necrotizing Entero Colitis..  Dr.PadmeshNecrotizing Entero Colitis..  Dr.Padmesh
Necrotizing Entero Colitis.. Dr.PadmeshDr Padmesh Vadakepat
 
Actue Pancreatitis.pptx
Actue Pancreatitis.pptxActue Pancreatitis.pptx
Actue Pancreatitis.pptxDipali Dumbre
 

Similar a ASCOT trauma scale characterizes severity (20)

abdominal compartment syndrome
abdominal compartment syndromeabdominal compartment syndrome
abdominal compartment syndrome
 
Abdominal trauma
Abdominal traumaAbdominal trauma
Abdominal trauma
 
Surgerystomachduodenumtg hegazy
Surgerystomachduodenumtg hegazySurgerystomachduodenumtg hegazy
Surgerystomachduodenumtg hegazy
 
Intra Abdominal hypertension&Abdominal Compartment Syndrome
Intra Abdominal hypertension&Abdominal Compartment SyndromeIntra Abdominal hypertension&Abdominal Compartment Syndrome
Intra Abdominal hypertension&Abdominal Compartment Syndrome
 
Anesthesia for bariatric surgery
Anesthesia for bariatric surgeryAnesthesia for bariatric surgery
Anesthesia for bariatric surgery
 
Abdominal Compartment Syndrome.pdf
Abdominal Compartment Syndrome.pdfAbdominal Compartment Syndrome.pdf
Abdominal Compartment Syndrome.pdf
 
abdominal solid organ injuries
abdominal solid organ injuriesabdominal solid organ injuries
abdominal solid organ injuries
 
Benigne Diseases Of Stomach...
Benigne Diseases Of Stomach...Benigne Diseases Of Stomach...
Benigne Diseases Of Stomach...
 
Acs0604 Acute Mesenteric Ischemia
Acs0604 Acute Mesenteric IschemiaAcs0604 Acute Mesenteric Ischemia
Acs0604 Acute Mesenteric Ischemia
 
Jm tubiana p taourel mdct in upper gastrointestinal obstruction jfim hanoi 2015
Jm tubiana p taourel mdct in upper gastrointestinal obstruction jfim hanoi 2015Jm tubiana p taourel mdct in upper gastrointestinal obstruction jfim hanoi 2015
Jm tubiana p taourel mdct in upper gastrointestinal obstruction jfim hanoi 2015
 
Blunt trauma abdomen
Blunt trauma abdomenBlunt trauma abdomen
Blunt trauma abdomen
 
Intestinal perforation
Intestinal perforationIntestinal perforation
Intestinal perforation
 
Abdominal trauma
Abdominal traumaAbdominal trauma
Abdominal trauma
 
Git Abd Pain Lec.
Git Abd Pain Lec.Git Abd Pain Lec.
Git Abd Pain Lec.
 
Gynecological surgical emergencies
Gynecological surgical emergenciesGynecological surgical emergencies
Gynecological surgical emergencies
 
Abdominal trauma, an outlined management
Abdominal trauma, an outlined managementAbdominal trauma, an outlined management
Abdominal trauma, an outlined management
 
Abdominal trauma, an outlined management
Abdominal trauma, an outlined managementAbdominal trauma, an outlined management
Abdominal trauma, an outlined management
 
GI8. Abdominal Traumtmnagement in adulta.pptx
GI8. Abdominal Traumtmnagement in adulta.pptxGI8. Abdominal Traumtmnagement in adulta.pptx
GI8. Abdominal Traumtmnagement in adulta.pptx
 
Necrotizing Entero Colitis.. Dr.Padmesh
Necrotizing Entero Colitis..  Dr.PadmeshNecrotizing Entero Colitis..  Dr.Padmesh
Necrotizing Entero Colitis.. Dr.Padmesh
 
Actue Pancreatitis.pptx
Actue Pancreatitis.pptxActue Pancreatitis.pptx
Actue Pancreatitis.pptx
 

Más de Elsevier Health Solutions Asia Pacific

Más de Elsevier Health Solutions Asia Pacific (7)

Clinical Gynecologic Oncology, Di saia 9780323074193_ sample chapter
Clinical Gynecologic Oncology, Di saia 9780323074193_ sample chapterClinical Gynecologic Oncology, Di saia 9780323074193_ sample chapter
Clinical Gynecologic Oncology, Di saia 9780323074193_ sample chapter
 
Pediatric Surgery, 7th Edition Sample chapter_ch120
Pediatric Surgery, 7th Edition Sample chapter_ch120Pediatric Surgery, 7th Edition Sample chapter_ch120
Pediatric Surgery, 7th Edition Sample chapter_ch120
 
Sabiston Textbook of Surgery, 19th Edition. Sample Chapter 13
Sabiston Textbook of Surgery, 19th Edition. Sample Chapter 13Sabiston Textbook of Surgery, 19th Edition. Sample Chapter 13
Sabiston Textbook of Surgery, 19th Edition. Sample Chapter 13
 
Clinical Ophthamology: A Systematic Approach by JACK KANSKI & BRAD BOWLING. 7...
Clinical Ophthamology: A Systematic Approach by JACK KANSKI & BRAD BOWLING. 7...Clinical Ophthamology: A Systematic Approach by JACK KANSKI & BRAD BOWLING. 7...
Clinical Ophthamology: A Systematic Approach by JACK KANSKI & BRAD BOWLING. 7...
 
Nelson Textbook of Pediatrics, 19th Edition. Sample Chapter
Nelson Textbook of Pediatrics, 19th Edition. Sample ChapterNelson Textbook of Pediatrics, 19th Edition. Sample Chapter
Nelson Textbook of Pediatrics, 19th Edition. Sample Chapter
 
Gray's Atlas of Anatomy | ElsevierAsia
Gray's Atlas of Anatomy | ElsevierAsiaGray's Atlas of Anatomy | ElsevierAsia
Gray's Atlas of Anatomy | ElsevierAsia
 
MRCPCH MasterCourse | ElsevierAsia
MRCPCH MasterCourse | ElsevierAsiaMRCPCH MasterCourse | ElsevierAsia
MRCPCH MasterCourse | ElsevierAsia
 

Último

Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...narwatsonia7
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...chandars293
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...vidya singh
 
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Servicevidya singh
 
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...narwatsonia7
 
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual NeedsBangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual NeedsGfnyt
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Call Girls in Nagpur High Profile
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...perfect solution
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escortsvidya singh
 

Último (20)

Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
Top Rated Bangalore Call Girls Mg Road ⟟ 8250192130 ⟟ Call Me For Genuine Sex...
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
 
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ooty Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
 
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
 
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
 
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
 
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual NeedsBangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
 

ASCOT trauma scale characterizes severity

  • 1. A A severity characterisation of trauma (ASCOT). pressure via a bladder catheter or nasogastric tube, using a Trauma scale derived from the Glasgow coma scale, sys- water column manometer. tolic BP, revised trauma score, abbreviated injury scale Management includes laparotomy and leaving the abdomen and age. A logistic regression equation is used to provide a open and/or using silastic material to cover the abdominal probability of mortality. Excludes patients with a very poor or contents. Paracentesis may be effective if raised intra-abdom- very good prognosis. Has been claimed to be superior to the inal pressure is due to accumulation of fluid, e.g. ascites. Full trauma revised injury severity score system although more resuscitation must be performed before decompression as rapid complex. release of pressure may result in sudden washout of inflamma- Champion HR, Copes WS, Sacco WJ, et al (1996). J Trauma; tory mediators from ischaemic tissues, causing acidosis and 40: 42–8 hypotension. Malbrain ML, Cheatham ML, Kirkpatrick A, et al (2006). A–adO2, see Alveolar–arterial oxygen difference Intensive Care Med; 32: 1722–1732, and Cheatham ML, Malbrain ML, Kirkpatrick A (2007). Intensive Care Med; ABA, see American Board of Anesthesiology 33: 951–62 See also, Compartment syndromes Abbott, Edward Gilbert, see Morton, William Abdominal decompression. Technique in obstetric anal- Abbreviated injury scale (AIS). Trauma scale first gesia whereby negative pressure is applied to the abdomen in described in 1971 and updated many times since. Comprises order to reduce labour pain and possibly shorten labour. a classification of injuries with each given a 6-digit code (the Thought to act by making the uterus more spherical during last indicating severity, with 1 ¼ minor and 6 ¼ fatal). The contractions, thus contracting with less force. Now rarely codes are linked to International Classification of Diseases used. codes, thus aiding standardisation of records. The anatomical See also, Obstetric analgesia and anaesthesia profile is a refinement in which the locations of injuries are divided into four categories; the AIS scores are added and the Abdominal field block. Technique using 100–200 ml local square root taken to minimise the contribution of less severe anaesthetic agent, involving infiltration of the skin, subcuta- injuries. neous tissues, abdominal muscles and fascia. Provides anal- Copes WS, Lawnick M, Champion HR, Sacco WJ (1988). gesia of the abdominal wall and anterior peritoneum, but not J Trauma; 28: 78–86 of the viscera. Now rarely used. Rectus sheath block, trans- versus abdominis plane block, iliac crest block and Abciximab. Monoclonal antibody preparation used as an inguinal hernia field block are more specific blocks. antiplatelet drug and adjunct to aspirin and heparin in high risk patients undergoing percutaneous transluminal Abdominal sepsis, see Intra-abdominal sepsis coronary angioplasty. Consists of Fab fragments of immunoglobulin directed against the glycoprotein IIb/IIIa Abdominal trauma. May be blunt (e.g. road traffic acci- receptor on the platelet surface. Inhibits platelet aggregation dents) or penetrating (e.g. stabbing, bullet wounds). Often and thrombus formation; effects last 24–48 h after infusion. carries a high morbidity and mortality because injuries may Careful consideration of risks and benefits should precede use go undetected. May lead to massive intra-abdominal blood since risk of bleeding is increased. Licensed for single use loss or abdominal compartment syndrome. The abdomen only. can be divided into three areas: l Dosage: 250 mg/min iv 10–60 min (up to 24 h in unstable w intrathoracic: protected by the bony thoracic cage. Con- angina) before angioplasty with 125 mg/kg/min (up to tains the spleen, liver, stomach and diaphragm. Injury 10 mg/min for 12 h afterwards). may be associated with rib fractures. The diaphragm l Side effects: bleeding, hypotension, nausea, bradycardia. may also be injured by blows to the lower abdomen Thrombocytopenia occurs rarely. (which impart pressure waves to the diaphragm) or by penetrating injuries of the chest. Abdominal compartment syndrome. Combination of w true abdomen: contains the small and large bowel, increased intra-abdominal pressure and organ dysfunction, bladder and, in the female, uterus, fallopian tubes and e.g. following abdominal trauma or extensive surgery, ovaries. resulting from haemorrhage, leakage of oedema fluid and/or w retroperitoneal: contains the kidneys, ureters, pancreas massive intestinal oedema. May also follow liver transplant- and duodenum. May result in massive blood loss from ation and acute pancreatitis. Intra-abdominal pressures retroperitoneal venous injury. above 20–25 cmH2O may be associated with reduced venous l Management: return and cardiac output, impaired ventilation, reduced renal w basic resuscitation as for trauma generally. blood flow and oliguria. Increased CVP may lead to raised w initial assessment: examination of the anterior abdom- ICP. Diagnosed clinically and by measuring intra-abdominal inal wall, both flanks, back, buttocks, perineum (and in I
  • 2. 2 ABO blood groups men, the urethral meatus) for bruises, lacerations, entry Abuse of anaesthetic agents. May occur because of easy and exit wounds. Signs may be masked by unconscious- access to potent drugs by operating theatre or ICU staff. ness, spinal cord injury or the effects of alcohol or Opioid analgesic drugs are the most commonly abused drugs. Abdominal swelling usually indicates intra- agents, but others include benzodiazepines and inhalational abdominal haemorrhage; abdominal guarding or rigidity anaesthetic agents. Abuse may be suggested by behavioural usually indicates visceral injury. Absence of bowel or mood changes, or excessive and inappropriate requests for sounds may indicate intra-peritoneal haemorrhage or opioids. Main considerations include the safety of patients, peritoneal soiling with bowel contents. Colonic or rectal counselling and psychiatric therapy for the abuser, and legal injuries may cause blood pr. A high index of suspicion is aspects of drug abuse. May be associated with alcoholism. required for retroperitoneal injuries since examination is Berry CB, Crome IB, Plant M, Plant M (2000). Anaesthesia; difficult. 55: 946–52 w imaging: abdominal X-ray may reveal free gas under the See also, Misuse of Drugs Act; Sick doctor scheme; Substance diaphragm (erect or semi-erect; may also be visible on abuse chest X-ray) or laterally (lateral decubitus X-ray); other investigations include pelvic X-ray and urological radi- Acarbose. Inhibitor of intestinal alpha glucosidases and ology if indicated (e.g. iv urogram, etc.), CT and MRI pancreatic amylase; used in the treatment of diabetes melli- scanning and ultrasound. tus, usually in combination with a biguanide or sulfony- w peritoneal lavage is indicated in blunt abdominal trauma lurea. Delays digestion and absorption of starch and associated with: sucrose. Has a small blood glucose lowering effect. - altered pain response (head injury, spinal cord injury, l Dosage: 50 mg orally once daily, increasing up to 200 mg drugs, etc.). 8 hourly. - unexplained hypovolaemia following multiple trauma. l Side effects include flatulence and diarrhoea, and rarely - equivocal diagnostic findings. hepatic dysfunction. Contraindicated in pregnancy and w insertion of a nasogastric tube and urinary catheter (pro- inflammatory bowel disease. vided no urethral injury; a suprapubic catheter may be See also, Meglitinides; Thiazolidinediones necessary). w indications for laparotomy include penetrating injuries, Accessory nerve block. Performed for spasm of trapezius obvious intra-abdominal haemorrhage, signs of bowel and sternomastoid muscles (there is no sensory component to perforation or a positive peritoneal lavage. the nerve). 5–10 ml local anaesthetic agent is injected 2 cm See also, Pelvic trauma below the mastoid process into the sternomastoid muscle, through which the nerve runs. ABO blood groups. Discovered in 1900 by Landsteiner in Vienna. Antigens may be present on red blood cells, with Accident, major, see Incident, major antibodies in the plasma (Table 1). The antibodies, mostly type-M immunoglobulins, develop within the first few ACD, Acid–citrate–dextrose solution, see Blood storage months of life, presumably in response to naturally occurring antigens of similar structure to the blood antigens. Infusion of ACD-CPR, Active compression decompression CPR, blood containing an ABO antigen into a patient who already see Cardiac massage; Cardiopulmonary resuscitation has the corresponding antibody may lead to an adverse reac- tion; hence the description of group O individuals as universal ACE, Angiotensin converting enzyme, see Renin/angioten- donors, and of group AB individuals as universal recipients. sin system [Karl Landsteiner (1868–1943), Austrian-born US patholo- gist] ACE anaesthetic mixture. Mixture of alcohol, chloroform See also, Blood cross-matching; Blood groups; Blood trans- and diethyl ether, in a ratio of 1:2:3 parts, suggested in 1860 as fusion an alternative to chloroform alone. Popular into the 1900s as a means of reducing total dose and side effects of any one of the ABPI, see Ankle Brachial Pressure Index three drugs. Abruption, see Antepartum haemorrhage ACE inhibitors, see Angiotensin converting enzyme inhibitors Absolute risk reduction. Indicator of treatment effect in clinical trials. For a reduction in incidence of events from a% Acetaminophen, see Paracetamol to b%, it equals (a–b)%. Does not give an indication of the magnitude of a or b. Acetazolamide. Carbonic anhydrase inhibitor, which See also, Meta-analysis; Number needed to treat; Odds ratio; reduces bicarbonate formation and hydrogen ion excretion, Relative risk reduction thereby creating a metabolic acidosis. Also a weak diuretic, but rarely used as such. Used to treat glaucoma, metabolic alkalosis, altitude sickness and childhood epilepsy. Useful in Table 1 Antigens and antibodies in ABO blood groups the treatment of severe hyperphosphataemia because it leads to urinary excretion of phosphate. May be used to Group Incidence in UK (%) Red cell antigen Plasma antibody lower ICP by reducing CSF production. Has been used to alkalinise the urine in tumour lysis syndrome or to enhance A 42 A Anti-B excretion in drug intoxications, e.g. with salicylates. B 8 B Anti-A l Dosage: 0.25–0.5 g orally/iv, once/twice daily. AB 3 A and B None O 47 None Anti-A and anti-B Acetylcholine (ACh). Neurotransmitter, the acetyl ester of the base choline (Fig. 1). Synthesised from acetylcoenzyme
  • 3. Acetylcholinesterase 3 CH3 O (a) Nicotinic CH3 N+ CH2 CH2 O C CH3 Somatic muscle CH3 Nicotinic Muscarinic Parasympathetic Fig. 1 Structure of acetylcholine Nicotinic Adrenergic Most nerves A and choline in nerve ending cytoplasm; the reaction is catalysed by choline acetyltransferase. Choline is actively To sweat Nicotinic Muscarinic transported into the nerve and acetylcoenzyme A is formed in Sympathetic glands mitochondria. ACh is stored in vesicles. l ACh is the transmitter at: To adrenal Nicotinic w autonomic ganglia. medulla w parasympathetic postganglionic nerve endings. (b) w sympathetic postganglionic nerve endings at sweat glands and some muscle blood vessels. w the neuromuscular junction. ε δ α α w many parts of the CNS where it has a prominent role in β learning. 10 nm Has either muscarinic or nicotinic actions, depending on the acetylcholine receptors involved. ACh is hydrolysed to cho- line and acetate by acetylcholinesterase on the postsynaptic membrane. Other esterases also exist, e.g. plasma cholines- terase. See also, Muscarine and muscarinic receptors; Neuromuscu- lar transmission; Nicotine and nicotinic receptors; Parasym- Lipids pathetic nervous system; Sympathetic nervous system; Synaptic transmission Cytoskeleton Acetylcholine receptors. Transmembrane proteins acti- vated by acetylcholine (ACh). ACh receptors may be mus- Fig. 2 (a) Types of acetylcholine receptors. (b) Structure of nicotinic carinic or nicotinic (Fig. 2a). Injected ACh first stimulates acetylcholine receptor muscarinic receptors. As the dose is increased, nicotinic receptors are stimulated; i.e. parasympathetic stimulation and sweating precedes effects at ganglia and the neuromus- cular junction (NMJ). The structure of the postsynaptic (nicotinic) receptors at the NMJ has been identified largely through work on the electric eel. Each receptor consists of five glycosylated pro- Acetylcholine tein subunits which project into the synaptic cleft. The sub- O units have been designated a (mw 40 000), b (mw 49 000), + g (mw 60 000) and d (mw 67 000). The g subunit is thought to (CH3)3 N CH2 CH2 O C CH3 be replaced by an e subunit in mammals. The subunits span H the postsynaptic membrane and form a cylinder around a O central ion channel (Fig. 2b). The two a subunits of each receptor carry the binding sites for ACh. Occupation of these sites causes a configurational change of the subunits, Anionic site Esteratic site thus opening the ion channel; cations (mainly sodium, potas- sium and calcium) flow through the channel according to their Choline O Acetylated concentration gradients and thus generate an action potential. + enzyme Non-depolarising neuromuscular blocking drugs at normal (CH3)3 N CH2 CH2 OH C CH3 doses reduce the number of receptors available to ACh. At O higher doses they may also block the ion channel. Muscarinic receptors are G protein-coupled receptors. Neuronal forms of ACh receptors are more heterogenous with a large number of subunit configurations. See also, Muscarine and muscarinic receptors; Neuromuscu- O lar transmission; Nicotine and nicotinic receptors; Parasym- Acetate C CH3 pathetic nervous system; Sympathetic nervous system; Synaptic transmission O H Acetylcholinesterase. Enzyme present in the basement O postsynaptic membranes of cholinergic synapses and neuromuscular junctions. Also found in red blood cells and the placenta. Converts acetylcholine (ACh) into acetate Fig. 3 Action of acetylcholinesterase
  • 4. 4 Acetylcholinesterase inhibitors and choline, thus terminating its action. The N(CH3)3þ part l Dosage: of ACh binds to the anionic site of the enzyme, and the w paracetamol poisoning: 150 mg/kg (to a maximum of acetate end of ACh forms an intermediate bond at the esteratic 12 g) in 200 ml 5% dextrose iv over 15 min, followed by site. Choline is liberated, and the intermediate substrate/en- 50 mg/kg in 500 ml dextrose over 4 h, then 100 mg/kg zyme complex is then hydrolysed to release acetate (Fig. 3). in 1 litre dextrose over 16 h. See also, Acetylcholinesterase inhibitors; Neuromuscular w to reduce viscosity of airway secretions: 200 mg transmission; Synaptic transmission 8 hourly, orally. Has been delivered by nebuliser. l Side effects: rashes, anaphylaxis. Has been associated with Acetylcholinesterase inhibitors. Substances which bronchospasm in asthmatics. increase acetylcholine (ACh) concentrations by inhibiting acetylcholinesterase. Used clinically for their action at the Achalasia. Disorder of oesophageal motility caused by idio- neuromuscular junction in myasthenia gravis and in the pathic degeneration of nerve cells in the myenteric plexus or reversal of non-depolarising neuromuscular blockade. vagal nuclei. Results in dysphagia and oesophageal dilatation. Concurrent administration of an antimuscarinic agent, e.g. A similar condition may result from American trypanosomal atropine or glycopyrronium, reduces unwanted effects of infection (Chagas’ disease). Aspiration pneumonitis or increased ACh concentrations at muscarinic receptors. Ef- repeated chest infections may occur. Achalasia is treated by fects at ganglia are minimal at normal doses. Central effects mechanical distension of the lower oesophagus or by surgery. may occur if the drug readily crosses the blood–brain bar- Heller’s cardiomyotomy (longitudinal myotomy leaving the rier, e.g. physostigmine (used to treat the central anticholi- mucosa intact) may be undertaken via abdominal or thoracic nergic syndrome). approaches. Preoperative respiratory assessment is essential. Have also been used to treat tachyarrhythmias. Patients are at high risk of aspirating oesophageal contents, l Classification: and rapid sequence induction must be performed. w prosthetic: competitive inhibition at the anionic site of [Carlos Chagas (1879–1934), Brazilian physician; Ernst Hel- the enzyme prevents binding of ACh, e.g. edropho- ler (1877–1964), German surgeon] nium, tetrahydroaminocrine. See also, Aspiration of gastric contents; Induction, rapid w oxydiaphoretic: acts as a substrate for the enzyme; the sequence reaction proceeds as far as the intermediate substrate/ enzyme complex. Hydrolysis of the complex and thus Achondroplasia. Skeletal disorder, inherited as an autoso- reactivation of the enzyme is slow. mal dominant gene, although most cases arise by spontaneous Examples: mutation. Results in dwarfism, with normally sized trunk and - neostigmine, physostigmine (few hours). shortened limbs. Flat face, bulging skull vault and spinal - pyridostigmine (several hours). deformity may make tracheal intubation difficult, and the - distigmine (up to a day). larynx may be smaller than normal. Obstructive sleep apnoea Organophosphorus compounds act as oxydiaphoretic may occur. Foramen magnum and spinal canal stenoses may inhibitors, but the substrate/enzyme complex is minimally be present. The former may result in cord compression on hydrolysed; inhibition lasts for weeks until new enzyme is neck extension; the latter may make central regional blockade synthesised. difficult and reduce volume requirements for epidural Acetylcholinesterase inhibitors augment depolarising anaesthesia. neuromuscular blockade and may cause depolarising block- ade in overdose. They may also cause bradycardia, hypoten- Aciclovir. Antiviral drug; an analogue of nucleoside sion, agitation, miosis, increased GIT activity, sweating and 2’-deoxyguanosine. Inhibits viral DNA polymerase; active salivation. against herpes viruses and used in the treatment of encephal- Centrally acting acetylcholinesterase inhibitors (e.g. done- itis, varicella zoster (chickenpox/shingles) and postherpetic pezil, rivastigmine, galantamine) are used for symptomatic neuralgia, and for prophylaxis and treatment of herpes infec- treatment of Alzheimer’s dementia. Of potential anaesthetic tions in immunocompromised patients. Treatment should relevance because of their side effects (including nausea, start at onset of infection; the drug does not eradicate the vomiting, fatigue, muscle cramps, increased creatine kinase, virus but may markedly attenuate the clinical infection. convulsions, bradycardia, confusion) and enhancement of the l Dosage: actions of suxamethonium. w as topical cream, 5 times daily. [Alois Alzheimer (1864–1915), German neurologist and w 200–800 mg orally, 2–5 times daily in adults. pathologist] w 5–10 mg/kg 8 hourly iv, infused over 1 h. See also, Neuromuscular transmission; Organophosphorus l Side effects: rashes, GIT disturbances, hepatic and renal poisoning impairment, blood dyscrasias, headache, dizziness, severe local inflammation after iv use, confusion, convulsions, N-Acetylcysteine. Derivative of the naturally occurring coma. amino acid, l-cysteine. A free radical scavenger, it acts as an antidote in paracetamol poisoning, probably by restoring Acid. Substance which yields hydrogen ions in solution. depleted hepatic stores of glutathione or by acting as an alternative substrate for a toxic metabolite of paracetamol. Acidaemia. Arterial pH < 7.35 or hydrogen ion concen- Also used as an ocular lubricant. tration > 45 nmol/l. Has been investigated for a possible role in protection See also, Acid–base balance; Acidosis against myocardial reperfusion injury, treatment of ful- minant hepatic failure, and treatment of MODS, acute Acid–base balance. Maintenance of stable pH in body fluids lung injury and neuropsychiatric complications of carbon is necessary for normal enzyme activity, ion distribution and monoxide poisoning. Has also been used as a mucolytic protein structure. Normally, blood pH is maintained at 7.35– because of its ability to split disulphide bonds in mucus 7.45 (hydrogen ion (Hþ) concentration 35–45 nmol/l); intra- glycoprotein. cellular pH changes with extracellular pH. During normal
  • 5. Acidosis, metabolic 5 metabolism of neutral substances, organic acids are produced See also, Acid; Base; Blood gas tensions; Breathing, control which generate hydrogen ions. of; Davenport diagram; Siggaard-Andersen nomogram l Maintenance of pH depends on: w buffers in tissues and blood, which minimise the in- Acid–citrate–dextrose solution, see Blood storage crease of Hþ concentration. Acidosis. A process in which arterial pH < 7.35 (or hydro- w regulation by kidneys and lungs; the kidneys excrete gen ion > 45 mmol/l), or would be < 7.35 if there were no about 60–80 mmol and the lungs about 15–20 000 compensatory mechanisms of acid–base balance. mmol Hþ per day. See also, Acidosis, metabolic; Acidosis, respiratory Because of the relationship between CO2, carbonic acid, bicarbonate (HCO3À) and Hþ, and the ability to excrete Acidosis, metabolic. Acidosis due to metabolic causes, CO2 rapidly from the lungs, respiratory function is important resulting in an inappropriately low pH for the measured in acid–base balance: arterial Pco2. l Caused by: H2 O þ CO2 Ð H2 CO3 Ð HCOÀ þ Hþ 3 w increased acid production: Thus hyper- and hypoventilation cause alkalosis and acidosis - ketone bodies, e.g. in diabetes mellitus. respectively. Similarly, hyper- or hypoventilation may com- - lactate, e.g. in shock, exercise. pensate for non-respiratory acidosis or alkalosis respectively, w acid ingestion: e.g. salicylate poisoning. þ by returning pH towards normal. w failure to excrete hydrogen ion (H ): Sources of Hþ excreted via the kidneys include lactic acid - renal failure. from blood cells, muscle and brain, sulphuric acid from me- - distal renal tubular acidosis. tabolism of sulphur-containing proteins, and acetoacetic acid - carbonic anhydrase inhibitors. from fatty acid metabolism. w loss of bicarbonate: l The kidney can compensate for acid–base disturbances in - diarrhoea. three ways: - gastrointestinal fistulae. À w by regulating the amount of HCO3 reabsorbed. 80– - proximal renal tubular acidosis. 90% of filtered HCO3À is reabsorbed in the proximal - ureteroenterostomy. tubule: l May be differentiated by the presence or absence of an - filtered sodium ion is exchanged for Hþ across the anion gap: tubule cell membrane. w anion gap metabolic acidosis occurs in renal failure, - filtered HCO3À and excreted Hþ form carbonic acid. lactic acidosis, ketoacidosis, rhabdomyolysis and fol- - carbonic acid is converted to CO2 and water by car- lowing ingestion of certain toxins (e.g. salicylates, bonic anhydrase on the cell membrane. methanol, ethylene glycol). - CO2 and water reform carbonic acid (catalysed again w non-anion gap (hyperchloraemic) metabolic acidosis is by carbonic anhydrase) within the cell. caused by the administration of chloride-containing - carbonic acid releases HCO3À and Hþ. solutions (e.g. saline) in large volumes, amino acid - HCO3À passes into the blood; Hþ is exchanged for solutions, diarrhoea, pancreatic fistulae, ileal loop pro- sodium ion, etc. cedures, after rapid correction of a chronically compen- w by forming dihydrogen phosphate from monohydrogen sated respiratory alkalosis or renal tubular acidosis. þ phosphate in the distal tubule (HPO42ÀþHþ!H2PO4À). l Primary change: increased H /decreased bicarbonate. The Hþ is supplied from carbonic acid, leaving HCO3À l Compensation: which passes into the blood. w hyperventilation: plasma bicarbonate falls by about w by combination of ammonia, passing out of the cells, 1.3 mmol/l for every 1 kPa acute decrease in arterial with Hþ, supplied as above. The resultant ammonium Pco2, which usually does not fall below 1.3–1.9 kPa ions cannot pass back into the cells. (10–15 mmHg). þ In acid–base disorders, the primary change determines w increased renal H secretion. whether a disturbance is respiratory or metabolic. The direc- l Effects: tion of change in Hþ concentration determines acidosis or w hyperventilation (Kussmaul breathing). alkalosis. Renal or respiratory compensation attempts to w confusion, weakness, coma. restore normal pH, not reverse the primary change. For w cardiac depression. example, in the Henderson–Hasselbalch equation: w hyperkalaemia. l Treatment: [HCOÀ ] pH ¼ pKa þ log 3 w of underlying cause. [CO2 ] w bicarbonate therapy is reserved for treatment of severe adjustment of the HCO3À/CO2 concentration ratio restores acidaemia (e.g. pH under 7.1) because of problems pH towards its normal value, e.g.: associated with its use. w primary change: increased CO2; leads to decreased pH If bicarbonate is required, a formula for iv infusion is: (respiratory acidosis). base excess  body weight (kg) À w compensation: HCO3 retention by kidneys; increased mmol ammonium secretion, etc. 3 An ‘alternative approach’ suggested by Stewart in 1983 focuses Half this amount is given initially. on the strong ion difference to explain the underlying pro- w other agents under investigation include sodium cesses rather than the above ‘traditional approach’ which con- dichloroacetate, Carbicarb (sodium bicarbonate and centrates more on interpretation of measurements. It is based on carbonate in equimolar concentrations) and THAM the degree of dissociation of ions in solution, in particular the (2-amino-2-hydroxymethyl-1,3-propanediol). effects of strong ions and weak acids, and the role of bicarbon- Morris CG, Low J (2008). Anaesthesia; 63: 294–301 and ate as a marker of acid–base imbalance rather than a cause. 396–411 [Peter Stewart (1921–1993), Canadian physiologist] See also, Acidaemia; Acid–base balance
  • 6. 6 Acidosis, respiratory Acidosis, respiratory. Acidosis due to increased arterial (a) Pco2. Caused by alveolar hypoventilation. l Primary change: increased arterial Pco2. l Compensation: +40 w initial rise in plasma bicarbonate due to increased car- bonic acid formation and dissociation. w increased acid secretion/bicarbonate retention by the 0 kidneys. In acute hypercapnia, bicarbonate concentra- mV C tion increases by about 0.7 mmol/l per 1 kPa rise in B arterial Pco2. In chronic hypercapnia it increases by 2.6 mmol/l per 1 kPa. –55 l Effects: those of hypercapnia. –70 D l Treatment: of underlying cause. A E See also, Acidaemia; Acid–base balance ACLS, see Advanced Cardiac Life Support 0 1 2 3 Time (ms) Acquired immune deficiency syndrome (AIDS), see (b) Human immunodeficiency viral infection +20 1 2 Acromegaly. Disease caused by excessive growth hor- mone secretion after puberty; usually caused by a pituitary 0 adenoma but ectopic secretion may also occur. Incidence is 6–8 per million population. l Features: 3 w enlarged jaw, tongue and larynx; widespread increase in mV 0 soft tissue mass; enlarged feet and hands. Nerve entrap- ment may occur, e.g. carpal tunnel syndrome. w respiratory obstruction, including sleep apnoea. w tendency towards diabetes mellitus, hypertension and 4 –90 cardiac failure (may be due to cardiomyopathy). Thyroid and adrenal impairment may occur. Apart from the above diseases, acromegaly may present 0 100 200 difficulties with tracheal intubation and maintenance of Time (ms) the airway. Treatment is primarily pituitary surgery with or without sub- Fig. 4 (a) Nerve action potential (solid) showing changes in sodium (dotted) and potassium (dashed) conductance. (b) Cardiac action sequent radiotherapy. Some patients respond to bromocrip- potential (see text) tine or somatostatin analogues. Smith M, Hirsch NP (2000). Br J Anaesth; 85: 3–14 polarisation. Sodium permeability then falls. Potassium ACT, Activated clotting time, see Coagulation studies permeability increases slowly and helps bring about repolar- isation. Normal ion distribution is restored due to action of the Acta Anaesthesiologica Scandinavica. Official journal of sodium/potassium pump. The action potential is followed the Scandinavian Society of Anaesthesiology and Intensive by a refractory period. Care Medicine, first published in 1957. Action potentials in nerve and other cells involve similar changes; in cardiac muscle, however, a plateau follows ACTH, see Adrenocorticotrophic hormone depolarisation, brought about by calcium entry. The refractory period is thus lengthened (Fig. 4b). Actin. One of the protein components of muscle (mw l There are five phases of the cardiac action potential: 43 000). In muscle, arranged into a double strand of thin w phase 0: fast depolarisation and sodium entry. filaments (F-actin) with globular ‘beads’ (G-actin), to which w phase 1: onset of repolarisation due to sodium channel myosin binds, along their length. Present in all cells as micro- closure. filaments. w phase 2: plateau due to calcium entry. See also, Muscle contraction w phase 3: repolarisation. w phase 4: resting membrane potential. In pacemaker Action potential. Sequential changes in transmembrane cells, there is slow spontaneous depolarisation, due to potential that result in the propagation of electrical impulses decreased potassium permeability, leading to initiation in excitable cells (Fig. 4a). of impulses. l Stages involved are summarised as follows: See also, Nerve conduction w A: depolarisation of the membrane by 15 mV (threshold level). Activated charcoal, see Charcoal, activated w B: rapid depolarisation to þ40 mV. Activated clotting time, see Coagulation studies w C: repolarisation, rapid at first then slow. w D: hyperpolarisation. Activated protein C, see Drotrecogin alfa; Protein C w E: return to the resting membrane potential. Depolarisation causes opening of sodium channels and Activation energy. Energy required to initiate a chemical entry of sodium ions into the cell, which causes further de- reaction. For ignition of explosive mixtures of anaesthetic
  • 7. Acute lung injury 7 agents the energy may be provided by sparks, e.g. from build- Acute demyelinating encephalomyelopathy, see De- up of static electricity or electrical equipment. Combustion of myelinating diseases cyclopropane requires less activation energy than that of diethyl ether. Activation energy is less for mixtures with Acute life-threatening events – recognition and treat- O2 than with air, and least for stoichiometric mixtures of ment (ALERT). Multiprofessional course developed in an reactants. effort to reduce the incidence of potentially avoidable car- See also, Explosions and fires diac arrests, admissions to ICU and in-hospital deaths. Aimed especially at pre-registration house officers, ward Active compression/decompression cardiopulmon- nurses and physiotherapists, but suitable for other clinical ary resuscitation, see Cardiac massage; Cardiopulmonary groups. Based on principles of many life-support training resuscitation programmes (e.g. ALS, ATLS, APLS, CCrISP), its devel- opment embraces both clinical governance and multiprofes- Active transport. Energy-requiring transport of particles sional education. Uses a structured and prioritised system of across cell membranes. Protein ‘pumps’ within the mem- patient assessment and management to assist ward staff to branes utilise energy which is usually supplied by ATP recognise patients at risk of deterioration and those who are metabolism, in order to move ions and molecules, often already seriously ill. Using a system of assessment similar to against concentration gradients. A typical example is the that of CCrISP, participants are taught to manage life-threat- sodium/potassium pump. ening events and to organise subsequent care. Smith GB, Osgood VM, Crane S (2002). Resuscitation; 52: Acupuncture. Use of fine needles (usually 30–33 G) to 281–6 produce healing and pain relief. Originated in China thou- See also, Early warning scores; Medical emergency team; sands of years ago, and closely linked with the philosophy and Outreach team practice of traditional Chinese medicine. Thus abnormalities in the flow of Qi (Chi: the life energy that circulates around Acute lung injury (ALI). Syndrome of inflammation and the body along meridians, nourishing the internal organs) increased permeability of lung tissue associated with a variety result in imbalance between Yin and Yang, the two polar of clinical, radiological and physiological abnormalities that opposites present in all aspects of the universe. Internal cannot be explained by, but may coexist with, left atrial or abnormalities may be diagnosed by pulse diagnosis (palpation pulmonary capillary hypertension. Associated with sepsis, of the radial arteries at different positions and depths). multiple trauma, aspiration pneumonitis, multiple blood The appropriate organ is then treated by acupuncture at transfusion, pancreatitis, cardiopulmonary bypass and fat specific points on the skin, often along the meridian named embolism. Onset is usually within 2–3 days of the precipitat- after, and related to, that organ. Yin and Yang, and flow of Qi, ing illness or injury, although direct lung insults usually have are thus restored. a shorter insult-to-onset time. Acute respiratory distress Modern Western acupuncture involves needle insertion at syndrome (ARDS) is now regarded to be the most severe sites chosen for more ‘scientific’ reasons; e.g. around an form of ALI. Both ARDS and ALI have similar diagnostic affected area, at trigger points found nearby, or more prox- features which include: imally but within the appropriate dermatome. These may be w acute onset. combined with distant or local traditional points, although w bilateral diffuse infiltrates seen on the chest X-ray. conclusive evidence for the existence of acupuncture points w pulmonary wedge pressure £ 18 mmHg or absence of and meridians has never been shown. The needles may be left clinical evidence of left atrial hypertension. inserted and stimulated manually, electrically or thermally to w arterial hypoxaemia resistant to oxygen therapy alone increase intensity of stimulation. Pressure at acupuncture (Pao2/FIo2 < 39.9 kPa [300 mmHg] for definition of points (acupressure) may produce similar but less intense ALI; < 26.6 kPa [200 mmHg] for definition of stimulation. ARDS), regardless of the level of PEEP. l Possible mechanisms: The definitions of ALI and ARDS are increasingly being w local reflex pathways at spinal level. challenged. w closure of the ‘gate’ in the gate control theory of pain. Other features: w central release of endorphins/enkephalins, and pos- w reduced respiratory compliance, lung volumes and sibly involvement of other neurotransmitters. increased work of breathing. · · w modulation of the ‘memory’ of pain. w V/Q mismatch and increased shunt. Still used widely in China. Increasingly used in the West for w pulmonary vascular resistance may be raised. chronic pain, musculoskeletal disorders, headache and mi- w an air bronchogram may be seen on the chest X-ray. graine, and other disorders in which modern Western medi- w in uncomplicated ALI, plasma oncotic pressure is cine has had little success. Claims that acupuncture may be normal. employed alone to provide analgesia for surgery are now w MODS may occur and is a common cause of death. viewed with scepticism, although it has been used to provide l Pathophysiology: ALI results from damage to either the analgesia and reduce PONV (e.g. 5 minutes’ stimulation at lung epithelium or endothelium. Two pathways of injury the point P6 (Pericardium 6: 1–2 inches (2.5–5 cm) proximal exist: to the distal wrist crease, between flexor carpi radialis and w direct effects of an insult on lung cells, e.g. aspiration, palmaris longus tendons). smoke inhalation. Wang SM, Kain ZN, White P (2008). Anesth Analg; 106: w indirect result of an acute systemic inflammatory 602–10 and 611–21 response involving both humoral (activation of comple- ment, coagulation and kinin systems; release of Acute cortical necrosis, see Renal failure mediators including cytokines, oxidants, nitric oxide, etc.) and cellular (neutrophils, macrophages and Acute crisis resource management, see Crisis resource lymphocytes) components. Pulmonary infiltration by management neutrophils leads to interstitial fibrosis, possibly as a
  • 8. 8 Acute phase response result of damage caused by free radicals. Examples Acute physiology, age, chronic health evaluation, see include sepsis, pancreatitis, fat embolism, etc. APACHE III scoring system Histopathological findings can be divided into three phases: exudative (oedema and haemorrhage), prolifera- Acute physiology and chronic health evaluation, see tive (organisation and repair) and fibrotic. APACHE/APACHE II scoring systems l Treatment is largely supportive: w general support: nutrition, DVT prophylaxis, preven- Acute physiology score (APS). Physiological component tion of infection, etc. of severity of illness scoring systems, such as APACHE II/III w O2 therapy (trying where possible to keep FIo2 below and Simplified APS. Weighted values (e.g. 0 to 4 in APACHE 0.6). CPAP is often helpful as it improves FRC. II) are assigned to each of a range of physiological variables w ventilatory support: IPPV may be necessary if CPAP (e.g. temperature, mean arterial blood pressure, serum creati- is ineffective. PEEP is often required, but airway nine) on the basis of its derangement from an established pressure is often already high because of reduced ‘normal’ range, as measured either upon ICU admission or compliance, increasing the risk of barotrauma and within 24 h of entry. The sum of all assigned weighted values impaired cardiac output. CO2 elimination may demand for the physiological variables that comprise a given scoring increasing minute volumes but this too risks ventila- system constitutes the acute physiological score. The higher tor-associated lung injury. This has led to the devel- the acute physiology score, the sicker the patient. opment of lung protection strategies including See also, Mortality/survival prediction on intensive care unit; low-frequency minute volume ventilation with extra- Simplified acute physiology score corporeal CO2 removal, permissive hypercapnia and the use of smaller than normal tidal volumes. Acute respiratory distress syndrome (ARDS). Previ- Other ventilatory strategies used to minimise ventila- ously termed adult respiratory distress syndrome, despite the tor-associated lung injury in ALI include inverse ratio process also occurring in children. First described in 1967 as ventilation (at I:E ratios of up to 4:1), airway pres- non-cardiogenic pulmonary oedema secondary to condi- sure release ventilation and high frequency ventila- tions not primarily affecting the lungs (e.g. shock, sepsis, tion. Extracorporeal membrane oxygenation has pancreatitis, massive blood transfusion, fat embolism). been used with varying success. Now regarded as the most severe form of acute lung injury w posture of the patient: prone ventilation may improve (ALI). Distinguished from ALI purely on the Pao2/FIo2 ratio oxygenation in some patients. which is < 26.6 kPa (200 mmHg) for ARDS. w fluid restriction is usually instituted to reduce lung Pathophysiology, treatment, etc. is as for ALI. Histo- water, although avoidance of initial fluid overload is logical appearances are similar to respiratory distress syn- thought to be more important. Diuretics have been drome of the newborn, hence its name. Overall mortality of used, with careful monitoring of renal function. ARDS is approximately 50–60% but depends on the under- w vasodilator drugs have been used to decrease pul- lying cause; it is highest following aspiration pneumonitis monary vascular resistance, e.g. prostacyclin. Nitric or sepsis. Early deaths are rare, and patients dying late in the oxide has also been used to produce pulmonary vaso- course of the illness usually die with hypoxaemia not because dilatation, but there is, as yet, little evidence of long- of it. For survivors, residual pulmonary impairment is pos- term benefit. sible but rarely severe. w fears over leakage of colloids into pulmonary interstitial Wheeler AP, Bernard GR (2007). Lancet; 369: 1553–64 spaces, with subsequent exacerbation of oedema, are balanced by possible advantages of colloids in maintain- Acute tubular necrosis, see Renal failure ing oncotic pressure. w corticosteroid therapy is controversial. There appears Acyclovir, see Aciclovir to be no benefit to their prophylactic administration, nor in high-dose, short-term therapy at the onset of ALI/ Addiction, see Alcoholism; Substance abuse ARDS. However, corticosteroids may have a role in non-resolving ARDS. Addison’s disease, see Adrenocortical insufficiency w free radical scavengers, antiprostaglandins and antipro- teases have been investigated. ADEM, Acute demyelinating encephalomyelopathy, see Wheeler AP, Bernard GR (2007). Lancet; 369: 1553–64 Demyelinating diseases Acute phase response. A reaction of the haemopoietic and Adenosine. Nucleoside, of importance in energy homeo- hepatic systems to inflammation or tissue injury, assumed to stasis at the cellular level. Reduces O2 consumption, increases be of benefit to the host. There is a rise in the number/activity coronary blood flow, causes vasodilatation and slows atrio- of certain cells (neutrophils, platelets) and plasma proteins ventricular conduction (possibly via increased potassium (e.g. fibrinogen, complement, C-reactive protein, plasmino- conductance and reduced calcium conductance). Also an gen, haptoglobin) involved in host defence, whilst there is a inhibitory CNS neurotransmitter. reduction in proteins which have transport and binding func- Has become the drug of choice for treatment of SVT tions (e.g. albumin, haemoglobin, transferrin). Initiated by (including that associated with Wolff–Parkinson–White actions of cytokine mediators such as interleukins (IL-1a, syndrome) and diagnosis of other tachyarrhythmias by slow- IL-1b, IL-6 and IL-11), tumour necrosis factors (a and b) and ing atrioventricular conduction. Its short half-life (8–10 s) leukaemia inhibitory factor. and lack of negative inotropism make it an attractive alterna- Serum levels of acute phase proteins (e.g. C-reactive pro- tive to verapamil. Unclassified as an antiarrhythmic drug. tein) can be helpful in diagnosis, monitoring and prognosis of Has also been used as a directly acting vasodilator drug in certain diseases. The rise in fibrinogen levels causes an ele- hypotensive anaesthesia. Increases cardiac output, with vation in ESR. The fall in albumin is due to redistribution and stable heart rate. Its effects are rapidly reversible on stopping decreased hepatic synthesis. the infusion.
  • 9. Adrenal gland 9 l Dosage: Adenylate cyclase, see Adenosine monophosphate, cyclic w SVT: 3 mg by rapid iv injection; if unsuccessful after 1– 2 min this is followed by 6 mg and then 12 mg. ADH, Antidiuretic hormone, see Vasopressin w hypotensive anaesthesia: 50–300 mg/kg/min. ATP has also been used. Adhesion molecules. Molecules normally sited on cell l Side effects are usually mild and include flushing, dys- surfaces, involved in embryogenesis, cell growth and differ- pnoea and nausea. Bronchoconstriction may occur in asth- entiation, and wound repair. Also mediate endothelial cell/ matics. Bradycardia is resistant to atropine. Adenosine’s leucocyte adhesion, transendothelial migration and cytotoxic action is prolonged in dipyridamole therapy (because T cell-induced lysis. Four major families exist: integrins, uptake of adenosine is inhibited) and reduced by theo- cadherins, selectins (named after the tissues in which they phylline and other xanthines (because of competitive were discovered: L-selectin (leucocytes), E-selectin (endo- antagonism). Transplanted hearts are particularly sensitive thelial cells), P-selectin (platelets)) and members of the to adenosine’s effects. immunoglobulin superfamily. In general, contact between an adhesion receptor and the Adenosine monophosphate, cyclic (cAMP). Cyclic extracellular milieu results in the transmission of information adenosine 3’,5’-monophosphate, formed from ATP by the allowing the cell to interact with its environment. Defective enzyme adenylate cyclase. Activation of surface receptors interactions involving adhesion molecules are implicated in may cause a guanine nucleotide regulatory protein (G pro- disease (e.g. certain skin diseases, metastasis of cancer cells). tein) to interact with adenylate cyclase with resultant Many pathogens use adhesion receptors to penetrate tissue increases in intracellular cAMP levels (Fig. 5). Many sub- cells. Overexpression of intravascular adhesion molecules or stances act on surface receptors in this way, including cat- receptors has been implicated in rheumatoid arthritis and echolamines (b effects), vasopressin, ACTH, histamine, rejection of transplanted organs. Control of vascular integrity glucagon, parathyroid hormone and calcitonin. and defence against invasive pathogens requires regulation of Some substances inhibit adenylate cyclase via an inhibitory adhesive interactions among blood cells and between blood regulatory protein, e.g. noradrenaline at a2-adrenergic receptors. cells and the vessel walls. Circulating leucocytes bind to the cAMP causes phosphorylation of proteins, particularly selectins of activated endothelial cells, become activated by enzymes, by activating protein kinases. Phosphorylation chemoattractants and migrate through intracellular gaps to the changes enzyme activity and therefore cell metabolism; thus site of inflammation. Thus adhesion molecules play a part in the intracellular concentration of cAMP determines cell the inflammatory response in sepsis. activity, and cAMP acts as a ‘second messenger’. cAMP is inactivated by phosphodiesterase to 5’-AMP. Adiabatic change. Volume change of a gas in which there is Phosphodiesterase inhibitors, e.g. aminophylline and no transfer of heat to or from the system. Sudden compression enoximone, increase cAMP levels. of a gas without removal of resultant heat causes a rise in temperature. This may occur in the gas already present in the Adenosine triphosphate and diphosphate (ATP and valves and pipes of an anaesthetic machine when a cylinder ADP). ATP is the most important high-energy phosphate is turned on (hence the danger of explosion if oil or grease is compound. When hydrolysed to form ADP, it releases large present). Sudden adiabatic expansion of a gas results in cool- amounts of energy which may be utilised in many cellular ing, as in the cryoprobe. processes, e.g. active transport, muscle contraction, etc. Its See also, Isothermal change phosphate bonds are formed using energy from catabolism; aerobic glycolysis generates 38 moles of ATP per mole of Adjustable pressure-limiting valves. Valves which open glucose, and anaerobic glycolysis yields 2 moles of ATP. to allow passage of expired and surplus fresh gas from a Other high-energy phosphate compounds include phos- breathing system, but close to prevent indrawing of air. phorylcreatine (in muscle), ADP itself, and other nucleotides. Ideally the opening pressure should be as low as possible to See also, Cytochrome oxidase system; Metabolism; Tricar- reduce resistance to expiration, but not so low as to allow the boxylic acid cycle reservoir bag to empty through it. Most contain a thin disc held against its seating by a spring, as in the original Heid- brink valve. Adjusting the tension in the spring, usually by β-Receptor α2-Receptor screwing the valve top, alters the pressure at which the valve opens. The valve must be vertical in order to function correctly. Cell membrane Modern valves, even when screwed fully down, will open Gs Gi at high pressures (60 cmH2O). Most are now encased in a Adenylate hood for scavenging of waste gases. cyclase Phosphodiesterase [Jay A Heidbrink (1875–1957), US anaesthetist] See also, Anaesthetic breathing systems; Non-rebreathing valves ATP cAMP 5'-AMP ADP, see Adenosine triphosphate and diphosphate Phosphorylation Protein kinase of enzymes + other proteins Adrenal gland. Situated on the upper pole of the kidney, each gland is composed of an outer cortex and an inner Gs, stimulatory guanine nucleotide regulatory protein medulla. The cortex consists of the outer zona glomerulosa Gi, inhibitory guanine nucleotide regulatory protein (secreting aldosterone), the middle zona fasciculata (secret- ing glucocorticoids) and inner zona reticularis (secreting sex hormones). Hypersecretion may result in hyperaldosteron- Fig. 5 cAMP involvement in transmembrane signalling ism, Cushing’s syndrome and virilisation/feminisation
  • 10. 10 Adrenaline respectively. Hyposecretion causes adrenocortical insuffi- for general anaesthetics and have also been used for sedation ciency. in ICU. Other a2-receptor agonists (e.g. xylazine, detomidine The adrenal medulla is thought to be derived from a sym- and medetomidine) have been used in veterinary practice as pathetic ganglion in which the postganglionic neurones have anaesthetic agents for many years. lost their axons, and secrete catecholamines into the blood- stream. Hypersecretion results in phaeochromocytoma. b-Adrenergic receptor agonists. Agonists include See also, Sympathetic nervous system adrenaline and isoprenaline which stimulate both b1- and b2-adrenergic receptors. Dopamine and dobutamine act Adrenaline (Epinephrine). Catecholamine, acting as a hor- mainly at b1-receptors. mone and neurotransmitter in the sympathetic nervous Salbutamol and terbutaline predominantly affect system and brainstem pathways. Synthesised and released b2-receptors, and are used clinically to cause bronchodilatation from the adrenal gland medulla and central adrenergic neur- in asthma, and as tocolytic drugs in premature labour. For- ones ( for structure, synthesis and metabolism, see Catechol- oterol and salmeterol are longer acting agents given by inhal- amines). Called epinephrine in the USA because the name ation for chronic asthma. Ritodrine is also used as a tocolytic adrenaline, used in other countries, was too similar to drug. Some b1-receptor effects are seen at high doses, e.g. the US-registered trade name Adrenalin that referred to a tachycardia. They have been used in the treatment of cardiac specific product (both adrenaline (Latin) and epinephrine failure and cardiogenic shock; stimulation of vascular (Greek) referring to the location of the adrenal gland ‘on the b2-receptors causes vasodilatation and reduces afterload. kidney’). Stimulates both a- and b-adrenergic receptors; displays a-Adrenergic receptor antagonists (a-Blockers). Usu- predominantly b-effects at low doses, a- at higher doses. Low ally refer to antagonists which act exclusively at a-adrenergic dose infusion may lower BP by causing vasodilatation in receptors. muscle via b2-receptors, despite increased cardiac output via l Drugs may be: b1-receptors. Higher doses cause a-mediated vasoconstric- w selective: tion and increased systolic BP, although diastolic pressure - a1-receptors, e.g. prazosin, doxazosin, terazosin, indora- may still decrease. min, phenoxybenzamine. Tamsulosin acts specifically at l Clinical uses: a1A-receptors and is used in benign prostatic hypertrophy. w with local anaesthetic agents, as a vasoconstrictor. - a2-receptors: yohimbine. w in anaphylactic reaction, cardiac arrest, bronchos- w non-selective, e.g. phentolamine. pasm. Labetalol and carvedilol (a drug with similar effects) are w as an inotropic drug. antagonists at both a- and b-receptors. Other drugs may also w in glaucoma (reduces aqueous humour production). act at a-receptors as part of a range of effects, e.g. chlorpro- w in croup. mazine, droperidol. Adrenaline may cause cardiac arrhythmias, especially in the Antagonism may be competitive, e.g. phentolamine, or presence of hypercapnia, hypoxia and certain drugs, e.g. non-competitive and therefore longer-lasting, e.g. phenoxy- halothane, cyclopropane and cocaine. During halothane benzamine. anaesthesia, suggested maximal dosage of adrenaline is Used to lower BP and reduce afterload by causing vaso- 10 ml 1:100 000 solution (100 mg) in 10 min, or 30 ml dilatation. Compensatory tachycardia may occur. (300 mg) in 1 h. More dilute solutions should be used if l Side effects: postural hypotension, dizziness, tachycardia possible. Adrenaline should not be used for ring blocks of (less so with the selective a1-antagonists, possibly because digits or for penile nerve blocks, because of possible ischae- the negative feedback of noradrenaline at a2-receptors is mia to distal tissues. unaffected). Tachyphylaxis may occur. l Dosage: w anaphylaxis: 0.1 mg iv (1 ml 1:10 000 solution), b-Adrenergic receptor antagonists (b-Blockers). Com- repeated as required. The recommended initial route in petitive antagonists at b-adrenergic receptors. general medical guidelines is usually im (0.5–1.0 ml l Actions: 1:1000 solution), reflecting the risks of iv administration w reduce heart rate, force of contraction and myocardial without appropriate monitoring. O2 consumption. w cardiac arrest: 1 mg (10 ml 1:10 000) iv. w increase coronary blood flow by increasing diastolic w by infusion: 0.01–0.15 mg/kg/min initially, increasing filling time. as required. w antiarrhythmic action results from b-receptor antagonism w croup: 0.4 ml/kg nebulised up to 5 ml maximum, and possibly a membrane-stabilising effect at high doses. repeated after 30 min if required. w antihypertensive action (not fully understood but may Subcutaneous injection in shocked patients results in un- involve reductions in cardiac output, central sympa- reliable absorption. Adrenaline may be administered via a thetic activity, and renin levels). tracheal tube in 2–3 times the iv dose. w some have partial agonist activity (intrinsic sympatho- See also, Tracheal administration of drugs mimetic activity), e.g. pindolol, acebutolol, celiprolol and oxprenolol. a-Adrenergic receptor agonists. Naturally occurring w practolol, atenolol, metoprolol, betaxolol, bisoprolol, agonists include adrenaline and noradrenaline which nebivolol and acebutolol are relatively cardioselective, stimulate both a1- and a2-adrenergic receptors. but all will block b2-receptors at high doses. Celiprolol Methoxamine and phenylephrine are synthetic a1-receptor has b1-receptor antagonist and b2-receptor agonist prop- agonists, used to cause vasoconstriction, e.g. to correct erties, thus causing peripheral vasodilatation in addition hypotension in spinal anaesthesia. to cardiac effects. Clonidine acts on central a2-receptors. Clonidine and w labetalol and carvedilol have a- and b-receptor blocking other a2-receptor agonists (e.g. dexmedetomidine) have properties. The former is available for iv administration been shown to reduce pain sensation and reduce requirements and is widely used for acute reduction in BP.