SlideShare una empresa de Scribd logo
1 de 33
Autoras:
Fernanda Souza
Katia Dutra
Vamos Começar?
A trigonometria é utilizada em várias áreas, como a engenharia civil,
naval, elétrica, de telecomunicações e na astronomia. E no dia a dia de
profissionais como costureiras, eletricistas, mestre de obras. Por isso,

nesta aula, estudaremos a trigonometria do triângulo retângulo, pois ela
nos permitirá realizar facilmente cálculos como:
- altura de um prédio através de sua sombra;
- distância a ser percorrida em uma pista circular de atletismo;

- largura de rios, montanhas etc.
No curso de telecomunicações estuda-se muito eletricidade e sinais
digitais. Logo, você terá de lidar com potências elétricas, não é mesmo?
Mas,

então,

trigonometria?

qual

será

a

relação

entre

eletricidade,

potência

e
Já aconteceu de estar assistindo sua TV e quando é ligado um motor elétrico
(liquidificador, secador de cabelo ) a TV ficar com ruídos na imagem? Pois é,
esta é uma amostra das interferências que acontecem a rede elétrica recebe
cargas muito elevadas.

É aí que entra a trigonometria. Então, vamos ver essa aula para entender
melhor como isso funciona?
Fique por dentro

As

funções

trigonométricas

básicas

são

relações entre as medidas dos lados do

triângulo retângulo e seus ângulos.

As três

funções mais importantes da trigonometria são:
,

e

.
Observe os triângulos retângulos na figura, nos quais AB // MN // PQ // RS
B
5

N



5

Q
10
12

9

6


C

8

P

4

M

4

A

O Teorema de Tales nos garante que os triângulos formados são semelhantes:
ABC ~ MNC

~ PQC
Podemos então, estabelecer três importantes razões:

1. Razão entre a medida do cateto oposto ao ângulo α e a medida da hipotenusa

PQ = _6 = 3
QC 10
5

MN = _9 = 3
NC 15
5
15

10
6

9

As razões encontradas são

AB = 12 = 3
BC 20
5

constantes 3

20

5
12

e são chamadas de

seno de α
O Teorema de Tales nos garante que, para um triângulo retângulo qualquer,
sendo C um ângulo agudo de medida α, podemos escrever:
B

B1


A

A1

C

Em todo triângulo retângulo, o seno de um ângulo
agudo é a razão entre a medida do cateto oposto
a esse ângulo e a medida da hipotenusa:

sen=

cateto oposto a 
hipotenusa

=

A1 B1
B1 C

AB
=

BC
2. Razão entre a medida do cateto adjacente ao ângulo α e a medida da hipotenusa

CP = _8 = 4
QC 10
5

CM = 12 = 4
NC 15
5
10
8

15
12

As razões encontradas são

CA = 16 = 4
BC 20
5

constantes 4

20

5
e são chamadas de

16

cosseno de α
Em todo triângulo retângulo, o cosseno de um
ângulo agudo é a razão entre a media do cateto
adjacente a esse ângulo e a medida da
hipotenusa:

A

B

C
3. Razão entre a medida do cateto oposto e a medida do cateto adjacente ao ângulo α.

QP = 6
PC 8

=3
4

NM = 12
MC 15

=3
4

6

12

8

15

As razões encontradas são
constantes 3

BA = 12 = 3
AC 16
4

12
16

4
e são chamadas de

tangente de α
Em todo triângulo retângulo, a tangente de um
ângulo agudo é a razão entre a medida do cateto
oposto e a medida cateto adjacente a esse
ângulo.

A

B

C
Podemos verificar que dada as definições de
seno e cosseno de um ângulo, também
podemos escrever a relação da tangente como:
Alguns ângulos, por aparecerem com muita freqüência nos problemas de
trigonometria são chamados de ângulos notáveis. São eles: 30 , 45 e 60 .
Para facilitar a consulta, colocaremos os valores das razões trigonométricas
desses ângulos em uma tabela.

α

30°

45°

60°

sen α

1
_
2

2
_
2

3
_
2

cos α

tg α

3
_
2

2
_
2

1

1
_
2
Esses valores da tabela são obtidos a partir das relações trigonométricas dos
triângulos retângulos obtidos pela diagonal do quadrado (45°) e pela
divisão do triângulo equilátero (30° e 60°) como você pode conferir nas
próximas figuras.

45°

l

l

45°

l
E no triângulo eqüilátero, temos:
A

30° 30°

l

l
h

60°

B

60°

H

l

C

2
Depois, é só aplicar as razões trigonométricas nos catetos
e hipotenusa para obter os valores da tabela.
Experimente!
Assista ao vídeo explicativo
mostrando problemas práticos
envolvendo a trigonometria e suas
soluções.

https://www.youtube.com/watch?v=HkTlT5oN8g8
Os problemas em trigonometria
também podem envolver outros
ângulos. E, para isso, podemos
consultar uma tabela
trigonométrica ou utilizar uma
calculadora científica.
Também usamos as tabelas e
calculadoras para fazer o caminho
inverso: dado o valor do cosseno ou
seno, qual o valor do ângulo?
Na calculadora, isso se faz com as
teclas das funções inversas arcsen
(ou sin-¹), arccos (ou cos-¹) e arctg
(tan-¹).
Tabela de

seno,
cosseno
e
tangente:
Outras relações entre seno e cosseno:
O seno de um ângulo agudo é igual ao cosseno do complemento desse ângulo e
vice-versa.

Essas propriedades podem ser facilmente
verificadas no triângulo retângulo. Experimente!
E a relação entre a eletricidade e a trigonometria, como fica?
A trigonometria é a base do estudo teórico da eletricidade e uma
das relações aonde isso aparece é a do fator de potência.

Mas...

O que é fator de potência?
E a relação entre eletricidade, potência e trigonometria sobre a
qual falamos anteriormente, como fica?
A trigonometria está na base do estudo teórico da eletricidade e um
exemplo disso é o fator de potência.
Mas...
O que é fator de potência?
Nas instalações elétricas, é considerado
bom um fator de potência maior ou igual
a 0,85 ou 85% porque, quanto menor o
fator de potência, maior a corrente. Se o
fator de potência não for adequado,
haverá perdas por aquecimento e
desgaste nas instalações.

Matematicamente, o fator de potência é a relação entre a
potência real e a potência aparente e é o valor do cos α no
triângulo retângulo.
Analise prática do fator de potência.

Nos sistemas em que o cos ϕ é reduzido a baixos valores, a corrente nos
condutores não é toda aproveitada como seria desejável.
Vejamos um caso concreto:
Imaginemos duas fábricas consumindo a mesma potência de 400 kW a
uma tensão de 5 KV (quilo volt= 1000volts) mas com fatores de potência
distintos:
cos ϕ na fábrica 1 = 1
e cos ϕ na fábrica 2 = 0,5.
Ao fim de igual tempo de funcionamento, os dois sistemas terão consumido
a mesma energia. Calculemos as correntes utilizadas por cada um:
P = U.I . cos ϕ
Onde:
P= potência
U= tensão
I = corrente elétrica
cos ϕ = fator de potência

Fábrica 1 :
I1 = P1 / (U1 . cos ϕ1) = 400 / (5x 1) = 80 A
Fábrica 2 :
I2 = P2 / (U2 . cos ϕ2) = 400 / (5x 0,5) = 160 A
Na segunda instalação, para a mesma
potência, há necessidade do dobro da
intensidade de corrente da primeira

Isso traz consequências tanto para produtores como para consumidores. Dessa
forma produtores e distribuidores de energia terão de dispor de alternadores com
potências mais elevadas para poderem fornecer a corrente, o que provocará um
dimensionamento de toda a aparelhagem, linhas de transporte e distribuição

para maiores intensidades.
Logo, em relação aos sistemas, é melhor disporem de um elevado fator de
potência porque, se isso não ocorrer, terão de superdimensionar a
aparelhagem de proteção, o que resultará em maiores custos.
Veja outro exemplo

O gráfico a seguir representa a tensão U (volts) aplicada a
um resistor versus a corrente i (ampères) obtida. Calcule o
valor da resistência:

Solução:

θ

A resistência será dada pela tangente do ângulo formado entre o eixo da corrente
e a reta do gráfico, ângulo θ na figura anterior.
Acompanhe outro
exemplo!

Em um campo magnético B de intensidade 10²T, uma
partícula com carga q=0,0002C é lançada com velocidade v=
200000 m/s, em uma direção que forma um ângulo de 30°

com a direção do campo magnético, conforme indica a figura:
Qual a intensidade da força magnética que age sobre a
partícula?

Para calcularmos a força magnética que age sobre
esta partícula devemos lembrar da equação do
campo magnético, generalizado para direções
arbitrárias de "lançamento". Ou seja:
Acompanhe outro
exemplo.

Em um campo magnético B de intensidade 10²T (tesla), uma
partícula q com carga 0,0002C (coulomb) é lançada com
velocidade de 2.10 6m/s, em uma direção que forma um
ângulo de 30° com a direção do campo magnético, conforme
indica a figura:
Qual a intensidade da força magnética que age sobre a
partícula?

Para calcularmos a força magnética que age sobre
esta partícula, devemos usar a equação do campo
magnético generalizado para direções arbitrárias de
"lançamento". Ou seja:
Navegando ...

Assista a animação abaixo e veja como a trigonometria está em vários
campos e atividades.

http://rived.mec.gov.br/atividades/matematica/mundo_trigonometria/index.html

Veja um vídeo sobre corrente elétrica em: https://www.youtube.com/watch?v=tZLnsyPuohs
Entenda mais sobre potência e energia potencial em:
https://www.youtube.com/watch?v=XU2n8Dl_MC8
Agora é sua vez!

-14

1. Em um campo magnético de intensidade B= 100T, uma partícula com carga q= 3.10 é lançada
com velocidade v= 10³ (em m/s), em uma direção que forma um ângulo de 30° com a direção do
campo magnético. Qual a intensidade da força que atua sobre a partícula? Use a equação da
intensidade da força magnética.
2. Em um circuito RL, (circuito constituído por uma bobina real), temos o triângulo
das tensões e o triângulo das impedâncias como nas figuras a seguir:

Determine, os valores de cosφ e
senφ em função de Z, R e XL.

Lembrete:
U = tensão em volts; XL = reatância indutiva em Ohms; R = resistência em Ohms,
Z= é a impedância (U/I) também em ohms
Confira suas
respostas!

Então? Como foi o seu desempenho?
1. F= 1,5x10³ N
2. cosφ = R/Z e senφ = XL /Z
Referências Bibliográficas

1. GIOVANNI JÚNIOR, José Ruy e CASTRUCCI Benedicto . A Conquista da Matemática, 9º ano.
São Paulo: FTD, 2009.
2. SMOLE, Katia, ,KIYUKAWA, Rokusaburo. Matemática, vol. 1. São Paulo: Editora Saraiva, 1998.
3. SILVEIRA, Ênio e MARQUES, Cláudio. Matemática vol. 1. São Paulo: Moderna, 1995.
4. Site: http://www.sofisica.com.br/conteudos/exercicios/inducao.php , acessado em 11/10/201,
16:00.

Más contenido relacionado

La actualidad más candente

Trigonometria ponteiros relogio
Trigonometria ponteiros relogioTrigonometria ponteiros relogio
Trigonometria ponteiros relogio
trigono_metria
 
Relatório ensaios em transformadores
Relatório ensaios em transformadoresRelatório ensaios em transformadores
Relatório ensaios em transformadores
Victor Said
 
Aula 5 (capacitância).ppt
Aula 5 (capacitância).pptAula 5 (capacitância).ppt
Aula 5 (capacitância).ppt
Michael Esclapes
 

La actualidad más candente (20)

Exercícios resolvidos
Exercícios resolvidosExercícios resolvidos
Exercícios resolvidos
 
Eletronica de potencia
Eletronica de potenciaEletronica de potencia
Eletronica de potencia
 
Lista 1 2 e 3 gabarito
Lista 1 2 e 3 gabaritoLista 1 2 e 3 gabarito
Lista 1 2 e 3 gabarito
 
Sistema Trifásico
Sistema TrifásicoSistema Trifásico
Sistema Trifásico
 
Solucionário Capitulo4 FOX
Solucionário Capitulo4 FOXSolucionário Capitulo4 FOX
Solucionário Capitulo4 FOX
 
Trigonometria ponteiros relogio
Trigonometria ponteiros relogioTrigonometria ponteiros relogio
Trigonometria ponteiros relogio
 
Aula 11: A barreira de potencial
Aula 11: A barreira de potencialAula 11: A barreira de potencial
Aula 11: A barreira de potencial
 
Calculo potencia trifasica
Calculo potencia trifasicaCalculo potencia trifasica
Calculo potencia trifasica
 
#2 título e volume específico propriedades termodinâmica
#2 título e volume específico   propriedades termodinâmica#2 título e volume específico   propriedades termodinâmica
#2 título e volume específico propriedades termodinâmica
 
Relatório ensaios em transformadores
Relatório ensaios em transformadoresRelatório ensaios em transformadores
Relatório ensaios em transformadores
 
Potêncial elétrico, halliday, cap. 24
Potêncial elétrico, halliday, cap. 24Potêncial elétrico, halliday, cap. 24
Potêncial elétrico, halliday, cap. 24
 
Questoes resolvidas de termodinmica
Questoes resolvidas de termodinmicaQuestoes resolvidas de termodinmica
Questoes resolvidas de termodinmica
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
 
Porque raiz 3 nos circuitos trifasicos
Porque raiz 3 nos circuitos trifasicosPorque raiz 3 nos circuitos trifasicos
Porque raiz 3 nos circuitos trifasicos
 
Aula 5 (capacitância).ppt
Aula 5 (capacitância).pptAula 5 (capacitância).ppt
Aula 5 (capacitância).ppt
 
Relatório
RelatórioRelatório
Relatório
 
Aula motores elétricos
Aula motores elétricosAula motores elétricos
Aula motores elétricos
 
Aula 23 -Fasores I (1) (1).pdf
Aula 23 -Fasores I (1) (1).pdfAula 23 -Fasores I (1) (1).pdf
Aula 23 -Fasores I (1) (1).pdf
 
Trabalho circuitos elétricos
Trabalho circuitos elétricosTrabalho circuitos elétricos
Trabalho circuitos elétricos
 
Cien mat aula3
Cien mat aula3Cien mat aula3
Cien mat aula3
 

Más de Equipe_FAETEC

Más de Equipe_FAETEC (20)

Notação Científica (Telecomunicações)
Notação Científica (Telecomunicações)Notação Científica (Telecomunicações)
Notação Científica (Telecomunicações)
 
O Emprego da Crase (Turismo)
O Emprego da Crase (Turismo)O Emprego da Crase (Turismo)
O Emprego da Crase (Turismo)
 
O Gênero Textual Currículo
O Gênero Textual CurrículoO Gênero Textual Currículo
O Gênero Textual Currículo
 
As Vozes Verbais
As Vozes VerbaisAs Vozes Verbais
As Vozes Verbais
 
Plural de los sustantivos y adjetivos
Plural de los sustantivos y adjetivosPlural de los sustantivos y adjetivos
Plural de los sustantivos y adjetivos
 
Função Polinomial do 1º Grau
Função Polinomial do 1º GrauFunção Polinomial do 1º Grau
Função Polinomial do 1º Grau
 
Linguagem Verbal e Não Verbal
Linguagem Verbal e Não VerbalLinguagem Verbal e Não Verbal
Linguagem Verbal e Não Verbal
 
linguagem verbal e não verbal
linguagem verbal e não verballinguagem verbal e não verbal
linguagem verbal e não verbal
 
Função Polinomial
Função PolinomialFunção Polinomial
Função Polinomial
 
Noções de Funções
Noções de FunçõesNoções de Funções
Noções de Funções
 
Regência Verbal
Regência Verbal Regência Verbal
Regência Verbal
 
Relatorio
RelatorioRelatorio
Relatorio
 
Regência Verbal
Regência VerbalRegência Verbal
Regência Verbal
 
Unidades de medidas e suas transformações
Unidades de medidas e suas transformaçõesUnidades de medidas e suas transformações
Unidades de medidas e suas transformações
 
Proporcao
ProporcaoProporcao
Proporcao
 
Operacoes numeros decimais
Operacoes numeros decimaisOperacoes numeros decimais
Operacoes numeros decimais
 
virgula. pptx
virgula. pptxvirgula. pptx
virgula. pptx
 
Notacao Cientifica
Notacao CientificaNotacao Cientifica
Notacao Cientifica
 
Periodo simples e_composto
Periodo simples e_compostoPeriodo simples e_composto
Periodo simples e_composto
 
Números Decimais
Números DecimaisNúmeros Decimais
Números Decimais
 

Último

República Velha (República da Espada e Oligárquica)-Sala de Aula.pdf
República Velha (República da Espada e Oligárquica)-Sala de Aula.pdfRepública Velha (República da Espada e Oligárquica)-Sala de Aula.pdf
República Velha (República da Espada e Oligárquica)-Sala de Aula.pdf
LidianeLill2
 
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdfatividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
Autonoma
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
PatriciaCaetano18
 
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
azulassessoria9
 
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
azulassessoria9
 
Aprender as diferentes formas de classificar as habilidades motoras é de extr...
Aprender as diferentes formas de classificar as habilidades motoras é de extr...Aprender as diferentes formas de classificar as habilidades motoras é de extr...
Aprender as diferentes formas de classificar as habilidades motoras é de extr...
azulassessoria9
 

Último (20)

GUIA DE APRENDIZAGEM 2024 9º A - História 1 BI.doc
GUIA DE APRENDIZAGEM 2024 9º A - História 1 BI.docGUIA DE APRENDIZAGEM 2024 9º A - História 1 BI.doc
GUIA DE APRENDIZAGEM 2024 9º A - História 1 BI.doc
 
Aula 67 e 68 Robótica 8º ano Experimentando variações da matriz de Led
Aula 67 e 68 Robótica 8º ano Experimentando variações da matriz de LedAula 67 e 68 Robótica 8º ano Experimentando variações da matriz de Led
Aula 67 e 68 Robótica 8º ano Experimentando variações da matriz de Led
 
República Velha (República da Espada e Oligárquica)-Sala de Aula.pdf
República Velha (República da Espada e Oligárquica)-Sala de Aula.pdfRepública Velha (República da Espada e Oligárquica)-Sala de Aula.pdf
República Velha (República da Espada e Oligárquica)-Sala de Aula.pdf
 
M0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptxM0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptx
 
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdfatividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
 
AULÃO de Língua Portuguesa para o Saepe 2022
AULÃO de Língua Portuguesa para o Saepe 2022AULÃO de Língua Portuguesa para o Saepe 2022
AULÃO de Língua Portuguesa para o Saepe 2022
 
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
 
Acessibilidade, inclusão e valorização da diversidade
Acessibilidade, inclusão e valorização da diversidadeAcessibilidade, inclusão e valorização da diversidade
Acessibilidade, inclusão e valorização da diversidade
 
Sopa de letras | Dia da Europa 2024 (nível 2)
Sopa de letras | Dia da Europa 2024 (nível 2)Sopa de letras | Dia da Europa 2024 (nível 2)
Sopa de letras | Dia da Europa 2024 (nível 2)
 
Educação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptxEducação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptx
 
Cartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptxCartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptx
 
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
 
aprendizagem significatica, teórico David Ausubel
aprendizagem significatica, teórico David Ausubelaprendizagem significatica, teórico David Ausubel
aprendizagem significatica, teórico David Ausubel
 
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
 
Aprender as diferentes formas de classificar as habilidades motoras é de extr...
Aprender as diferentes formas de classificar as habilidades motoras é de extr...Aprender as diferentes formas de classificar as habilidades motoras é de extr...
Aprender as diferentes formas de classificar as habilidades motoras é de extr...
 
Pesquisa Ação René Barbier Livro acadêmico
Pesquisa Ação René Barbier Livro  acadêmicoPesquisa Ação René Barbier Livro  acadêmico
Pesquisa Ação René Barbier Livro acadêmico
 
Aula 1 - Psicologia Cognitiva, aula .ppt
Aula 1 - Psicologia Cognitiva, aula .pptAula 1 - Psicologia Cognitiva, aula .ppt
Aula 1 - Psicologia Cognitiva, aula .ppt
 
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
Tema de redação - As dificuldades para barrar o casamento infantil no Brasil ...
 
apostila filosofia 1 ano 1s (1).pdf 1 ANO DO ENSINO MEDIO . CONCEITOSE CARAC...
apostila filosofia 1 ano  1s (1).pdf 1 ANO DO ENSINO MEDIO . CONCEITOSE CARAC...apostila filosofia 1 ano  1s (1).pdf 1 ANO DO ENSINO MEDIO . CONCEITOSE CARAC...
apostila filosofia 1 ano 1s (1).pdf 1 ANO DO ENSINO MEDIO . CONCEITOSE CARAC...
 

Trigonometria no Triângulo Retângulo (Telecomunicações)

  • 2. Vamos Começar? A trigonometria é utilizada em várias áreas, como a engenharia civil, naval, elétrica, de telecomunicações e na astronomia. E no dia a dia de profissionais como costureiras, eletricistas, mestre de obras. Por isso, nesta aula, estudaremos a trigonometria do triângulo retângulo, pois ela nos permitirá realizar facilmente cálculos como: - altura de um prédio através de sua sombra; - distância a ser percorrida em uma pista circular de atletismo; - largura de rios, montanhas etc. No curso de telecomunicações estuda-se muito eletricidade e sinais digitais. Logo, você terá de lidar com potências elétricas, não é mesmo? Mas, então, trigonometria? qual será a relação entre eletricidade, potência e
  • 3. Já aconteceu de estar assistindo sua TV e quando é ligado um motor elétrico (liquidificador, secador de cabelo ) a TV ficar com ruídos na imagem? Pois é, esta é uma amostra das interferências que acontecem a rede elétrica recebe cargas muito elevadas. É aí que entra a trigonometria. Então, vamos ver essa aula para entender melhor como isso funciona?
  • 4. Fique por dentro As funções trigonométricas básicas são relações entre as medidas dos lados do triângulo retângulo e seus ângulos. As três funções mais importantes da trigonometria são: , e .
  • 5. Observe os triângulos retângulos na figura, nos quais AB // MN // PQ // RS B 5 N  5 Q 10 12 9 6  C 8 P 4 M 4 A O Teorema de Tales nos garante que os triângulos formados são semelhantes: ABC ~ MNC ~ PQC
  • 6. Podemos então, estabelecer três importantes razões: 1. Razão entre a medida do cateto oposto ao ângulo α e a medida da hipotenusa PQ = _6 = 3 QC 10 5 MN = _9 = 3 NC 15 5 15 10 6 9 As razões encontradas são AB = 12 = 3 BC 20 5 constantes 3 20 5 12 e são chamadas de seno de α
  • 7. O Teorema de Tales nos garante que, para um triângulo retângulo qualquer, sendo C um ângulo agudo de medida α, podemos escrever: B B1  A A1 C Em todo triângulo retângulo, o seno de um ângulo agudo é a razão entre a medida do cateto oposto a esse ângulo e a medida da hipotenusa: sen= cateto oposto a  hipotenusa = A1 B1 B1 C AB = BC
  • 8. 2. Razão entre a medida do cateto adjacente ao ângulo α e a medida da hipotenusa CP = _8 = 4 QC 10 5 CM = 12 = 4 NC 15 5 10 8 15 12 As razões encontradas são CA = 16 = 4 BC 20 5 constantes 4 20 5 e são chamadas de 16 cosseno de α
  • 9. Em todo triângulo retângulo, o cosseno de um ângulo agudo é a razão entre a media do cateto adjacente a esse ângulo e a medida da hipotenusa: A B C
  • 10. 3. Razão entre a medida do cateto oposto e a medida do cateto adjacente ao ângulo α. QP = 6 PC 8 =3 4 NM = 12 MC 15 =3 4 6 12 8 15 As razões encontradas são constantes 3 BA = 12 = 3 AC 16 4 12 16 4 e são chamadas de tangente de α
  • 11. Em todo triângulo retângulo, a tangente de um ângulo agudo é a razão entre a medida do cateto oposto e a medida cateto adjacente a esse ângulo. A B C
  • 12. Podemos verificar que dada as definições de seno e cosseno de um ângulo, também podemos escrever a relação da tangente como:
  • 13. Alguns ângulos, por aparecerem com muita freqüência nos problemas de trigonometria são chamados de ângulos notáveis. São eles: 30 , 45 e 60 . Para facilitar a consulta, colocaremos os valores das razões trigonométricas desses ângulos em uma tabela. α 30° 45° 60° sen α 1 _ 2 2 _ 2 3 _ 2 cos α tg α 3 _ 2 2 _ 2 1 1 _ 2
  • 14. Esses valores da tabela são obtidos a partir das relações trigonométricas dos triângulos retângulos obtidos pela diagonal do quadrado (45°) e pela divisão do triângulo equilátero (30° e 60°) como você pode conferir nas próximas figuras. 45° l l 45° l
  • 15. E no triângulo eqüilátero, temos: A 30° 30° l l h 60° B 60° H l C 2 Depois, é só aplicar as razões trigonométricas nos catetos e hipotenusa para obter os valores da tabela. Experimente!
  • 16. Assista ao vídeo explicativo mostrando problemas práticos envolvendo a trigonometria e suas soluções. https://www.youtube.com/watch?v=HkTlT5oN8g8
  • 17. Os problemas em trigonometria também podem envolver outros ângulos. E, para isso, podemos consultar uma tabela trigonométrica ou utilizar uma calculadora científica. Também usamos as tabelas e calculadoras para fazer o caminho inverso: dado o valor do cosseno ou seno, qual o valor do ângulo? Na calculadora, isso se faz com as teclas das funções inversas arcsen (ou sin-¹), arccos (ou cos-¹) e arctg (tan-¹).
  • 19. Outras relações entre seno e cosseno: O seno de um ângulo agudo é igual ao cosseno do complemento desse ângulo e vice-versa. Essas propriedades podem ser facilmente verificadas no triângulo retângulo. Experimente!
  • 20. E a relação entre a eletricidade e a trigonometria, como fica? A trigonometria é a base do estudo teórico da eletricidade e uma das relações aonde isso aparece é a do fator de potência. Mas... O que é fator de potência?
  • 21. E a relação entre eletricidade, potência e trigonometria sobre a qual falamos anteriormente, como fica? A trigonometria está na base do estudo teórico da eletricidade e um exemplo disso é o fator de potência. Mas... O que é fator de potência?
  • 22.
  • 23. Nas instalações elétricas, é considerado bom um fator de potência maior ou igual a 0,85 ou 85% porque, quanto menor o fator de potência, maior a corrente. Se o fator de potência não for adequado, haverá perdas por aquecimento e desgaste nas instalações. Matematicamente, o fator de potência é a relação entre a potência real e a potência aparente e é o valor do cos α no triângulo retângulo.
  • 24. Analise prática do fator de potência. Nos sistemas em que o cos ϕ é reduzido a baixos valores, a corrente nos condutores não é toda aproveitada como seria desejável. Vejamos um caso concreto: Imaginemos duas fábricas consumindo a mesma potência de 400 kW a uma tensão de 5 KV (quilo volt= 1000volts) mas com fatores de potência distintos: cos ϕ na fábrica 1 = 1 e cos ϕ na fábrica 2 = 0,5. Ao fim de igual tempo de funcionamento, os dois sistemas terão consumido a mesma energia. Calculemos as correntes utilizadas por cada um: P = U.I . cos ϕ Onde: P= potência U= tensão I = corrente elétrica cos ϕ = fator de potência Fábrica 1 : I1 = P1 / (U1 . cos ϕ1) = 400 / (5x 1) = 80 A Fábrica 2 : I2 = P2 / (U2 . cos ϕ2) = 400 / (5x 0,5) = 160 A
  • 25. Na segunda instalação, para a mesma potência, há necessidade do dobro da intensidade de corrente da primeira Isso traz consequências tanto para produtores como para consumidores. Dessa forma produtores e distribuidores de energia terão de dispor de alternadores com potências mais elevadas para poderem fornecer a corrente, o que provocará um dimensionamento de toda a aparelhagem, linhas de transporte e distribuição para maiores intensidades. Logo, em relação aos sistemas, é melhor disporem de um elevado fator de potência porque, se isso não ocorrer, terão de superdimensionar a aparelhagem de proteção, o que resultará em maiores custos.
  • 26. Veja outro exemplo O gráfico a seguir representa a tensão U (volts) aplicada a um resistor versus a corrente i (ampères) obtida. Calcule o valor da resistência: Solução: θ A resistência será dada pela tangente do ângulo formado entre o eixo da corrente e a reta do gráfico, ângulo θ na figura anterior.
  • 27. Acompanhe outro exemplo! Em um campo magnético B de intensidade 10²T, uma partícula com carga q=0,0002C é lançada com velocidade v= 200000 m/s, em uma direção que forma um ângulo de 30° com a direção do campo magnético, conforme indica a figura: Qual a intensidade da força magnética que age sobre a partícula? Para calcularmos a força magnética que age sobre esta partícula devemos lembrar da equação do campo magnético, generalizado para direções arbitrárias de "lançamento". Ou seja:
  • 28. Acompanhe outro exemplo. Em um campo magnético B de intensidade 10²T (tesla), uma partícula q com carga 0,0002C (coulomb) é lançada com velocidade de 2.10 6m/s, em uma direção que forma um ângulo de 30° com a direção do campo magnético, conforme indica a figura: Qual a intensidade da força magnética que age sobre a partícula? Para calcularmos a força magnética que age sobre esta partícula, devemos usar a equação do campo magnético generalizado para direções arbitrárias de "lançamento". Ou seja:
  • 29. Navegando ... Assista a animação abaixo e veja como a trigonometria está em vários campos e atividades. http://rived.mec.gov.br/atividades/matematica/mundo_trigonometria/index.html Veja um vídeo sobre corrente elétrica em: https://www.youtube.com/watch?v=tZLnsyPuohs Entenda mais sobre potência e energia potencial em: https://www.youtube.com/watch?v=XU2n8Dl_MC8
  • 30. Agora é sua vez! -14 1. Em um campo magnético de intensidade B= 100T, uma partícula com carga q= 3.10 é lançada com velocidade v= 10³ (em m/s), em uma direção que forma um ângulo de 30° com a direção do campo magnético. Qual a intensidade da força que atua sobre a partícula? Use a equação da intensidade da força magnética.
  • 31. 2. Em um circuito RL, (circuito constituído por uma bobina real), temos o triângulo das tensões e o triângulo das impedâncias como nas figuras a seguir: Determine, os valores de cosφ e senφ em função de Z, R e XL. Lembrete: U = tensão em volts; XL = reatância indutiva em Ohms; R = resistência em Ohms, Z= é a impedância (U/I) também em ohms
  • 32. Confira suas respostas! Então? Como foi o seu desempenho? 1. F= 1,5x10³ N 2. cosφ = R/Z e senφ = XL /Z
  • 33. Referências Bibliográficas 1. GIOVANNI JÚNIOR, José Ruy e CASTRUCCI Benedicto . A Conquista da Matemática, 9º ano. São Paulo: FTD, 2009. 2. SMOLE, Katia, ,KIYUKAWA, Rokusaburo. Matemática, vol. 1. São Paulo: Editora Saraiva, 1998. 3. SILVEIRA, Ênio e MARQUES, Cláudio. Matemática vol. 1. São Paulo: Moderna, 1995. 4. Site: http://www.sofisica.com.br/conteudos/exercicios/inducao.php , acessado em 11/10/201, 16:00.