SlideShare una empresa de Scribd logo
1 de 103
Descargar para leer sin conexión
Search for Excited Randall-Sundrum Gravitons from
Warped Extra Dimensions with Semi-Leptonic
Diboson Final States using the ATLAS detector at
the LHC
Eric Williams
Columbia University
July 2nd, 2012
Thesis Defense
Talk Overview

The Large Hadron Collider
The ATLAS detector
Why extra dimensions?
The analysis
Sources of systematic uncertainties
Final results and conclusions

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

2 / 41
The Large Hadron Collider
The Large Hadron Collider (LHC)

27 km circumference, 100 meters underground
Collides counter-rotating proton beams at center-of-mass
energy = 7 TeV (now at 8 TeV!)
Delivered over 5 fb−1 of 7 TeV data to ATLAS in 2011
Beams collide at the centers of four experiments (detectors):
ATLAS, ALICE, CMS and LHC-b
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

4 / 41
The ATLAS Detector
The ATLAS Detector
The ATLAS (A Toroidal LHC ApparatuS) detector is designed to be a ‘general-purpose’
detector undertaking a broad range of physics analyses.

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

6 / 41
The ATLAS Detector
ATLAS is composed of components, each optimized for particular functions
Inner Detector: measures the momentum and
trajectories charged particles
Electromagnetic Calorimeters: measures the
energies of electrons, photons, and others
Hadronic Calorimeters: measures the energies
of the hadronic particles (‘jets’, protons,
neutrons)
Muon System: measures the momenta of
muons in the event
The combination of these systems allow for
measurments of ‘missing transverse energy’;
the signature of particles not detected, such as
neutrinos
The goal of particle detection is to reconstruct the kinematics of each collision
(particle energies, directions, charges and masses), to determine whether
something “interesting” happened during that event
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

7 / 41
Why extra dimensions?
Original Randall-Sundrum (RS1) model
Modern ‘Bulk’ Randall-Sundrum (Bulk RS) model
Why extra dimensions? RS1 Model
Original Randall-Sundrum (RS1) model offers a solution to the
hierarchy problem by postulating a 5th space-time bounded by two
(3 + 1)-dimensional branes.
Gravity is localized at
y = 0, called the UVor Planck-brane.

SM particles reststricted
to y = πR (IR- or TeVbrane).

Only gravity can
propagate through
‘bulk’.

Physical masses rescaled
by e−πkR : gravity is weak.

The resulting metric is nonfactorizable and depends on the radius y
and curvature k −1 of the extra dimension:

ds2 = e−2ky ηµν dxµ dxν + dy 2 ;

0 ≤ y ≤ πR

Therefore the RS warped geometry model proposes a solution to the
‘hierarchy problem’ with reasonable values of kR ∼ 11
Massive excited graviton modes (G∗ ) are a defining feature
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

9 / 41
Why extra dimensions? Bulk RS Model
Modern RS models (bulk RS) allow SM particles into 5-D bulk

Overlap of 5-D profiles at TeV brane (and the Higgs) determine
particles masses
Suppressed coupling to bosons and light
fermions; negligible rates to γγ and
Enhanced coupling to heavy particles
¯
(tt,ZZ and W W )
← motivates search in WW
channel!
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

G*!
G*!
G*!
G*!
G*!

WW
ZZ
HH
gg
tT

July 2nd, 2012

10 / 41
Analysis Outline
Analysis Strategy

QCD Multijet Estimation
Event Preselection

Data/MC Samples

Signal (W +jets) Control Region

Object and Event Selection

Signal Region

(*The Ω symbol in corner of following slides denotes my contributions)
Analysis Outline

Analysis Strategy

QCD Multijet Estimation
Event Preselection

Data/MC Samples

Signal (W +jets) Control Region

Object and Event Selection

Signal Region
Analysis Outline

Analysis Strategy

QCD Multijet Estimation
Event Preselection

Data/MC Samples

Signal (W +jets) Control Region

Object and Event Selection

Signal Region

→ This analysis ( νjj) part of a larger diboson resonance effort at ATLAS
which includes other decay channels:
, jj, ν and ν ν.
Analysis Strategy and Previous Limits
Diboson resonances (M > 500 GeV) are characterized by:
a high-pT W boson, decaying leptonically → ν, ( = e, µ)
Select events with one high pT isolated lepton
miss
Require large missing transverse energy (ET )

a high-pT W or Z boson, decaying hadronically → jj
Require at least two high pT jets

a peak in the four-body invariant mass M ( νjj)
Look for excess in the invariant mass of the system
Set 95% confidence limits on a narrow M( νjj) excess

Previous RS1 G∗ → V V mass exclusion limits
Experiment

L [fb−1 ]

Process

Mass
Exclusion

CMS
ATLAS
D0

4.9
1.02
5.4

G∗ → ZZ
RS1
G∗ → ZZ
RS1
G∗
RS1 → WW

1000 GeV
845 GeV
754 GeV

*Currently no published limits on bulk RS graviton production!
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

14 / 41
Analysis Outline

Analysis Strategy

QCD Multijet Estimation
Event Preselection

Data/MC Samples

Signal (W +jets) Control Region

Object and Event Selection

Signal Region
Data/MC samples
Data samples:
L = 4.701 ± 0.183 fb−1
Events checked for good detector status (Good Runs List)

Monte-Carlo samples:
Weights applied to MC events to account for pile-up, as well as trigger and
reconstruction efficiencies.
Background cross sections normalized to (N)NLO with scale factors (k-factors)
Full detector simulation, reconstructed with same software as data
Backgrounds
W +jets
Z+jets
¯
Top (tt and st)
W W/W Z/ZZ

Generator
Alpgen+Herwig/Jimmy
Alpgen+Herwig/Jimmy
MC@NLO+Herwig/Jimmy
Herwig+Jimmy

Signals (M = 500 -1500)
G∗ → νjj
RS1
G∗
Bulk → νjj
E. Williams (Columbia U.)

Generator
Pythia
CalcHEP+Atlfast II

G∗ → W W → νjj thesis defense

July 2nd, 2012

16 / 41
Analysis Outline

Analysis Strategy

QCD Multijet Estimation
Event Preselection

Data/MC Samples

Signal (W +jets) Control Region

Object and Event Selection

Signal Region
Object Selection: Electrons and Muons

Ω

Electrons are selected based on shower shape requirements and
cluster/track matching (tight++)
Muons are selected based on track quality and the combination of
tracks from the muon system and inner detector (combined)
Both electrons and muons have requirements on:

104

ATLAS Internal
X → eν jj
s= 7 TeV

103

∫ Ldt = 4.701 fb

-1

102

Events

Events

longitudinal and transverse impact parameters
transverse energy isolation
transverse momentum
eνjj
Data
W+jets
Top

µνjj
ATLAS Internal

4

10

Data
W+jets
Top

X → µν jj

Z+jets
QCD
Diboson

s= 7 TeV

103
102

10

∫ Ldt = 4.701 fb

Z+jets

-1

QCD
Diboson

10

0.5

0.5

(data-MC)/MC

1
10-1

(data-MC)/MC

1
10-1

0

-0.5
0

50

100

150

200

250

300

350

400

450

500

0

-0.5
0

50

100

150

Electron Pt [GeV]

200

250

300

350

400

450

500

Muon Pt [GeV]

*Plots shown after pre-selection and QCD estimation (details later)
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

18 / 41
Object Selection: Jets and Emiss
T

Ω

Jets:
Reconstructed using the anti-kt
algorithm with cone size 0.4
Calibrated to the hadronic scale
Required to be central with high
transverse momentum
Energy fraction associated with leading primary vertex (JVF) used to
reject pile-up jets

Emiss :
T
The missing transverse energy (Emiss ) is defined as the negative
T
vector sum of transverse momenta of all the objects in the event
Emiss is reconstructed using the MET RefFinal algorithm
T
Calorimeter cells used are calibrated individually corresponding to the
physics object to which they are associated1
1

My ATLAS ‘service’ work involved the study of the calibration of low-pT objects in the Emiss calculation
T
G∗ → W W → νjj thesis defense
July 2nd, 2012

E. Williams (Columbia U.)

19 / 41
Analysis Outline

Analysis Strategy

QCD Multijet Estimation
Event Preselection

Data/MC Samples

Signal (W +jets) Control Region

Object and Event Selection

Signal Region
QCD Multijet Estimation

Ω

QCD template method
Before scaling
Events

QCD templates from data

104

ATLAS Internal
X → µν jj
s= 7 TeV

103

‘Anti-Electrons’: reverse only isolation
requirement
‘Anti-Muons’: reverse only transverse
impact parameter significance
→ ‘non-pointing’

∫ Ldt = 4.701 fb

-1

102

Data
W+jets
Top
QCD
Z+jets
Diboson

10
1
10-1
(data-MC)/MC

0.5

0

-0.5
0

50

100

150

200

250

300

350

400

450

500

MT(lep,Emiss) [GeV]
T

Subtract W +jets contamination from QCD
templates
Fit QCD template to data using
miss
MT ( , ET ) distribution

Events

After scaling
104

ATLAS Internal
X → µν jj
s= 7 TeV

103

∫ Ldt = 4.701 fb

-1

2

10

Data
W+jets
Top
Z+jets
QCD
Diboson

10
1
10-1
(data-MC)/MC

Let W/Z+jets normalization float

0.5

0

-0.5
0

50

100

150

200

250

300

350

400

450

500

MT(lep,Emiss) [GeV]
T

Scale Factors

eνjj

µνjj

QCD
W/Z+jets

0.30 ± 0.05
1.10 ± 0.01

0.22 ± 0.05
1.09 ± 0.01

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

21 / 41
Analysis Outline

Analysis Strategy

QCD Multijet Estimation
Event Preselection

Data/MC Samples

Signal (W +jets) Control Region

Object and Event Selection

Signal Region
Preselection Yields

Ω

Event preselection criteria:
At least two jets with pT > 40 GeV,
lead jet pT > 100 GeV

Events

eνjj

One lepton (e/µ) with pT > 30 GeV

8000
ATLAS Internal

Data
W+jets
Top

X → eν jj

7000

s= 7 TeV

∫ Ldt = 4.701 fb

6000

Z+jets

-1

5000

QCD
Diboson

4000
3000

Emiss > 40 GeV
T

2000
1000

µνjj

37994 ± 152
1270 ± 16
15124 ± 30
474 ± 4
929 ± 36
55792 ± 160
55163
55.0 ± 1.0
8.0 ± 0.2
1.9 ± 0.1
388.4 ± 5.8
64.2 ± 1.0
15.3 ± 0.3

E. Williams (Columbia U.)

45712 ± 170
1802 ± 17
16309 ± 31
490 ± 4
499 ± 16
64812 ± 174
64233
44.5 ± 0.9
6.5 ± 0.2
1.4 ± 0.1
313.8 ± 5.1
51.3 ± 0.9
12.7 ± 0.2

0.5

0

-0.5

2

4

6

8

10

12

14

16

18

20

Avg Int per Xing

µνjj
Events

W +jets
Z+jets
Top
Diboson
QCD
Total Bkgd
Data
G∗
Bulk (800 GeV)
G∗
Bulk (1000 GeV)
G∗
Bulk (1200 GeV)
G∗
RS1 (750 GeV)
G∗
RS1 (1000 GeV)
G∗
RS1 (1250 GeV)

eνjj

ATLAS Internal

9000

Data
W+jets
Top

X → µν jj

8000

s= 7 TeV

∫ Ldt = 4.701 fb

Z+jets

-1

7000

QCD
Diboson

6000
5000
4000
3000
2000
1000
(data-MC)/MC

Process

(data-MC)/MC

Preselected event yields (errors stat. only)

0.5

0

-0.5

2

G∗ → W W → νjj thesis defense

4

6

8

10

12

14

16

18

20

Avg Int per Xing

July 2nd, 2012

23 / 41
Data/MC preselection plots

Ω

µνjj

Events

ATLAS Internal
X → eν jj

103

∫

102

s= 7 TeV
-1

Ldt = 4.701 fb

Events

eνjj
104

104

Data
W+jets
Top
Z+jets
QCD
Diboson
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

ATLAS Internal
X → µν jj

103

∫

102

10

s= 7 TeV
-1

Ldt = 4.701 fb

Data
W+jets
Top
Z+jets
QCD
Diboson
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

10

10-1

0.5

0.5

(data-MC)/MC

1

10-1
(data-MC)/MC

1

0

100

200

300

400

500

600

p (lep,Emiss) [GeV]
T

Events

104

ATLAS Internal
X → eν jj

103

∫

102

0

-0.5
0

700

s= 7 TeV
-1

Ldt = 4.701 fb

100

200

300

400

500

T

104

Data
W+jets
Top
Z+jets
QCD
Diboson
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

600

ATLAS Internal
X → µν jj

103

∫

102

10

700

p (lep,Emiss) [GeV]

T

Events

-0.5
0

s= 7 TeV
-1

Ldt = 4.701 fb

T

Data
W+jets
Top
Z+jets
QCD
Diboson
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

10

10-1

0.5

0.5

(data-MC)/MC

1

10-1
(data-MC)/MC

1

0

-0.5
0

100

200

300

400

500

600

700

0

-0.5
0

100

200

300

400

500

p (j,j) [GeV]

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

600

700

p (j,j) [GeV]

T

T

July 2nd, 2012

24 / 41
Analysis Outline

Analysis Strategy

QCD Multijet Estimation
Event Preselection

Data/MC Samples

Signal (W +jets) Control Region

Object and Event Selection

Signal Region
Signal (W +jets) Control Region

Ω

Process

W +jets control region definition:
Preselection Criteria
pT ( , Emiss ) > 200 GeV
T
pT (jj) > 200 GeV
M (jj) < 65 or M (jj) > 115 GeV

eνjj

W+jets
Z+jets
Top
Diboson
QCD
Total Bkgd
Data

µνjj

4004 ± 44
123 ± 5
1135 ± 8
40 ± 1
74 ± 15
5376 ± 48
5404 ± 0.0

3572 ± 43
132 ± 5
951 ± 8
37 ± 1
69 ± 5
4760 ± 44
4743 ± 0.0

Signal control region yields (errors stat. only)

eνjj

µνjj

450
350

data

400

MC backgrounds

350

data
MC backgrounds

300

G* (750 GeV)

G* (750 GeV)

300

250

250

200

200

150

150
100

100

50

50
0

50

100

150

200

250

300

0

50

100

150

200

250

M(jj) [GeV]

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

300
M(jj) [GeV]

July 2nd, 2012

26 / 41
Signal Control Region Sidebands

Ω

Use the M (jj) sidebands to scale W/Z+jets background to data.
M (jj) > 115 GeV

10
1032

Data 2011 2011
Data 2011
Data
W+jetsW+jets
W+jets
Top Top
Top
Z+jets Z+jets
Z+jets

103

102

102

QCD QCD
Diboson
Diboson
QCD
Diboson

10

10

Events

Events

Events
Events

M (jj) < 65 GeV

Data 2011
W+jets
Top

103

Z+jets

102

10

QCD
Diboson

10

1

1

1

-1

10-1

10-1

significance

significance
significance

10
10-1

2
2
0
0
-2
-2

significance

1

2
0
-2

0

500

2
0
-2

500
500

1000

1000
1000

W/Z+jets SF

1500

1500
1500

2000
2000 2000

2500
2500 2500

M(lννjj) [GeV]
M(l M(lν jj) [GeV]
jj) [GeV]

1.11 ± 0.02

Average W/Z+jets SF

500

1000

W/Z+jets SF

1500

2000

2500

M(lν jj) [GeV]

1.02 ± 0.01

1.02 ± 0.03

W/Z+jets MC is scaled by average SF in signal (control) region.
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

27 / 41
Analysis Outline

Analysis Strategy

QCD Multijet Estimation
Event Preselection

Data/MC Samples

Signal (W +jets) Control Region

Object and Event Selection

Signal Region
Signal Region

Ω

eνjj
Events

Signal region definition:
Preselection criteria
pT ( , Emiss ) > 200 GeV
T

10

pT (jj) > 200 GeV

1

65 < M(jj) < 115 GeV

10-1

eνjj

µνjj

significance

Process

Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

2
0
-2

594 ± 21
15 ± 2
516 ± 5
63 ± 1
16 ± 2
1204 ± 22
1328
34.9 ± 0.8
3.6 ± 0.1
0.4 ± 0.0
162.8 ± 3.7
18.3 ± 0.5
3.1 ± 0.1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

M(lν jj) [GeV]

µνjj
Events

698 ± 20
14 ± 2
614 ± 6
76 ± 2
18 ± 6
1420 ± 22
1453
44.0 ± 0.9
4.0 ± 0.1
0.5 ± 0.0
208.2 ± 4.3
21.8 ± 0.6
3.4 ± 0.1

Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

10

1

10-1
significance

W +jets
Z+jets
Top
Diboson
QCD
Total Bkgd
Data
GBulk (800 GeV)
GBulk (1000 GeV)
GBulk (1200 GeV)
GRS1 (750 GeV)
GRS1 (1000 GeV)
GRS1 (1250 GeV)

2
0
-2
0

200

400

600

800

1000

1200

1400

1600

1800

2000

M(lν jj) [GeV]

Signal region yields (errors stat. only)
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

29 / 41
Sources of Sytematic Uncertainties
W/Z+jets Scale Factor Uncertainty
Measurement Systematic Uncertainties
Theoretical Systematic Uncertianties
W/Z+jets systematics

Ω

To estimate, use low/high dijet mass sideband scale factors as a
function of M( νjj) as ‘envelope’ of uncertainty.
Modulate applied W/Z+jets scale factor within this ‘envelope’ and
measure change in M( νjj) in signal region.

V+jets Scale Factor

The largest systematic uncertainty is due to uncertainy of W/Z+jets
scale factor.
Systematic from W/Z+jets scale factor
1.4
1.2

Sample

1

eνjj

µνjj

+14.45%
−2.06%
+14.57%
−2.08%

+14.71%
−2.23%
+14.72%
−2.23%

0.8

W +jets

0.6
0.4
0.2
0
200

Average
M(jj) < 65
M(jj) > 115

400

600

Z+jets
800

1000 1200 1400 1600 1800 2000

M(lν jj) (M(j,j) > 115GeV or M(j,j) < 65GeV)

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

31 / 41
Systematic Uncertainties

Ω

Systematics shown as Average (Min/Max)%
Source

Backgrounds (%)
α

Signal PDF
Jet Energy Scaleα
Luminosityα
Jet Energy Resolutionα
Trigger SFα
Emiss α
T
Lepton Energy Scaleα
Lepton Energy Resolutionα
Lepton Reco SFα
Lepton ID SFα
W/Z+jets SFβ
QCDγ

Signal (%)

10.1 (5.3/17.9)
3.9
1.6 (0.3/2.9)
1.1 (0.5/1.7)
1.1 (0.4/1.6)
<1
<1
<1
<1
9.0 (8.8/9.1)
90 (80/100)

5
4.8 (2.5/9.6)
3.9
1.5 (0.3/3.0)
1.2 (0.6/1.7)
0.1 (0.1/0.1)
<1
<1
<1
<1
-

α: Applies to non-W/Z+jets backgrounds only
β: Applies to W/Z+jets backgrounds only
γ: Applies to QCD background only
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

32 / 41
Theoretical Systematics
Theoretical systematics from uncertainties on cross-section, parton
distribution functions (PDFs), and initial/final state radiation (ISR/FSR).
Systematic

WW

W W/W Z/ZZ (σ)
¯
tt (σ)
¯
tt (shape)
tb + tqb + tW (σ)

WZ

ZZ

5%
-

7%
-

5%
-

¯
tt
+7.0%
−9.6%

8%
-

single
top
8%

¯
tt shape systematic from:
Uncertainty on top quark mass → 3%
ISR/FSR → 5%
Generator: MC@NLO/POWHEG → 2.5%
Parton shower model: HERWIG/PYTHIA → 5%
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

33 / 41
Final Results and Conclusions
Signal Yields with Systematics
Statistical Analysis
G∗ Exclusion Limits
Conclusions
Future Prospects
Signal Region Yields with Systematics

Ω

eνjj

µνjj

Events

eνjj
Process

Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

Signal region event yields (errors stat. + syst.)

10

1

10-1
significance

594 ± 57
15 ± 2
518+50
−73
63 ± 8
16 ± 11
1206+77
−94
1318
34.9 ± 2.7
3.6 ± 0.3
0.4 ± 0.1
163 ± 12.8
18.3 ± 1.5
3.1 ± 0.3

2
0
-2
0

200

400

600

800

1000

1200

1400

1600

1800

2000

M(lν jj) [GeV]

µνjj
Events

698 ± 64
14 ± 2
614+59
−86
76 ± 9
18 ± 24
1420+91
−110
1452
44.0 ± 3.4
4.0 ± 0.3
0.5 ± 0.1
208.2 ± 18.0
21.8 ± 1.7
3.4 ± 0.3

Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

10

1

10-1
significance

W +jets
Z+jets
Top
Diboson
QCD
Total backgrounds
Data
Bulk G∗ (800 GeV)
Bulk G∗ (1000 GeV)
Bulk G∗ (1200 GeV)
RS1 G∗ (750 GeV)
RS1 G∗ (1000 GeV)
RS1 G∗ (1250 GeV)

2
0
-2
0

200

400

600

800

1000

1200

1400

1600

1800

2000

M(lν jj) [GeV]

The greatest deviation from the background prediction occurs at
M (eνjj) = 1000 GeV with p-value = 0.14.
Lacking evidence for new physics, limits on the hypothetical signal
rate are determined with the CLs method.
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

35 / 41
Statistical Analysis
M ( νjj) distributions are used as inputs to a poisson Negative
Log-Likelihood Ratio (NLLR) test statistic.
Test statistics separates ‘signal-like’ events from ‘background-like’ events
Multiple pseudo-experiments (PEs) are run under background-only (H0) and
signal+background (H1) hypothesis
Relative location of NLLR(data) to NLLR(H0) and NLLR(H1) distributions
quantify exclusion or discovery!

Confidence levels (CL) defined as fractions
of PEs to right of solid line (data)
CLs =

CLs+b
CLb

If CLs < 1 − 0.95 → excluded at 95% CL
For each mass point, a 95% excluded value of σ × BR is calculated for
background median, ±1, 2σ, and data. Then compared to signal σ × BR.
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

36 / 41
RS1 G∗ Observed Limits w/ Systematics
σ × B [pb]

eνjj+µνjj
10

σ(pp → G*

ATLAS
Internal

RS1

→ WW)

Expected Limit
Expected ± 1σ
Expected ± 2σ
Observed limit

1

10-1

∫ Ldt = 4.7 fb

-1

600

800

1000

1200

1400
mG* [GeV]

Lower mass exclusion limits
Expected
G∗
RS1
E. Williams (Columbia U.)

Observed

952 GeV

936 GeV

G∗ → W W → νjj thesis defense

July 2nd, 2012

37 / 41
Bulk RS G∗ Observed Limits w/ Systematics
σ × B [pb]

eνjj+µνjj
10
σ(pp → G*

ATLAS
Internal

Bulk

→ WW)

Expected Limit
Expected ± 1σ
Expected ± 2σ

1

Observed limit

10-1

∫ Ldt = 4.7 fb

-1

10-2
500

600

700

800

900

1000 1100 1200
mG* [GeV]

Lower mass exclusion limits
Expected
G∗
Bulk
E. Williams (Columbia U.)

Observed

749 GeV

714 GeV

G∗ → W W → νjj thesis defense

July 2nd, 2012

38 / 41
G∗ → W W → νjj Summary
Expected/Observed lower mass limits from RS1 and Bulk RS
gravitons:
Signal
RS1 G∗ (exp.)
Bulk RS G∗ (exp.)
RS1 G∗ (obs.)
Bulk RS G∗ (obs.)

eνjj
w/o sys
1017
814
928
818

eνjj
w/ sys
966
728
915
727

µνjj
w/o sys
982
795
982
738

µνjj
w/ sys
907
693
934
631

Comb.
w/o sys
1065
838
973
849

Comb.
w/ sys
952
749
936
714

This analysis is the first exotic diboson resonance search in the
νjj channel at the LHC.
These are the first limits set on Bulk RS W W decay!
Current best limit on RS1 Graviton to W W (754 → 936 GeV)!
Analysis approved by Exotics group
Paper is in final stage of approval, should be submitted to PRD
∼week! (https://cdsweb.cern.ch/record/1456099)
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

39 / 41
Future Prospects
The future of LHC collisions promises higher energies and luminosities
(already collected > 5 fb−1 of 8 TeV data)!

Increase in signal cross sections
Concurrent increase in background
production and pile-up!
Highly boosted decay products
→ jet merging

σ× BR [pb]

What does this mean for diboson searches?
7 TeV

1

8 TeV

10-1

10-2

10-3

400

600

800

1000

1200

1400

1600

G*Bulk Mass [GeV]

W W
W
W W
W
W W W
W
W W
W W
W
W
W W W
W W W
W W
W W
W
W W W
W
W W
W W
W
W
W W
W W
WW
W W W
W
W W
W W W
W
W W
W W
W
W W W
W
pT p
p
p (W)≫M(W) (W)≫M(W)(W)≫M(W) T(W)≫M(W)
pT(W)~M(W)
p
pT(W)~0
pT(W)~0 T(W)~0 p T(W)~M(W)T(W)~M(W) T(W)≫M(W) p
p
pT(W)≫M(W) p p
Tp
T p
)~0
(W)~0 T(W)~0 T(W)~0(W)~M(W) T(W)~M(W)T(W)~M(W) T(W)≫M(W)
pT(W)~0T(W)~M(W) p pp(W)~M(W)pT(W)≫M(W)
p pp pT
W)~0 pT(W)~M(W)(W)~M(W)TpT(W)≫M(W) (W)≫M(W) T(W)≫M(W) T(W)≫M(W)
p pT(W)~M(W) T(W)~0(W)~M(W) T p
p
T
T
T
W W
W

Solution: Use merged jets to reduce backgrounds

Much to look forward to at the LHC in 2012 and beyond!
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

40 / 41
Backups
Object Definitions
Muons

Electrons
egammma author 1 or 3

1,2,1,2,1

STACO combined muons1,2,2,1

|η| < 2.47 w/ crack region excluded1,2,1,2,1

pT > 30 GeV

good object quality (el OQ & 1446 == 0)1,2,1

|η| < 2.41,2,1,2,1

pT > 30 GeV

nBLayerHits > 0 || !expectBLayerHit1,2,1,1

tight++ electron1,2,1,2,1

nPixHits + nPixelDeadSensors > 11,2,1,2,1

|el trackz0pv| < 1 mm2,1,2

nSCTHits + nSCTDeadSensors ≥ 61,2,1,2,1

impact parameter significance wrt. primary vertex
√
|el trackd0pv/ el tracksigd0pv| < 102,1,2

nPixHoles + nSCTHoles < 31,2,1,2,1

Isolation
CaloIsoCorrection::GetPtNPVCorrectedIsolation
etcone30 corrected < 6 GeV2

Jets and Emiss
T

TRT extension1,2,1,1
N = nTRTOutliers + nTRTHits
if |η| < 1.9 then require:
nTRTOutliers/N < 0.9 && N > 5
if |η| > 1.9 && N > 5 then require:
nTRTOutliers/N < 0.9
|z0 exPV| < 1 mm2,1,

AntiKt4TopoEMJets (EM + JES)

1,2,1,2,1

pT > 40 GeV, |ηEM | < 2.8
LOOSER jet cleaning requirements
|JVF| > 0.751,2,1,2,1
MET RefFinal within |ηcl | < 4.91,2,2
SM
1. W → ν/Z →
2. EWK (W W ,W/Zγ)
E. Williams (Columbia U.)

impact parameter significance2,1,2
√
|d0 exPV/ cov d0 exPV| < 3
Isolation1,2
CorrectCaloIso::CorrectEtCone30Rel
etcone30 corrected/pT < 0.14
ptcone30/pT < 0.15

Higgs
1. W → ν ν
2. W → νjj

SUSY
1. 1 lepton

G∗ → W W → νjj thesis defense

July 2nd, 2012

42 / 41
Data/MC samples
Data samples used:
L = 4.701fb−1 from period D-M
(OflLumi-7TeV-002)

NTUP SMWLNUJJ, p833 skims
Egamma and Muons streams

SM W/Z GRL

Monte-Carlo samples used:
NTUP SMWZ, r3043 r2993 p833 (mc11c)
Weights applied to MC events to account for pile-up, as well as trigger and
reconstruciton efficiencies.
Background cross sections normalized to N(N)LO with k-factors
Backgrounds
W +jets
Z+jets
W W/W Z/ZZ
¯
Top (tt and st)

Generator
Alpgen+Herwig/Jimmy
Alpgen+Herwig/Jimmy
Herwig+Jimmy
MC@NLO+Herwig/Jimmy

Signals (M = 500 -1500)
G∗ → νjj
RS1
G∗ → νjj
bulk
W → νjj
E. Williams (Columbia U.)

Cross Sections [pb]
14060
1070
44.9/18.5/5.96
164, 83.93

Generator
Pythia
CalcHEP+Atlfast II
Pythia

G∗ → W W → νjj thesis defense

July 2nd, 2012

43 / 41
Data/MC samples: Alpgen W +jets reweighting
W +jets is the dominant background
It has been observed that ALPGEN W +jets samples over-estimate the
background in high W pT regimes
However Sherpa W +jets MC backgrounds match the data better
than the Alpgen samples in these regions
eνjj
µνjj
Truth Pt of W Boson 2 2 0

-1

6

10

L dt ~ 4.71 pb

Events

107
107

Events

Events

Events

Truth Pt of W Boson 2 1 0

W e
W e
Alpgen
Sherpa

105
10

10
107
7

L dt ~ 4.71 pb

W µ
W µ
Alpgen
Sherpa

5

104

104

10
103

10
103

3

3

102

102

10
101

10
101

1.8
1.6
1.4
1.2
11
0.8
0.6
0.4
0.2
00
0

Data / MC

2
10-2
2

SHERPA/ALPGEN

1
10-1
10-1

SHERPA/ALPGEN

1

10-1
10-1

Data / MC

-1

6

10

10
105

100

200

300

400

500

600

700

800

900

1000

Truth pT of W Boson [GeV]
Generator-level pT of W Boson [GeV]

2
10-2
2

1.8
1.6
1.4
1.2
11
0.8
0.6
0.4
0.2
0
00

100

200

300

400

500

600

700

800

900

1000

Truth pT of W Boson [GeV]
Generator-level pT of W Boson [GeV]

Comparison of Alpgen and Sherpa W +jets generator-level W pT

Due to the fact that Sherpa samples were not available with
sufficient statistics, the solution:
→ reweight Alpgen W +jets to match Sherpa generator-level W pT
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

44 / 41
miss
pT ( , ET ), ALPGEN→ SHERPA truth W pT reweighting

104

ATLAS Internal
X → eν jj
103

s= 7 TeV

∫ Ldt = 4.701 fb

-1

102

eνjj

With Reweighting
Events

Events

W/out Reweighting
Data 2011
W+jets
Top

104

ATLAS Internal
X → eν jj
103

∫ Ldt = 4.701 fb

Z+jets

-1

Diboson
QCD

102

10

0.5

0.5

0

0

100

200

300

400

500

600

0

-0.5

700

0

100

200

300

400

500

600

104

ATLAS Internal
X → µν jj

103

s= 7 TeV

∫ Ldt = 4.701 fb

-1

102

Data 2011
W+jets
Top

700

Pt(lep+met)
Events

Pt(lep+met)
Events

QCD
Diboson

1

-0.5

104

ATLAS Internal
X → µν jj

103

s= 7 TeV

∫ Ldt = 4.701 fb

Z+jets

-1

Diboson
QCD

102

10

Data 2011
W+jets
Top
Z+jets
Diboson
QCD

10

1

10-1

0.5

0.5

significance

1

10-1
significance

Z+jets

10-1
significance

1

µνjj

Data 2011
W+jets
Top

10

10-1
significance

s= 7 TeV

0

-0.5

0

100

200

300

400

500

600

700

0

-0.5

0

100

200

300

400

500

Pt(lep+met)

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

600

700

Pt(lep+met)

July 2nd, 2012

45 / 41
pdijet , ALPGEN→ SHERPA truth W pT reweighting
T
With Reweighting

104

ATLAS Internal

Data 2011
W+jets
Top

X → eν jj
103

s= 7 TeV

∫ Ldt = 4.701 fb

eνjj

104

ATLAS Internal

Diboson
QCD

∫ Ldt = 4.701 fb

102

1

0.5

0.5

0

-0.5

0

100

200

300

400

500

600

0

-0.5

700

0

100

200

300

400

500

600

p (j,j) [GeV]
ATLAS Internal

Data 2011
W+jets
Top

X → µν jj
103

s= 7 TeV

∫ Ldt = 4.701 fb

T

Events

104

104

ATLAS Internal
s= 7 TeV

∫ Ldt = 4.701 fb

Z+jets

-1

Diboson
QCD

102

Data 2011
W+jets
Top

X → µν jj
103

Z+jets

-1

700

p (j,j) [GeV]

T

Events

QCD
Diboson

10-1
significance

1

Diboson
QCD

102

10

10

1

10-1

0.5

0.5

significance

1

10-1
significance

Z+jets

10

10-1
significance

s= 7 TeV

-1

10

µνjj

Data 2011
W+jets
Top

X → eν jj
103

Z+jets

-1

102

Events

Events

W/out Reweighting

0

-0.5

0

100

200

300

400

500

600

700

0

-0.5

0

100

200

300

400

500

p (j,j) [GeV]

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

600

700

p (j,j) [GeV]

T

T

July 2nd, 2012

46 / 41
Emiss , ALPGEN→ SHERPA truth W pT reweighting
T

ATLAS Internal

104

X → eν jj
s= 7 TeV

103

∫ Ldt = 4.701 fb

-1

102

eνjj

With Reweighting
Events

Events

W/out Reweighting
Data 2011
W+jets
Top

X → eν jj
s= 7 TeV

103

Z+jets
Diboson
QCD

∫ Ldt = 4.701 fb

-1

102

10

0.5

0.5

0

0

100

200

300

400

500

0

-0.5

600

0

100

200

300

400

500

ATLAS Internal

104

X → µν jj
s= 7 TeV

∫ Ldt = 4.701 fb

103

-1

102

Data 2011
W+jets
Top

600

MEt [GeV]
Events

MEt [GeV]
Events

QCD
Diboson

1

-0.5

ATLAS Internal

104

X → µν jj
s= 7 TeV

∫ Ldt = 4.701 fb

103

Z+jets
Diboson
QCD

-1

102

10

Data 2011
W+jets
Top
Z+jets
Diboson
QCD

10

1

10-1

0.5

0.5

significance

1

10-1
significance

Z+jets

10-1
significance

1

µνjj

Data 2011
W+jets
Top

10

10-1
significance

ATLAS Internal

104

0

-0.5

0

100

200

300

400

500

600

0

-0.5

0

100

200

300

400

MEt [GeV]

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

500

600

MEt [GeV]

July 2nd, 2012

47 / 41
plepton , ALPGEN→ SHERPA truth W pT reweighting
T

ATLAS Internal

104

Data 2011
W+jets
Top

X → eν jj
s= 7 TeV

103

∫ Ldt = 4.701 fb

s= 7 TeV

∫ Ldt = 4.701 fb

10

1

10-1

0.5

0.5

significance

1

0

-0.5

0

50

100

150

200

250

300

350

400

450

0

-0.5

500

0

50

100

150

200

250

300

350

ATLAS Internal

104

Data 2011
W+jets
Top

X → µν jj
s= 7 TeV

103

∫ Ldt = 4.701 fb

Diboson
QCD

102

ATLAS Internal

104

450

500

Data 2011
W+jets
Top

X → µν jj
s= 7 TeV

103

Z+jets

-1

400

Lepton Pt [GeV]
Events

Lepton Pt [GeV]
Events

QCD
Diboson

102

10-1

∫ Ldt = 4.701 fb

Z+jets

-1

Diboson
QCD

102

10

10

1

10-1

0.5

0.5

significance

1

10-1
significance

Z+jets

-1

10

µνjj

Data 2011
W+jets
Top

X → eν jj
103

Diboson
QCD

102

significance

ATLAS Internal

104

Z+jets

-1

eνjj

With Reweighting
Events

Events

W/out Reweighting

0

-0.5

0

50

100

150

200

250

300

350

400

450

500

0

-0.5

0

Lepton Pt [GeV]

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

50

100

150

200

250

300

350

400

450

500

Lepton Pt [GeV]

July 2nd, 2012

48 / 41
miss
MT ( , ET ), ALPGEN→ SHERPA truth W pT reweighting

104

With Reweighting

ATLAS Internal

Data 2011
W+jets
Top

X → eν jj
s= 7 TeV

103

∫ Ldt = 4.701 fb

104

s= 7 TeV

∫ Ldt = 4.701 fb

1

10-1

0.5

0.5

significance

1

0

-0.5

0

50

100

150

200

250

300

350

400

450

0

-0.5

500

MT(lep,Emiss) [GeV]

0

50

100

150

200

250

300

104

ATLAS Internal

Data 2011
W+jets
Top

X → µν jj
s= 7 TeV

103

∫ Ldt = 4.701 fb

104

450

500

Data 2011
W+jets
Top

X → µν jj
s= 7 TeV

∫ Ldt = 4.701 fb

Z+jets

-1

Diboson
QCD

102

400

ATLAS Internal

103

Z+jets

-1

350

MT(lep,Emiss) [GeV]
T

Events

T

Events

QCD
Diboson

10

10-1

Diboson
QCD

102

10

10

1

10-1

0.5

0.5

significance

1

10-1
significance

Z+jets

102

10

µνjj

Data 2011
W+jets
Top

X → eν jj
-1

Diboson
QCD

102

significance

ATLAS Internal

103

Z+jets

-1

eνjj

Events

Events

W/out Reweighting

0

-0.5

0

50

100

150

200

250

300

350

400

450

500

MT(lep,Emiss) [GeV]

0

-0.5

0

T

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

50

100

150

200

250

300

350

400

450

500

MT(lep,Emiss) [GeV]
T

July 2nd, 2012

49 / 41
N jets, ALPGEN→ SHERPA truth W pT reweighting

ATLAS Internal

104

X → eν jj
s= 7 TeV

∫ Ldt = 4.701 fb

103

-1

102

eνjj

With Reweighting
Data 2011
W+jets
Top

Events

Events

W/out Reweighting

X → eν jj
s= 7 TeV

Z+jets
Diboson
QCD

∫ Ldt = 4.701 fb

103

102

10

-1

Data 2011
W+jets
Top
Z+jets
QCD
Diboson

10

1

10-1

0.5

0.5

significance

1

10-1
significance

ATLAS Internal

104

0

-0.5

2

4

6

8

10

0

-0.5

12

2

4

6

8

10

12

ATLAS Internal
104

X → µν jj
s= 7 TeV

∫ Ldt = 4.701 fb

103

-1

102

Data 2011
W+jets
Top

Jet N
Events

Events

Jet N

104

Diboson
QCD

∫ Ldt = 4.701 fb

103

102

-1

Data 2011
W+jets
Top
Z+jets
Diboson
QCD

10

1

10-1

0.5

0.5

significance

1

10-1
significance

X → µν jj
s= 7 TeV

Z+jets

10

µνjj

ATLAS Internal

0

-0.5

2

4

6

8

10

0

-0.5

12

2

4

6

8

10

Jet N

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

12

Jet N

July 2nd, 2012

50 / 41
plead
T

jet

, ALPGEN→ SHERPA truth W pT reweighting

104

ATLAS Internal
X → eν jj
s= 7 TeV

103

∫ Ldt = 4.701 fb

-1

102

eνjj

With Reweighting
Events

Events

W/out Reweighting
Data 2011
W+jets
Top

104

X → eν jj
s= 7 TeV

∫ Ldt = 4.701 fb

Z+jets

-1

Diboson
QCD

102

10

0.5

0.5

0

0

100

200

300

400

500

600

0

-0.5

700

0

100

200

300

400

104

ATLAS Internal
X → µν jj
s= 7 TeV

103

∫ Ldt = 4.701 fb

-1

102

Data 2011
W+jets
Top

500

600

700

Lead Jet Pt [GeV]
Events

Lead Jet Pt [GeV]
Events

QCD
Diboson

1

-0.5

104

ATLAS Internal
X → µν jj
s= 7 TeV

103

∫ Ldt = 4.701 fb

Z+jets

-1

Diboson
QCD

102

10

Data 2011
W+jets
Top
Z+jets
Diboson
QCD

10

1

10-1

0.5

0.5

significance

1

10-1
significance

Z+jets

10-1
significance

1

µνjj

Data 2011
W+jets
Top

10

10-1
significance

ATLAS Internal

103

0

-0.5

0

100

200

300

400

500

600

700

0

-0.5

0

Lead Jet Pt [GeV]

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

100

200

300

400

500

600

700

Lead Jet Pt [GeV]

July 2nd, 2012

51 / 41
psecond
T

jet

, ALPGEN→ SHERPA truth W pT reweighting

104

ATLAS Internal
X → eν jj
s= 7 TeV

103

∫ Ldt = 4.701 fb

-1

102

eνjj

With Reweighting
Events

Events

W/out Reweighting
Data 2011
W+jets
Top

104

X → eν jj
s= 7 TeV

∫ Ldt = 4.701 fb

Z+jets

-1

Diboson
QCD

102

10

0.5

0.5

0

0

100

200

300

400

500

600

0

-0.5

700

0

100

200

300

400

104

ATLAS Internal
X → µν jj
s= 7 TeV

103

∫ Ldt = 4.701 fb

-1

102

Data 2011
W+jets
Top

500

600

700

Second Jet Pt [GeV]
Events

Second Jet Pt [GeV]
Events

QCD
Diboson

1

-0.5

104

ATLAS Internal
X → µν jj
s= 7 TeV

103

∫ Ldt = 4.701 fb

Z+jets

-1

Diboson
QCD

102

10

Data 2011
W+jets
Top
Z+jets
Diboson
QCD

10

1

10-1

0.5

0.5

significance

1

10-1
significance

Z+jets

10-1
significance

1

µνjj

Data 2011
W+jets
Top

10

10-1
significance

ATLAS Internal

103

0

-0.5

0

100

200

300

400

500

600

700

0

-0.5

0

Second Jet Pt [GeV]

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

100

200

300

400

500

600

700

Second Jet Pt [GeV]

July 2nd, 2012

52 / 41
¯
tt Control Region Definition and Yields
¯
¯
tt control region is used to check tt agreement in high-pT region.
60

¯
tt control region definition:

Data
t( t )+X
W → l ν +HF+X
W → l ν +X
*
Z/ γ →l +l +X
VV+V γ
Multijet
G* → WW (M=1 TeV)
W’ → WZ (M=1 TeV)

50
40

≥ 2 b-tagged jets w/ pT > 40 GeV

∫ Ldt = 4701.39 pb

30

-1

20

pT (jj) > 200 GeV

10

M (jj) < 65 GeV or M (jj) > 115 GeV
0

significance

3

eνjj

100

150

200

250

50

100

150

200

250

0

295 ± 17
23 ± 4
301 ± 17
0±0

300
PT (Emiss) [GeV]
T

µνjj
80

¯
tt
¯
N on − tt
Data
RS1 G∗ (M = 1 TeV)

300

-1.5
-30

Process

50

1.5

279 ± 16
19 ± 4
301 ± 17
0±0

Data
t( t )+X
W → l ν +HF+X
W → l ν +X
*
Z/ γ →l +l +X
VV+V γ
Multijet
G* → WW (M=1 TeV)
W’ → WZ (M=1 TeV)

70
60
50

∫ Ldt = 4701.39 pb

40

-1

30
20
10

¯
tt control region yields (errors stat. only)

0

significance

3

50

100

150

200

250

50

100

150

200

250

1.5
0
-1.5
-30

MT (l , Emiss) [GeV]
T

E. Williams (Columbia U.)

∗

G

→ W W → νjj thesis defense

July 2nd, 2012

53 / 41
Impact Parameter
● 

Distance between the point of closest approach of a track and primary vertex
Transverse IP d0 is this distance in transverse plane x,y
● 
d0 significance = |d0|/(σ(d0))1/2

● 

Longitudinal IP z0 is the z-coordinate of this point

● 
W+jets QCD contamination
Goal is to estimate, and correct for, the amount of W+jets events in QCD
template. This method assumes that e → jet ∼ jet → e.

i) Create W +jets ‘contamination’ samples by running over W+jets MC
with QCD ‘anti-lepton’ requirements:
electrons: Reverse calorimeter isolation (etcone 30 > 6 GeV)
muons: Reverse ‘pointing’ (|d0sig| > 3 GeV)

ii) Scale W +jets contamination template with W +jets cross-section and
lumi to get estimated distribution of W +jets events in QCD template
iii) Subtract W +jets contamination template from un-scaled QCD
template
iv) Scale new QCD template from fit to data

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

55 / 41
W+jets QCD contamination
QCD ∼ 18% W +jets in eνjj

QCD ∼ 7% W +jets in µνjj
103

Unscaled QCD

103

Unscaled QCD

W+jets contamination

W+jets contamination
102

102

10

10

1

1
0

50

100

150

200

250

300

350

400

450

500

0

50

100

150

200

250

300

350

400

450

500

MT(µ,Emiss) [GeV]

MT(e,Emiss) [GeV]
T

T

103
QCD w/out W+jets sub

QCD w/out W+jets sub

102

QCD w/ W+jets sub

QCD w/ W+jets sub

2

10

10
10
1
1

0

50

100

150

200

250

300

350

400

450

MT(e,Emiss)
T

E. Williams (Columbia U.)

500

10-1
0

50

100

[GeV]

G∗ → W W → νjj thesis defense

150

200

250

300

350

400

450

500

MT(µ,Emiss) [GeV]
T

July 2nd, 2012

56 / 41
W+jets QCD contamination
µνjj
ATLAS Internal

Data 2011
W+jets
Top

X → eν jj
s= 7 TeV

103

Events

Events

eνjj
104

∫ Ldt = 4.701 fb

-1

Diboson
QCD

0.5

significance

1

10-1

0.5

0

-0.5

0

50

100

150

200

250

104

300

350

400

ATLAS Internal
s= 7 TeV

∫ Ldt = 4.701 fb

0

-0.5

500

0

50

100

150

200

250

400

450

ATLAS Internal

10

500

Data 2011
W+jets
Top

X → µν jj
s= 7 TeV

103

∫ Ldt = 4.701 fb

Z+jets

-1

QCD
Diboson

102

350

MT(lep,Emiss) [GeV]
T

4

Z+jets

-1

300

[GeV]

Data 2011
W+jets
Top

X → eν jj
103

450

MT(lep,Emiss)
T

Events

significance

1

Events

Z+jets

10

10-1

Diboson
QCD

102

10

10

1

10-1

0.5

0.5

significance

1

10-1
significance

s= 7 TeV

102

10

With W+jets
subtraction

Data 2011
W+jets
Top

X → µν jj

∫ Ldt = 4.701 fb

-1

Diboson

With out
W+jets
subtraction

ATLAS Internal

103

QCD
Z+jets

102

104

0

-0.5

0

50

E. Williams (Columbia U.)

100

150

200

250

300

350

400

450

MT(lep,Emiss)
T

500

0

-0.5

[GeV]

G∗ → W W → νjj thesis defense

0

50

100

150

200

250

300

350

400

450

500

MT(lep,Emiss) [GeV]
T

July 2nd, 2012

57 / 41
νjj QCD Estimation
µνjj
ATLAS Internal

Data 2011
W+jets
Top

X → eν jj
s= 7 TeV

103

∫ Ldt = 4.701 fb

-1

W/out

Events

Events

eνjj
104

Diboson

1

10-1

0.5

0.5

significance

1

0

-0.5

0

50

100

150

200

250

300

350

400

450

0

-0.5

500

MT(lep,Emiss) [GeV]

0

50

100

150

200

250

300

104

ATLAS Internal

Data 2011
W+jets
Top

X → eν jj
s= 7 TeV

103

∫ Ldt = 4.701 fb

500

Data 2011
W+jets
Top

X → µν jj
s= 7 TeV

∫ Ldt = 4.701 fb

Z+jets
Diboson
QCD

102

10

1

10-1

0.5

0.5

significance

1

10-1
significance

450

-1

10

scaling

400

ATLAS Internal

103

QCD
Diboson

102

QCD

104

Z+jets

-1

350

MT(lep,Emiss) [GeV]
T

Events

Events

T

With

QCD
Z+jets

10

10-1
significance

s= 7 TeV

102

10

scaling

Data 2011
W+jets
Top

X → µν jj

∫ Ldt = 4.701 fb

-1

Diboson

QCD

ATLAS Internal

103

QCD
Z+jets

102

104

0

-0.5

0

50

100

150

200

250

300

350

400

450

MT(lep,Emiss)
T

500

0

-0.5

0

50

[GeV]

150

200

250

300

350

400

450

500

MT(lep,Emiss) [GeV]
T

Scale Factors

eνjj

µνjj

QCD
V+jets

E. Williams (Columbia U.)

100

0.30 ± 0.05
1.10 ± 0.01

0.22 ± 0.05
1.09 ± 0.01

G∗ → W W → νjj thesis defense

July 2nd, 2012

58 / 41
νjj QCD Estimation
QCD distributions before and after scaling.

eνjj

µνjj
No QCD scaling

No QCD scaling

After QCD scaling

2

After QCD scaling

102

10

10

10

1

1
0

50

100

150

200

250

300

350

400

450

500

0

50

100

mT(e,MET) [GeV]

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

150

200

250

300

350

400

450

500

mT(mu,MET) [GeV]

July 2nd, 2012

59 / 41
Preselection Definition
Reject event if:
dR( , jet) < 0.4
Contains any looser bad jets
Jets found in LAr hole (simple veto)
Data, require pT > 40 × (1−BCH CORR JET)/(1−BCH CORR CELL)
MC, require pT > 40 GeV, only applied to fraction of MC events
corresponding to affeted data lumi (∼ 17%)
Has noise burst with LArError = 2
Fails QCD triangle cut

Require:
Lepton trigger:
Data
Period

Run
Range

Electron
Trigger

Muon
Trigger

D-J
K
L-M

179710 → 186755
186873 → 187815
188902 → 191933

EF e20 medium
EF e22 medium
EF e22vh medium1

EF
EF
EF
EF

mu18
mu18
mu18
mu40

MG or EF mu40 MSonly barrel
MG medium or EF mu40 MSonly barrel
MG medium or
MSonly barrel medium

First primary vertex has Ntrack >= 3

→ Only one lepton (e/µ) with pT > 30 GeV
→ At least two jets with pT > 40 GeV
→ Lead jet pT > 100 GeV
→ Emiss > 40 GeV
T
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

60 / 41
Signal Significance
The ultimate goal of an experimental search for a new particle is to state whether or not
a statistically significant observation of the signal has been made. In other words, to
answer the canonical question:

Given the data, is it possible to distinguish between two hypotheses?
Three main steps toward answering this question:
1 Define a test-statistic which optimizes the

separation of the signal+background
hypothesis (H1) and the background-only
hypothesis (H0)
2 Run an appropriate number of

pseudo-experiments (Frequentist) for both
hypothesis, incorporating all signal and
background nuisance parameters (systematics)
in a coherent way (Bayesian).
3 Define confidence levels designating exclusions
2012 Higgs → γγ 4.7fb−1 result

or discoveries

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

61 / 41
1) Define test-statistic: Likelihood-Ratio
Neyman-Pearson lemma suggests that the most powerful test for
statistically separating two point hypotheses is the likelihood-ratio
test, that is:

L(s + b|x)
Λ=
L(b|x)

s = signal
b = background
x = data
L = likelihood

Rate of signal or background events follow a Poisson distribution,
appropriate choice for likelihood functional form:

L(s + b) =
E. Williams (Columbia U.)

(s + b)x e−(s+b)
(b)x e−b
, L(b) =
x!
x!
G∗ → W W → νjj thesis defense

July 2nd, 2012

62 / 41
1) Define test-statistic: Likelihood-Ratio
With this choice, combining likelihoods from multiple channels (e.g. X → Y and
X → Z) as well as from multiple bins within a discriminating variable (e.g.
M (X)) is natural:
channels bins

Λ(x) =
i

j

(sij + bij )xij e−(sij +bij ) (bij )xij e−(bij )
/
.
xij !
xij !

In the high-statistics limit the distributions of -2 ln Λ are expected to converge to
(χ2 − χ2 ), thus it is more common to use:
s+b
b
NLLR(x) = −2 ln(Λ(x))
channels bins

= −2

sij − xij ln 1 +
i

j

sij
bij

This test statistic decreases monotonically for increasingly signal-like (decreasingly
background-like) experiments. Can be used to order data outcomes relative to
each other in hypothesis significance
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

63 / 41
2) Pseudo-Experiments: A Semi-Frequentist Approach
Assuming that the data is drawn randomly from a Poisson parent distribution, we
can create pdfs of NLLR(x) for both the signal+background hypothesis (H1) and
the background-only (H0) hypothesis, by conducting pseudo-experiments
Systematic uncertainties (nuisance parameters) are incorporated by sampling a
bifurcated Gaussian distribution with the ±σ uncertainties estimated for each
source (hence ‘Semi’-Frequentist)
m
m
The pseudo-experiment background (Bj ) and signal (Sj ) yields are then given as:

bkgd
Nsys

m
Bj

=

0,m
Bj (1

bkgd
gi )

+
i
sig
Nsys

0,m
m
Sk = Sk (1 +

sig
gi )
i

Where B 0,m (S 0,m ) is the nominal background (signal) poisson yield for channel j (k)
and bin m. g bkgd (g sig ) is the contribution from systematic uncertainty i.

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

64 / 41
2) Pseudo-Experiments: A Semi-Frequentist Approach
Running O(20k) pseudo-experiments, we evaulate the NLLR distributions under
the H0, NLLR(x = Db ), and H1, NLLR(x = Ds+b ), hypotheses. Where:
Nbins Nb

Nbins
m
Bj ,

Db =
m

j

Ds+b =

Nb

m

Ns
m
Bj +

(
j

N

m
Sk )
k

Bkgd Only
Sig + Bkgd

-2ln(Λ(x))

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

65 / 41
2) Pseudo-Experiments: A Semi-Frequentist Approach
Running O(20k) pseudo-experiments, we evaulate the NLLR distributions under
the H0, NLLR(x = Db ), and H1, NLLR(x = Ds+b ), hypotheses. Where:
Nbins Nb

Nbins
m
Bj ,

Db =
m

j

Ds+b =

Nb

m

Ns
m
Bj +

(
j

N

m
Sk )
k

Bkgd Only
Sig + Bkgd

NLLR(xdata)

-2ln(Λ(x))

Location of measured data on NLLR pdf (Prior Predictive Ensemble) used to
quantify exclusion/discovery
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

66 / 41
3) Modified Frequentist Confidence Levels: CLs
Confidence levels defined as the fraction of outcomes predicted to fall
outside of the specified confidence interval
CLs+b : fraction of H1 pseudo-experiments less signal-like than data
∞

CLs+b = Ps+b (X ≥ Xobs ) =

P(x = Ds+b ) dP
NLLR(x=Dobs )

CLb : fraction of H0 pseudo-experiments less signal-like than data
∞

CLb = Pb (X ≥ Xobs ) =

P(x = Db ) dP
NLLR(x=Dobs )

Therefore...
High CLs+b → data signal-like. (otherwise, used for exclusion)
High CLb (or low 1 − CLb ) → data not background like.
For discovery, (1-CLb ) ≡ p-value = the probability, under H0 hypothesis, that background
fluctuated to produce observed signal. Typically require (1-CLb ) < 5σ(4.3 × 10−7 ) to
claim discovery
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

67 / 41
3) Modified Frequentist Confidence Levels: CLs
N

Bkgd Only
Sig + Bkgd

1-CLb
CLs+b

NLLR(xdata)

-2ln(Λ(x))

Therefore...
High CLs+b → data signal-like. (otherwise, used for exclusion)
High CLb (or low 1 − CLb ) → data not background like.
For discovery, (1-CLb ) ≡ p-value = the probability, under H0 hypothesis, that background
fluctuated to produce observed signal. Typically require (1-CLb ) < 5σ(4.3 × 10−7 ) to
claim discovery
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

68 / 41
3) Modified Frequentist Confidence Levels: CLs
The strictly frequentist CLs+b confidence level, while a powerful
statistical tool, is unstable if the background model dramatically
disagrees with the data:
Background overestimated → low CLs+b → possible exclusion!
Background underestimated → high CLs+b → possible discovery!

The solution: The modified frequentist confidence level, CLs

CLs ≡

CLs+b
CLb

Normalizing CLs+b with CLb removes the dependence on background
modelling and leads to more conservative limits on H1 hypothesis, as
well as lower false exclusion rate (type II error) than nominal (1− CL)
A signal model is then excluded at or above
95% confidence level if CLs ≤ 0.05
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

69 / 41
νjj Signal Systematics
Acceptance systematics for ‘bulk’ Randal-Sundram GRS (M = 700 GeV) sample.
Systematic
JES
JER
LES
LER
All Clusters
Met PileUp
ID SF
Reco SF
Trigger SF
Iso SF
Signal PDF
Luminosity
V+jets
Total

eνjj [%]
2.83
0.90
0.06
0.06
0.10
0.03
0.85
0.91
0.55
2.00
5.00
3.90
0.00

µνjj [%]
2.63
0.99
0.07
0.08
0.06
0.07
0.04
0.39
1.74
1.00
5.00
3.90
0.00

7.40

7.23

Muon energy resolution chosen as ’worst’ smearing between ID and MS.
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

70 / 41
νjj Background Systematics
Table: eνjj percent ∆ acceptance.
Systematic

Wjets

Zjets

TTBar

Single
Top

Diboson

QCD

JES
JER
LES
LER
All Clusters
Met PileUp
ID SF
Reco SF
Trigger SF
Iso SF
Luminosity
MJ Normalization
V+jets

(10.99)
(1.14)
(0.1)
(0.42)
(0.51)
(0.45)
(0.96)
(0.81)
(0.56)
(2)
5

(18.04)
(6.96)
(0.8)
(1.59)
(1.56)
(2.13)
(0.92)
(0.83)
(0.53)
(2)
5.11

4.78
0.06
0.18
0.14
0.91
0.78
0.89
0.88
0.56
2
3.9
-

8.37
1.39
0.08
0.07
1.25
0.85
0.88
0.88
0.56
2
3.9
-

10.33
3.13
0.05
0.08
1.69
1.72
0.89
0.8
0.59
2
3.9
-

80.0
-

5

5.11

6.74

9.76

12.28

Total

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

80.0

July 2nd, 2012

71 / 41
νjj Background Systematics
Table: µνjj percent ∆ acceptance.
Systematic

Wjets

Zjets

TTBar

Single
Top

Diboson

QCD

JES
JER
LES
LER
All Clusters
Met PileUp
ID SF
Reco SF
Trigger SF
Iso SF
Luminosity
MJ Normalization
V+jets

(10.75)
(0.27)
(0.4)
(1.21)
(0.29)
(0.12)
(0.04)
(0.39)
(1.71)
(1)
5.23

(9.08)
(7.57)
(0.86)
(2.37)
(0.49)
(0.84)
(0.04)
(0.41)
(1.75)
(1)
5.34

7.3
0.63
0.08
0.79
0.42
0.43
0.04
0.37
1.74
1
3.9
-

9.41
1.55
0.58
0.14
0.64
0.72
0.04
0.38
1.73
1
3.9
-

10.48
5.45
0.3
0.37
1.96
1.91
0.04
0.39
1.74
1
3.9
-

100.0
-

5.23

5.34

8.6

10.5

14.2

Total

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

100.

July 2nd, 2012

72 / 41
Signal Control Region Plots (after scaling)
eνjj

Ω

µνjj
Events

Events

300

350

Data
W+jets
Top

300

Data
W+jets
Top

250

Z+jets

250

Z+jets

200

QCD
Diboson

200

QCD
Diboson

150

150
100
100
50

significance

significance

50

2
0
-2

2
0
-2

50

100

150

200

250

300

50

100

150

200

103

Data
W+jets
Top

102

250

Z+jets

103

Data
W+jets
Top

102

Z+jets

QCD
Diboson

QCD
Diboson

10

10
1

1

-1

-1

10
significance

10
significance

300

Dijet Mass [GeV]
Events

Events

Dijet Mass [GeV]

2
0
-2

2
0
-2

500

1000

1500

E. Williams (Columbia U.)

2000

2500

M(lν jj) [GeV]

500

G∗ → W W → νjj thesis defense

1000

1500

2000

2500

M(lν jj) [GeV]

July 2nd, 2012

73 / 41
νjj Signal Control Region Plots
Events

µνjj

Events

eνjj
Data
W+jets
Top

103

Z+jets

102

Data
W+jets
Top

103

Z+jets

102

QCD
Diboson

QCD
Diboson

10

10

significance

1
10-1

significance

1
10-1
2
0
-2
0

2
0
-2

100

200

300

400

500

600

700

800

900

1000

0

100

200

300

400

500

600

700

800

p (j,j) [GeV]

Data
W+jets
Top

103

Z+jets

102

Z+jets

102

QCD
Diboson

1000

T

Events

Events

Data
W+jets
Top

103

900

p (j,j) [GeV]

T

QCD
Diboson

10

10

significance

1
10-1

significance

1
10-1
2
0
-2
0

2
0
-2

100

200

300

400

500

600

700

800

900

1000

p (lep,Emiss)
T

0

100

200

300

400

500

600

700

800

900

1000

p (lep,Emiss)
T

T

T

* MC uncertainty (Lumi and W/Z+jets scale factor systematic) not included in significance
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

74 / 41
νjj Signal Control Region Plots
µνjj
Events

Events

eνjj
103

Data
W+jets
Top

3

10

102

Data
W+jets
Top

2

10

Z+jets

Z+jets

QCD
Diboson

QCD
Diboson

10

10

1

1

-1

-1

10
significance

significance

10

2
0
-2

2
0
-2

0

100

200

300

400

500

600

700

0

100

200

300

400

500

600

Data 2011
W+jets
Top

103

Z+jets

102

Data 2011
W+jets
Top

103

Z+jets

102

QCD
Diboson

QCD
Diboson
10

10

1

1

-1

-1

10

significance

10
significance

700

Emiss [GeV]
t
Events

Events

Emiss [GeV]
t

2
0
-2

2
0
-2

200

300

400

500

600

700

800

900

1000

200

300

400

MET + Lepton Pt [GeV]

500

600

700

800

900

1000

MET + Lepton Pt [GeV]

* MC uncertainty (Lumi and W/Z+jets scale factor systematic) not included in significance
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

75 / 41
νjj Signal Control Region Plots
µνjj
Events

Events

eνjj
103

Data 2011
W+jets
Top

2

10

103

Z+jets
QCD
Diboson

Z+jets
QCD
Diboson

10

10

1

10-1

significance

1

10-1

significance

Data 2011
W+jets
Top

102

2
0
-2

2
0
-2

200

400

600

800

1000

1200

200

400

600

800

Data
W+jets
Top

103

Data
W+jets
Top

102

Z+jets

QCD
Diboson

QCD
Diboson

10

10
1

1

-1

-1

10
significance

10
significance

1200

103

Z+jets

102

1000

Dijet Mass [GeV]
Events

Events

Dijet Mass [GeV]

2
0
-2
0

2
0
-2

100

200

300

400

500

600

700

800

0

100

200

300

Lepton Pt [GeV]

400

500

600

700

800

Lepton Pt [GeV]

* MC uncertainty (Lumi and W/Z+jets scale factor systematic) not included in significance
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

76 / 41
νjj signal templates
Fully simulated signal samples only available with masses:
M (G∗ ) = 500 − 1500 GeV, in 250 GeV steps
RS1
and
M (G∗ ) = 500 − 1500 GeV, in 100 GeV steps
Bulk
To account for possibility of missing a signal with an intermediate mass value, a
∗
set of G∗
RS1 and GBulk signal templates were made, spanning the full mass range
in steps of 50 GeV.
νjj mass from full-sim samples fit with Crystal Ball function:
2

N·

x
exp − (x−¯)
2σ 2
x
A · (B − x−¯ )−n
σ
2

n
where A = ( |a| )n · exp − |a| , and B =
2

E. Williams (Columbia U.)

n
|a|

for
for

x−¯
x
σ
x−¯
x
σ

> −a
≤ −a

− |a|

G∗ → W W → νjj thesis defense

July 2nd, 2012

77 / 41
Events / ( 20 )

Events / ( 20 )

νjj signal template fits
200
Signal
Crystal Ball

150

30
Signal

25

Crystal Ball

20
15

100

10
50
5
0
200

300

400

500

600

700

0
400

800

500

600

700

2.5
Signal

2

800

900

1000 1100 1200
Mass(lvjj) (GeV)

Events / ( 20 )

Events / ( 20 )

Mass(lvjj) (GeV)

Crystal Ball

0.25

Signal
Crystal Ball

0.2

1.5
0.15
1

0.1

0.5
0
400

0.05

600

800

1000

1200

1400

0
400

1600

600

800

Events / ( 20 )

Mass(lvjj) (GeV)

1000 1200 1400 1600 1800 2000
Mass(lvjj) (GeV)

Signal

0.04

Crystal Ball

0.03
0.02
0.01
0
600

800

1000

1200

1400

1600

1800

2000

Mass(lvjj) (GeV)

Full-simulated G∗ samples (eνjj) with crystal ball functional fit for masses 500 GeV
(upper-left), 750 GeV (upper-right), 1000 GeV (middle-left), 1250 GeV (middle-right) and
1500 GeV (bottom row).
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

78 / 41
νjj signal template parameter extraction
To create ‘in-between’ mass template points, the crystal ball fit
parameters, as well as the signal acceptances are interpolated through a fit
across the signal mass range.
The mean x, width σ and a parameters extracted and their trend are fitted
¯
with simple functions:
x(x) = p0 + p1 x
¯

(1)

σ(x) = p0 + p1 x
p0
+ p2 x
a(x) =
p1 x2
n=2

(2)
(3)
(4)

Parameter n fixed to 2, shape of the tail can be appropriately controlled
solely by the a parameter.
Acceptance extrapolated through a Landau distribution which empirically
fits the curve.
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

79 / 41
Crystal Ball Sigma

Crystal Ball Mean

νjj signal template parameter fits
1400
1200
1000

110
100
90
80
70

800

60
50

600

40
400

600

800

1000

1200

1400

1600

400

600

800

1000

3
2.5

1200

1400

1600

G* Pole Mass [GeV]
Crystal Ball n

Crystal Ball a

G* Pole Mass [GeV]

3
2.8
2.6

2

2.4

1.5

2.2
1
2
400

600

800

1000

1200

1400

1600

400

600

G* Pole Mass [GeV]

800

1000

1200

1400

1600

G* Pole Mass [GeV]

Fits of crystal ball parameters across full-simulated G∗ → eνjj vs M (G∗ )
shown. From left to right and top to bottom are the obtained fits for the
x, σ, a, and n.
¯
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

80 / 41
Acceptance

νjj signal template acceptance fit
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
400

600

800

1000 1200 1400 1600
G* Pole Mass [GeV]

Landau functional fit (in black) to the acceptances in the eνjj channel
using to the full-simulated G∗ samples (in blue) with masses 500, 750,
1000, and 1500 GeV . Acceptances of template signal distributions were
extrapolated from fit.
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

81 / 41
νjj signal template cross-sections
Table: Summary of cross-sections times branching ratio and acceptances per
channel used to derive cross section limits at intermediate MG∗ mass values,
where fully simulated samples were non available.

500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500

E. Williams (Columbia U.)

σ×B
[pb]

eνjj

5.593
4.597
3.601
2.643
1.648
0.614
0.514
0.413
0.313
0.212
0.027
0.095
0.078
0.061
0.044
0.027
0.023
0.019
0.015
0.012
0.008

G∗ Mass
[GeV]

0.045
0.065
0.081
0.089
0.091
0.089
0.082
0.075
0.067
0.060
0.051
0.047
0.041
0.036
0.032
0.030
0.026
0.023
0.021
0.018
0.018

Acceptance
µνjj
Average
0.034
0.048
0.058
0.065
0.067
0.068
0.064
0.059
0.054
0.049
0.041
0.040
0.036
0.032
0.029
0.027
0.023
0.021
0.019
0.017
0.018

0.040
0.057
0.070
0.077
0.079
0.079
0.073
0.067
0.061
0.055
0.046
0.044
0.039
0.034
0.031
0.029
0.025
0.022
0.020
0.018
0.018

G∗ → W W → νjj thesis defense

July 2nd, 2012

82 / 41
300

300
200

60

100

40

100

50

300

100
0
0 200400600800 1200400600800000
1000 1 1 1 2

80
70
60

50
40

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

40
35
30
25

50

16
14

20

3

3
2.5
2

1.8
1.6
1.4
1.2

2.5
1.5

2

0.8

Events / ( 10 )

Events / ( 10 )

0
0 200400600800 1200400600800000
1000 1 1 1 2
Mass(lvjj) (GeV)

Mass(lvjj) (GeV)

0.1

0
0 200400600800 1200400600800000
1000 1 1 1 2
Mass(lvjj) (GeV)

0
0 200400600800 1200400600800000
1000 1 1 1 2

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

Mass(lvjj) (GeV)

0.1

0.06

0.08
0.06
0.04

0.1
0.05

0.2

0.1

0.08

0.12
0.1

0.15

0.3

0.12

0.16
0.14

0.2

0.4

0.14

0.2
0.18

0.3

0.25

0.5

0.2

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

0.22

0.35

0.6

0.3

0.2

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

Mass(lvjj) (GeV)

0.5

0.2

0.5

0
0 200400600800 1200400600800000
1000 1 1 1 2

0.7

0.4

0.4

0.4

0.5

0.8

1
0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

0.6

1

1

1

0.6

1

1.5

2

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

Events / ( 10 )

4

3

2

Mass(lvjj) (GeV)

Events / ( 10 )

Events / ( 10 )

Mass(lvjj) (GeV)

5
4

2
0
0 200400600800 1200400600800000
1000 1 1 1 2

0
0 200400600800 1200400600800000
1000 1 1 1 2

6

4

4
5

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

3.5

8

6

10
10

10

4.5

Mass(lvjj) (GeV)

6

8

20

0
0 200400600800 1200400600800000
1000 1 1 1 2

10

10

15

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

12

20

30

Events / ( 10 )

18

30

40

Events / ( 10 )

20

20

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

Events / ( 10 )

Events / ( 10 )

90

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

Events / ( 10 )

Mass(lvjj) (GeV)

Events / ( 10 )

0
0 200400600800 1200400600800000
1000 1 1 1 2

Events / ( 10 )

100

Events / ( 10 )

200

Events / ( 10 )

100

Events / ( 10 )

150

200

400

200

80

200

400

300

100

250

400

500

400

120

300

500

500

Events / ( 10 )

600

600

500

600

700

700

600

Events / ( 10 )

800

700

Events / ( 10 )

800

Events / ( 10 )

Events / ( 10 )

Events / ( 10 )

G∗ → eνjj signal templates

0.04

0.02
0
0 200400600800 1200400600800000
1000 1 1 1 2

0.02
0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

E. Williams (Columbia U.)

Mass(lvjj) (GeV)

∗

G

→ W W → νjj thesis defense

July 2nd, 2012

83 / 41
200

200

100

100

100

200

40

40
35
30
25

30

Mass(lvjj) (GeV)

Events / ( 10 )

50

45

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

Events / ( 10 )

Events / ( 10 )

60

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

30
25
20

12
10

5

2

1.2
1

1.5
1.5

0.4

1

0.2
0
0 200400600800 1200400600800000
1000 1 1 1 2

0.18

0.25

0.6

Mass(lvjj) (GeV)

0.5

0.4

0.35

0.4

0.3

0.25
0.3

0.2

0.2

0.15
0.1

0.1
0.05

0
0 200400600800 1200400600800000
1000 1 1 1 2
Mass(lvjj) (GeV)

0
0 200400600800 1200400600800000
1000 1 1 1 2

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

Mass(lvjj) (GeV)

0.12

0.16
0.14

0.2

Mass(lvjj) (GeV)

Events / ( 10 )

0.3

0.7

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

0.6

0.1

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

Events / ( 10 )

Mass(lvjj) (GeV)

0.8

0.2

0.5

0
0 200400600800 1200400600800000
1000 1 1 1 2

0.9

0.3

0.5

1

0.4

0.6

1

2

1
0
0 200400600800 1200400600800000
1000 1 1 1 2

0.5

0.8

2

4

2

Mass(lvjj) (GeV)

Events / ( 10 )

3
2.5

1.4

5

3

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

Events / ( 10 )

Events / ( 10 )

Mass(lvjj) (GeV)

2.5

Mass(lvjj) (GeV)

3

2

0
0 200400600800 1200400600800000
1000 1 1 1 2

0
0 200400600800 1200400600800000
1000 1 1 1 2

4

Events / ( 10 )

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

5

4

10

5

3.5

6

6

10

0
0 200400600800 1200400600800000
1000 1 1 1 2

7

8

15

15

10

Events / ( 10 )

14

20

20

Events / ( 10 )

16

20

Mass(lvjj) (GeV)

Events / ( 10 )

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

40

60
40
20
0
0 200400600800 1200400600800000
1000 1 1 1 2

100
50

0
0 200400600800 1200400600800000
1000 1 1 1 2

Events / ( 10 )

150

80
60

140
120
100
80

250

Events / ( 10 )

300

200

300

Events / ( 10 )

300

Events / ( 10 )

350

300

100

220
200
180
160

400

400

400

400

450

500

500

500

Events / ( 10 )

Events / ( 10 )

Events / ( 10 )

Events / ( 10 )

600

600

Events / ( 10 )

G∗ → µνjj signal templates

0.12

0.1

0.08

0.1

0.15

0.06

0.08
0.1

0.06

0.04

0.04

0.05

0.02

0.02
0
0 200400600800 1200400600800000
1000 1 1 1 2
Mass(lvjj) (GeV)

0
0 200400600800 1200400600800000
1000 1 1 1 2

0
0 200400600800 1200400600800000
1000 1 1 1 2

Mass(lvjj) (GeV)

E. Williams (Columbia U.)

Mass(lvjj) (GeV)

∗

G

→ W W → νjj thesis defense

July 2nd, 2012

84 / 41
Gkk → W W → νjj signal templates
eνjj
102

µνjj
Signal Mass [GeV]
500
600
700
800
900
1000
1100
1200
1300
1400
1500

10
1
10-1

102

Signal Mass [GeV]
500
600
700
800
900
1000
1100
1200
1300
1400
1500

10
1
10-1

10-2

10-2

10-3

10-3

-4

10 0

200 400 600 800 1000 1200 1400 1600 1800 2000

10-40

200 400 600 800 1000 1200 1400 1600 1800 2000

M(lν jj) [GeV]

M(lν jj) [GeV]

Reconstructed M( νjj) from AFII ‘bulk’ Graviton samples: 500-1500 GeV, 100 GeV steps
Mass [GeV]
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550

102
10
1
10-1
10-2
-3

10
1
10-1
10-2
10-3

10

10-40

Mass [GeV]
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550

102

200 400 600 800 1000 1200 1400 1600 1800 2000

10-40

200 400 600 800 1000 1200 1400 1600 1800 2000

M(lν jj) [GeV]

M(lν jj) [GeV]

Reconstructed M( νjj) from AFII ‘bulk’ Graviton samples: 500-1500 GeV, 100 GeV steps
plotted with signal templates for 550-1550 GeV in 100 GeV steps
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

85 / 41
νjj signal variable
Plot shown in νjj signal region
µνjj

MT (sys)

mc.alpgen.wjets, 1119.70
mc.mcatnlo.top, 707.66
mc.herwig.vv, 93.17
qcd.alpgen, 44.18
mc.alpgen.zjets, 25.59
mc.rsg.m500.kmpl0, 1238.45
mc.rsg.m1000.kmpl0, 28.69
mc.rsg.m1500.kmpl0, 0.70

103

102

s= 7 TeV

Events

Events

eνjj

mc.alpgen.wjets, 867.96
mc.mcatnlo.top, 544.23
mc.herwig.vv, 72.11
qcd.alpgen, 50.44
mc.alpgen.zjets, 26.09
mc.rsg.m500.kmpl0, 918.70
mc.rsg.m1000.kmpl0, 22.49
mc.rsg.m1500.kmpl0, 0.68

3

10

102

s= 7 TeV

∫ Ldt = 4.701 fb

-1

∫ Ldt = 4.701 fb

-1

10

10
1
1
-1

10
10-1

200

400

600

800

mc.alpgen.wjets, 1119.70
mc.mcatnlo.top, 707.46
mc.herwig.vv, 93.10
qcd.alpgen, 44.18
mc.alpgen.zjets, 25.59
mc.rsg.m500.kmpl0, 1238.45
mc.rsg.m1000.kmpl0, 28.69
mc.rsg.m1500.kmpl0, 0.70

103

102

s= 7 TeV

M(sys)

0

1000 1200 1400 1600 1800 2000

∫ Ldt = 4.701 fb

Events

Events

0

200

400

600

800

103

1000 1200 1400 1600 1800 2000

mc.alpgen.wjets, 867.47
mc.mcatnlo.top, 544.30
mc.herwig.vv, 71.94
qcd.alpgen, 50.44
mc.alpgen.zjets, 26.09
mc.rsg.m500.kmpl0, 918.55
mc.rsg.m1000.kmpl0, 22.49
mc.rsg.m1500.kmpl0, 0.68

2

10

s= 7 TeV

-1

∫ Ldt = 4.701 fb

-1

10

10
1
1
10-1
10-1

0

200

400

600

800

1000 1200 1400 1600 1800 2000

0

200

400

600

800

1000 1200 1400 1600 1800 2000

Mass distributions look better, especially for signal masses> 1 TeV
E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

86 / 41
G∗ /W → νjj truth comparison plots
M = 500 GeV

M = 1000 GeV
G*
GKK
W'

10-1

G*
GKK
W'

10-1

10-2
10-2
10-3
10-3
10-4

0

50

100

150

200

250

300

350

400

450

500

0

50

100

150

200

250

300

350

G*/W' pt [GeV]
0.1

400

450

500

G*/W' pt [GeV]
0.1

G*
GKK
W'

0.09
0.08

G*
GKK
W'

0.09
0.08

0.07

0.07

0.06

0.06

0.05

0.05

0.04

0.04

0.03

0.03

0.02

0.02

0.01
0
-1

0.01
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

cos(θ*)

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

0.8

1

cos(θ*)

July 2nd, 2012

87 / 41
G∗ /W → νjj truth comparison plots

M = 500 GeV

M = 1000 GeV
G*
GKK
W'

10-1

G*
GKK
W'

10-1

10-2

10-2

10-3
10-3
-4

10

300

350

400

450

500

550

600

650

700

800

850

900

950

1000

1050

1100

G*/W' #m

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

1150

1200

G*/W' #m

July 2nd, 2012

88 / 41
G∗ /W → νjj truth comparison plots
M = 500 GeV

M = 1000 GeV

10-1

10-1

G*
Gkk
W'

G*
Gkk
W'

10-2
10-2
10-3
-3

10

10-4

10-4

0

50

100

150

200

250

300

350

400

450

500

10-5

0

100

200

300

400

500

600

W/Z boson pt [GeV]
10-1

700

800

10-1

G*
Gkk
W'

900 1000

W/Z boson pt [GeV]

G*
Gkk
W'

10-2

10-2

10-3

10-3

10-4
10-4
-5

-4

-3

-2

-1

0

1

2

3

4

5

-5

-4

-3

-2

-1

0

1

2

W/Z boson η

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

3

4

5

W/Z boson η

July 2nd, 2012

89 / 41
G∗ /W → νjj truth comparison plots
M = 500 GeV

M = 1000 GeV
10-1

10-1

G*
GKK
W'

G*
GKK
W'
-2

10-2

10

10-3

10-3

10-4

10-4
0

50

100

150

200

250

300

350

400

450

500

0

100

200

300

400

500

600

lepton pt [GeV]
10-1

700

10-1

G*
GKK
W'

10-2

800

lepton pt [GeV]

G*
GKK
W'

10-2

10-3

10-3

10-4
10-4
-5

-4

-3

-2

-1

0

1

2

3

4

5

-5

-4

-3

-2

-1

0

1

2

lepton η

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

3

4

5

lepton η

July 2nd, 2012

90 / 41
G∗ /W → νjj truth comparison plots

M = 500 GeV

M = 1000 GeV

10-1

G*
GKK
W'

G*
GKK
W'

10-2

10-2

10-3

10-4
0

50

100

150

200

250

300

350

400

450

500

0

50

100

lepton pt [GeV]

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

150

200

250

300

350

400

450

500

lepton pt [GeV]

July 2nd, 2012

91 / 41
G∗ /W → νjj truth comparison plots
M = 500 GeV

M = 1000 GeV
10-1

10-1

G*
GKK
W'

G*
GKK
W'
-2

-2

10

10

10-3

10-3

10-4

10-4
0

50

100

150

200

250

300

350

400

450

500

0

100

200

300

400

500

600

quark pt [GeV]
10-1

10-1

G*
GKK
W'

-2

10

800

G*
GKK
W'

10-2

10-3

10-3

10-4

10-5
-5

700

quark pt [GeV]

10-4

-4

-3

-2

-1

0

1

2

3

4

5

-5

-4

-3

-2

-1

0

1

2

quark η

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

3

4

5

quark η

July 2nd, 2012

92 / 41
G∗ /W → νjj Acceptances
M = 1000 GeV
W'
G*
GKK

0.8
0.7

1

Acceptance

Acceptance

M = 500 GeV
1
0.9

0.8
0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0
0

1

2

3

4

5

6

0
0

7
8
Selection Cut

3.5
3
2.5

2
1.5

1
0

1

2

3

4

5

6

Cut 2: Lepton pt/eta
Cut 3: Jet pt/eta
Cut 4: Emiss
T
E. Williams (Columbia U.)

7
8
Selection Cut

1

2

3

4

5

6

7
8
Selection Cut

1

2

3

4

5

6

7
8
Selection Cut

2

KK

Relative Acceptance (G /G*)

KK

Relative Acceptance (G /G*)

W'
GKK
G*

0.9

1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1
0

Cut 5: Pt(lepton,Emiss )
T
Cut 6: Pt(dijet)
Cut 7: M(dijet)

G∗ → W W → νjj thesis defense

July 2nd, 2012

93 / 41
νjj Signal Region Plots
µνjj

Events

Events

eνjj
103

Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

10

10

1

1

-1

-1

10
significance

10

2
0
-2
0

2
0
-2

100

200

300

400

500

600

700

800

900

1000

0

100

200

300

400

500

600

700

800

p (j,j) [GeV]

900

1000

p (j,j) [GeV]

T

T

Events

eνjj + µνjj
103

Data
W+jets
Top
Diboson
Z+jets
QCD
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

10

1
10-1
significance

significance

Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

2
0
-2
0

100

200

300

400

500

600

700

800

900

1000

p (j,j) [GeV]
T

E. Williams (Columbia U.)

∗

G

→ W W → νjj thesis defense

July 2nd, 2012

94 / 41
νjj Signal Region Plots
Events

µνjj

Events

eνjj
Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

10

10

1

1

-1

-1

10
significance

10

2
0
-2
0

2
0
-2

100

200

300

400

500

600

700

800

0

100

200

300

Lepton Pt [GeV]

400

500

600

700

800

Lepton Pt [GeV]

Events

eνjj + µνjj
103

Data
W+jets
Top
Diboson
Z+jets
QCD
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

10

1

10-1
significance

significance

Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

2
0
-2
0

100

200

300

400

500

600

700

800

Lepton Pt [GeV]

E. Williams (Columbia U.)

∗

G

→ W W → νjj thesis defense

July 2nd, 2012

95 / 41
νjj Signal Region Plots
Events

µνjj

Events

eνjj
Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

10

10

1

1

-1

-1

10
significance

10

2
0
-2
0

2
0
-2

100

200

300

400

500

600

700

0

100

200

300

400

500

Emiss [GeV]
t

600

700

Emiss [GeV]
t

Events

eνjj + µνjj
103

Data
W+jets
Top
Diboson
Z+jets
QCD
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

10

1

10-1
significance

significance

Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

2
0
-2
0

100

200

300

400

500

600

700

Emiss [GeV]
t

E. Williams (Columbia U.)

∗

G

→ W W → νjj thesis defense

July 2nd, 2012

96 / 41
νjj Signal Region Plots
Events

µνjj

Events

eνjj
Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

10

10

1

1

-1

-1

10
significance

10

2
0
-2
0

2
0
-2

50

100

150

200

250

300

350

400

450

500

0

50

100

150

200

MT(lep,MET)

250

300

350

400

450

500

MT(lep,MET)

eνjj + µνjj
Events

103

Data
W+jets
Top
Diboson
Z+jets
QCD
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

10

1

10-1
significance

significance

Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

2
0
-2
0

50

100

150

200

250

300

350

400

450

500

MT(lep,MET)

E. Williams (Columbia U.)

∗

G

→ W W → νjj thesis defense

July 2nd, 2012

97 / 41
νjj Signal Region Plots
eνjj

µνjj
103

Events

Events

103

Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

10

10

1

1

-1

-1

10
significance

10

2
0
-2
0

2
0
-2

100

200

300

400

500

600

700

800

900

1000

0

p (lep,Emiss)
T

100

200

300

400

500

600

700

800

900

1000

p (lep,Emiss)
T

T

T

Events

eνjj + µνjj
Data
W+jets
Top
Diboson
Z+jets
QCD
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

103
102

10

1
10-1
significance

significance

Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

2
0
-2
0

E. Williams (Columbia U.)

100

200

∗

G

300

400

500

600

700

800

900

1000

p (lep,Emiss)
T

→ W W → νjj thesis defense

T

July 2nd, 2012

98 / 41
νjj Signal Region Plots
eνjj

µνjj
103

Events

Events

103

Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

10

10

1

1

-1

-1

10
significance

10

2
0
-2

2
0
-2

200

400

600

800

1000

1200

1400

1600

1800

200

Σ Jet Pt [GeV]

400

600

800

1000

1200

1400

1600

1800

Σ Jet Pt [GeV]

Events

eνjj + µνjj
Data
W+jets
Top
Diboson
Z+jets
QCD
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

103
102

10

1
10-1
significance

significance

Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

2
0
-2
200

E. Williams (Columbia U.)

400

∗

G

600

800

1000

1200

1400

1600

1800

Σ Jet Pt [GeV]

→ W W → νjj thesis defense

July 2nd, 2012

99 / 41
νjj Signal Region Plots
Events

µνjj

Events

eνjj
Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

10

10

1

1

-1

-1

10
significance

10

2
0
-2

2
0
-2

400

600

800

1000

1200

1400

1600

1800

2000

400

MET + Lepton Pt + Σ Jet Pt [GeV]

600

800

1000

1200

1400

1600

1800

2000

MET + Lepton Pt + Σ Jet Pt [GeV]

Events

eνjj + µνjj
103

Data
W+jets
Top
Diboson
Z+jets
QCD
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

10

1
10-1
significance

significance

Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

2
0
-2
400

E. Williams (Columbia U.)

600

∗

G

800

1000

1200

1400

1600

1800

2000

MET + Lepton Pt + Σ Jet Pt [GeV]

→ W W → νjj thesis defense

July 2nd, 2012

100 / 41
νjj Signal Region Plots
Events

µνjj

Events

eνjj
Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

300
250
200

Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

250
200
150

150
100

100

50

significance

2
0
-2

2
0
-2

0.4

0.6

0.8

1

1.2

1.4

0.4

0.6

0.8

1

1.2

dR(jj)

1.4

dR(jj)

Events

eνjj + µνjj
Data
W+jets
Top
Diboson
Z+jets
QCD
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

500
400
300
200
100

significance

significance

50

2
0
-2
0.4

0.6

0.8

1

1.2

1.4

dR(jj)

E. Williams (Columbia U.)

∗

G

→ W W → νjj thesis defense

July 2nd, 2012

101 / 41
νjj Signal Region Plots
Events

µνjj

Events

eνjj
Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

10

10

1

1

-1

-1

10
significance

10

2
0
-2
0

2
0
-2

0.5

1

1.5

2

2.5

0

0.5

1

1.5

dPhi(jet,jet)

2

2.5

dPhi(jet,jet)

eνjj + µνjj
Events

103

Data
W+jets
Top
Diboson
Z+jets
QCD
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

10

1

10-1
significance

significance

Data
W+jets
Top
Diboson
QCD
Z+jets
Gkk(800GeV)
Gkk(1000GeV)
Gkk(1200GeV)

102

2
0
-2
0

0.5

1

1.5

2

2.5

dPhi(jet,jet)

E. Williams (Columbia U.)

∗

G

→ W W → νjj thesis defense

July 2nd, 2012

102 / 41
νjj p-values
Mass

eνjj

µνjj

Combined

500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150

0.604
0.489
0.374
0.315
0.368
0.511
0.69
0.662
0.454
0.209
0.14
0.183
0.208
0.182

0.172
0.222
0.206
0.147
0.121
0.191
0.393
0.643
0.706
0.612
0.451
0.352
0.327
0.329

0.381
0.353
0.286
0.22
0.223
0.34
0.559
0.675
0.608
0.403
0.271
0.271
0.283
0.273

The probabilities, or p-value ≡ 1 - CLb , that the background fluctuates to or above the data in
each channel. p-values for M≥ 1200 GeV are statistics limited and not reliable. Systematic
uncertainties are included in this calculation.

E. Williams (Columbia U.)

G∗ → W W → νjj thesis defense

July 2nd, 2012

103 / 41

Más contenido relacionado

Similar a Search for Excited Randall-Sundrum Gravitons from Warped Extra Dimensions with Semi-Leptonic Diboson Final States using the ATLAS detector at the LHC

Fractal Kinetics Bruyères-le-Châtel
Fractal Kinetics Bruyères-le-ChâtelFractal Kinetics Bruyères-le-Châtel
Fractal Kinetics Bruyères-le-Châtel
David L. Griscom
 
Hypersonic high enthalpy flow in a leading-edge separation
Hypersonic high enthalpy flow in a leading-edge separationHypersonic high enthalpy flow in a leading-edge separation
Hypersonic high enthalpy flow in a leading-edge separation
Deepak Ramanath, PhD
 
igarss11_1126_corbella.ppt
igarss11_1126_corbella.pptigarss11_1126_corbella.ppt
igarss11_1126_corbella.ppt
grssieee
 
Pres110811
Pres110811Pres110811
Pres110811
shotlub
 
Ultimate astronomicalimaging
Ultimate astronomicalimagingUltimate astronomicalimaging
Ultimate astronomicalimaging
Clifford Stone
 
Bp219 04-13-2011
Bp219 04-13-2011Bp219 04-13-2011
Bp219 04-13-2011
waddling
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORSIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
grssieee
 

Similar a Search for Excited Randall-Sundrum Gravitons from Warped Extra Dimensions with Semi-Leptonic Diboson Final States using the ATLAS detector at the LHC (20)

Adamek_SestoGR18.pdf
Adamek_SestoGR18.pdfAdamek_SestoGR18.pdf
Adamek_SestoGR18.pdf
 
921 buhler[1]
921 buhler[1]921 buhler[1]
921 buhler[1]
 
Fractal Kinetics Bruyères-le-Châtel
Fractal Kinetics Bruyères-le-ChâtelFractal Kinetics Bruyères-le-Châtel
Fractal Kinetics Bruyères-le-Châtel
 
Hypersonic high enthalpy flow in a leading-edge separation
Hypersonic high enthalpy flow in a leading-edge separationHypersonic high enthalpy flow in a leading-edge separation
Hypersonic high enthalpy flow in a leading-edge separation
 
igarss11_1126_corbella.ppt
igarss11_1126_corbella.pptigarss11_1126_corbella.ppt
igarss11_1126_corbella.ppt
 
MolecularDynamics.ppt
MolecularDynamics.pptMolecularDynamics.ppt
MolecularDynamics.ppt
 
PanicO
PanicOPanicO
PanicO
 
Using Machine Learning to Measure the Cross Section of Top Quark Pairs in the...
Using Machine Learning to Measure the Cross Section of Top Quark Pairs in the...Using Machine Learning to Measure the Cross Section of Top Quark Pairs in the...
Using Machine Learning to Measure the Cross Section of Top Quark Pairs in the...
 
Pres110811
Pres110811Pres110811
Pres110811
 
Mass Resconstruction with HEP detectors
Mass Resconstruction with HEP detectorsMass Resconstruction with HEP detectors
Mass Resconstruction with HEP detectors
 
Continuum Modeling and Control of Large Nonuniform Networks
Continuum Modeling and Control of Large Nonuniform NetworksContinuum Modeling and Control of Large Nonuniform Networks
Continuum Modeling and Control of Large Nonuniform Networks
 
Ultimate astronomicalimaging
Ultimate astronomicalimagingUltimate astronomicalimaging
Ultimate astronomicalimaging
 
Bp219 04-13-2011
Bp219 04-13-2011Bp219 04-13-2011
Bp219 04-13-2011
 
vicTheoryWorkshop
vicTheoryWorkshopvicTheoryWorkshop
vicTheoryWorkshop
 
YSchutz_PPTWin
YSchutz_PPTWinYSchutz_PPTWin
YSchutz_PPTWin
 
Ad beam test_redalice.2017
Ad beam test_redalice.2017Ad beam test_redalice.2017
Ad beam test_redalice.2017
 
Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2Radar 2009 a 9 antennas 2
Radar 2009 a 9 antennas 2
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORSIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
 
The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -
 

Último

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
giselly40
 

Último (20)

08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Evaluating the top large language models.pdf
Evaluating the top large language models.pdfEvaluating the top large language models.pdf
Evaluating the top large language models.pdf
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 

Search for Excited Randall-Sundrum Gravitons from Warped Extra Dimensions with Semi-Leptonic Diboson Final States using the ATLAS detector at the LHC

  • 1. Search for Excited Randall-Sundrum Gravitons from Warped Extra Dimensions with Semi-Leptonic Diboson Final States using the ATLAS detector at the LHC Eric Williams Columbia University July 2nd, 2012 Thesis Defense
  • 2. Talk Overview The Large Hadron Collider The ATLAS detector Why extra dimensions? The analysis Sources of systematic uncertainties Final results and conclusions E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 2 / 41
  • 3. The Large Hadron Collider
  • 4. The Large Hadron Collider (LHC) 27 km circumference, 100 meters underground Collides counter-rotating proton beams at center-of-mass energy = 7 TeV (now at 8 TeV!) Delivered over 5 fb−1 of 7 TeV data to ATLAS in 2011 Beams collide at the centers of four experiments (detectors): ATLAS, ALICE, CMS and LHC-b E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 4 / 41
  • 6. The ATLAS Detector The ATLAS (A Toroidal LHC ApparatuS) detector is designed to be a ‘general-purpose’ detector undertaking a broad range of physics analyses. E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 6 / 41
  • 7. The ATLAS Detector ATLAS is composed of components, each optimized for particular functions Inner Detector: measures the momentum and trajectories charged particles Electromagnetic Calorimeters: measures the energies of electrons, photons, and others Hadronic Calorimeters: measures the energies of the hadronic particles (‘jets’, protons, neutrons) Muon System: measures the momenta of muons in the event The combination of these systems allow for measurments of ‘missing transverse energy’; the signature of particles not detected, such as neutrinos The goal of particle detection is to reconstruct the kinematics of each collision (particle energies, directions, charges and masses), to determine whether something “interesting” happened during that event E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 7 / 41
  • 8. Why extra dimensions? Original Randall-Sundrum (RS1) model Modern ‘Bulk’ Randall-Sundrum (Bulk RS) model
  • 9. Why extra dimensions? RS1 Model Original Randall-Sundrum (RS1) model offers a solution to the hierarchy problem by postulating a 5th space-time bounded by two (3 + 1)-dimensional branes. Gravity is localized at y = 0, called the UVor Planck-brane. SM particles reststricted to y = πR (IR- or TeVbrane). Only gravity can propagate through ‘bulk’. Physical masses rescaled by e−πkR : gravity is weak. The resulting metric is nonfactorizable and depends on the radius y and curvature k −1 of the extra dimension: ds2 = e−2ky ηµν dxµ dxν + dy 2 ; 0 ≤ y ≤ πR Therefore the RS warped geometry model proposes a solution to the ‘hierarchy problem’ with reasonable values of kR ∼ 11 Massive excited graviton modes (G∗ ) are a defining feature E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 9 / 41
  • 10. Why extra dimensions? Bulk RS Model Modern RS models (bulk RS) allow SM particles into 5-D bulk Overlap of 5-D profiles at TeV brane (and the Higgs) determine particles masses Suppressed coupling to bosons and light fermions; negligible rates to γγ and Enhanced coupling to heavy particles ¯ (tt,ZZ and W W ) ← motivates search in WW channel! E. Williams (Columbia U.) G∗ → W W → νjj thesis defense G*! G*! G*! G*! G*! WW ZZ HH gg tT July 2nd, 2012 10 / 41
  • 11. Analysis Outline Analysis Strategy QCD Multijet Estimation Event Preselection Data/MC Samples Signal (W +jets) Control Region Object and Event Selection Signal Region (*The Ω symbol in corner of following slides denotes my contributions)
  • 12. Analysis Outline Analysis Strategy QCD Multijet Estimation Event Preselection Data/MC Samples Signal (W +jets) Control Region Object and Event Selection Signal Region
  • 13. Analysis Outline Analysis Strategy QCD Multijet Estimation Event Preselection Data/MC Samples Signal (W +jets) Control Region Object and Event Selection Signal Region → This analysis ( νjj) part of a larger diboson resonance effort at ATLAS which includes other decay channels: , jj, ν and ν ν.
  • 14. Analysis Strategy and Previous Limits Diboson resonances (M > 500 GeV) are characterized by: a high-pT W boson, decaying leptonically → ν, ( = e, µ) Select events with one high pT isolated lepton miss Require large missing transverse energy (ET ) a high-pT W or Z boson, decaying hadronically → jj Require at least two high pT jets a peak in the four-body invariant mass M ( νjj) Look for excess in the invariant mass of the system Set 95% confidence limits on a narrow M( νjj) excess Previous RS1 G∗ → V V mass exclusion limits Experiment L [fb−1 ] Process Mass Exclusion CMS ATLAS D0 4.9 1.02 5.4 G∗ → ZZ RS1 G∗ → ZZ RS1 G∗ RS1 → WW 1000 GeV 845 GeV 754 GeV *Currently no published limits on bulk RS graviton production! E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 14 / 41
  • 15. Analysis Outline Analysis Strategy QCD Multijet Estimation Event Preselection Data/MC Samples Signal (W +jets) Control Region Object and Event Selection Signal Region
  • 16. Data/MC samples Data samples: L = 4.701 ± 0.183 fb−1 Events checked for good detector status (Good Runs List) Monte-Carlo samples: Weights applied to MC events to account for pile-up, as well as trigger and reconstruction efficiencies. Background cross sections normalized to (N)NLO with scale factors (k-factors) Full detector simulation, reconstructed with same software as data Backgrounds W +jets Z+jets ¯ Top (tt and st) W W/W Z/ZZ Generator Alpgen+Herwig/Jimmy Alpgen+Herwig/Jimmy MC@NLO+Herwig/Jimmy Herwig+Jimmy Signals (M = 500 -1500) G∗ → νjj RS1 G∗ Bulk → νjj E. Williams (Columbia U.) Generator Pythia CalcHEP+Atlfast II G∗ → W W → νjj thesis defense July 2nd, 2012 16 / 41
  • 17. Analysis Outline Analysis Strategy QCD Multijet Estimation Event Preselection Data/MC Samples Signal (W +jets) Control Region Object and Event Selection Signal Region
  • 18. Object Selection: Electrons and Muons Ω Electrons are selected based on shower shape requirements and cluster/track matching (tight++) Muons are selected based on track quality and the combination of tracks from the muon system and inner detector (combined) Both electrons and muons have requirements on: 104 ATLAS Internal X → eν jj s= 7 TeV 103 ∫ Ldt = 4.701 fb -1 102 Events Events longitudinal and transverse impact parameters transverse energy isolation transverse momentum eνjj Data W+jets Top µνjj ATLAS Internal 4 10 Data W+jets Top X → µν jj Z+jets QCD Diboson s= 7 TeV 103 102 10 ∫ Ldt = 4.701 fb Z+jets -1 QCD Diboson 10 0.5 0.5 (data-MC)/MC 1 10-1 (data-MC)/MC 1 10-1 0 -0.5 0 50 100 150 200 250 300 350 400 450 500 0 -0.5 0 50 100 150 Electron Pt [GeV] 200 250 300 350 400 450 500 Muon Pt [GeV] *Plots shown after pre-selection and QCD estimation (details later) E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 18 / 41
  • 19. Object Selection: Jets and Emiss T Ω Jets: Reconstructed using the anti-kt algorithm with cone size 0.4 Calibrated to the hadronic scale Required to be central with high transverse momentum Energy fraction associated with leading primary vertex (JVF) used to reject pile-up jets Emiss : T The missing transverse energy (Emiss ) is defined as the negative T vector sum of transverse momenta of all the objects in the event Emiss is reconstructed using the MET RefFinal algorithm T Calorimeter cells used are calibrated individually corresponding to the physics object to which they are associated1 1 My ATLAS ‘service’ work involved the study of the calibration of low-pT objects in the Emiss calculation T G∗ → W W → νjj thesis defense July 2nd, 2012 E. Williams (Columbia U.) 19 / 41
  • 20. Analysis Outline Analysis Strategy QCD Multijet Estimation Event Preselection Data/MC Samples Signal (W +jets) Control Region Object and Event Selection Signal Region
  • 21. QCD Multijet Estimation Ω QCD template method Before scaling Events QCD templates from data 104 ATLAS Internal X → µν jj s= 7 TeV 103 ‘Anti-Electrons’: reverse only isolation requirement ‘Anti-Muons’: reverse only transverse impact parameter significance → ‘non-pointing’ ∫ Ldt = 4.701 fb -1 102 Data W+jets Top QCD Z+jets Diboson 10 1 10-1 (data-MC)/MC 0.5 0 -0.5 0 50 100 150 200 250 300 350 400 450 500 MT(lep,Emiss) [GeV] T Subtract W +jets contamination from QCD templates Fit QCD template to data using miss MT ( , ET ) distribution Events After scaling 104 ATLAS Internal X → µν jj s= 7 TeV 103 ∫ Ldt = 4.701 fb -1 2 10 Data W+jets Top Z+jets QCD Diboson 10 1 10-1 (data-MC)/MC Let W/Z+jets normalization float 0.5 0 -0.5 0 50 100 150 200 250 300 350 400 450 500 MT(lep,Emiss) [GeV] T Scale Factors eνjj µνjj QCD W/Z+jets 0.30 ± 0.05 1.10 ± 0.01 0.22 ± 0.05 1.09 ± 0.01 E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 21 / 41
  • 22. Analysis Outline Analysis Strategy QCD Multijet Estimation Event Preselection Data/MC Samples Signal (W +jets) Control Region Object and Event Selection Signal Region
  • 23. Preselection Yields Ω Event preselection criteria: At least two jets with pT > 40 GeV, lead jet pT > 100 GeV Events eνjj One lepton (e/µ) with pT > 30 GeV 8000 ATLAS Internal Data W+jets Top X → eν jj 7000 s= 7 TeV ∫ Ldt = 4.701 fb 6000 Z+jets -1 5000 QCD Diboson 4000 3000 Emiss > 40 GeV T 2000 1000 µνjj 37994 ± 152 1270 ± 16 15124 ± 30 474 ± 4 929 ± 36 55792 ± 160 55163 55.0 ± 1.0 8.0 ± 0.2 1.9 ± 0.1 388.4 ± 5.8 64.2 ± 1.0 15.3 ± 0.3 E. Williams (Columbia U.) 45712 ± 170 1802 ± 17 16309 ± 31 490 ± 4 499 ± 16 64812 ± 174 64233 44.5 ± 0.9 6.5 ± 0.2 1.4 ± 0.1 313.8 ± 5.1 51.3 ± 0.9 12.7 ± 0.2 0.5 0 -0.5 2 4 6 8 10 12 14 16 18 20 Avg Int per Xing µνjj Events W +jets Z+jets Top Diboson QCD Total Bkgd Data G∗ Bulk (800 GeV) G∗ Bulk (1000 GeV) G∗ Bulk (1200 GeV) G∗ RS1 (750 GeV) G∗ RS1 (1000 GeV) G∗ RS1 (1250 GeV) eνjj ATLAS Internal 9000 Data W+jets Top X → µν jj 8000 s= 7 TeV ∫ Ldt = 4.701 fb Z+jets -1 7000 QCD Diboson 6000 5000 4000 3000 2000 1000 (data-MC)/MC Process (data-MC)/MC Preselected event yields (errors stat. only) 0.5 0 -0.5 2 G∗ → W W → νjj thesis defense 4 6 8 10 12 14 16 18 20 Avg Int per Xing July 2nd, 2012 23 / 41
  • 24. Data/MC preselection plots Ω µνjj Events ATLAS Internal X → eν jj 103 ∫ 102 s= 7 TeV -1 Ldt = 4.701 fb Events eνjj 104 104 Data W+jets Top Z+jets QCD Diboson Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) ATLAS Internal X → µν jj 103 ∫ 102 10 s= 7 TeV -1 Ldt = 4.701 fb Data W+jets Top Z+jets QCD Diboson Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 10 10-1 0.5 0.5 (data-MC)/MC 1 10-1 (data-MC)/MC 1 0 100 200 300 400 500 600 p (lep,Emiss) [GeV] T Events 104 ATLAS Internal X → eν jj 103 ∫ 102 0 -0.5 0 700 s= 7 TeV -1 Ldt = 4.701 fb 100 200 300 400 500 T 104 Data W+jets Top Z+jets QCD Diboson Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 600 ATLAS Internal X → µν jj 103 ∫ 102 10 700 p (lep,Emiss) [GeV] T Events -0.5 0 s= 7 TeV -1 Ldt = 4.701 fb T Data W+jets Top Z+jets QCD Diboson Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 10 10-1 0.5 0.5 (data-MC)/MC 1 10-1 (data-MC)/MC 1 0 -0.5 0 100 200 300 400 500 600 700 0 -0.5 0 100 200 300 400 500 p (j,j) [GeV] E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 600 700 p (j,j) [GeV] T T July 2nd, 2012 24 / 41
  • 25. Analysis Outline Analysis Strategy QCD Multijet Estimation Event Preselection Data/MC Samples Signal (W +jets) Control Region Object and Event Selection Signal Region
  • 26. Signal (W +jets) Control Region Ω Process W +jets control region definition: Preselection Criteria pT ( , Emiss ) > 200 GeV T pT (jj) > 200 GeV M (jj) < 65 or M (jj) > 115 GeV eνjj W+jets Z+jets Top Diboson QCD Total Bkgd Data µνjj 4004 ± 44 123 ± 5 1135 ± 8 40 ± 1 74 ± 15 5376 ± 48 5404 ± 0.0 3572 ± 43 132 ± 5 951 ± 8 37 ± 1 69 ± 5 4760 ± 44 4743 ± 0.0 Signal control region yields (errors stat. only) eνjj µνjj 450 350 data 400 MC backgrounds 350 data MC backgrounds 300 G* (750 GeV) G* (750 GeV) 300 250 250 200 200 150 150 100 100 50 50 0 50 100 150 200 250 300 0 50 100 150 200 250 M(jj) [GeV] E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 300 M(jj) [GeV] July 2nd, 2012 26 / 41
  • 27. Signal Control Region Sidebands Ω Use the M (jj) sidebands to scale W/Z+jets background to data. M (jj) > 115 GeV 10 1032 Data 2011 2011 Data 2011 Data W+jetsW+jets W+jets Top Top Top Z+jets Z+jets Z+jets 103 102 102 QCD QCD Diboson Diboson QCD Diboson 10 10 Events Events Events Events M (jj) < 65 GeV Data 2011 W+jets Top 103 Z+jets 102 10 QCD Diboson 10 1 1 1 -1 10-1 10-1 significance significance significance 10 10-1 2 2 0 0 -2 -2 significance 1 2 0 -2 0 500 2 0 -2 500 500 1000 1000 1000 W/Z+jets SF 1500 1500 1500 2000 2000 2000 2500 2500 2500 M(lννjj) [GeV] M(l M(lν jj) [GeV] jj) [GeV] 1.11 ± 0.02 Average W/Z+jets SF 500 1000 W/Z+jets SF 1500 2000 2500 M(lν jj) [GeV] 1.02 ± 0.01 1.02 ± 0.03 W/Z+jets MC is scaled by average SF in signal (control) region. E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 27 / 41
  • 28. Analysis Outline Analysis Strategy QCD Multijet Estimation Event Preselection Data/MC Samples Signal (W +jets) Control Region Object and Event Selection Signal Region
  • 29. Signal Region Ω eνjj Events Signal region definition: Preselection criteria pT ( , Emiss ) > 200 GeV T 10 pT (jj) > 200 GeV 1 65 < M(jj) < 115 GeV 10-1 eνjj µνjj significance Process Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 2 0 -2 594 ± 21 15 ± 2 516 ± 5 63 ± 1 16 ± 2 1204 ± 22 1328 34.9 ± 0.8 3.6 ± 0.1 0.4 ± 0.0 162.8 ± 3.7 18.3 ± 0.5 3.1 ± 0.1 0 200 400 600 800 1000 1200 1400 1600 1800 2000 M(lν jj) [GeV] µνjj Events 698 ± 20 14 ± 2 614 ± 6 76 ± 2 18 ± 6 1420 ± 22 1453 44.0 ± 0.9 4.0 ± 0.1 0.5 ± 0.0 208.2 ± 4.3 21.8 ± 0.6 3.4 ± 0.1 Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 10 1 10-1 significance W +jets Z+jets Top Diboson QCD Total Bkgd Data GBulk (800 GeV) GBulk (1000 GeV) GBulk (1200 GeV) GRS1 (750 GeV) GRS1 (1000 GeV) GRS1 (1250 GeV) 2 0 -2 0 200 400 600 800 1000 1200 1400 1600 1800 2000 M(lν jj) [GeV] Signal region yields (errors stat. only) E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 29 / 41
  • 30. Sources of Sytematic Uncertainties W/Z+jets Scale Factor Uncertainty Measurement Systematic Uncertainties Theoretical Systematic Uncertianties
  • 31. W/Z+jets systematics Ω To estimate, use low/high dijet mass sideband scale factors as a function of M( νjj) as ‘envelope’ of uncertainty. Modulate applied W/Z+jets scale factor within this ‘envelope’ and measure change in M( νjj) in signal region. V+jets Scale Factor The largest systematic uncertainty is due to uncertainy of W/Z+jets scale factor. Systematic from W/Z+jets scale factor 1.4 1.2 Sample 1 eνjj µνjj +14.45% −2.06% +14.57% −2.08% +14.71% −2.23% +14.72% −2.23% 0.8 W +jets 0.6 0.4 0.2 0 200 Average M(jj) < 65 M(jj) > 115 400 600 Z+jets 800 1000 1200 1400 1600 1800 2000 M(lν jj) (M(j,j) > 115GeV or M(j,j) < 65GeV) E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 31 / 41
  • 32. Systematic Uncertainties Ω Systematics shown as Average (Min/Max)% Source Backgrounds (%) α Signal PDF Jet Energy Scaleα Luminosityα Jet Energy Resolutionα Trigger SFα Emiss α T Lepton Energy Scaleα Lepton Energy Resolutionα Lepton Reco SFα Lepton ID SFα W/Z+jets SFβ QCDγ Signal (%) 10.1 (5.3/17.9) 3.9 1.6 (0.3/2.9) 1.1 (0.5/1.7) 1.1 (0.4/1.6) <1 <1 <1 <1 9.0 (8.8/9.1) 90 (80/100) 5 4.8 (2.5/9.6) 3.9 1.5 (0.3/3.0) 1.2 (0.6/1.7) 0.1 (0.1/0.1) <1 <1 <1 <1 - α: Applies to non-W/Z+jets backgrounds only β: Applies to W/Z+jets backgrounds only γ: Applies to QCD background only E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 32 / 41
  • 33. Theoretical Systematics Theoretical systematics from uncertainties on cross-section, parton distribution functions (PDFs), and initial/final state radiation (ISR/FSR). Systematic WW W W/W Z/ZZ (σ) ¯ tt (σ) ¯ tt (shape) tb + tqb + tW (σ) WZ ZZ 5% - 7% - 5% - ¯ tt +7.0% −9.6% 8% - single top 8% ¯ tt shape systematic from: Uncertainty on top quark mass → 3% ISR/FSR → 5% Generator: MC@NLO/POWHEG → 2.5% Parton shower model: HERWIG/PYTHIA → 5% E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 33 / 41
  • 34. Final Results and Conclusions Signal Yields with Systematics Statistical Analysis G∗ Exclusion Limits Conclusions Future Prospects
  • 35. Signal Region Yields with Systematics Ω eνjj µνjj Events eνjj Process Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 Signal region event yields (errors stat. + syst.) 10 1 10-1 significance 594 ± 57 15 ± 2 518+50 −73 63 ± 8 16 ± 11 1206+77 −94 1318 34.9 ± 2.7 3.6 ± 0.3 0.4 ± 0.1 163 ± 12.8 18.3 ± 1.5 3.1 ± 0.3 2 0 -2 0 200 400 600 800 1000 1200 1400 1600 1800 2000 M(lν jj) [GeV] µνjj Events 698 ± 64 14 ± 2 614+59 −86 76 ± 9 18 ± 24 1420+91 −110 1452 44.0 ± 3.4 4.0 ± 0.3 0.5 ± 0.1 208.2 ± 18.0 21.8 ± 1.7 3.4 ± 0.3 Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 10 1 10-1 significance W +jets Z+jets Top Diboson QCD Total backgrounds Data Bulk G∗ (800 GeV) Bulk G∗ (1000 GeV) Bulk G∗ (1200 GeV) RS1 G∗ (750 GeV) RS1 G∗ (1000 GeV) RS1 G∗ (1250 GeV) 2 0 -2 0 200 400 600 800 1000 1200 1400 1600 1800 2000 M(lν jj) [GeV] The greatest deviation from the background prediction occurs at M (eνjj) = 1000 GeV with p-value = 0.14. Lacking evidence for new physics, limits on the hypothetical signal rate are determined with the CLs method. E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 35 / 41
  • 36. Statistical Analysis M ( νjj) distributions are used as inputs to a poisson Negative Log-Likelihood Ratio (NLLR) test statistic. Test statistics separates ‘signal-like’ events from ‘background-like’ events Multiple pseudo-experiments (PEs) are run under background-only (H0) and signal+background (H1) hypothesis Relative location of NLLR(data) to NLLR(H0) and NLLR(H1) distributions quantify exclusion or discovery! Confidence levels (CL) defined as fractions of PEs to right of solid line (data) CLs = CLs+b CLb If CLs < 1 − 0.95 → excluded at 95% CL For each mass point, a 95% excluded value of σ × BR is calculated for background median, ±1, 2σ, and data. Then compared to signal σ × BR. E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 36 / 41
  • 37. RS1 G∗ Observed Limits w/ Systematics σ × B [pb] eνjj+µνjj 10 σ(pp → G* ATLAS Internal RS1 → WW) Expected Limit Expected ± 1σ Expected ± 2σ Observed limit 1 10-1 ∫ Ldt = 4.7 fb -1 600 800 1000 1200 1400 mG* [GeV] Lower mass exclusion limits Expected G∗ RS1 E. Williams (Columbia U.) Observed 952 GeV 936 GeV G∗ → W W → νjj thesis defense July 2nd, 2012 37 / 41
  • 38. Bulk RS G∗ Observed Limits w/ Systematics σ × B [pb] eνjj+µνjj 10 σ(pp → G* ATLAS Internal Bulk → WW) Expected Limit Expected ± 1σ Expected ± 2σ 1 Observed limit 10-1 ∫ Ldt = 4.7 fb -1 10-2 500 600 700 800 900 1000 1100 1200 mG* [GeV] Lower mass exclusion limits Expected G∗ Bulk E. Williams (Columbia U.) Observed 749 GeV 714 GeV G∗ → W W → νjj thesis defense July 2nd, 2012 38 / 41
  • 39. G∗ → W W → νjj Summary Expected/Observed lower mass limits from RS1 and Bulk RS gravitons: Signal RS1 G∗ (exp.) Bulk RS G∗ (exp.) RS1 G∗ (obs.) Bulk RS G∗ (obs.) eνjj w/o sys 1017 814 928 818 eνjj w/ sys 966 728 915 727 µνjj w/o sys 982 795 982 738 µνjj w/ sys 907 693 934 631 Comb. w/o sys 1065 838 973 849 Comb. w/ sys 952 749 936 714 This analysis is the first exotic diboson resonance search in the νjj channel at the LHC. These are the first limits set on Bulk RS W W decay! Current best limit on RS1 Graviton to W W (754 → 936 GeV)! Analysis approved by Exotics group Paper is in final stage of approval, should be submitted to PRD ∼week! (https://cdsweb.cern.ch/record/1456099) E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 39 / 41
  • 40. Future Prospects The future of LHC collisions promises higher energies and luminosities (already collected > 5 fb−1 of 8 TeV data)! Increase in signal cross sections Concurrent increase in background production and pile-up! Highly boosted decay products → jet merging σ× BR [pb] What does this mean for diboson searches? 7 TeV 1 8 TeV 10-1 10-2 10-3 400 600 800 1000 1200 1400 1600 G*Bulk Mass [GeV] W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W WW W W W W W W W W W W W W W W W W W W W pT p p p (W)≫M(W) (W)≫M(W)(W)≫M(W) T(W)≫M(W) pT(W)~M(W) p pT(W)~0 pT(W)~0 T(W)~0 p T(W)~M(W)T(W)~M(W) T(W)≫M(W) p p pT(W)≫M(W) p p Tp T p )~0 (W)~0 T(W)~0 T(W)~0(W)~M(W) T(W)~M(W)T(W)~M(W) T(W)≫M(W) pT(W)~0T(W)~M(W) p pp(W)~M(W)pT(W)≫M(W) p pp pT W)~0 pT(W)~M(W)(W)~M(W)TpT(W)≫M(W) (W)≫M(W) T(W)≫M(W) T(W)≫M(W) p pT(W)~M(W) T(W)~0(W)~M(W) T p p T T T W W W Solution: Use merged jets to reduce backgrounds Much to look forward to at the LHC in 2012 and beyond! E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 40 / 41
  • 42. Object Definitions Muons Electrons egammma author 1 or 3 1,2,1,2,1 STACO combined muons1,2,2,1 |η| < 2.47 w/ crack region excluded1,2,1,2,1 pT > 30 GeV good object quality (el OQ & 1446 == 0)1,2,1 |η| < 2.41,2,1,2,1 pT > 30 GeV nBLayerHits > 0 || !expectBLayerHit1,2,1,1 tight++ electron1,2,1,2,1 nPixHits + nPixelDeadSensors > 11,2,1,2,1 |el trackz0pv| < 1 mm2,1,2 nSCTHits + nSCTDeadSensors ≥ 61,2,1,2,1 impact parameter significance wrt. primary vertex √ |el trackd0pv/ el tracksigd0pv| < 102,1,2 nPixHoles + nSCTHoles < 31,2,1,2,1 Isolation CaloIsoCorrection::GetPtNPVCorrectedIsolation etcone30 corrected < 6 GeV2 Jets and Emiss T TRT extension1,2,1,1 N = nTRTOutliers + nTRTHits if |η| < 1.9 then require: nTRTOutliers/N < 0.9 && N > 5 if |η| > 1.9 && N > 5 then require: nTRTOutliers/N < 0.9 |z0 exPV| < 1 mm2,1, AntiKt4TopoEMJets (EM + JES) 1,2,1,2,1 pT > 40 GeV, |ηEM | < 2.8 LOOSER jet cleaning requirements |JVF| > 0.751,2,1,2,1 MET RefFinal within |ηcl | < 4.91,2,2 SM 1. W → ν/Z → 2. EWK (W W ,W/Zγ) E. Williams (Columbia U.) impact parameter significance2,1,2 √ |d0 exPV/ cov d0 exPV| < 3 Isolation1,2 CorrectCaloIso::CorrectEtCone30Rel etcone30 corrected/pT < 0.14 ptcone30/pT < 0.15 Higgs 1. W → ν ν 2. W → νjj SUSY 1. 1 lepton G∗ → W W → νjj thesis defense July 2nd, 2012 42 / 41
  • 43. Data/MC samples Data samples used: L = 4.701fb−1 from period D-M (OflLumi-7TeV-002) NTUP SMWLNUJJ, p833 skims Egamma and Muons streams SM W/Z GRL Monte-Carlo samples used: NTUP SMWZ, r3043 r2993 p833 (mc11c) Weights applied to MC events to account for pile-up, as well as trigger and reconstruciton efficiencies. Background cross sections normalized to N(N)LO with k-factors Backgrounds W +jets Z+jets W W/W Z/ZZ ¯ Top (tt and st) Generator Alpgen+Herwig/Jimmy Alpgen+Herwig/Jimmy Herwig+Jimmy MC@NLO+Herwig/Jimmy Signals (M = 500 -1500) G∗ → νjj RS1 G∗ → νjj bulk W → νjj E. Williams (Columbia U.) Cross Sections [pb] 14060 1070 44.9/18.5/5.96 164, 83.93 Generator Pythia CalcHEP+Atlfast II Pythia G∗ → W W → νjj thesis defense July 2nd, 2012 43 / 41
  • 44. Data/MC samples: Alpgen W +jets reweighting W +jets is the dominant background It has been observed that ALPGEN W +jets samples over-estimate the background in high W pT regimes However Sherpa W +jets MC backgrounds match the data better than the Alpgen samples in these regions eνjj µνjj Truth Pt of W Boson 2 2 0 -1 6 10 L dt ~ 4.71 pb Events 107 107 Events Events Events Truth Pt of W Boson 2 1 0 W e W e Alpgen Sherpa 105 10 10 107 7 L dt ~ 4.71 pb W µ W µ Alpgen Sherpa 5 104 104 10 103 10 103 3 3 102 102 10 101 10 101 1.8 1.6 1.4 1.2 11 0.8 0.6 0.4 0.2 00 0 Data / MC 2 10-2 2 SHERPA/ALPGEN 1 10-1 10-1 SHERPA/ALPGEN 1 10-1 10-1 Data / MC -1 6 10 10 105 100 200 300 400 500 600 700 800 900 1000 Truth pT of W Boson [GeV] Generator-level pT of W Boson [GeV] 2 10-2 2 1.8 1.6 1.4 1.2 11 0.8 0.6 0.4 0.2 0 00 100 200 300 400 500 600 700 800 900 1000 Truth pT of W Boson [GeV] Generator-level pT of W Boson [GeV] Comparison of Alpgen and Sherpa W +jets generator-level W pT Due to the fact that Sherpa samples were not available with sufficient statistics, the solution: → reweight Alpgen W +jets to match Sherpa generator-level W pT E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 44 / 41
  • 45. miss pT ( , ET ), ALPGEN→ SHERPA truth W pT reweighting 104 ATLAS Internal X → eν jj 103 s= 7 TeV ∫ Ldt = 4.701 fb -1 102 eνjj With Reweighting Events Events W/out Reweighting Data 2011 W+jets Top 104 ATLAS Internal X → eν jj 103 ∫ Ldt = 4.701 fb Z+jets -1 Diboson QCD 102 10 0.5 0.5 0 0 100 200 300 400 500 600 0 -0.5 700 0 100 200 300 400 500 600 104 ATLAS Internal X → µν jj 103 s= 7 TeV ∫ Ldt = 4.701 fb -1 102 Data 2011 W+jets Top 700 Pt(lep+met) Events Pt(lep+met) Events QCD Diboson 1 -0.5 104 ATLAS Internal X → µν jj 103 s= 7 TeV ∫ Ldt = 4.701 fb Z+jets -1 Diboson QCD 102 10 Data 2011 W+jets Top Z+jets Diboson QCD 10 1 10-1 0.5 0.5 significance 1 10-1 significance Z+jets 10-1 significance 1 µνjj Data 2011 W+jets Top 10 10-1 significance s= 7 TeV 0 -0.5 0 100 200 300 400 500 600 700 0 -0.5 0 100 200 300 400 500 Pt(lep+met) E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 600 700 Pt(lep+met) July 2nd, 2012 45 / 41
  • 46. pdijet , ALPGEN→ SHERPA truth W pT reweighting T With Reweighting 104 ATLAS Internal Data 2011 W+jets Top X → eν jj 103 s= 7 TeV ∫ Ldt = 4.701 fb eνjj 104 ATLAS Internal Diboson QCD ∫ Ldt = 4.701 fb 102 1 0.5 0.5 0 -0.5 0 100 200 300 400 500 600 0 -0.5 700 0 100 200 300 400 500 600 p (j,j) [GeV] ATLAS Internal Data 2011 W+jets Top X → µν jj 103 s= 7 TeV ∫ Ldt = 4.701 fb T Events 104 104 ATLAS Internal s= 7 TeV ∫ Ldt = 4.701 fb Z+jets -1 Diboson QCD 102 Data 2011 W+jets Top X → µν jj 103 Z+jets -1 700 p (j,j) [GeV] T Events QCD Diboson 10-1 significance 1 Diboson QCD 102 10 10 1 10-1 0.5 0.5 significance 1 10-1 significance Z+jets 10 10-1 significance s= 7 TeV -1 10 µνjj Data 2011 W+jets Top X → eν jj 103 Z+jets -1 102 Events Events W/out Reweighting 0 -0.5 0 100 200 300 400 500 600 700 0 -0.5 0 100 200 300 400 500 p (j,j) [GeV] E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 600 700 p (j,j) [GeV] T T July 2nd, 2012 46 / 41
  • 47. Emiss , ALPGEN→ SHERPA truth W pT reweighting T ATLAS Internal 104 X → eν jj s= 7 TeV 103 ∫ Ldt = 4.701 fb -1 102 eνjj With Reweighting Events Events W/out Reweighting Data 2011 W+jets Top X → eν jj s= 7 TeV 103 Z+jets Diboson QCD ∫ Ldt = 4.701 fb -1 102 10 0.5 0.5 0 0 100 200 300 400 500 0 -0.5 600 0 100 200 300 400 500 ATLAS Internal 104 X → µν jj s= 7 TeV ∫ Ldt = 4.701 fb 103 -1 102 Data 2011 W+jets Top 600 MEt [GeV] Events MEt [GeV] Events QCD Diboson 1 -0.5 ATLAS Internal 104 X → µν jj s= 7 TeV ∫ Ldt = 4.701 fb 103 Z+jets Diboson QCD -1 102 10 Data 2011 W+jets Top Z+jets Diboson QCD 10 1 10-1 0.5 0.5 significance 1 10-1 significance Z+jets 10-1 significance 1 µνjj Data 2011 W+jets Top 10 10-1 significance ATLAS Internal 104 0 -0.5 0 100 200 300 400 500 600 0 -0.5 0 100 200 300 400 MEt [GeV] E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 500 600 MEt [GeV] July 2nd, 2012 47 / 41
  • 48. plepton , ALPGEN→ SHERPA truth W pT reweighting T ATLAS Internal 104 Data 2011 W+jets Top X → eν jj s= 7 TeV 103 ∫ Ldt = 4.701 fb s= 7 TeV ∫ Ldt = 4.701 fb 10 1 10-1 0.5 0.5 significance 1 0 -0.5 0 50 100 150 200 250 300 350 400 450 0 -0.5 500 0 50 100 150 200 250 300 350 ATLAS Internal 104 Data 2011 W+jets Top X → µν jj s= 7 TeV 103 ∫ Ldt = 4.701 fb Diboson QCD 102 ATLAS Internal 104 450 500 Data 2011 W+jets Top X → µν jj s= 7 TeV 103 Z+jets -1 400 Lepton Pt [GeV] Events Lepton Pt [GeV] Events QCD Diboson 102 10-1 ∫ Ldt = 4.701 fb Z+jets -1 Diboson QCD 102 10 10 1 10-1 0.5 0.5 significance 1 10-1 significance Z+jets -1 10 µνjj Data 2011 W+jets Top X → eν jj 103 Diboson QCD 102 significance ATLAS Internal 104 Z+jets -1 eνjj With Reweighting Events Events W/out Reweighting 0 -0.5 0 50 100 150 200 250 300 350 400 450 500 0 -0.5 0 Lepton Pt [GeV] E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 50 100 150 200 250 300 350 400 450 500 Lepton Pt [GeV] July 2nd, 2012 48 / 41
  • 49. miss MT ( , ET ), ALPGEN→ SHERPA truth W pT reweighting 104 With Reweighting ATLAS Internal Data 2011 W+jets Top X → eν jj s= 7 TeV 103 ∫ Ldt = 4.701 fb 104 s= 7 TeV ∫ Ldt = 4.701 fb 1 10-1 0.5 0.5 significance 1 0 -0.5 0 50 100 150 200 250 300 350 400 450 0 -0.5 500 MT(lep,Emiss) [GeV] 0 50 100 150 200 250 300 104 ATLAS Internal Data 2011 W+jets Top X → µν jj s= 7 TeV 103 ∫ Ldt = 4.701 fb 104 450 500 Data 2011 W+jets Top X → µν jj s= 7 TeV ∫ Ldt = 4.701 fb Z+jets -1 Diboson QCD 102 400 ATLAS Internal 103 Z+jets -1 350 MT(lep,Emiss) [GeV] T Events T Events QCD Diboson 10 10-1 Diboson QCD 102 10 10 1 10-1 0.5 0.5 significance 1 10-1 significance Z+jets 102 10 µνjj Data 2011 W+jets Top X → eν jj -1 Diboson QCD 102 significance ATLAS Internal 103 Z+jets -1 eνjj Events Events W/out Reweighting 0 -0.5 0 50 100 150 200 250 300 350 400 450 500 MT(lep,Emiss) [GeV] 0 -0.5 0 T E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 50 100 150 200 250 300 350 400 450 500 MT(lep,Emiss) [GeV] T July 2nd, 2012 49 / 41
  • 50. N jets, ALPGEN→ SHERPA truth W pT reweighting ATLAS Internal 104 X → eν jj s= 7 TeV ∫ Ldt = 4.701 fb 103 -1 102 eνjj With Reweighting Data 2011 W+jets Top Events Events W/out Reweighting X → eν jj s= 7 TeV Z+jets Diboson QCD ∫ Ldt = 4.701 fb 103 102 10 -1 Data 2011 W+jets Top Z+jets QCD Diboson 10 1 10-1 0.5 0.5 significance 1 10-1 significance ATLAS Internal 104 0 -0.5 2 4 6 8 10 0 -0.5 12 2 4 6 8 10 12 ATLAS Internal 104 X → µν jj s= 7 TeV ∫ Ldt = 4.701 fb 103 -1 102 Data 2011 W+jets Top Jet N Events Events Jet N 104 Diboson QCD ∫ Ldt = 4.701 fb 103 102 -1 Data 2011 W+jets Top Z+jets Diboson QCD 10 1 10-1 0.5 0.5 significance 1 10-1 significance X → µν jj s= 7 TeV Z+jets 10 µνjj ATLAS Internal 0 -0.5 2 4 6 8 10 0 -0.5 12 2 4 6 8 10 Jet N E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 12 Jet N July 2nd, 2012 50 / 41
  • 51. plead T jet , ALPGEN→ SHERPA truth W pT reweighting 104 ATLAS Internal X → eν jj s= 7 TeV 103 ∫ Ldt = 4.701 fb -1 102 eνjj With Reweighting Events Events W/out Reweighting Data 2011 W+jets Top 104 X → eν jj s= 7 TeV ∫ Ldt = 4.701 fb Z+jets -1 Diboson QCD 102 10 0.5 0.5 0 0 100 200 300 400 500 600 0 -0.5 700 0 100 200 300 400 104 ATLAS Internal X → µν jj s= 7 TeV 103 ∫ Ldt = 4.701 fb -1 102 Data 2011 W+jets Top 500 600 700 Lead Jet Pt [GeV] Events Lead Jet Pt [GeV] Events QCD Diboson 1 -0.5 104 ATLAS Internal X → µν jj s= 7 TeV 103 ∫ Ldt = 4.701 fb Z+jets -1 Diboson QCD 102 10 Data 2011 W+jets Top Z+jets Diboson QCD 10 1 10-1 0.5 0.5 significance 1 10-1 significance Z+jets 10-1 significance 1 µνjj Data 2011 W+jets Top 10 10-1 significance ATLAS Internal 103 0 -0.5 0 100 200 300 400 500 600 700 0 -0.5 0 Lead Jet Pt [GeV] E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 100 200 300 400 500 600 700 Lead Jet Pt [GeV] July 2nd, 2012 51 / 41
  • 52. psecond T jet , ALPGEN→ SHERPA truth W pT reweighting 104 ATLAS Internal X → eν jj s= 7 TeV 103 ∫ Ldt = 4.701 fb -1 102 eνjj With Reweighting Events Events W/out Reweighting Data 2011 W+jets Top 104 X → eν jj s= 7 TeV ∫ Ldt = 4.701 fb Z+jets -1 Diboson QCD 102 10 0.5 0.5 0 0 100 200 300 400 500 600 0 -0.5 700 0 100 200 300 400 104 ATLAS Internal X → µν jj s= 7 TeV 103 ∫ Ldt = 4.701 fb -1 102 Data 2011 W+jets Top 500 600 700 Second Jet Pt [GeV] Events Second Jet Pt [GeV] Events QCD Diboson 1 -0.5 104 ATLAS Internal X → µν jj s= 7 TeV 103 ∫ Ldt = 4.701 fb Z+jets -1 Diboson QCD 102 10 Data 2011 W+jets Top Z+jets Diboson QCD 10 1 10-1 0.5 0.5 significance 1 10-1 significance Z+jets 10-1 significance 1 µνjj Data 2011 W+jets Top 10 10-1 significance ATLAS Internal 103 0 -0.5 0 100 200 300 400 500 600 700 0 -0.5 0 Second Jet Pt [GeV] E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 100 200 300 400 500 600 700 Second Jet Pt [GeV] July 2nd, 2012 52 / 41
  • 53. ¯ tt Control Region Definition and Yields ¯ ¯ tt control region is used to check tt agreement in high-pT region. 60 ¯ tt control region definition: Data t( t )+X W → l ν +HF+X W → l ν +X * Z/ γ →l +l +X VV+V γ Multijet G* → WW (M=1 TeV) W’ → WZ (M=1 TeV) 50 40 ≥ 2 b-tagged jets w/ pT > 40 GeV ∫ Ldt = 4701.39 pb 30 -1 20 pT (jj) > 200 GeV 10 M (jj) < 65 GeV or M (jj) > 115 GeV 0 significance 3 eνjj 100 150 200 250 50 100 150 200 250 0 295 ± 17 23 ± 4 301 ± 17 0±0 300 PT (Emiss) [GeV] T µνjj 80 ¯ tt ¯ N on − tt Data RS1 G∗ (M = 1 TeV) 300 -1.5 -30 Process 50 1.5 279 ± 16 19 ± 4 301 ± 17 0±0 Data t( t )+X W → l ν +HF+X W → l ν +X * Z/ γ →l +l +X VV+V γ Multijet G* → WW (M=1 TeV) W’ → WZ (M=1 TeV) 70 60 50 ∫ Ldt = 4701.39 pb 40 -1 30 20 10 ¯ tt control region yields (errors stat. only) 0 significance 3 50 100 150 200 250 50 100 150 200 250 1.5 0 -1.5 -30 MT (l , Emiss) [GeV] T E. Williams (Columbia U.) ∗ G → W W → νjj thesis defense July 2nd, 2012 53 / 41
  • 54. Impact Parameter ●  Distance between the point of closest approach of a track and primary vertex Transverse IP d0 is this distance in transverse plane x,y ●  d0 significance = |d0|/(σ(d0))1/2 ●  Longitudinal IP z0 is the z-coordinate of this point ● 
  • 55. W+jets QCD contamination Goal is to estimate, and correct for, the amount of W+jets events in QCD template. This method assumes that e → jet ∼ jet → e. i) Create W +jets ‘contamination’ samples by running over W+jets MC with QCD ‘anti-lepton’ requirements: electrons: Reverse calorimeter isolation (etcone 30 > 6 GeV) muons: Reverse ‘pointing’ (|d0sig| > 3 GeV) ii) Scale W +jets contamination template with W +jets cross-section and lumi to get estimated distribution of W +jets events in QCD template iii) Subtract W +jets contamination template from un-scaled QCD template iv) Scale new QCD template from fit to data E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 55 / 41
  • 56. W+jets QCD contamination QCD ∼ 18% W +jets in eνjj QCD ∼ 7% W +jets in µνjj 103 Unscaled QCD 103 Unscaled QCD W+jets contamination W+jets contamination 102 102 10 10 1 1 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 MT(µ,Emiss) [GeV] MT(e,Emiss) [GeV] T T 103 QCD w/out W+jets sub QCD w/out W+jets sub 102 QCD w/ W+jets sub QCD w/ W+jets sub 2 10 10 10 1 1 0 50 100 150 200 250 300 350 400 450 MT(e,Emiss) T E. Williams (Columbia U.) 500 10-1 0 50 100 [GeV] G∗ → W W → νjj thesis defense 150 200 250 300 350 400 450 500 MT(µ,Emiss) [GeV] T July 2nd, 2012 56 / 41
  • 57. W+jets QCD contamination µνjj ATLAS Internal Data 2011 W+jets Top X → eν jj s= 7 TeV 103 Events Events eνjj 104 ∫ Ldt = 4.701 fb -1 Diboson QCD 0.5 significance 1 10-1 0.5 0 -0.5 0 50 100 150 200 250 104 300 350 400 ATLAS Internal s= 7 TeV ∫ Ldt = 4.701 fb 0 -0.5 500 0 50 100 150 200 250 400 450 ATLAS Internal 10 500 Data 2011 W+jets Top X → µν jj s= 7 TeV 103 ∫ Ldt = 4.701 fb Z+jets -1 QCD Diboson 102 350 MT(lep,Emiss) [GeV] T 4 Z+jets -1 300 [GeV] Data 2011 W+jets Top X → eν jj 103 450 MT(lep,Emiss) T Events significance 1 Events Z+jets 10 10-1 Diboson QCD 102 10 10 1 10-1 0.5 0.5 significance 1 10-1 significance s= 7 TeV 102 10 With W+jets subtraction Data 2011 W+jets Top X → µν jj ∫ Ldt = 4.701 fb -1 Diboson With out W+jets subtraction ATLAS Internal 103 QCD Z+jets 102 104 0 -0.5 0 50 E. Williams (Columbia U.) 100 150 200 250 300 350 400 450 MT(lep,Emiss) T 500 0 -0.5 [GeV] G∗ → W W → νjj thesis defense 0 50 100 150 200 250 300 350 400 450 500 MT(lep,Emiss) [GeV] T July 2nd, 2012 57 / 41
  • 58. νjj QCD Estimation µνjj ATLAS Internal Data 2011 W+jets Top X → eν jj s= 7 TeV 103 ∫ Ldt = 4.701 fb -1 W/out Events Events eνjj 104 Diboson 1 10-1 0.5 0.5 significance 1 0 -0.5 0 50 100 150 200 250 300 350 400 450 0 -0.5 500 MT(lep,Emiss) [GeV] 0 50 100 150 200 250 300 104 ATLAS Internal Data 2011 W+jets Top X → eν jj s= 7 TeV 103 ∫ Ldt = 4.701 fb 500 Data 2011 W+jets Top X → µν jj s= 7 TeV ∫ Ldt = 4.701 fb Z+jets Diboson QCD 102 10 1 10-1 0.5 0.5 significance 1 10-1 significance 450 -1 10 scaling 400 ATLAS Internal 103 QCD Diboson 102 QCD 104 Z+jets -1 350 MT(lep,Emiss) [GeV] T Events Events T With QCD Z+jets 10 10-1 significance s= 7 TeV 102 10 scaling Data 2011 W+jets Top X → µν jj ∫ Ldt = 4.701 fb -1 Diboson QCD ATLAS Internal 103 QCD Z+jets 102 104 0 -0.5 0 50 100 150 200 250 300 350 400 450 MT(lep,Emiss) T 500 0 -0.5 0 50 [GeV] 150 200 250 300 350 400 450 500 MT(lep,Emiss) [GeV] T Scale Factors eνjj µνjj QCD V+jets E. Williams (Columbia U.) 100 0.30 ± 0.05 1.10 ± 0.01 0.22 ± 0.05 1.09 ± 0.01 G∗ → W W → νjj thesis defense July 2nd, 2012 58 / 41
  • 59. νjj QCD Estimation QCD distributions before and after scaling. eνjj µνjj No QCD scaling No QCD scaling After QCD scaling 2 After QCD scaling 102 10 10 10 1 1 0 50 100 150 200 250 300 350 400 450 500 0 50 100 mT(e,MET) [GeV] E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 150 200 250 300 350 400 450 500 mT(mu,MET) [GeV] July 2nd, 2012 59 / 41
  • 60. Preselection Definition Reject event if: dR( , jet) < 0.4 Contains any looser bad jets Jets found in LAr hole (simple veto) Data, require pT > 40 × (1−BCH CORR JET)/(1−BCH CORR CELL) MC, require pT > 40 GeV, only applied to fraction of MC events corresponding to affeted data lumi (∼ 17%) Has noise burst with LArError = 2 Fails QCD triangle cut Require: Lepton trigger: Data Period Run Range Electron Trigger Muon Trigger D-J K L-M 179710 → 186755 186873 → 187815 188902 → 191933 EF e20 medium EF e22 medium EF e22vh medium1 EF EF EF EF mu18 mu18 mu18 mu40 MG or EF mu40 MSonly barrel MG medium or EF mu40 MSonly barrel MG medium or MSonly barrel medium First primary vertex has Ntrack >= 3 → Only one lepton (e/µ) with pT > 30 GeV → At least two jets with pT > 40 GeV → Lead jet pT > 100 GeV → Emiss > 40 GeV T E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 60 / 41
  • 61. Signal Significance The ultimate goal of an experimental search for a new particle is to state whether or not a statistically significant observation of the signal has been made. In other words, to answer the canonical question: Given the data, is it possible to distinguish between two hypotheses? Three main steps toward answering this question: 1 Define a test-statistic which optimizes the separation of the signal+background hypothesis (H1) and the background-only hypothesis (H0) 2 Run an appropriate number of pseudo-experiments (Frequentist) for both hypothesis, incorporating all signal and background nuisance parameters (systematics) in a coherent way (Bayesian). 3 Define confidence levels designating exclusions 2012 Higgs → γγ 4.7fb−1 result or discoveries E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 61 / 41
  • 62. 1) Define test-statistic: Likelihood-Ratio Neyman-Pearson lemma suggests that the most powerful test for statistically separating two point hypotheses is the likelihood-ratio test, that is: L(s + b|x) Λ= L(b|x) s = signal b = background x = data L = likelihood Rate of signal or background events follow a Poisson distribution, appropriate choice for likelihood functional form: L(s + b) = E. Williams (Columbia U.) (s + b)x e−(s+b) (b)x e−b , L(b) = x! x! G∗ → W W → νjj thesis defense July 2nd, 2012 62 / 41
  • 63. 1) Define test-statistic: Likelihood-Ratio With this choice, combining likelihoods from multiple channels (e.g. X → Y and X → Z) as well as from multiple bins within a discriminating variable (e.g. M (X)) is natural: channels bins Λ(x) = i j (sij + bij )xij e−(sij +bij ) (bij )xij e−(bij ) / . xij ! xij ! In the high-statistics limit the distributions of -2 ln Λ are expected to converge to (χ2 − χ2 ), thus it is more common to use: s+b b NLLR(x) = −2 ln(Λ(x)) channels bins = −2 sij − xij ln 1 + i j sij bij This test statistic decreases monotonically for increasingly signal-like (decreasingly background-like) experiments. Can be used to order data outcomes relative to each other in hypothesis significance E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 63 / 41
  • 64. 2) Pseudo-Experiments: A Semi-Frequentist Approach Assuming that the data is drawn randomly from a Poisson parent distribution, we can create pdfs of NLLR(x) for both the signal+background hypothesis (H1) and the background-only (H0) hypothesis, by conducting pseudo-experiments Systematic uncertainties (nuisance parameters) are incorporated by sampling a bifurcated Gaussian distribution with the ±σ uncertainties estimated for each source (hence ‘Semi’-Frequentist) m m The pseudo-experiment background (Bj ) and signal (Sj ) yields are then given as: bkgd Nsys m Bj = 0,m Bj (1 bkgd gi ) + i sig Nsys 0,m m Sk = Sk (1 + sig gi ) i Where B 0,m (S 0,m ) is the nominal background (signal) poisson yield for channel j (k) and bin m. g bkgd (g sig ) is the contribution from systematic uncertainty i. E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 64 / 41
  • 65. 2) Pseudo-Experiments: A Semi-Frequentist Approach Running O(20k) pseudo-experiments, we evaulate the NLLR distributions under the H0, NLLR(x = Db ), and H1, NLLR(x = Ds+b ), hypotheses. Where: Nbins Nb Nbins m Bj , Db = m j Ds+b = Nb m Ns m Bj + ( j N m Sk ) k Bkgd Only Sig + Bkgd -2ln(Λ(x)) E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 65 / 41
  • 66. 2) Pseudo-Experiments: A Semi-Frequentist Approach Running O(20k) pseudo-experiments, we evaulate the NLLR distributions under the H0, NLLR(x = Db ), and H1, NLLR(x = Ds+b ), hypotheses. Where: Nbins Nb Nbins m Bj , Db = m j Ds+b = Nb m Ns m Bj + ( j N m Sk ) k Bkgd Only Sig + Bkgd NLLR(xdata) -2ln(Λ(x)) Location of measured data on NLLR pdf (Prior Predictive Ensemble) used to quantify exclusion/discovery E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 66 / 41
  • 67. 3) Modified Frequentist Confidence Levels: CLs Confidence levels defined as the fraction of outcomes predicted to fall outside of the specified confidence interval CLs+b : fraction of H1 pseudo-experiments less signal-like than data ∞ CLs+b = Ps+b (X ≥ Xobs ) = P(x = Ds+b ) dP NLLR(x=Dobs ) CLb : fraction of H0 pseudo-experiments less signal-like than data ∞ CLb = Pb (X ≥ Xobs ) = P(x = Db ) dP NLLR(x=Dobs ) Therefore... High CLs+b → data signal-like. (otherwise, used for exclusion) High CLb (or low 1 − CLb ) → data not background like. For discovery, (1-CLb ) ≡ p-value = the probability, under H0 hypothesis, that background fluctuated to produce observed signal. Typically require (1-CLb ) < 5σ(4.3 × 10−7 ) to claim discovery E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 67 / 41
  • 68. 3) Modified Frequentist Confidence Levels: CLs N Bkgd Only Sig + Bkgd 1-CLb CLs+b NLLR(xdata) -2ln(Λ(x)) Therefore... High CLs+b → data signal-like. (otherwise, used for exclusion) High CLb (or low 1 − CLb ) → data not background like. For discovery, (1-CLb ) ≡ p-value = the probability, under H0 hypothesis, that background fluctuated to produce observed signal. Typically require (1-CLb ) < 5σ(4.3 × 10−7 ) to claim discovery E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 68 / 41
  • 69. 3) Modified Frequentist Confidence Levels: CLs The strictly frequentist CLs+b confidence level, while a powerful statistical tool, is unstable if the background model dramatically disagrees with the data: Background overestimated → low CLs+b → possible exclusion! Background underestimated → high CLs+b → possible discovery! The solution: The modified frequentist confidence level, CLs CLs ≡ CLs+b CLb Normalizing CLs+b with CLb removes the dependence on background modelling and leads to more conservative limits on H1 hypothesis, as well as lower false exclusion rate (type II error) than nominal (1− CL) A signal model is then excluded at or above 95% confidence level if CLs ≤ 0.05 E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 69 / 41
  • 70. νjj Signal Systematics Acceptance systematics for ‘bulk’ Randal-Sundram GRS (M = 700 GeV) sample. Systematic JES JER LES LER All Clusters Met PileUp ID SF Reco SF Trigger SF Iso SF Signal PDF Luminosity V+jets Total eνjj [%] 2.83 0.90 0.06 0.06 0.10 0.03 0.85 0.91 0.55 2.00 5.00 3.90 0.00 µνjj [%] 2.63 0.99 0.07 0.08 0.06 0.07 0.04 0.39 1.74 1.00 5.00 3.90 0.00 7.40 7.23 Muon energy resolution chosen as ’worst’ smearing between ID and MS. E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 70 / 41
  • 71. νjj Background Systematics Table: eνjj percent ∆ acceptance. Systematic Wjets Zjets TTBar Single Top Diboson QCD JES JER LES LER All Clusters Met PileUp ID SF Reco SF Trigger SF Iso SF Luminosity MJ Normalization V+jets (10.99) (1.14) (0.1) (0.42) (0.51) (0.45) (0.96) (0.81) (0.56) (2) 5 (18.04) (6.96) (0.8) (1.59) (1.56) (2.13) (0.92) (0.83) (0.53) (2) 5.11 4.78 0.06 0.18 0.14 0.91 0.78 0.89 0.88 0.56 2 3.9 - 8.37 1.39 0.08 0.07 1.25 0.85 0.88 0.88 0.56 2 3.9 - 10.33 3.13 0.05 0.08 1.69 1.72 0.89 0.8 0.59 2 3.9 - 80.0 - 5 5.11 6.74 9.76 12.28 Total E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 80.0 July 2nd, 2012 71 / 41
  • 72. νjj Background Systematics Table: µνjj percent ∆ acceptance. Systematic Wjets Zjets TTBar Single Top Diboson QCD JES JER LES LER All Clusters Met PileUp ID SF Reco SF Trigger SF Iso SF Luminosity MJ Normalization V+jets (10.75) (0.27) (0.4) (1.21) (0.29) (0.12) (0.04) (0.39) (1.71) (1) 5.23 (9.08) (7.57) (0.86) (2.37) (0.49) (0.84) (0.04) (0.41) (1.75) (1) 5.34 7.3 0.63 0.08 0.79 0.42 0.43 0.04 0.37 1.74 1 3.9 - 9.41 1.55 0.58 0.14 0.64 0.72 0.04 0.38 1.73 1 3.9 - 10.48 5.45 0.3 0.37 1.96 1.91 0.04 0.39 1.74 1 3.9 - 100.0 - 5.23 5.34 8.6 10.5 14.2 Total E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 100. July 2nd, 2012 72 / 41
  • 73. Signal Control Region Plots (after scaling) eνjj Ω µνjj Events Events 300 350 Data W+jets Top 300 Data W+jets Top 250 Z+jets 250 Z+jets 200 QCD Diboson 200 QCD Diboson 150 150 100 100 50 significance significance 50 2 0 -2 2 0 -2 50 100 150 200 250 300 50 100 150 200 103 Data W+jets Top 102 250 Z+jets 103 Data W+jets Top 102 Z+jets QCD Diboson QCD Diboson 10 10 1 1 -1 -1 10 significance 10 significance 300 Dijet Mass [GeV] Events Events Dijet Mass [GeV] 2 0 -2 2 0 -2 500 1000 1500 E. Williams (Columbia U.) 2000 2500 M(lν jj) [GeV] 500 G∗ → W W → νjj thesis defense 1000 1500 2000 2500 M(lν jj) [GeV] July 2nd, 2012 73 / 41
  • 74. νjj Signal Control Region Plots Events µνjj Events eνjj Data W+jets Top 103 Z+jets 102 Data W+jets Top 103 Z+jets 102 QCD Diboson QCD Diboson 10 10 significance 1 10-1 significance 1 10-1 2 0 -2 0 2 0 -2 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 p (j,j) [GeV] Data W+jets Top 103 Z+jets 102 Z+jets 102 QCD Diboson 1000 T Events Events Data W+jets Top 103 900 p (j,j) [GeV] T QCD Diboson 10 10 significance 1 10-1 significance 1 10-1 2 0 -2 0 2 0 -2 100 200 300 400 500 600 700 800 900 1000 p (lep,Emiss) T 0 100 200 300 400 500 600 700 800 900 1000 p (lep,Emiss) T T T * MC uncertainty (Lumi and W/Z+jets scale factor systematic) not included in significance E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 74 / 41
  • 75. νjj Signal Control Region Plots µνjj Events Events eνjj 103 Data W+jets Top 3 10 102 Data W+jets Top 2 10 Z+jets Z+jets QCD Diboson QCD Diboson 10 10 1 1 -1 -1 10 significance significance 10 2 0 -2 2 0 -2 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 Data 2011 W+jets Top 103 Z+jets 102 Data 2011 W+jets Top 103 Z+jets 102 QCD Diboson QCD Diboson 10 10 1 1 -1 -1 10 significance 10 significance 700 Emiss [GeV] t Events Events Emiss [GeV] t 2 0 -2 2 0 -2 200 300 400 500 600 700 800 900 1000 200 300 400 MET + Lepton Pt [GeV] 500 600 700 800 900 1000 MET + Lepton Pt [GeV] * MC uncertainty (Lumi and W/Z+jets scale factor systematic) not included in significance E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 75 / 41
  • 76. νjj Signal Control Region Plots µνjj Events Events eνjj 103 Data 2011 W+jets Top 2 10 103 Z+jets QCD Diboson Z+jets QCD Diboson 10 10 1 10-1 significance 1 10-1 significance Data 2011 W+jets Top 102 2 0 -2 2 0 -2 200 400 600 800 1000 1200 200 400 600 800 Data W+jets Top 103 Data W+jets Top 102 Z+jets QCD Diboson QCD Diboson 10 10 1 1 -1 -1 10 significance 10 significance 1200 103 Z+jets 102 1000 Dijet Mass [GeV] Events Events Dijet Mass [GeV] 2 0 -2 0 2 0 -2 100 200 300 400 500 600 700 800 0 100 200 300 Lepton Pt [GeV] 400 500 600 700 800 Lepton Pt [GeV] * MC uncertainty (Lumi and W/Z+jets scale factor systematic) not included in significance E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 76 / 41
  • 77. νjj signal templates Fully simulated signal samples only available with masses: M (G∗ ) = 500 − 1500 GeV, in 250 GeV steps RS1 and M (G∗ ) = 500 − 1500 GeV, in 100 GeV steps Bulk To account for possibility of missing a signal with an intermediate mass value, a ∗ set of G∗ RS1 and GBulk signal templates were made, spanning the full mass range in steps of 50 GeV. νjj mass from full-sim samples fit with Crystal Ball function: 2 N· x exp − (x−¯) 2σ 2 x A · (B − x−¯ )−n σ 2 n where A = ( |a| )n · exp − |a| , and B = 2 E. Williams (Columbia U.) n |a| for for x−¯ x σ x−¯ x σ > −a ≤ −a − |a| G∗ → W W → νjj thesis defense July 2nd, 2012 77 / 41
  • 78. Events / ( 20 ) Events / ( 20 ) νjj signal template fits 200 Signal Crystal Ball 150 30 Signal 25 Crystal Ball 20 15 100 10 50 5 0 200 300 400 500 600 700 0 400 800 500 600 700 2.5 Signal 2 800 900 1000 1100 1200 Mass(lvjj) (GeV) Events / ( 20 ) Events / ( 20 ) Mass(lvjj) (GeV) Crystal Ball 0.25 Signal Crystal Ball 0.2 1.5 0.15 1 0.1 0.5 0 400 0.05 600 800 1000 1200 1400 0 400 1600 600 800 Events / ( 20 ) Mass(lvjj) (GeV) 1000 1200 1400 1600 1800 2000 Mass(lvjj) (GeV) Signal 0.04 Crystal Ball 0.03 0.02 0.01 0 600 800 1000 1200 1400 1600 1800 2000 Mass(lvjj) (GeV) Full-simulated G∗ samples (eνjj) with crystal ball functional fit for masses 500 GeV (upper-left), 750 GeV (upper-right), 1000 GeV (middle-left), 1250 GeV (middle-right) and 1500 GeV (bottom row). E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 78 / 41
  • 79. νjj signal template parameter extraction To create ‘in-between’ mass template points, the crystal ball fit parameters, as well as the signal acceptances are interpolated through a fit across the signal mass range. The mean x, width σ and a parameters extracted and their trend are fitted ¯ with simple functions: x(x) = p0 + p1 x ¯ (1) σ(x) = p0 + p1 x p0 + p2 x a(x) = p1 x2 n=2 (2) (3) (4) Parameter n fixed to 2, shape of the tail can be appropriately controlled solely by the a parameter. Acceptance extrapolated through a Landau distribution which empirically fits the curve. E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 79 / 41
  • 80. Crystal Ball Sigma Crystal Ball Mean νjj signal template parameter fits 1400 1200 1000 110 100 90 80 70 800 60 50 600 40 400 600 800 1000 1200 1400 1600 400 600 800 1000 3 2.5 1200 1400 1600 G* Pole Mass [GeV] Crystal Ball n Crystal Ball a G* Pole Mass [GeV] 3 2.8 2.6 2 2.4 1.5 2.2 1 2 400 600 800 1000 1200 1400 1600 400 600 G* Pole Mass [GeV] 800 1000 1200 1400 1600 G* Pole Mass [GeV] Fits of crystal ball parameters across full-simulated G∗ → eνjj vs M (G∗ ) shown. From left to right and top to bottom are the obtained fits for the x, σ, a, and n. ¯ E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 80 / 41
  • 81. Acceptance νjj signal template acceptance fit 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 400 600 800 1000 1200 1400 1600 G* Pole Mass [GeV] Landau functional fit (in black) to the acceptances in the eνjj channel using to the full-simulated G∗ samples (in blue) with masses 500, 750, 1000, and 1500 GeV . Acceptances of template signal distributions were extrapolated from fit. E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 81 / 41
  • 82. νjj signal template cross-sections Table: Summary of cross-sections times branching ratio and acceptances per channel used to derive cross section limits at intermediate MG∗ mass values, where fully simulated samples were non available. 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 E. Williams (Columbia U.) σ×B [pb] eνjj 5.593 4.597 3.601 2.643 1.648 0.614 0.514 0.413 0.313 0.212 0.027 0.095 0.078 0.061 0.044 0.027 0.023 0.019 0.015 0.012 0.008 G∗ Mass [GeV] 0.045 0.065 0.081 0.089 0.091 0.089 0.082 0.075 0.067 0.060 0.051 0.047 0.041 0.036 0.032 0.030 0.026 0.023 0.021 0.018 0.018 Acceptance µνjj Average 0.034 0.048 0.058 0.065 0.067 0.068 0.064 0.059 0.054 0.049 0.041 0.040 0.036 0.032 0.029 0.027 0.023 0.021 0.019 0.017 0.018 0.040 0.057 0.070 0.077 0.079 0.079 0.073 0.067 0.061 0.055 0.046 0.044 0.039 0.034 0.031 0.029 0.025 0.022 0.020 0.018 0.018 G∗ → W W → νjj thesis defense July 2nd, 2012 82 / 41
  • 83. 300 300 200 60 100 40 100 50 300 100 0 0 200400600800 1200400600800000 1000 1 1 1 2 80 70 60 50 40 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) 40 35 30 25 50 16 14 20 3 3 2.5 2 1.8 1.6 1.4 1.2 2.5 1.5 2 0.8 Events / ( 10 ) Events / ( 10 ) 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) Mass(lvjj) (GeV) 0.1 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) 0 0 200400600800 1200400600800000 1000 1 1 1 2 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) Mass(lvjj) (GeV) 0.1 0.06 0.08 0.06 0.04 0.1 0.05 0.2 0.1 0.08 0.12 0.1 0.15 0.3 0.12 0.16 0.14 0.2 0.4 0.14 0.2 0.18 0.3 0.25 0.5 0.2 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) 0.22 0.35 0.6 0.3 0.2 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) Mass(lvjj) (GeV) 0.5 0.2 0.5 0 0 200400600800 1200400600800000 1000 1 1 1 2 0.7 0.4 0.4 0.4 0.5 0.8 1 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) 0.6 1 1 1 0.6 1 1.5 2 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) Events / ( 10 ) 4 3 2 Mass(lvjj) (GeV) Events / ( 10 ) Events / ( 10 ) Mass(lvjj) (GeV) 5 4 2 0 0 200400600800 1200400600800000 1000 1 1 1 2 0 0 200400600800 1200400600800000 1000 1 1 1 2 6 4 4 5 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) 3.5 8 6 10 10 10 4.5 Mass(lvjj) (GeV) 6 8 20 0 0 200400600800 1200400600800000 1000 1 1 1 2 10 10 15 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) 12 20 30 Events / ( 10 ) 18 30 40 Events / ( 10 ) 20 20 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) Events / ( 10 ) Events / ( 10 ) 90 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) Events / ( 10 ) Mass(lvjj) (GeV) Events / ( 10 ) 0 0 200400600800 1200400600800000 1000 1 1 1 2 Events / ( 10 ) 100 Events / ( 10 ) 200 Events / ( 10 ) 100 Events / ( 10 ) 150 200 400 200 80 200 400 300 100 250 400 500 400 120 300 500 500 Events / ( 10 ) 600 600 500 600 700 700 600 Events / ( 10 ) 800 700 Events / ( 10 ) 800 Events / ( 10 ) Events / ( 10 ) Events / ( 10 ) G∗ → eνjj signal templates 0.04 0.02 0 0 200400600800 1200400600800000 1000 1 1 1 2 0.02 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) E. Williams (Columbia U.) Mass(lvjj) (GeV) ∗ G → W W → νjj thesis defense July 2nd, 2012 83 / 41
  • 84. 200 200 100 100 100 200 40 40 35 30 25 30 Mass(lvjj) (GeV) Events / ( 10 ) 50 45 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) Events / ( 10 ) Events / ( 10 ) 60 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) 30 25 20 12 10 5 2 1.2 1 1.5 1.5 0.4 1 0.2 0 0 200400600800 1200400600800000 1000 1 1 1 2 0.18 0.25 0.6 Mass(lvjj) (GeV) 0.5 0.4 0.35 0.4 0.3 0.25 0.3 0.2 0.2 0.15 0.1 0.1 0.05 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) 0 0 200400600800 1200400600800000 1000 1 1 1 2 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) Mass(lvjj) (GeV) 0.12 0.16 0.14 0.2 Mass(lvjj) (GeV) Events / ( 10 ) 0.3 0.7 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) 0.6 0.1 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) Events / ( 10 ) Mass(lvjj) (GeV) 0.8 0.2 0.5 0 0 200400600800 1200400600800000 1000 1 1 1 2 0.9 0.3 0.5 1 0.4 0.6 1 2 1 0 0 200400600800 1200400600800000 1000 1 1 1 2 0.5 0.8 2 4 2 Mass(lvjj) (GeV) Events / ( 10 ) 3 2.5 1.4 5 3 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) Events / ( 10 ) Events / ( 10 ) Mass(lvjj) (GeV) 2.5 Mass(lvjj) (GeV) 3 2 0 0 200400600800 1200400600800000 1000 1 1 1 2 0 0 200400600800 1200400600800000 1000 1 1 1 2 4 Events / ( 10 ) 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) 5 4 10 5 3.5 6 6 10 0 0 200400600800 1200400600800000 1000 1 1 1 2 7 8 15 15 10 Events / ( 10 ) 14 20 20 Events / ( 10 ) 16 20 Mass(lvjj) (GeV) Events / ( 10 ) 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) 40 60 40 20 0 0 200400600800 1200400600800000 1000 1 1 1 2 100 50 0 0 200400600800 1200400600800000 1000 1 1 1 2 Events / ( 10 ) 150 80 60 140 120 100 80 250 Events / ( 10 ) 300 200 300 Events / ( 10 ) 300 Events / ( 10 ) 350 300 100 220 200 180 160 400 400 400 400 450 500 500 500 Events / ( 10 ) Events / ( 10 ) Events / ( 10 ) Events / ( 10 ) 600 600 Events / ( 10 ) G∗ → µνjj signal templates 0.12 0.1 0.08 0.1 0.15 0.06 0.08 0.1 0.06 0.04 0.04 0.05 0.02 0.02 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) 0 0 200400600800 1200400600800000 1000 1 1 1 2 0 0 200400600800 1200400600800000 1000 1 1 1 2 Mass(lvjj) (GeV) E. Williams (Columbia U.) Mass(lvjj) (GeV) ∗ G → W W → νjj thesis defense July 2nd, 2012 84 / 41
  • 85. Gkk → W W → νjj signal templates eνjj 102 µνjj Signal Mass [GeV] 500 600 700 800 900 1000 1100 1200 1300 1400 1500 10 1 10-1 102 Signal Mass [GeV] 500 600 700 800 900 1000 1100 1200 1300 1400 1500 10 1 10-1 10-2 10-2 10-3 10-3 -4 10 0 200 400 600 800 1000 1200 1400 1600 1800 2000 10-40 200 400 600 800 1000 1200 1400 1600 1800 2000 M(lν jj) [GeV] M(lν jj) [GeV] Reconstructed M( νjj) from AFII ‘bulk’ Graviton samples: 500-1500 GeV, 100 GeV steps Mass [GeV] 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 102 10 1 10-1 10-2 -3 10 1 10-1 10-2 10-3 10 10-40 Mass [GeV] 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 102 200 400 600 800 1000 1200 1400 1600 1800 2000 10-40 200 400 600 800 1000 1200 1400 1600 1800 2000 M(lν jj) [GeV] M(lν jj) [GeV] Reconstructed M( νjj) from AFII ‘bulk’ Graviton samples: 500-1500 GeV, 100 GeV steps plotted with signal templates for 550-1550 GeV in 100 GeV steps E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 85 / 41
  • 86. νjj signal variable Plot shown in νjj signal region µνjj MT (sys) mc.alpgen.wjets, 1119.70 mc.mcatnlo.top, 707.66 mc.herwig.vv, 93.17 qcd.alpgen, 44.18 mc.alpgen.zjets, 25.59 mc.rsg.m500.kmpl0, 1238.45 mc.rsg.m1000.kmpl0, 28.69 mc.rsg.m1500.kmpl0, 0.70 103 102 s= 7 TeV Events Events eνjj mc.alpgen.wjets, 867.96 mc.mcatnlo.top, 544.23 mc.herwig.vv, 72.11 qcd.alpgen, 50.44 mc.alpgen.zjets, 26.09 mc.rsg.m500.kmpl0, 918.70 mc.rsg.m1000.kmpl0, 22.49 mc.rsg.m1500.kmpl0, 0.68 3 10 102 s= 7 TeV ∫ Ldt = 4.701 fb -1 ∫ Ldt = 4.701 fb -1 10 10 1 1 -1 10 10-1 200 400 600 800 mc.alpgen.wjets, 1119.70 mc.mcatnlo.top, 707.46 mc.herwig.vv, 93.10 qcd.alpgen, 44.18 mc.alpgen.zjets, 25.59 mc.rsg.m500.kmpl0, 1238.45 mc.rsg.m1000.kmpl0, 28.69 mc.rsg.m1500.kmpl0, 0.70 103 102 s= 7 TeV M(sys) 0 1000 1200 1400 1600 1800 2000 ∫ Ldt = 4.701 fb Events Events 0 200 400 600 800 103 1000 1200 1400 1600 1800 2000 mc.alpgen.wjets, 867.47 mc.mcatnlo.top, 544.30 mc.herwig.vv, 71.94 qcd.alpgen, 50.44 mc.alpgen.zjets, 26.09 mc.rsg.m500.kmpl0, 918.55 mc.rsg.m1000.kmpl0, 22.49 mc.rsg.m1500.kmpl0, 0.68 2 10 s= 7 TeV -1 ∫ Ldt = 4.701 fb -1 10 10 1 1 10-1 10-1 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Mass distributions look better, especially for signal masses> 1 TeV E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 86 / 41
  • 87. G∗ /W → νjj truth comparison plots M = 500 GeV M = 1000 GeV G* GKK W' 10-1 G* GKK W' 10-1 10-2 10-2 10-3 10-3 10-4 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 G*/W' pt [GeV] 0.1 400 450 500 G*/W' pt [GeV] 0.1 G* GKK W' 0.09 0.08 G* GKK W' 0.09 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.01 0 -1 0.01 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 cos(θ*) E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 0.8 1 cos(θ*) July 2nd, 2012 87 / 41
  • 88. G∗ /W → νjj truth comparison plots M = 500 GeV M = 1000 GeV G* GKK W' 10-1 G* GKK W' 10-1 10-2 10-2 10-3 10-3 -4 10 300 350 400 450 500 550 600 650 700 800 850 900 950 1000 1050 1100 G*/W' #m E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 1150 1200 G*/W' #m July 2nd, 2012 88 / 41
  • 89. G∗ /W → νjj truth comparison plots M = 500 GeV M = 1000 GeV 10-1 10-1 G* Gkk W' G* Gkk W' 10-2 10-2 10-3 -3 10 10-4 10-4 0 50 100 150 200 250 300 350 400 450 500 10-5 0 100 200 300 400 500 600 W/Z boson pt [GeV] 10-1 700 800 10-1 G* Gkk W' 900 1000 W/Z boson pt [GeV] G* Gkk W' 10-2 10-2 10-3 10-3 10-4 10-4 -5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 W/Z boson η E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 3 4 5 W/Z boson η July 2nd, 2012 89 / 41
  • 90. G∗ /W → νjj truth comparison plots M = 500 GeV M = 1000 GeV 10-1 10-1 G* GKK W' G* GKK W' -2 10-2 10 10-3 10-3 10-4 10-4 0 50 100 150 200 250 300 350 400 450 500 0 100 200 300 400 500 600 lepton pt [GeV] 10-1 700 10-1 G* GKK W' 10-2 800 lepton pt [GeV] G* GKK W' 10-2 10-3 10-3 10-4 10-4 -5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 lepton η E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 3 4 5 lepton η July 2nd, 2012 90 / 41
  • 91. G∗ /W → νjj truth comparison plots M = 500 GeV M = 1000 GeV 10-1 G* GKK W' G* GKK W' 10-2 10-2 10-3 10-4 0 50 100 150 200 250 300 350 400 450 500 0 50 100 lepton pt [GeV] E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 150 200 250 300 350 400 450 500 lepton pt [GeV] July 2nd, 2012 91 / 41
  • 92. G∗ /W → νjj truth comparison plots M = 500 GeV M = 1000 GeV 10-1 10-1 G* GKK W' G* GKK W' -2 -2 10 10 10-3 10-3 10-4 10-4 0 50 100 150 200 250 300 350 400 450 500 0 100 200 300 400 500 600 quark pt [GeV] 10-1 10-1 G* GKK W' -2 10 800 G* GKK W' 10-2 10-3 10-3 10-4 10-5 -5 700 quark pt [GeV] 10-4 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 quark η E. Williams (Columbia U.) G∗ → W W → νjj thesis defense 3 4 5 quark η July 2nd, 2012 92 / 41
  • 93. G∗ /W → νjj Acceptances M = 1000 GeV W' G* GKK 0.8 0.7 1 Acceptance Acceptance M = 500 GeV 1 0.9 0.8 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 1 2 3 4 5 6 0 0 7 8 Selection Cut 3.5 3 2.5 2 1.5 1 0 1 2 3 4 5 6 Cut 2: Lepton pt/eta Cut 3: Jet pt/eta Cut 4: Emiss T E. Williams (Columbia U.) 7 8 Selection Cut 1 2 3 4 5 6 7 8 Selection Cut 1 2 3 4 5 6 7 8 Selection Cut 2 KK Relative Acceptance (G /G*) KK Relative Acceptance (G /G*) W' GKK G* 0.9 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1 0 Cut 5: Pt(lepton,Emiss ) T Cut 6: Pt(dijet) Cut 7: M(dijet) G∗ → W W → νjj thesis defense July 2nd, 2012 93 / 41
  • 94. νjj Signal Region Plots µνjj Events Events eνjj 103 Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 10 10 1 1 -1 -1 10 significance 10 2 0 -2 0 2 0 -2 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 p (j,j) [GeV] 900 1000 p (j,j) [GeV] T T Events eνjj + µνjj 103 Data W+jets Top Diboson Z+jets QCD Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 10 1 10-1 significance significance Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 2 0 -2 0 100 200 300 400 500 600 700 800 900 1000 p (j,j) [GeV] T E. Williams (Columbia U.) ∗ G → W W → νjj thesis defense July 2nd, 2012 94 / 41
  • 95. νjj Signal Region Plots Events µνjj Events eνjj Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 10 10 1 1 -1 -1 10 significance 10 2 0 -2 0 2 0 -2 100 200 300 400 500 600 700 800 0 100 200 300 Lepton Pt [GeV] 400 500 600 700 800 Lepton Pt [GeV] Events eνjj + µνjj 103 Data W+jets Top Diboson Z+jets QCD Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 10 1 10-1 significance significance Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 2 0 -2 0 100 200 300 400 500 600 700 800 Lepton Pt [GeV] E. Williams (Columbia U.) ∗ G → W W → νjj thesis defense July 2nd, 2012 95 / 41
  • 96. νjj Signal Region Plots Events µνjj Events eνjj Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 10 10 1 1 -1 -1 10 significance 10 2 0 -2 0 2 0 -2 100 200 300 400 500 600 700 0 100 200 300 400 500 Emiss [GeV] t 600 700 Emiss [GeV] t Events eνjj + µνjj 103 Data W+jets Top Diboson Z+jets QCD Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 10 1 10-1 significance significance Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 2 0 -2 0 100 200 300 400 500 600 700 Emiss [GeV] t E. Williams (Columbia U.) ∗ G → W W → νjj thesis defense July 2nd, 2012 96 / 41
  • 97. νjj Signal Region Plots Events µνjj Events eνjj Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 10 10 1 1 -1 -1 10 significance 10 2 0 -2 0 2 0 -2 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 MT(lep,MET) 250 300 350 400 450 500 MT(lep,MET) eνjj + µνjj Events 103 Data W+jets Top Diboson Z+jets QCD Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 10 1 10-1 significance significance Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 2 0 -2 0 50 100 150 200 250 300 350 400 450 500 MT(lep,MET) E. Williams (Columbia U.) ∗ G → W W → νjj thesis defense July 2nd, 2012 97 / 41
  • 98. νjj Signal Region Plots eνjj µνjj 103 Events Events 103 Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 10 10 1 1 -1 -1 10 significance 10 2 0 -2 0 2 0 -2 100 200 300 400 500 600 700 800 900 1000 0 p (lep,Emiss) T 100 200 300 400 500 600 700 800 900 1000 p (lep,Emiss) T T T Events eνjj + µνjj Data W+jets Top Diboson Z+jets QCD Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 103 102 10 1 10-1 significance significance Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 2 0 -2 0 E. Williams (Columbia U.) 100 200 ∗ G 300 400 500 600 700 800 900 1000 p (lep,Emiss) T → W W → νjj thesis defense T July 2nd, 2012 98 / 41
  • 99. νjj Signal Region Plots eνjj µνjj 103 Events Events 103 Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 10 10 1 1 -1 -1 10 significance 10 2 0 -2 2 0 -2 200 400 600 800 1000 1200 1400 1600 1800 200 Σ Jet Pt [GeV] 400 600 800 1000 1200 1400 1600 1800 Σ Jet Pt [GeV] Events eνjj + µνjj Data W+jets Top Diboson Z+jets QCD Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 103 102 10 1 10-1 significance significance Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 2 0 -2 200 E. Williams (Columbia U.) 400 ∗ G 600 800 1000 1200 1400 1600 1800 Σ Jet Pt [GeV] → W W → νjj thesis defense July 2nd, 2012 99 / 41
  • 100. νjj Signal Region Plots Events µνjj Events eνjj Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 10 10 1 1 -1 -1 10 significance 10 2 0 -2 2 0 -2 400 600 800 1000 1200 1400 1600 1800 2000 400 MET + Lepton Pt + Σ Jet Pt [GeV] 600 800 1000 1200 1400 1600 1800 2000 MET + Lepton Pt + Σ Jet Pt [GeV] Events eνjj + µνjj 103 Data W+jets Top Diboson Z+jets QCD Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 10 1 10-1 significance significance Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 2 0 -2 400 E. Williams (Columbia U.) 600 ∗ G 800 1000 1200 1400 1600 1800 2000 MET + Lepton Pt + Σ Jet Pt [GeV] → W W → νjj thesis defense July 2nd, 2012 100 / 41
  • 101. νjj Signal Region Plots Events µνjj Events eνjj Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 300 250 200 Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 250 200 150 150 100 100 50 significance 2 0 -2 2 0 -2 0.4 0.6 0.8 1 1.2 1.4 0.4 0.6 0.8 1 1.2 dR(jj) 1.4 dR(jj) Events eνjj + µνjj Data W+jets Top Diboson Z+jets QCD Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 500 400 300 200 100 significance significance 50 2 0 -2 0.4 0.6 0.8 1 1.2 1.4 dR(jj) E. Williams (Columbia U.) ∗ G → W W → νjj thesis defense July 2nd, 2012 101 / 41
  • 102. νjj Signal Region Plots Events µνjj Events eνjj Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 10 10 1 1 -1 -1 10 significance 10 2 0 -2 0 2 0 -2 0.5 1 1.5 2 2.5 0 0.5 1 1.5 dPhi(jet,jet) 2 2.5 dPhi(jet,jet) eνjj + µνjj Events 103 Data W+jets Top Diboson Z+jets QCD Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 10 1 10-1 significance significance Data W+jets Top Diboson QCD Z+jets Gkk(800GeV) Gkk(1000GeV) Gkk(1200GeV) 102 2 0 -2 0 0.5 1 1.5 2 2.5 dPhi(jet,jet) E. Williams (Columbia U.) ∗ G → W W → νjj thesis defense July 2nd, 2012 102 / 41
  • 103. νjj p-values Mass eνjj µνjj Combined 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 0.604 0.489 0.374 0.315 0.368 0.511 0.69 0.662 0.454 0.209 0.14 0.183 0.208 0.182 0.172 0.222 0.206 0.147 0.121 0.191 0.393 0.643 0.706 0.612 0.451 0.352 0.327 0.329 0.381 0.353 0.286 0.22 0.223 0.34 0.559 0.675 0.608 0.403 0.271 0.271 0.283 0.273 The probabilities, or p-value ≡ 1 - CLb , that the background fluctuates to or above the data in each channel. p-values for M≥ 1200 GeV are statistics limited and not reliable. Systematic uncertainties are included in this calculation. E. Williams (Columbia U.) G∗ → W W → νjj thesis defense July 2nd, 2012 103 / 41