SlideShare una empresa de Scribd logo
1 de 15
Descargar para leer sin conexión
©2011 LSIS, Preliminary Rev 0.1_07.04.2011 1 of 15
LEC20G604
SISPM™
600V 20A PIM(CIB) IGBT Module
Features Preliminary Data
• Trench Field Stop technology IGBT adopted
• Low saturation voltage
• Positive temperature coefficient
• Fast switching
• Free wheeling diodes with fast and soft reverse recovery
• Industrial standard package with insulated substrate
• Temperature sensor included
• Input from single or three phase grid
• Dynamic braking operation
Applications
• Three phase synchronous or asynchronous motor drive
Internal Equivalent Circuit
Pin Description
Pin Number Pin Name Pin Description
1 GB Gate Input for Braking IGBT
2 EB Emitter Input for Braking IGBT
3 DCN Negative DC Link Input
4 DCP Positive DC Link Intput
5 P Positive DC Link Output
6 N Negative DC Link Output
7 COM Common Supply Ground
8, 9,10 GUN, GVN, GWN Gate Input for Low-side U Phase, V Phase, W Phase
11, 12 TH1, TH2 NTC-, NTC+
13, 14, 15 U, V, W Output for U Phase, V Phase, W Phase
16, 18, 20 EWP, EVP, EUP Emitter Input for High-side W Phase, V Phase, U Phase
17, 19, 21 GWP, GVP, GUP Gate Input for High-side W Phase, V Phase, U Phase
22, 23, 24 R, S, T Input for R Phase, S Phase, T Phase
25 B Output for Braking
SISPM1
82.2 x 37.9 x 21.7mm
LEC20G604
2 of 15 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011
Absolute Maximum Ratings TC = 25°C unless otherwise noted
(Note *1) The Maximum junction temperature of chip is 150 °C.
(Note *2) The Maximum junction temperature of chip is 175 °C.
Item Symbol Parameter Conditions Value Units
Input
Rectifier
VRRM Repetitive Peak Reverse Voltage 1600 V
IFAV Forward Current per Diode @ Tj = 150 °C, TC = 80 °C 20 A
IFSM Surge Forward Current (Chip level) @ tP = 10 ms, half sine wave 220 A
I2
t I2
t - Value (Chip level) @ tP = 10 ms, half sine wave 200 A2
s
PD Maximum Power Dissipation @ Tj = 150 °C, TC = 80 °C 40 W
Tj Operating Junction Temperature *(1) - -40 ~ 125 °C
Transistor
Inverter
VCES Collector-Emitter Breakdown Voltage - 600 V
VGES Gate-Emitter Peak Voltage - ± 20 V
IC DC Collector Current @ Tj = 175 °C, TC = 80 °C 20 A
Icpulse Repetitive Peak Collector Current @ tP = 1 ms 40 A
PD Maximum Power Dissipation @ Tj = 175 °C, TC = 80 °C 50 W
TSC SC Withstand Time (Chip level) VGE = 15 V, VCE = 300 V 5 μs
Tj Operating Junction Temperature *(2) - -40 ~ 125 °C
Diode
Inverter
VRRM Repetitive Peak Reverse Voltage - 600 V
IF DC Forward Current @ Tj = 175 °C,TC = 70 °C 20 A
IFRM Repetitive Peak Forward Current @ tP = 1 ms 40 A
PD Maximum Power Dissipation @ Tj = 175 °C, TC = 70 °C 40 W
Tj Operating Junction Temperature *(2) - -40 ~ 125 °C
Transistor
Brake
VCES Collector-Emitter Breakdown Voltage - 600 V
VGES Gate-Emitter Peak Voltage - ± 20 V
IC DC Collector Current @ Tj = 175 °C, TC = 80 °C 20 A
Icpulse Repetitive Peak Collector Current @ tP = 1 ms 40 A
PD Maximum Power Dissipation @ Tj = 175 °C, TC = 80 °C 45 W
TSC SC Withstand Time (Chip level) @ VGE = 15 V, VCE = 300 V 5 μs
Tj Operating Junction Temperature *(2) - -40 ~ 125 °C
Diode
Brake
VRRM Repetitive Peak Reverse Voltage - 600 V
IF DC Forward Current @ Tj = 175 °C, TC = 70 °C 20 A
IFRM Repetitive Peak Forward Current @ tP = 1 ms 40 A
PD Maximum Power Dissipation @ Tj = 175 °C, TC = 70 °C 40 W
Tj Operating Junction Temperature *(2) - -40 ~ 125 °C
Module
Tstg Storage Temperature - -40~125 °C
Viso Isolation Voltage @ AC 1minute 2500 V
W Weight - 50 g
LEC20G604
©2011 LSIS, Preliminary Rev 0.1_07.04.2011 3 of 15
Electrical Characteristics TC = 25°C unless otherwise noted
Input Rectifier Characteristics
Transistor-Inverter Characteristics
Diode-Inverter Characteristics TC = 25°C unless otherwise noted
Transistor- Brake Characteristics
Symbol Parameter Conditions Min Typ Max Units
VF Diode Forward Voltage
TC = 25 °C, IF = 20 A - 1.2 - V
TC = 125 °C, IF = 20 A - 1.1 - V
Vto Threshold Voltage TC = 125 °C - 0.83 - V
IR Reverse Current (Chip level) TC = 25 °C, VRRM = 300 V - 0.1 - mA
rt Slope Resistance TC = 125 °C - 20.8 - mΩ
Rth(J-C) Thermal Resistance (IGBT Part) Junction-to-Case - 1.3 - °C/W
Symbol Parameter Conditions Min Typ Max Units
VGE(th) Gate-Emitter threshold Voltage VCE = VGE, ICE = 20mA - 5.6 - V
VCE(sat) Collector-Emitter Saturation Voltage
TC = 25 °C, ICE = 20 A, VGE = 15 V - 1.9 - V
TC = 125 °C, ICE = 20 A, VGE = 15 V - 2.3 - V
ICES Collector-Emitter Cut-off Current VGE = 0 V, VCE = 300 V - - 250 μA
ICES Gate-Emitter Leakage Current VGE = ± 20 V, VCE = 0 V - - - A
Ciss Input Capacitance VCE = 50 V, VGE = 0 V
f = 100 kHz, TC = 25 °C
(Chip level)
- - - nF
Coss Output Capacitance - - - nF
Crss Reverse Transfer Capacitance - - - nF
td(on) Turn-On Delay Time
TC = 125 °C, RG ON = 50 Ω
RG OFF = 25 Ω, L = 500 μH
VCE = 300 V, VGE = 0 V~15 V
ICE = 20 A
- 67 - ns
tr Rise Time - 52 - ns
td(off) Turn-Off Delay Time - 138 - ns
tf Fall Time - 37 - ns
Eon Turn-On Switching Loss - 0.69 - mJ
Eoff Turn-Off Switching Loss - 0.28 - mJ
Ets Total Switching Loss - 0.97 - mJ
QG Total Gate Charge
VGE = 0 V ~ 15 V
- 56 - nC
QGE Gate-Emitter Charge - 23 - nC
QGC Gate-Collector Charge - 15 - nC
Rth(J-C) Thermal Resistance (IGBT Part) Junction-to-Case 1.5 - °C/W
Symbol Parameter Conditions Min Typ Max Units
VF Diode Forward Voltage IF = 20 A, VGE = 0 V TC = 125 °C - 1.7 - V
trr Diode Reverse Recovery Time RG ON = 50 Ω
L = 500 μH
VCE = 300 V
VGE = 0 V~15 V
ICE = 20 A
TC = 125 °C - 465 - ns
IRRM Diode Peak Reverse Recovery Current TC = 125 °C - 19 - A
Qrr Diode Reverse Recovery Charge TC = 125 °C - 2.3 - μC
Err Diode Reverse Recovery Energy TC = 125 °C - 0.48 - mJ
Rth(J-C) Thermal Resistance (IGBT Part) Junction-to-Case - 2.1 - °C/W
Symbol Parameter Conditions Min Typ Max Units
VGE(th) Gate-Emitter threshold Voltage VCE = VGE, ICE = 20mA - 5.6 - V
VCE(sat) Collector-Emitter Saturation Voltage
TC = 25 °C, ICE = 20 A, VGE = 15 V - 1.9 - V
TC = 125 °C, ICE = 20 A, VGE = 15 V - 2.3 - V
ICES Collector-Emitter Cut-off Current VGE = 0 V, VCE = 300 V - - 250 μA
ICES Gate-Emitter Leakage Current VGE = ± 20 V, VCE = 0 V - - - A
Ciss Input Capacitance VCE = 50 V, VGE = 0 V
f = 100 kHz, TC = 25 °C
(Chip level)
- - - nF
Coss Output Capacitance - - - nF
Crss Reverse Transfer Capacitance - - - nF
LEC20G604
4 of 15 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011
Diode-Brake Characteristics TC = 25°C unless otherwise noted
NTC thermister Characteristics
* This specifications may not be considered as an assurance of characteristics and may not have same characteristics.
in case of using different test systems from @LSIS. We therefore strongly recommend prior consultation of our engineers.
td(on) Turn-On Delay Time
TC = 125 °C, RG ON = 50 Ω
RG OFF = 25 Ω, L = 500 μH
VCE = 300 V, VGE = 0 V~15 V
ICE = 20 A
- 58 - ns
tr Rise Time - 57 - ns
td(off) Turn-Off Delay Time - 145 - ns
tf Fall Time - 19 - ns
Eon Turn-On Switching Loss - 0.71 - mJ
Eoff Turn-Off Switching Loss - 0.25 - mJ
Ets Total Switching Loss - 0.96 - mJ
QG Total Gate Charge
VGE = 0 V ~ 15 V
- 56 - nC
QGE Gate-Emitter Charge - 23 - nC
QGC Gate-Collector Charge - 15 - nC
Rth(J-C) Thermal Resistance (IGBT Part) Junction-to-Case 1.6 - °C/W
Symbol Parameter Test Conditions Min Typ Max Units
VF Diode Forward Voltage IF = 20 A, VGE = 0 V TC = 125 °C - 1.7 - V
trr Diode Reverse Recovery Time RG ON = 50 Ω
L = 500 μH
VCE = 300 V
VGE = 0 V~15 V
ICE = 20 A
TC = 125 °C - 485 - ns
IRRM Diode Peak Reverse Recovery Current TC = 125 °C - 15 - A
Qrr Diode Reverse Recovery Charge TC = 125 °C - 2.1 - μC
Err Diode Reverse Recovery Energy TC = 125 °C - 0.48 - mJ
Rth(J-C) Thermal Resistance (IGBT Part) Junction-to-Case - 2.1 - °C/W
Symbol Parameter Test Conditions Min Typ Max Units
R25 Resistance TC = 25 °C - 4.7 - kΩ
P Power TC = 25 °C - 210 - mW
B25/100 B Constant TC = 25 °C, ± 3% tolerance - 3650 - K
Symbol Parameter Conditions Min Typ Max Units
LEC20G604
©2011 LSIS, Preliminary Rev 0.1_07.04.2011 5 of 15
Input rectifier
Fig 1. Typical Diode Forward Characteristics Fig 2. Case Temperature vs. Forward Current
Fig 3. Typical Diode Thermal Impedance
LEC20G604
6 of 15 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011
Transistor-inverter/Diode-Inverter
Fig 4. Typical IGBT Output Characteristics Fig 5. Typical IGBT Output Characteristics
Fig 6. Typical IGBT Output Characteristics Fig 7. Typical Diode Forward Characteristics
Fig 8. Typical Switching Time vs. Collector Current Fig 9. Typical Switching Time vs. Collector Current
LEC20G604
©2011 LSIS, Preliminary Rev 0.1_07.04.2011 7 of 15
Transistor-inverter/Diode-Inverter
Fig 10. Typical Switching Time vs. Gate Resistor Fig 11. Typical Switching Time vs. Gate Resistor
Fig 12. Typical IGBT Switching Loss Fig 13. Typical IGBT Switching Loss
Fig 14. Typical Recovery Characteristics of Diode Fig 15. Typical Recovery Characteristics of Diode
LEC20G604
8 of 15 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011
Transistor-inverter/Diode-Inverter
Fig 16. Typical Recovery Characteristics of Diode Fig 17. Typical Recovery Characteristics of Diode
Fig 18. Typical Diode Switching Loss Fig 19. Typical Diode Switching Loss
Fig 20. Typical Gate Charge Characteristics Fig 21. Case Temperature vs. Collector Current
LEC20G604
©2011 LSIS, Preliminary Rev 0.1_07.04.2011 9 of 15
Transistor-inverter/Diode-Inverter
Fig 22. Case Temperature vs. Forward Current Fig 23. Typical IGBT Thermal Impedance
Fig 24. Typical Diode Thermal Impedance
LEC20G604
10 of 15 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011
Transistor-Brake/Diode-Brake
Fig 25. Typical IGBT Output Characteristics Fig 26. Typical IGBT Output Characteristics
Fig 27. Typical IGBT Output Characteristics Fig 28. Typical Diode Forward Characteristics
Fig 29. Typical Switching Time vs. Collector Current Fig 30. Typical Switching Time vs. Collector Current
LEC20G604
©2011 LSIS, Preliminary Rev 0.1_07.04.2011 11 of 15
Transistor-Brake/Diode-Brake
Fig 31. Typical Switching Time vs. Gate Resistor Fig 32. Typical Switching Time vs. Gate Resistor
Fig 33. Typical IGBT Switching Loss Fig 34. Typical IGBT Switching Loss
Fig 35. Typical Recovery Characteristics of Diode Fig 36. Typical Recovery Characteristics of Diode
LEC20G604
12 of 15 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011
Transistor-Brake/Diode-Brake
Fig 37. Typical Recovery Characteristics of Diode Fig 38. Typical Recovery Characteristics of Diode
Fig 39. Typical Diode Switching Loss Fig 40. Typical Diode Switching Loss
Fig 41. Typical Gate Charge Characteristics Fig 42. Case Temperature vs. Collector Current
LEC20G604
©2011 LSIS, Preliminary Rev 0.1_07.04.2011 13 of 15
Transistor-Brake/Diode-Brake
Fig 43. Case Temperature vs. Forward Current Fig 44. Typical IGBT Thermal Impedance
Fig 45. Typical Diode Thermal Impedance
LEC20G604
14 of 15 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011
NTC
Fig 46. Typical NTC Characteristics
LEC20G604
©2011 LSIS, Preliminary Rev 0.1_07.04.2011 15 of 15
Package Dimension(Dimension in mm)

Más contenido relacionado

La actualidad más candente

Frequency Measurement Devices
Frequency Measurement DevicesFrequency Measurement Devices
Frequency Measurement Devices
ghanshyam zambare
 
Funzionamento alimentatore stabilizzato
Funzionamento alimentatore stabilizzatoFunzionamento alimentatore stabilizzato
Funzionamento alimentatore stabilizzato
Simone Carloni
 
Bipolar Junction Transistors (bj ts)
Bipolar Junction Transistors (bj ts)Bipolar Junction Transistors (bj ts)
Bipolar Junction Transistors (bj ts)
Umer Tanvir
 
Integrated circuit
Integrated circuitIntegrated circuit
Integrated circuit
ddsshukla
 

La actualidad más candente (20)

Frequency Measurement Devices
Frequency Measurement DevicesFrequency Measurement Devices
Frequency Measurement Devices
 
Synchronous Generator Loading Characteristics
Synchronous Generator Loading CharacteristicsSynchronous Generator Loading Characteristics
Synchronous Generator Loading Characteristics
 
Unit-I Characteristics of opamp
Unit-I Characteristics of opampUnit-I Characteristics of opamp
Unit-I Characteristics of opamp
 
Simple model of Lithium Ion Battery (PSpice)
Simple model of Lithium Ion Battery (PSpice)Simple model of Lithium Ion Battery (PSpice)
Simple model of Lithium Ion Battery (PSpice)
 
pwm for speed control
pwm for speed controlpwm for speed control
pwm for speed control
 
PIC 16F877 micro controller by Gaurav raikar
PIC 16F877 micro controller by Gaurav raikarPIC 16F877 micro controller by Gaurav raikar
PIC 16F877 micro controller by Gaurav raikar
 
Synchronous motor
Synchronous motorSynchronous motor
Synchronous motor
 
Introduction To Electrical Engineering
Introduction To Electrical EngineeringIntroduction To Electrical Engineering
Introduction To Electrical Engineering
 
Generator protection LEC 2
Generator protection  LEC 2Generator protection  LEC 2
Generator protection LEC 2
 
Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)
 
Funzionamento alimentatore stabilizzato
Funzionamento alimentatore stabilizzatoFunzionamento alimentatore stabilizzato
Funzionamento alimentatore stabilizzato
 
High performance standard cell layout synthesis for advanced nanometer
High performance standard cell layout synthesis for advanced nanometerHigh performance standard cell layout synthesis for advanced nanometer
High performance standard cell layout synthesis for advanced nanometer
 
Bipolar Junction Transistors (bj ts)
Bipolar Junction Transistors (bj ts)Bipolar Junction Transistors (bj ts)
Bipolar Junction Transistors (bj ts)
 
Voltronic Axpert V User Manual
Voltronic Axpert V User ManualVoltronic Axpert V User Manual
Voltronic Axpert V User Manual
 
PIC Introduction and explained in detailed
PIC Introduction and explained in detailedPIC Introduction and explained in detailed
PIC Introduction and explained in detailed
 
Power Electronics - Power Semi – Conductor Devices
Power Electronics - Power Semi – Conductor DevicesPower Electronics - Power Semi – Conductor Devices
Power Electronics - Power Semi – Conductor Devices
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
 
Introduction to PCB Design (Eagle)
Introduction to PCB Design (Eagle)Introduction to PCB Design (Eagle)
Introduction to PCB Design (Eagle)
 
Integrated circuit
Integrated circuitIntegrated circuit
Integrated circuit
 
Electronics ppt
Electronics ppt Electronics ppt
Electronics ppt
 

Similar a LEC20G604 (6).pdf

Similar a LEC20G604 (6).pdf (20)

Original IGBT IKB06N60T K06T60 06T60 06N60 6N60 TO-263 New Infineon
Original IGBT IKB06N60T K06T60 06T60 06N60 6N60 TO-263 New InfineonOriginal IGBT IKB06N60T K06T60 06T60 06N60 6N60 TO-263 New Infineon
Original IGBT IKB06N60T K06T60 06T60 06N60 6N60 TO-263 New Infineon
 
Original IGBT RJH60D3DPP -M0 RJH60D3 600V 17A TO-220 New
Original IGBT RJH60D3DPP -M0 RJH60D3 600V 17A TO-220 NewOriginal IGBT RJH60D3DPP -M0 RJH60D3 600V 17A TO-220 New
Original IGBT RJH60D3DPP -M0 RJH60D3 600V 17A TO-220 New
 
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineon
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New InfineonOriginal IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineon
Original IGBT IRGP4068DPBF GP4068D 4068 600V 96A 330W TO-247 New Infineon
 
Original IGBT IKA10N60T K10T60 10T60 600V 10A TO-220 New Infineon
Original IGBT IKA10N60T K10T60 10T60 600V 10A TO-220 New InfineonOriginal IGBT IKA10N60T K10T60 10T60 600V 10A TO-220 New Infineon
Original IGBT IKA10N60T K10T60 10T60 600V 10A TO-220 New Infineon
 
Original IGBT Transistor IHW25N1202R2 H25R1202 25A 1200V TO-247 New Infineon ...
Original IGBT Transistor IHW25N1202R2 H25R1202 25A 1200V TO-247 New Infineon ...Original IGBT Transistor IHW25N1202R2 H25R1202 25A 1200V TO-247 New Infineon ...
Original IGBT Transistor IHW25N1202R2 H25R1202 25A 1200V TO-247 New Infineon ...
 
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 New
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 NewOriginal IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 New
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 New
 
Original IGBT FGP20N60 20N60 FGP20N60UFD 20A 600V TO-220 New
Original IGBT FGP20N60 20N60 FGP20N60UFD 20A 600V TO-220 NewOriginal IGBT FGP20N60 20N60 FGP20N60UFD 20A 600V TO-220 New
Original IGBT FGP20N60 20N60 FGP20N60UFD 20A 600V TO-220 New
 
Original IGBT RJH60D2DPP RJH60D2 12A 600V TO-220 New Renesas
Original IGBT RJH60D2DPP RJH60D2 12A 600V TO-220 New RenesasOriginal IGBT RJH60D2DPP RJH60D2 12A 600V TO-220 New Renesas
Original IGBT RJH60D2DPP RJH60D2 12A 600V TO-220 New Renesas
 
Original IGBT Transistor FGA15N120ANTDTU 1200V 24A TO-3P New ON Semiconductor...
Original IGBT Transistor FGA15N120ANTDTU 1200V 24A TO-3P New ON Semiconductor...Original IGBT Transistor FGA15N120ANTDTU 1200V 24A TO-3P New ON Semiconductor...
Original IGBT Transistor FGA15N120ANTDTU 1200V 24A TO-3P New ON Semiconductor...
 
Original IGBT AOTF15B60D2 TF15B60D2 TF15B60 15B60 TO-220F IGBT 600V 15A New
Original IGBT AOTF15B60D2 TF15B60D2 TF15B60 15B60 TO-220F IGBT 600V 15A NewOriginal IGBT AOTF15B60D2 TF15B60D2 TF15B60 15B60 TO-220F IGBT 600V 15A New
Original IGBT AOTF15B60D2 TF15B60D2 TF15B60 15B60 TO-220F IGBT 600V 15A New
 
Original IGBT IRG4BC20KD-S G4BC20KD 600V 9A TO-263 New
Original IGBT IRG4BC20KD-S G4BC20KD 600V 9A TO-263 NewOriginal IGBT IRG4BC20KD-S G4BC20KD 600V 9A TO-263 New
Original IGBT IRG4BC20KD-S G4BC20KD 600V 9A TO-263 New
 
Original IGBT IRG4BC30FD-S 31A 600V TO-263 New IR
Original IGBT IRG4BC30FD-S 31A 600V TO-263 New IROriginal IGBT IRG4BC30FD-S 31A 600V TO-263 New IR
Original IGBT IRG4BC30FD-S 31A 600V TO-263 New IR
 
Original IGBT IC IRGIB10B60KD1P 600V 21A New Infineon IR
Original IGBT IC IRGIB10B60KD1P 600V 21A New Infineon IROriginal IGBT IC IRGIB10B60KD1P 600V 21A New Infineon IR
Original IGBT IC IRGIB10B60KD1P 600V 21A New Infineon IR
 
Original IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A New
Original IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A NewOriginal IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A New
Original IGBT SGF23N60UFD G23N60UF G23N60 23N60 600V 23A New
 
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 NewOriginal IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
Original IGBT N-CHANNEL STGP7NC60HD GP7NC60HD 7NC60 14A 600V TO-220 New
 
Original IGBT SGW30N60 30N60 G30N60 600V 30A TO-247 New Infineon Technologies
Original IGBT SGW30N60 30N60 G30N60 600V 30A TO-247 New Infineon TechnologiesOriginal IGBT SGW30N60 30N60 G30N60 600V 30A TO-247 New Infineon Technologies
Original IGBT SGW30N60 30N60 G30N60 600V 30A TO-247 New Infineon Technologies
 
Original N-Channel IGBT GIB10B60KD1 GIB10B60KDI 10A 600V TO-220F New IR
Original N-Channel IGBT GIB10B60KD1 GIB10B60KDI 10A 600V TO-220F New IROriginal N-Channel IGBT GIB10B60KD1 GIB10B60KDI 10A 600V TO-220F New IR
Original N-Channel IGBT GIB10B60KD1 GIB10B60KDI 10A 600V TO-220F New IR
 
Original IGBT N-Channel FGA25N120 25N120 ANTD 25A 1200V New
Original IGBT N-Channel FGA25N120 25N120 ANTD 25A 1200V NewOriginal IGBT N-Channel FGA25N120 25N120 ANTD 25A 1200V New
Original IGBT N-Channel FGA25N120 25N120 ANTD 25A 1200V New
 
Original IGBT STGF20H60DF GF20H60DF 20H60 600V 20A TO-220F New STMicroelectro...
Original IGBT STGF20H60DF GF20H60DF 20H60 600V 20A TO-220F New STMicroelectro...Original IGBT STGF20H60DF GF20H60DF 20H60 600V 20A TO-220F New STMicroelectro...
Original IGBT STGF20H60DF GF20H60DF 20H60 600V 20A TO-220F New STMicroelectro...
 
Original Mosfet AOD5B60D D5B60D 600V 5A TO-252 New
Original Mosfet AOD5B60D D5B60D 600V 5A TO-252 NewOriginal Mosfet AOD5B60D D5B60D 600V 5A TO-252 New
Original Mosfet AOD5B60D D5B60D 600V 5A TO-252 New
 

Último

Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 

Último (20)

Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Bridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptxBridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptx
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Rums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfRums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdf
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 

LEC20G604 (6).pdf

  • 1. ©2011 LSIS, Preliminary Rev 0.1_07.04.2011 1 of 15 LEC20G604 SISPM™ 600V 20A PIM(CIB) IGBT Module Features Preliminary Data • Trench Field Stop technology IGBT adopted • Low saturation voltage • Positive temperature coefficient • Fast switching • Free wheeling diodes with fast and soft reverse recovery • Industrial standard package with insulated substrate • Temperature sensor included • Input from single or three phase grid • Dynamic braking operation Applications • Three phase synchronous or asynchronous motor drive Internal Equivalent Circuit Pin Description Pin Number Pin Name Pin Description 1 GB Gate Input for Braking IGBT 2 EB Emitter Input for Braking IGBT 3 DCN Negative DC Link Input 4 DCP Positive DC Link Intput 5 P Positive DC Link Output 6 N Negative DC Link Output 7 COM Common Supply Ground 8, 9,10 GUN, GVN, GWN Gate Input for Low-side U Phase, V Phase, W Phase 11, 12 TH1, TH2 NTC-, NTC+ 13, 14, 15 U, V, W Output for U Phase, V Phase, W Phase 16, 18, 20 EWP, EVP, EUP Emitter Input for High-side W Phase, V Phase, U Phase 17, 19, 21 GWP, GVP, GUP Gate Input for High-side W Phase, V Phase, U Phase 22, 23, 24 R, S, T Input for R Phase, S Phase, T Phase 25 B Output for Braking SISPM1 82.2 x 37.9 x 21.7mm
  • 2. LEC20G604 2 of 15 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011 Absolute Maximum Ratings TC = 25°C unless otherwise noted (Note *1) The Maximum junction temperature of chip is 150 °C. (Note *2) The Maximum junction temperature of chip is 175 °C. Item Symbol Parameter Conditions Value Units Input Rectifier VRRM Repetitive Peak Reverse Voltage 1600 V IFAV Forward Current per Diode @ Tj = 150 °C, TC = 80 °C 20 A IFSM Surge Forward Current (Chip level) @ tP = 10 ms, half sine wave 220 A I2 t I2 t - Value (Chip level) @ tP = 10 ms, half sine wave 200 A2 s PD Maximum Power Dissipation @ Tj = 150 °C, TC = 80 °C 40 W Tj Operating Junction Temperature *(1) - -40 ~ 125 °C Transistor Inverter VCES Collector-Emitter Breakdown Voltage - 600 V VGES Gate-Emitter Peak Voltage - ± 20 V IC DC Collector Current @ Tj = 175 °C, TC = 80 °C 20 A Icpulse Repetitive Peak Collector Current @ tP = 1 ms 40 A PD Maximum Power Dissipation @ Tj = 175 °C, TC = 80 °C 50 W TSC SC Withstand Time (Chip level) VGE = 15 V, VCE = 300 V 5 μs Tj Operating Junction Temperature *(2) - -40 ~ 125 °C Diode Inverter VRRM Repetitive Peak Reverse Voltage - 600 V IF DC Forward Current @ Tj = 175 °C,TC = 70 °C 20 A IFRM Repetitive Peak Forward Current @ tP = 1 ms 40 A PD Maximum Power Dissipation @ Tj = 175 °C, TC = 70 °C 40 W Tj Operating Junction Temperature *(2) - -40 ~ 125 °C Transistor Brake VCES Collector-Emitter Breakdown Voltage - 600 V VGES Gate-Emitter Peak Voltage - ± 20 V IC DC Collector Current @ Tj = 175 °C, TC = 80 °C 20 A Icpulse Repetitive Peak Collector Current @ tP = 1 ms 40 A PD Maximum Power Dissipation @ Tj = 175 °C, TC = 80 °C 45 W TSC SC Withstand Time (Chip level) @ VGE = 15 V, VCE = 300 V 5 μs Tj Operating Junction Temperature *(2) - -40 ~ 125 °C Diode Brake VRRM Repetitive Peak Reverse Voltage - 600 V IF DC Forward Current @ Tj = 175 °C, TC = 70 °C 20 A IFRM Repetitive Peak Forward Current @ tP = 1 ms 40 A PD Maximum Power Dissipation @ Tj = 175 °C, TC = 70 °C 40 W Tj Operating Junction Temperature *(2) - -40 ~ 125 °C Module Tstg Storage Temperature - -40~125 °C Viso Isolation Voltage @ AC 1minute 2500 V W Weight - 50 g
  • 3. LEC20G604 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011 3 of 15 Electrical Characteristics TC = 25°C unless otherwise noted Input Rectifier Characteristics Transistor-Inverter Characteristics Diode-Inverter Characteristics TC = 25°C unless otherwise noted Transistor- Brake Characteristics Symbol Parameter Conditions Min Typ Max Units VF Diode Forward Voltage TC = 25 °C, IF = 20 A - 1.2 - V TC = 125 °C, IF = 20 A - 1.1 - V Vto Threshold Voltage TC = 125 °C - 0.83 - V IR Reverse Current (Chip level) TC = 25 °C, VRRM = 300 V - 0.1 - mA rt Slope Resistance TC = 125 °C - 20.8 - mΩ Rth(J-C) Thermal Resistance (IGBT Part) Junction-to-Case - 1.3 - °C/W Symbol Parameter Conditions Min Typ Max Units VGE(th) Gate-Emitter threshold Voltage VCE = VGE, ICE = 20mA - 5.6 - V VCE(sat) Collector-Emitter Saturation Voltage TC = 25 °C, ICE = 20 A, VGE = 15 V - 1.9 - V TC = 125 °C, ICE = 20 A, VGE = 15 V - 2.3 - V ICES Collector-Emitter Cut-off Current VGE = 0 V, VCE = 300 V - - 250 μA ICES Gate-Emitter Leakage Current VGE = ± 20 V, VCE = 0 V - - - A Ciss Input Capacitance VCE = 50 V, VGE = 0 V f = 100 kHz, TC = 25 °C (Chip level) - - - nF Coss Output Capacitance - - - nF Crss Reverse Transfer Capacitance - - - nF td(on) Turn-On Delay Time TC = 125 °C, RG ON = 50 Ω RG OFF = 25 Ω, L = 500 μH VCE = 300 V, VGE = 0 V~15 V ICE = 20 A - 67 - ns tr Rise Time - 52 - ns td(off) Turn-Off Delay Time - 138 - ns tf Fall Time - 37 - ns Eon Turn-On Switching Loss - 0.69 - mJ Eoff Turn-Off Switching Loss - 0.28 - mJ Ets Total Switching Loss - 0.97 - mJ QG Total Gate Charge VGE = 0 V ~ 15 V - 56 - nC QGE Gate-Emitter Charge - 23 - nC QGC Gate-Collector Charge - 15 - nC Rth(J-C) Thermal Resistance (IGBT Part) Junction-to-Case 1.5 - °C/W Symbol Parameter Conditions Min Typ Max Units VF Diode Forward Voltage IF = 20 A, VGE = 0 V TC = 125 °C - 1.7 - V trr Diode Reverse Recovery Time RG ON = 50 Ω L = 500 μH VCE = 300 V VGE = 0 V~15 V ICE = 20 A TC = 125 °C - 465 - ns IRRM Diode Peak Reverse Recovery Current TC = 125 °C - 19 - A Qrr Diode Reverse Recovery Charge TC = 125 °C - 2.3 - μC Err Diode Reverse Recovery Energy TC = 125 °C - 0.48 - mJ Rth(J-C) Thermal Resistance (IGBT Part) Junction-to-Case - 2.1 - °C/W Symbol Parameter Conditions Min Typ Max Units VGE(th) Gate-Emitter threshold Voltage VCE = VGE, ICE = 20mA - 5.6 - V VCE(sat) Collector-Emitter Saturation Voltage TC = 25 °C, ICE = 20 A, VGE = 15 V - 1.9 - V TC = 125 °C, ICE = 20 A, VGE = 15 V - 2.3 - V ICES Collector-Emitter Cut-off Current VGE = 0 V, VCE = 300 V - - 250 μA ICES Gate-Emitter Leakage Current VGE = ± 20 V, VCE = 0 V - - - A Ciss Input Capacitance VCE = 50 V, VGE = 0 V f = 100 kHz, TC = 25 °C (Chip level) - - - nF Coss Output Capacitance - - - nF Crss Reverse Transfer Capacitance - - - nF
  • 4. LEC20G604 4 of 15 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011 Diode-Brake Characteristics TC = 25°C unless otherwise noted NTC thermister Characteristics * This specifications may not be considered as an assurance of characteristics and may not have same characteristics. in case of using different test systems from @LSIS. We therefore strongly recommend prior consultation of our engineers. td(on) Turn-On Delay Time TC = 125 °C, RG ON = 50 Ω RG OFF = 25 Ω, L = 500 μH VCE = 300 V, VGE = 0 V~15 V ICE = 20 A - 58 - ns tr Rise Time - 57 - ns td(off) Turn-Off Delay Time - 145 - ns tf Fall Time - 19 - ns Eon Turn-On Switching Loss - 0.71 - mJ Eoff Turn-Off Switching Loss - 0.25 - mJ Ets Total Switching Loss - 0.96 - mJ QG Total Gate Charge VGE = 0 V ~ 15 V - 56 - nC QGE Gate-Emitter Charge - 23 - nC QGC Gate-Collector Charge - 15 - nC Rth(J-C) Thermal Resistance (IGBT Part) Junction-to-Case 1.6 - °C/W Symbol Parameter Test Conditions Min Typ Max Units VF Diode Forward Voltage IF = 20 A, VGE = 0 V TC = 125 °C - 1.7 - V trr Diode Reverse Recovery Time RG ON = 50 Ω L = 500 μH VCE = 300 V VGE = 0 V~15 V ICE = 20 A TC = 125 °C - 485 - ns IRRM Diode Peak Reverse Recovery Current TC = 125 °C - 15 - A Qrr Diode Reverse Recovery Charge TC = 125 °C - 2.1 - μC Err Diode Reverse Recovery Energy TC = 125 °C - 0.48 - mJ Rth(J-C) Thermal Resistance (IGBT Part) Junction-to-Case - 2.1 - °C/W Symbol Parameter Test Conditions Min Typ Max Units R25 Resistance TC = 25 °C - 4.7 - kΩ P Power TC = 25 °C - 210 - mW B25/100 B Constant TC = 25 °C, ± 3% tolerance - 3650 - K Symbol Parameter Conditions Min Typ Max Units
  • 5. LEC20G604 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011 5 of 15 Input rectifier Fig 1. Typical Diode Forward Characteristics Fig 2. Case Temperature vs. Forward Current Fig 3. Typical Diode Thermal Impedance
  • 6. LEC20G604 6 of 15 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011 Transistor-inverter/Diode-Inverter Fig 4. Typical IGBT Output Characteristics Fig 5. Typical IGBT Output Characteristics Fig 6. Typical IGBT Output Characteristics Fig 7. Typical Diode Forward Characteristics Fig 8. Typical Switching Time vs. Collector Current Fig 9. Typical Switching Time vs. Collector Current
  • 7. LEC20G604 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011 7 of 15 Transistor-inverter/Diode-Inverter Fig 10. Typical Switching Time vs. Gate Resistor Fig 11. Typical Switching Time vs. Gate Resistor Fig 12. Typical IGBT Switching Loss Fig 13. Typical IGBT Switching Loss Fig 14. Typical Recovery Characteristics of Diode Fig 15. Typical Recovery Characteristics of Diode
  • 8. LEC20G604 8 of 15 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011 Transistor-inverter/Diode-Inverter Fig 16. Typical Recovery Characteristics of Diode Fig 17. Typical Recovery Characteristics of Diode Fig 18. Typical Diode Switching Loss Fig 19. Typical Diode Switching Loss Fig 20. Typical Gate Charge Characteristics Fig 21. Case Temperature vs. Collector Current
  • 9. LEC20G604 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011 9 of 15 Transistor-inverter/Diode-Inverter Fig 22. Case Temperature vs. Forward Current Fig 23. Typical IGBT Thermal Impedance Fig 24. Typical Diode Thermal Impedance
  • 10. LEC20G604 10 of 15 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011 Transistor-Brake/Diode-Brake Fig 25. Typical IGBT Output Characteristics Fig 26. Typical IGBT Output Characteristics Fig 27. Typical IGBT Output Characteristics Fig 28. Typical Diode Forward Characteristics Fig 29. Typical Switching Time vs. Collector Current Fig 30. Typical Switching Time vs. Collector Current
  • 11. LEC20G604 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011 11 of 15 Transistor-Brake/Diode-Brake Fig 31. Typical Switching Time vs. Gate Resistor Fig 32. Typical Switching Time vs. Gate Resistor Fig 33. Typical IGBT Switching Loss Fig 34. Typical IGBT Switching Loss Fig 35. Typical Recovery Characteristics of Diode Fig 36. Typical Recovery Characteristics of Diode
  • 12. LEC20G604 12 of 15 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011 Transistor-Brake/Diode-Brake Fig 37. Typical Recovery Characteristics of Diode Fig 38. Typical Recovery Characteristics of Diode Fig 39. Typical Diode Switching Loss Fig 40. Typical Diode Switching Loss Fig 41. Typical Gate Charge Characteristics Fig 42. Case Temperature vs. Collector Current
  • 13. LEC20G604 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011 13 of 15 Transistor-Brake/Diode-Brake Fig 43. Case Temperature vs. Forward Current Fig 44. Typical IGBT Thermal Impedance Fig 45. Typical Diode Thermal Impedance
  • 14. LEC20G604 14 of 15 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011 NTC Fig 46. Typical NTC Characteristics
  • 15. LEC20G604 ©2011 LSIS, Preliminary Rev 0.1_07.04.2011 15 of 15 Package Dimension(Dimension in mm)