SlideShare una empresa de Scribd logo
1 de 36
MINISTRY OF SCIENTIFIC EDUCATION AND HIGHER RESEARCHES
NORTHERN TECHNICAL UNIVERSITY
ENGINEERING TECHNICAL COLLEGE / MOSUL
DEPARTMENT OF COMPUTER TECHNOLOGY
1
ENGINEERING ANALYSIS LECTURE
DEPARTMENT OF COMPUTER
TECHNOLOGY –THIRD CLASS
2018 -2019
ARJUWAN MOHAMMED ABDULJAWAD
ALJAWADI
LECTURER
2
- ENGINEERING ANALYSIS
One of important transforms used in linear- system analysis. It is
named in honor of the great French mathematician, Pierre Simon De
Laplace (1749-1827).
3
- Purpose of Laplace Transform
• To convert from one type of operation to another
operations of different types in more simple form.
• A well-known technique for solving differential
equations.
4
- THE TIME DOMAIN SIGNAL IS CONTINUOUS , EXTENDS
TO:
1. POSITIVE AND NEGATIVE INFINITY.
2. PERIODIC OR APERIODIC SIGNAL
5
- Laplace Transform Definition:
The Laplace transform F(s) of a time function F (t) is given by the
integral:
6
This definition is called the bilateral, or two-sided, Laplace transform—hence, the
subscript b. Notice that the bilateral Laplace transform integral becomes the Fourier
transform integral if is replaced by (𝑗𝑤 ) . The Laplace transform variable is
complex 𝑠 = 𝛼 + 𝑗𝑤, we can rewrite (1) as:
𝐹 𝑠 =
−∞
∞
𝑓(𝑡)𝑒−(𝜎+𝑗𝜔)𝑡
𝑑𝑡
=
−∞
∞
𝑓(𝑡)𝑒−𝜎𝑡
𝑒−𝑗𝑤
𝑑𝑡
7
𝑓 𝑡 𝑖𝑠 𝑧𝑒𝑟𝑜 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 < 0 Thus the first integral in above equation
is zero.
The resulting transform, called the unilateral, or single-sided Laplace
transform, is given by:
8
THE LAPLACE-TRANSFORM VARIABLE S IS COMPLEX, AND WE
DENOTE ITS REAL PART AS ∝ AND ITS IMAGINARY PART AS
𝑗𝑤 THAT IS: 𝑠 = ∝ +𝑗𝑤
The S-plane
9
Some Elementary Functions F(t) and their Laplace Transform
F(t) F(s)
U(t) 1
s
t 1/s2
tn n!/ sn+1
e−at
1
s + a
eat
1
s − a
sin wt w/s2+w2
cos at s/s2+a2
sin hat w/s2- w2
cos hat s/s2- w2
10
- Laplace Transform of some important functions
1. Laplace Transform of a unit –step function 𝑓(𝑡) = 1.
11
2. Laplace Transform of 𝑓(𝑡) = 𝑒𝑎𝑡
12
3. Laplace Transform of 𝑓(𝑡) = 𝑡𝑛
Where n= (1,2,3,4,…………………………….)
f s = 0
∞
e−st tn .dt
udv = uv − v . du
U=tn , du = (𝑛 𝑡𝑛−1) , dv= e−st , v=-
e−st
s
f s = − e−st.tn/s |- 0
∞
𝑛
𝑒−𝑠𝑡
𝑠
.tn-1.dt
13
The first term limits will be form (0 to ∞) by substituting it yields zero while the second
term by substitution we get:
f s = 0
∞ −ne−st
s
n tn-1.dt
u=ntn-1 , du=n(n-1)tn-2 , dv=
e−st
s
, v= - e−st/s2
f s = ne−st
tn-1 /s2 | - 0
∞
−n(n − 1)tn-2/s2 .e−st
. dt
f s = 0
∞
n(n − 1)e−st tn-2 /s2 .dt
Then after n times integration we have :
f s =
0
∞
n!
sn
tn−ne−st. dt
f s =
0
∞
n!
sn
e−st. dt
=
n!
sn+1 e−st
| =
n!
sn+1
NOTE: IN THIS SAME METHOD YOU CAN FIND LAPLACE TRANSFORM OF COS 𝑤𝑡
14
𝐿𝑎𝑝𝑙𝑎𝑐𝑒 [𝑠𝑖𝑛 𝑤𝑡] =
0
∞
𝑠𝑖𝑛𝑤𝑡𝑒−𝑠𝑡
. 𝑑𝑡
𝑒𝑗𝑤𝑡
= 𝑐𝑜𝑠 𝑤𝑡 + 𝑗𝑠𝑖𝑛 𝑤𝑡
𝑠𝑖𝑛 𝑤𝑡 𝑖𝑠 𝑡ℎ𝑒 𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡 (𝐼𝑚) 𝑜𝑓 𝑒𝑗𝑤𝑡
𝑠𝑖𝑛 𝑤𝑡 = 𝐼𝑚 (𝑒𝑗𝑤𝑡
)
𝐿𝑎𝑝𝑙𝑎𝑐𝑒 [𝑠𝑖𝑛 𝑤𝑡] = 𝐼𝑚
0
∞
𝑒𝑗𝑤𝑡𝑒−𝑠𝑡. 𝑑𝑡
= 𝐼𝑚
0
∞
𝑒−(𝑠−𝑗𝑤). 𝑑𝑡
= 𝐼𝑚 [−
𝑒− 𝑠−𝑗𝑤 𝑡
(𝑠 − 𝑗𝑤)
] = 𝐼𝑚 [0 − (−
𝑒0
𝑠 − 𝑗𝑤)
)
= 𝐼𝑚
1
𝑠 − 𝑗𝑤
= 𝐼𝑚 [
1
𝑎 − 𝑗𝑤
∗
𝑠 + 𝑗𝑤
𝑠 + 𝑗𝑤
]
= 𝐼𝑚 (𝑠 + 𝑗𝑤) / (𝑠2 + 𝑤2) = 𝑤 / (𝑠2 + 𝑤2)
4. Laplace Transform of f t = 𝑠𝑖𝑛 𝑤𝑡
5. LAPLACE TRANSFORM OF F T = 𝐶𝑜𝑠ℎ(𝑎𝑡)
15
𝐶𝑜𝑠ℎ(𝑎𝑡) =
𝑒𝑎𝑡
+ 𝑒−𝑎𝑡
2
ℒ cosh 𝑎𝑡 =
1
2
1
𝑠 − 𝑎
+
1
𝑠 + 𝑎
=
1
2
∗ [
𝑠 + 𝑎 + 𝑠 − 𝑎
(𝑠 − 𝑎)(𝑠 + 𝑎)
]
=
1
2
∗ [
2𝑠
𝑠2 + 𝑎𝑠 − 𝑎𝑠 − 𝑎2
]
=
1
2
[
2𝑠
𝑠2 − 𝑎2
]
=
𝑠
𝑠2 − 𝑎2
16
- Laplace Transform Properties:
1. Multiplication by Constant:
ℒ 𝑘. 𝐹 𝑡 = 0
∞
𝑘. 𝐹 𝑡 𝑒−𝑠𝑡
. 𝑑𝑡
= k. 0
∞
𝐹(𝑡)𝑒−𝑠𝑡 . 𝑑𝑡
=𝑘. 𝐹(𝑠)
Example:
ℒ3. 𝑒2𝑡
= 3.
1
𝑠 − 2
=
3
𝑠 − 2
17
2. Linearity:
If 𝐹 𝑡 = 𝐹1 𝑡 + 𝐹2 𝑡
ℒ 𝐹 𝑡 = 0
∞
𝐹(𝑡)𝑒−𝑠𝑡
.dt
= 0
∞
𝐹1 𝑡 + 𝐹2 𝑡 𝑒−𝑠𝑡
. 𝑑𝑡
= 0
∞
𝐹1 𝑡 𝑒−𝑠𝑡. 𝑑𝑡 + 0
∞
𝐹2 𝑡 𝑒−𝑠𝑡. 𝑑𝑡
= ℒ 𝐹1 𝑡 + ℒ[𝐹2 𝑡 ] = 𝐹1 𝑠 + 𝐹2(𝑠)
If 𝐹 𝑡 = 𝑎1𝐹1 𝑡 + 𝑎2𝐹2 𝑡
Where a1 and a2 are constants
Then ℒ[𝑎1𝐹1 𝑡 + 𝑎2𝐹2 𝑡 ]
= 𝑎1ℒ 𝐹1 𝑡 + 𝑎2ℒ 𝐹2 𝑡
18
Examples:
1. ℒ[2𝑠𝑖𝑛3𝑡 + 𝑐𝑜𝑠3𝑡]
= 2 ℒ 𝑠𝑖𝑛3𝑡 + ℒ[𝑐𝑜𝑠3𝑡]
= 2.
3
𝑠2+9
+
𝑠
𝑠2+9
=
𝑠+6
𝑠2+9
2. ℒ[ 4 𝑒5𝑡
+ 6𝑡3
− 3𝑠𝑖𝑛4𝑡 + 2𝑐𝑜𝑠2𝑡]
=
4
𝑠 − 5
+
6.3!
𝑠4
−
12
𝑠2 + 16
+
2𝑠
𝑠2 + 4
=
4
𝑠 − 5
+
36
𝑠4 −
12
𝑠2 + 16
+
2𝑠
𝑠2 + 4
- Home Work:
- ℒ[3𝑐𝑜𝑠6𝑡 − 5𝑠𝑖𝑛6]
- ℒ[3𝑡10
− 8𝑒−3𝑡
+ 5𝑐𝑜𝑠3𝑡 + 4𝑠𝑖𝑛2𝑡]
- ℒ[3𝑐𝑜𝑠5𝑡 − 4𝑠𝑖𝑛ℎ5𝑡]
19
3. Multiplication by exponential:
𝑓1 𝑡 = 𝑓 𝑡 𝑒−𝑎𝑡
ℒ 𝑓 𝑡 𝑒−𝑎𝑡
=
0
∞
𝑓 𝑡 𝑒−𝑎𝑡
𝑒−𝑠𝑡
0
∞
𝑓 𝑡 𝑒− 𝑠+𝑎 𝑡
. 𝑑𝑡 Then 𝑓(𝑠 + 𝑎)
The transform ℒ 𝑓 𝑡 𝑒−𝑎𝑡
is thus the same as ℒ 𝑓 𝑡
with everywhere in the result replaced by (𝑠 + 𝑎).
20
- Example:
ℒ 𝑒−𝑎𝑡
𝑠𝑖𝑛𝑤𝑡 =
𝑤
(𝑠+𝑎)2+ 𝑤2
ℒ 𝑡2
𝑒−4𝑡
=
2
(𝑠 + 4)3
- Example:
1. ℒ 𝑡2𝑒3𝑡 =
2
(𝑠−3)2
2. ℒ 𝑒−2𝑡
𝑠𝑖𝑛4𝑡 =
4
(𝑠+2)2+16
=
4
𝑠2+2𝑠+20
3. ℒ 𝑒−4𝑡
𝑐𝑜𝑠ℎ5𝑡 =
(𝑠−4)
(𝑠−4)2−25
=
(𝑠−4)
𝑠2−4𝑠+16−25
=
𝑠−4
𝑠2−4𝑠−9
- Home Work:
Find ℒ 𝑒−2𝑡
(3𝑐𝑜𝑠6𝑡 − 5𝑠𝑖𝑛6𝑡
- Home Work:
Find ℒ 𝑒−4𝑡
𝑐𝑜𝑠ℎ5𝑡 using cosh =
1
2
( 𝑒𝑎𝑡
+ 𝑒−𝑎𝑡
)
21
4. Multiplication by t (frequency derivative)
If ℒ 𝑓(𝑡) = 𝑓(𝑠)
Then ℒ 𝑡. 𝑓 𝑡 = −
𝑑
𝑑𝑠
𝑓(𝑠)
In general it can be
ℒ 𝑡𝑛
𝑓 𝑡 = (−1)𝑛
𝑑𝑛
𝑑𝑠𝑛
𝑓(𝑠)
- Example:
ℒ 𝑡. 𝑠𝑖𝑛2𝑡
ℒ 𝑠𝑖𝑛2𝑡 =
2
𝑠2 + 4
ℒ 𝑡 𝑠𝑖𝑛2𝑡 = −
𝑑
𝑑𝑠
.
2
𝑠2 + 4
=
𝑠2+4 ∗0−2∗2𝑠
(𝑠2+4)2 =
4𝑠
(𝑠2+4)2
22
- Example:
ℒ 𝑡 3𝑠𝑖𝑛2𝑡 − 2𝑐𝑜𝑠2𝑡
= 3𝑡𝑠𝑖𝑛2𝑡 − 2𝑡𝑐𝑜𝑠𝑡
ℒ2𝑠𝑖𝑛2𝑡 =
6
𝑠2 + 4
ℒ𝑐𝑜𝑠2𝑡 =
2𝑠
𝑠2 + 4
= 3𝑡𝑠𝑖𝑛2𝑡 − 2𝑡 𝑐𝑜𝑠2𝑡
ℒ 3𝑡 𝑠𝑖𝑛2𝑡 =
𝑠2
+ 4 ∗ 0 − 6 ∗ 2𝑠
(𝑠2 + 4)2
=
−12𝑠
(𝑠2 + 4)2
ℒ 2𝑡 𝑐𝑜𝑠2𝑡 =
𝑠2 + 4 ∗ 2 − 2𝑠 ∗ 2𝑠
(𝑠2 + 4)2 =
2𝑠2 + 8 − 4𝑠2
(𝑠2 + 4)2
=
−12𝑠
(𝑠2+4)2 −
8−2𝑠2
𝑠2+4 2 =
−2𝑠2−12𝑠+8
(𝑠2+4)2
23
5.Time Derivative:
ℒ
𝑑𝑓 𝑡
𝑑𝑡
= 𝑠𝑓 𝑠 − 𝑓(0)
Where 𝑓(0) is the initial value of 𝑓(𝑡) ,evaluated as the one - side limit of 𝑓(𝑡) as 𝑡 → 0 from
positive valued.
ℒ 𝑓 𝑡 ′
=
0
∞
𝑓 𝑡 ′
𝑒−𝑠𝑡
. 𝑑𝑡
Using 𝑢𝑑𝑣 = 𝑢𝑣 − 𝑣𝑑𝑢
𝑢 = 𝑒−𝑠𝑡 , 𝑑𝑢 = −𝑠𝑒−𝑠𝑡, 𝑑𝑣 = 𝑓 𝑡 ′ , 𝑣 = 𝑓(𝑡)
= 𝑒−𝑠𝑡
𝑓 𝑡 𝑤𝑖𝑡ℎ 𝑙𝑖𝑚𝑖𝑡𝑠 𝑓𝑟𝑜𝑚 0 − ∞ − 0
∞
𝑓(𝑡)(−𝑠𝑒−𝑠𝑡
). 𝑑𝑡
= 0 − 𝑓 0 + 𝑠𝑓(𝑠)
Then ℒ
𝑑2𝑓 𝑡
𝑑𝑡2 = 𝑠2
𝑓 𝑠 − 𝑠𝑓 0 − 𝑓(0)′
and in general:
ℒ
𝑑𝑛
𝑓 𝑡
𝑑𝑡𝑛 = 𝑠𝑛
𝑓 𝑠 −
𝑖=1
𝑛
𝑓(0)(𝑖−1)
𝑠𝑛−𝑖
24
- Example:
𝑓 𝑡 = 𝑡 , 𝐹𝑖𝑛𝑑 ℒ 1 𝑢𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 − 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒
Since ℒ 1 =
1
𝑠
, 𝑓 0 = 0
ℒ
𝑑𝑓 𝑡
𝑑𝑡
= 𝑠𝑓 𝑠 − 𝑓 0
ℒ
𝑑𝑓 1
𝑑𝑡
= 𝑠𝑓 𝑠 − 𝑓 0
ℒ 1 = 𝑠 ∗
1
𝑠2 − 0 =
1
𝑠
25
- Example: Use Laplace transform in solving for the current in an electric circuit. Consider the RL-circuit in the
following figure, where 𝑉 is constant. The loop equation for this circuit is given by:
𝐿.
𝑑𝑖(𝑡)
𝑑𝑡
+ 𝑅𝑖 𝑡 = 𝑉𝑢 𝑡 𝑓𝑜𝑟 𝑡 > 0
26
Since the switch is closed at 𝑡 = 0 . The Laplace transform of this equation yields:
𝐿 𝑠𝐼 𝑠 − 𝑖 0 + 𝑅𝐼 𝑠 =
𝑉
𝑠
The initial current is zero 0 = 0 , 𝑖(𝑡) is zero for negative time since the switch is open for 𝑡 < 0 and the
current in an inductance cannot change instantaneously.
𝐼 𝑠 =
𝑉
𝑠 𝐿𝑠 + 𝑅
=
𝑉
𝐿
𝑠 𝑠 +
𝑅
𝐿
𝑑𝑖𝑣𝑖𝑑𝑖𝑛𝑔 𝑏𝑦 𝐿
Solve with partial fraction:
𝐼 𝑠 =
𝑉
𝐿
𝑠 𝑠 +
𝑅
𝐿
=
𝑎
𝑠
+
𝑏
𝑠 +
𝑅
𝐿
=
𝑎𝑠 + 𝑎
𝑅
𝐿
+ 𝑏𝑠
𝑠 𝑠 + 𝑅
𝐿
27
=
𝑎 + 𝑏 𝑠 + 𝑎 𝑅
𝐿
𝑠(𝑠 + 𝑅
𝐿)
𝑎 + 𝑏 = 0 → 𝑎 = −𝑏
𝑎
𝑅
𝐿
=
𝑉
𝐿
→ 𝑎 =
𝑉
𝑅
𝐼 𝑠 =
𝑉
𝑅
𝑠
−
𝑉
𝑅
𝑠 + 𝑅
𝐿
𝐴 = 𝑠 .
𝑉
𝑅
𝑠.(𝑠+𝑅
𝐿 )
𝑤ℎ𝑒𝑛 𝑠 = 0 𝐴 =
𝑉
𝑅
𝐵 = 𝑠 + 𝑅
𝐿 .
𝑉
𝐿
𝑠. 𝑠+𝑅
𝐿
𝑤ℎ𝑒𝑛 𝑠 =
−𝑅
𝐿
𝐵 =
𝑉
𝐿
− 𝑅
𝐿
=
− 𝑉
𝑅
ℒ𝐼(𝑠)−1
= 𝑖 𝑡 =
𝑉
𝑅
−
𝑉
𝑅
𝑒− 𝑅
𝐿𝑡
𝑖 𝑡 =
𝑉
𝑅
1 − 𝑒−( 𝑅
𝐿)𝑡
𝑡 > 0
The initial condition 𝑖 0 = 0 is satisfied by 𝑖 𝑡 also substitution of 𝑖 𝑡 into the
differential equation satisfies that equation.
28
- Example:
Solve the following differential equation:
𝑦′′
− 4𝑦′
+ 5𝑦 = 𝑥 𝑡 𝑦 0 = 0 , 𝑦 0 ′
𝑠2
𝑦 𝑠 − 𝑠𝑦 0 − 𝑦′
0 − 4 𝑠𝑦 𝑠 − 𝑦 0 + 5𝑦 𝑠 = 𝑥 𝑠
𝑠2𝑦 𝑠 − 4𝑠𝑦 𝑠 + 5𝑦 𝑠 = 𝑥 𝑠
𝑦 𝑠 𝑠2 − 4𝑠 + 5 = 𝑥 𝑠
𝑦(𝑠)
𝑥(𝑠)
=
1
𝑠2 − 4𝑠 + 5
- Home Work :
1. 𝑦′′
− 3𝑦′
+ 2𝑦 = 𝑢 𝑡
2. 𝑦′′
+ 4𝑦′
+ 20𝑦 = 𝑢(𝑡)
29
6. Real Shifting:
𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 = 𝑓 𝑡 − 𝑡0 𝑡 > 𝑡0
1. 𝑡 < 𝑡0
ℒ 𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 =
0
∞
𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 𝑒−𝑠𝑡. 𝑑𝑡
=
0
∞
𝑓(𝑡 − 𝑡0) 𝑒−𝑠𝑡
. 𝑑𝑡
We make the change of variable 𝑡 − 𝑡0 = 𝜏 , hence
𝑡 = (𝜏 + 𝑡0), 𝑑𝑡 = 𝑑𝜏 and
ℒ 𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 =
0
∞
𝑓 𝜏 𝑒−𝑠(𝜏+𝑡0). 𝑑𝜏
= 𝑒−𝑡0𝑠
0
∞
𝑓 𝜏 𝑒−𝑠𝜏
. 𝑑𝜏
= 𝑒−𝑡0𝑠
. 𝑓(𝑠)
30
Since 𝜏 is the variable of integration and can be replaced with , the integral on the right side is
𝑓(𝑠) , hence the Laplace transform of the shifted time function is given by:
ℒ 𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 = 𝑒−𝑡0𝑠𝑓(𝑠)
𝑡0 ≥ 0 And ℒ 𝑓 𝑡 = 𝑓(𝑠). This relationship called the real translation, properly applies for a
function of the type in the figure:
It is necessary that the function to be zero in time less than 𝑡0 , the amount of the shift.
31
- Example: Find the Laplace transform of a delayed exponential function:
𝑓 𝑡 = 5𝑒−0.3 𝑡−2 𝑢(𝑡 − 2)
𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 , ℒ𝑓 𝑡 = 𝑒−2𝑠
𝑓 𝑠 =
5𝑒−2𝑠
𝑠 + 0.3
32
7. Time Integral:
𝑔 𝑡 =
0
𝑡
𝑓 𝜏 . 𝑑𝜏
ℒ𝑔 𝑡 = ℒ[
0
𝑡
𝑓 𝜏 . 𝑑𝜏]
∴
0
∞
[
0
𝑡
𝑓 𝜏 . 𝑑𝜏]𝑒−𝑠𝑡
. 𝑑𝑡
𝑢 =
0
𝑡
𝑓 𝜏 . 𝑑𝜏 𝑑𝑣 = 𝑒−𝑠𝑡
𝑑𝑢 = 𝑓 𝑡 . 𝑑𝑡 𝑣 =
𝑒−𝑠𝑡
−𝑠
𝑢𝑑𝑣 = 𝑢𝑣 − 𝑣𝑑𝑢
𝑒−𝑠𝑡
−𝑠
.
0
𝑡
𝑓 𝜏 . 𝑑𝜏 𝑤𝑖𝑡ℎ 𝑙𝑖𝑚𝑖𝑡𝑠 𝑓𝑟𝑜𝑚 0 𝑡𝑜 ∞ −
0
∞
𝑒−𝑠𝑡
−𝑠
𝑓 𝑡 . 𝑑𝑡
=
1
𝑠
0 − 0 +
1
𝑠 0
∞
𝑓(𝑡)𝑒−𝑠𝑡
. 𝑑𝑡
33
∴ ℒ[
0
𝑡
𝑓 𝜏 . 𝑑𝜏] =
1
𝑠 0
∞
𝑓 𝑡 𝑒−𝑠𝑡
. 𝑑𝑡
∴
𝑓(𝑠)
𝑠
- Example:
Find the Laplace transform for 𝑓 𝑡 = 0
∞
𝑠𝑖𝑛𝑡. 𝑑𝑡
By integration the sine the result will be cosine and have the Laplace
𝑠
𝑠2+1
By using the Laplace transform properties, the result will be ℒ
1
𝑠2+1
Then the Laplace transform for integration the sine is
1
𝑠2+1
𝑠
Which leads the result to
𝑠
𝑠2+1
34
8.Initial Value Theorem
The initial value 𝑓(0) of the function 𝑓(𝑡) whose L.T is 𝑓(𝑠) is:
𝑓 0 = lim
𝑡→0
𝑓(𝑡) = lim
𝑠→∞
𝑠𝑓(𝑠)
- Example: For the function 𝑓 𝑡 = 3𝑒−2𝑡, prove the initial – value theorem:
ℒ3𝑒−2𝑡 =
3
𝑠2 + 2
𝑓 0 = lim
𝑡→0
3𝑒−2𝑡 = lim
𝑠→∞
𝑠
3
𝑠2 + 2
3 = 3
According to Lobital rule in limits that states when there is
∞
∞
then the limit is taking the
derivative of the function of both the nominators and denominators which is in this case
3
1
35
9. Final value theorem:
The final value of the function 𝑓(𝑡) whose L.T is𝑓 ∞ =
lim
𝑡→∞
𝑓(𝑡) = lim
𝑠→0
𝑠𝑓(𝑠)
- Example: For the function 𝑓 𝑡 = 3𝑒−2𝑡
, prove the final –
value theorem:
𝑓 ∞ = lim
𝑡→∞
3𝑒−2𝑡 = lim
𝑠→0
𝑠
3
𝑠2 + 2
0 = 0
THANK YOU
36

Más contenido relacionado

Similar a Engineering Analysis -Third Class.ppsx

Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationIJERA Editor
 
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdfRADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdfWasswaderrick3
 
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdfSEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdfWasswaderrick3
 
Hawkinrad a source_notes iii _withtypocorrected_sqrd
Hawkinrad a source_notes iii _withtypocorrected_sqrdHawkinrad a source_notes iii _withtypocorrected_sqrd
Hawkinrad a source_notes iii _withtypocorrected_sqrdfoxtrot jp R
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiationSanthanam Krishnan
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxAYMENGOODKid
 
Hawkinrad a source_notes iii -sqrd
Hawkinrad a source_notes iii -sqrdHawkinrad a source_notes iii -sqrd
Hawkinrad a source_notes iii -sqrdfoxtrot jp R
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Rai University
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transformAmr E. Mohamed
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationRai University
 

Similar a Engineering Analysis -Third Class.ppsx (16)

Advance heat transfer 2
Advance heat transfer 2Advance heat transfer 2
Advance heat transfer 2
 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral Transformation
 
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdfRADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
 
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdfSEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
 
Hawkinrad a source_notes iii _withtypocorrected_sqrd
Hawkinrad a source_notes iii _withtypocorrected_sqrdHawkinrad a source_notes iii _withtypocorrected_sqrd
Hawkinrad a source_notes iii _withtypocorrected_sqrd
 
The derivatives module03
The derivatives module03The derivatives module03
The derivatives module03
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
 
Derivadas
DerivadasDerivadas
Derivadas
 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULES
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
 
Hawkinrad a source_notes iii -sqrd
Hawkinrad a source_notes iii -sqrdHawkinrad a source_notes iii -sqrd
Hawkinrad a source_notes iii -sqrd
 
Gcse Maths Resources
Gcse Maths ResourcesGcse Maths Resources
Gcse Maths Resources
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transform
 
PART I.4 - Physical Mathematics
PART I.4 - Physical MathematicsPART I.4 - Physical Mathematics
PART I.4 - Physical Mathematics
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
 

Más de HebaEng

MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdfMATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdfHebaEng
 
Estimate the value of the following limits.pptx
Estimate the value of the following limits.pptxEstimate the value of the following limits.pptx
Estimate the value of the following limits.pptxHebaEng
 
lecrfigfdtj x6 I f I ncccfyuggggrst3.pdf
lecrfigfdtj x6 I f I ncccfyuggggrst3.pdflecrfigfdtj x6 I f I ncccfyuggggrst3.pdf
lecrfigfdtj x6 I f I ncccfyuggggrst3.pdfHebaEng
 
LECtttttttttttttttttttttttttttttt2 M.pptx
LECtttttttttttttttttttttttttttttt2 M.pptxLECtttttttttttttttttttttttttttttt2 M.pptx
LECtttttttttttttttttttttttttttttt2 M.pptxHebaEng
 
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdflect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdfHebaEng
 
lect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdf
lect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdflect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdf
lect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdfHebaEng
 
sensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptx
sensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptxsensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptx
sensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptxHebaEng
 
Homework lehhhhghjjjjhgd thvfgycture 1.pdf
Homework lehhhhghjjjjhgd thvfgycture 1.pdfHomework lehhhhghjjjjhgd thvfgycture 1.pdf
Homework lehhhhghjjjjhgd thvfgycture 1.pdfHebaEng
 
PIC1jjkkkkkkkjhgfvjitr c its GJ tagging hugg
PIC1jjkkkkkkkjhgfvjitr c its GJ tagging huggPIC1jjkkkkkkkjhgfvjitr c its GJ tagging hugg
PIC1jjkkkkkkkjhgfvjitr c its GJ tagging huggHebaEng
 
lecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).pptlecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).pptHebaEng
 
math6.pdf
math6.pdfmath6.pdf
math6.pdfHebaEng
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfHebaEng
 
digital10.pdf
digital10.pdfdigital10.pdf
digital10.pdfHebaEng
 
PIC Serial Communication_P2 (2).pdf
PIC Serial Communication_P2 (2).pdfPIC Serial Communication_P2 (2).pdf
PIC Serial Communication_P2 (2).pdfHebaEng
 
Instruction 3.pptx
Instruction 3.pptxInstruction 3.pptx
Instruction 3.pptxHebaEng
 
IO and MAX 2.pptx
IO and MAX 2.pptxIO and MAX 2.pptx
IO and MAX 2.pptxHebaEng
 
BUS DRIVER.pptx
BUS DRIVER.pptxBUS DRIVER.pptx
BUS DRIVER.pptxHebaEng
 
VRAM & DEBUG.pptx
VRAM & DEBUG.pptxVRAM & DEBUG.pptx
VRAM & DEBUG.pptxHebaEng
 
Instruction 4.pptx
Instruction 4.pptxInstruction 4.pptx
Instruction 4.pptxHebaEng
 
8086 memory interface.pptx
8086 memory interface.pptx8086 memory interface.pptx
8086 memory interface.pptxHebaEng
 

Más de HebaEng (20)

MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdfMATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
MATHLECT1LECTUREFFFFFFFFFFFFFFFFFFHJ.pdf
 
Estimate the value of the following limits.pptx
Estimate the value of the following limits.pptxEstimate the value of the following limits.pptx
Estimate the value of the following limits.pptx
 
lecrfigfdtj x6 I f I ncccfyuggggrst3.pdf
lecrfigfdtj x6 I f I ncccfyuggggrst3.pdflecrfigfdtj x6 I f I ncccfyuggggrst3.pdf
lecrfigfdtj x6 I f I ncccfyuggggrst3.pdf
 
LECtttttttttttttttttttttttttttttt2 M.pptx
LECtttttttttttttttttttttttttttttt2 M.pptxLECtttttttttttttttttttttttttttttt2 M.pptx
LECtttttttttttttttttttttttttttttt2 M.pptx
 
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdflect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
lect4ggghjjjg t I c jifr7hvftu b gvvbb.pdf
 
lect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdf
lect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdflect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdf
lect5.gggghhhhhhhhhhhhyyhhhygfe6 in b cfpdf
 
sensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptx
sensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptxsensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptx
sensorshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pptx
 
Homework lehhhhghjjjjhgd thvfgycture 1.pdf
Homework lehhhhghjjjjhgd thvfgycture 1.pdfHomework lehhhhghjjjjhgd thvfgycture 1.pdf
Homework lehhhhghjjjjhgd thvfgycture 1.pdf
 
PIC1jjkkkkkkkjhgfvjitr c its GJ tagging hugg
PIC1jjkkkkkkkjhgfvjitr c its GJ tagging huggPIC1jjkkkkkkkjhgfvjitr c its GJ tagging hugg
PIC1jjkkkkkkkjhgfvjitr c its GJ tagging hugg
 
lecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).pptlecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).ppt
 
math6.pdf
math6.pdfmath6.pdf
math6.pdf
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
digital10.pdf
digital10.pdfdigital10.pdf
digital10.pdf
 
PIC Serial Communication_P2 (2).pdf
PIC Serial Communication_P2 (2).pdfPIC Serial Communication_P2 (2).pdf
PIC Serial Communication_P2 (2).pdf
 
Instruction 3.pptx
Instruction 3.pptxInstruction 3.pptx
Instruction 3.pptx
 
IO and MAX 2.pptx
IO and MAX 2.pptxIO and MAX 2.pptx
IO and MAX 2.pptx
 
BUS DRIVER.pptx
BUS DRIVER.pptxBUS DRIVER.pptx
BUS DRIVER.pptx
 
VRAM & DEBUG.pptx
VRAM & DEBUG.pptxVRAM & DEBUG.pptx
VRAM & DEBUG.pptx
 
Instruction 4.pptx
Instruction 4.pptxInstruction 4.pptx
Instruction 4.pptx
 
8086 memory interface.pptx
8086 memory interface.pptx8086 memory interface.pptx
8086 memory interface.pptx
 

Último

Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 

Último (20)

Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 

Engineering Analysis -Third Class.ppsx

  • 1. MINISTRY OF SCIENTIFIC EDUCATION AND HIGHER RESEARCHES NORTHERN TECHNICAL UNIVERSITY ENGINEERING TECHNICAL COLLEGE / MOSUL DEPARTMENT OF COMPUTER TECHNOLOGY 1 ENGINEERING ANALYSIS LECTURE DEPARTMENT OF COMPUTER TECHNOLOGY –THIRD CLASS 2018 -2019 ARJUWAN MOHAMMED ABDULJAWAD ALJAWADI LECTURER
  • 2. 2 - ENGINEERING ANALYSIS One of important transforms used in linear- system analysis. It is named in honor of the great French mathematician, Pierre Simon De Laplace (1749-1827).
  • 3. 3 - Purpose of Laplace Transform • To convert from one type of operation to another operations of different types in more simple form. • A well-known technique for solving differential equations.
  • 4. 4
  • 5. - THE TIME DOMAIN SIGNAL IS CONTINUOUS , EXTENDS TO: 1. POSITIVE AND NEGATIVE INFINITY. 2. PERIODIC OR APERIODIC SIGNAL 5 - Laplace Transform Definition: The Laplace transform F(s) of a time function F (t) is given by the integral:
  • 6. 6 This definition is called the bilateral, or two-sided, Laplace transform—hence, the subscript b. Notice that the bilateral Laplace transform integral becomes the Fourier transform integral if is replaced by (𝑗𝑤 ) . The Laplace transform variable is complex 𝑠 = 𝛼 + 𝑗𝑤, we can rewrite (1) as: 𝐹 𝑠 = −∞ ∞ 𝑓(𝑡)𝑒−(𝜎+𝑗𝜔)𝑡 𝑑𝑡 = −∞ ∞ 𝑓(𝑡)𝑒−𝜎𝑡 𝑒−𝑗𝑤 𝑑𝑡
  • 7. 7 𝑓 𝑡 𝑖𝑠 𝑧𝑒𝑟𝑜 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 < 0 Thus the first integral in above equation is zero. The resulting transform, called the unilateral, or single-sided Laplace transform, is given by:
  • 8. 8 THE LAPLACE-TRANSFORM VARIABLE S IS COMPLEX, AND WE DENOTE ITS REAL PART AS ∝ AND ITS IMAGINARY PART AS 𝑗𝑤 THAT IS: 𝑠 = ∝ +𝑗𝑤 The S-plane
  • 9. 9 Some Elementary Functions F(t) and their Laplace Transform F(t) F(s) U(t) 1 s t 1/s2 tn n!/ sn+1 e−at 1 s + a eat 1 s − a sin wt w/s2+w2 cos at s/s2+a2 sin hat w/s2- w2 cos hat s/s2- w2
  • 10. 10 - Laplace Transform of some important functions 1. Laplace Transform of a unit –step function 𝑓(𝑡) = 1.
  • 11. 11 2. Laplace Transform of 𝑓(𝑡) = 𝑒𝑎𝑡
  • 12. 12 3. Laplace Transform of 𝑓(𝑡) = 𝑡𝑛 Where n= (1,2,3,4,…………………………….) f s = 0 ∞ e−st tn .dt udv = uv − v . du U=tn , du = (𝑛 𝑡𝑛−1) , dv= e−st , v=- e−st s f s = − e−st.tn/s |- 0 ∞ 𝑛 𝑒−𝑠𝑡 𝑠 .tn-1.dt
  • 13. 13 The first term limits will be form (0 to ∞) by substituting it yields zero while the second term by substitution we get: f s = 0 ∞ −ne−st s n tn-1.dt u=ntn-1 , du=n(n-1)tn-2 , dv= e−st s , v= - e−st/s2 f s = ne−st tn-1 /s2 | - 0 ∞ −n(n − 1)tn-2/s2 .e−st . dt f s = 0 ∞ n(n − 1)e−st tn-2 /s2 .dt Then after n times integration we have : f s = 0 ∞ n! sn tn−ne−st. dt f s = 0 ∞ n! sn e−st. dt = n! sn+1 e−st | = n! sn+1
  • 14. NOTE: IN THIS SAME METHOD YOU CAN FIND LAPLACE TRANSFORM OF COS 𝑤𝑡 14 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 [𝑠𝑖𝑛 𝑤𝑡] = 0 ∞ 𝑠𝑖𝑛𝑤𝑡𝑒−𝑠𝑡 . 𝑑𝑡 𝑒𝑗𝑤𝑡 = 𝑐𝑜𝑠 𝑤𝑡 + 𝑗𝑠𝑖𝑛 𝑤𝑡 𝑠𝑖𝑛 𝑤𝑡 𝑖𝑠 𝑡ℎ𝑒 𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡 (𝐼𝑚) 𝑜𝑓 𝑒𝑗𝑤𝑡 𝑠𝑖𝑛 𝑤𝑡 = 𝐼𝑚 (𝑒𝑗𝑤𝑡 ) 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 [𝑠𝑖𝑛 𝑤𝑡] = 𝐼𝑚 0 ∞ 𝑒𝑗𝑤𝑡𝑒−𝑠𝑡. 𝑑𝑡 = 𝐼𝑚 0 ∞ 𝑒−(𝑠−𝑗𝑤). 𝑑𝑡 = 𝐼𝑚 [− 𝑒− 𝑠−𝑗𝑤 𝑡 (𝑠 − 𝑗𝑤) ] = 𝐼𝑚 [0 − (− 𝑒0 𝑠 − 𝑗𝑤) ) = 𝐼𝑚 1 𝑠 − 𝑗𝑤 = 𝐼𝑚 [ 1 𝑎 − 𝑗𝑤 ∗ 𝑠 + 𝑗𝑤 𝑠 + 𝑗𝑤 ] = 𝐼𝑚 (𝑠 + 𝑗𝑤) / (𝑠2 + 𝑤2) = 𝑤 / (𝑠2 + 𝑤2) 4. Laplace Transform of f t = 𝑠𝑖𝑛 𝑤𝑡
  • 15. 5. LAPLACE TRANSFORM OF F T = 𝐶𝑜𝑠ℎ(𝑎𝑡) 15 𝐶𝑜𝑠ℎ(𝑎𝑡) = 𝑒𝑎𝑡 + 𝑒−𝑎𝑡 2 ℒ cosh 𝑎𝑡 = 1 2 1 𝑠 − 𝑎 + 1 𝑠 + 𝑎 = 1 2 ∗ [ 𝑠 + 𝑎 + 𝑠 − 𝑎 (𝑠 − 𝑎)(𝑠 + 𝑎) ] = 1 2 ∗ [ 2𝑠 𝑠2 + 𝑎𝑠 − 𝑎𝑠 − 𝑎2 ] = 1 2 [ 2𝑠 𝑠2 − 𝑎2 ] = 𝑠 𝑠2 − 𝑎2
  • 16. 16 - Laplace Transform Properties: 1. Multiplication by Constant: ℒ 𝑘. 𝐹 𝑡 = 0 ∞ 𝑘. 𝐹 𝑡 𝑒−𝑠𝑡 . 𝑑𝑡 = k. 0 ∞ 𝐹(𝑡)𝑒−𝑠𝑡 . 𝑑𝑡 =𝑘. 𝐹(𝑠) Example: ℒ3. 𝑒2𝑡 = 3. 1 𝑠 − 2 = 3 𝑠 − 2
  • 17. 17 2. Linearity: If 𝐹 𝑡 = 𝐹1 𝑡 + 𝐹2 𝑡 ℒ 𝐹 𝑡 = 0 ∞ 𝐹(𝑡)𝑒−𝑠𝑡 .dt = 0 ∞ 𝐹1 𝑡 + 𝐹2 𝑡 𝑒−𝑠𝑡 . 𝑑𝑡 = 0 ∞ 𝐹1 𝑡 𝑒−𝑠𝑡. 𝑑𝑡 + 0 ∞ 𝐹2 𝑡 𝑒−𝑠𝑡. 𝑑𝑡 = ℒ 𝐹1 𝑡 + ℒ[𝐹2 𝑡 ] = 𝐹1 𝑠 + 𝐹2(𝑠) If 𝐹 𝑡 = 𝑎1𝐹1 𝑡 + 𝑎2𝐹2 𝑡 Where a1 and a2 are constants Then ℒ[𝑎1𝐹1 𝑡 + 𝑎2𝐹2 𝑡 ] = 𝑎1ℒ 𝐹1 𝑡 + 𝑎2ℒ 𝐹2 𝑡
  • 18. 18 Examples: 1. ℒ[2𝑠𝑖𝑛3𝑡 + 𝑐𝑜𝑠3𝑡] = 2 ℒ 𝑠𝑖𝑛3𝑡 + ℒ[𝑐𝑜𝑠3𝑡] = 2. 3 𝑠2+9 + 𝑠 𝑠2+9 = 𝑠+6 𝑠2+9 2. ℒ[ 4 𝑒5𝑡 + 6𝑡3 − 3𝑠𝑖𝑛4𝑡 + 2𝑐𝑜𝑠2𝑡] = 4 𝑠 − 5 + 6.3! 𝑠4 − 12 𝑠2 + 16 + 2𝑠 𝑠2 + 4 = 4 𝑠 − 5 + 36 𝑠4 − 12 𝑠2 + 16 + 2𝑠 𝑠2 + 4 - Home Work: - ℒ[3𝑐𝑜𝑠6𝑡 − 5𝑠𝑖𝑛6] - ℒ[3𝑡10 − 8𝑒−3𝑡 + 5𝑐𝑜𝑠3𝑡 + 4𝑠𝑖𝑛2𝑡] - ℒ[3𝑐𝑜𝑠5𝑡 − 4𝑠𝑖𝑛ℎ5𝑡]
  • 19. 19 3. Multiplication by exponential: 𝑓1 𝑡 = 𝑓 𝑡 𝑒−𝑎𝑡 ℒ 𝑓 𝑡 𝑒−𝑎𝑡 = 0 ∞ 𝑓 𝑡 𝑒−𝑎𝑡 𝑒−𝑠𝑡 0 ∞ 𝑓 𝑡 𝑒− 𝑠+𝑎 𝑡 . 𝑑𝑡 Then 𝑓(𝑠 + 𝑎) The transform ℒ 𝑓 𝑡 𝑒−𝑎𝑡 is thus the same as ℒ 𝑓 𝑡 with everywhere in the result replaced by (𝑠 + 𝑎).
  • 20. 20 - Example: ℒ 𝑒−𝑎𝑡 𝑠𝑖𝑛𝑤𝑡 = 𝑤 (𝑠+𝑎)2+ 𝑤2 ℒ 𝑡2 𝑒−4𝑡 = 2 (𝑠 + 4)3 - Example: 1. ℒ 𝑡2𝑒3𝑡 = 2 (𝑠−3)2 2. ℒ 𝑒−2𝑡 𝑠𝑖𝑛4𝑡 = 4 (𝑠+2)2+16 = 4 𝑠2+2𝑠+20 3. ℒ 𝑒−4𝑡 𝑐𝑜𝑠ℎ5𝑡 = (𝑠−4) (𝑠−4)2−25 = (𝑠−4) 𝑠2−4𝑠+16−25 = 𝑠−4 𝑠2−4𝑠−9 - Home Work: Find ℒ 𝑒−2𝑡 (3𝑐𝑜𝑠6𝑡 − 5𝑠𝑖𝑛6𝑡 - Home Work: Find ℒ 𝑒−4𝑡 𝑐𝑜𝑠ℎ5𝑡 using cosh = 1 2 ( 𝑒𝑎𝑡 + 𝑒−𝑎𝑡 )
  • 21. 21 4. Multiplication by t (frequency derivative) If ℒ 𝑓(𝑡) = 𝑓(𝑠) Then ℒ 𝑡. 𝑓 𝑡 = − 𝑑 𝑑𝑠 𝑓(𝑠) In general it can be ℒ 𝑡𝑛 𝑓 𝑡 = (−1)𝑛 𝑑𝑛 𝑑𝑠𝑛 𝑓(𝑠) - Example: ℒ 𝑡. 𝑠𝑖𝑛2𝑡 ℒ 𝑠𝑖𝑛2𝑡 = 2 𝑠2 + 4 ℒ 𝑡 𝑠𝑖𝑛2𝑡 = − 𝑑 𝑑𝑠 . 2 𝑠2 + 4 = 𝑠2+4 ∗0−2∗2𝑠 (𝑠2+4)2 = 4𝑠 (𝑠2+4)2
  • 22. 22 - Example: ℒ 𝑡 3𝑠𝑖𝑛2𝑡 − 2𝑐𝑜𝑠2𝑡 = 3𝑡𝑠𝑖𝑛2𝑡 − 2𝑡𝑐𝑜𝑠𝑡 ℒ2𝑠𝑖𝑛2𝑡 = 6 𝑠2 + 4 ℒ𝑐𝑜𝑠2𝑡 = 2𝑠 𝑠2 + 4 = 3𝑡𝑠𝑖𝑛2𝑡 − 2𝑡 𝑐𝑜𝑠2𝑡 ℒ 3𝑡 𝑠𝑖𝑛2𝑡 = 𝑠2 + 4 ∗ 0 − 6 ∗ 2𝑠 (𝑠2 + 4)2 = −12𝑠 (𝑠2 + 4)2 ℒ 2𝑡 𝑐𝑜𝑠2𝑡 = 𝑠2 + 4 ∗ 2 − 2𝑠 ∗ 2𝑠 (𝑠2 + 4)2 = 2𝑠2 + 8 − 4𝑠2 (𝑠2 + 4)2 = −12𝑠 (𝑠2+4)2 − 8−2𝑠2 𝑠2+4 2 = −2𝑠2−12𝑠+8 (𝑠2+4)2
  • 23. 23 5.Time Derivative: ℒ 𝑑𝑓 𝑡 𝑑𝑡 = 𝑠𝑓 𝑠 − 𝑓(0) Where 𝑓(0) is the initial value of 𝑓(𝑡) ,evaluated as the one - side limit of 𝑓(𝑡) as 𝑡 → 0 from positive valued. ℒ 𝑓 𝑡 ′ = 0 ∞ 𝑓 𝑡 ′ 𝑒−𝑠𝑡 . 𝑑𝑡 Using 𝑢𝑑𝑣 = 𝑢𝑣 − 𝑣𝑑𝑢 𝑢 = 𝑒−𝑠𝑡 , 𝑑𝑢 = −𝑠𝑒−𝑠𝑡, 𝑑𝑣 = 𝑓 𝑡 ′ , 𝑣 = 𝑓(𝑡) = 𝑒−𝑠𝑡 𝑓 𝑡 𝑤𝑖𝑡ℎ 𝑙𝑖𝑚𝑖𝑡𝑠 𝑓𝑟𝑜𝑚 0 − ∞ − 0 ∞ 𝑓(𝑡)(−𝑠𝑒−𝑠𝑡 ). 𝑑𝑡 = 0 − 𝑓 0 + 𝑠𝑓(𝑠) Then ℒ 𝑑2𝑓 𝑡 𝑑𝑡2 = 𝑠2 𝑓 𝑠 − 𝑠𝑓 0 − 𝑓(0)′ and in general: ℒ 𝑑𝑛 𝑓 𝑡 𝑑𝑡𝑛 = 𝑠𝑛 𝑓 𝑠 − 𝑖=1 𝑛 𝑓(0)(𝑖−1) 𝑠𝑛−𝑖
  • 24. 24 - Example: 𝑓 𝑡 = 𝑡 , 𝐹𝑖𝑛𝑑 ℒ 1 𝑢𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 − 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 Since ℒ 1 = 1 𝑠 , 𝑓 0 = 0 ℒ 𝑑𝑓 𝑡 𝑑𝑡 = 𝑠𝑓 𝑠 − 𝑓 0 ℒ 𝑑𝑓 1 𝑑𝑡 = 𝑠𝑓 𝑠 − 𝑓 0 ℒ 1 = 𝑠 ∗ 1 𝑠2 − 0 = 1 𝑠
  • 25. 25 - Example: Use Laplace transform in solving for the current in an electric circuit. Consider the RL-circuit in the following figure, where 𝑉 is constant. The loop equation for this circuit is given by: 𝐿. 𝑑𝑖(𝑡) 𝑑𝑡 + 𝑅𝑖 𝑡 = 𝑉𝑢 𝑡 𝑓𝑜𝑟 𝑡 > 0
  • 26. 26 Since the switch is closed at 𝑡 = 0 . The Laplace transform of this equation yields: 𝐿 𝑠𝐼 𝑠 − 𝑖 0 + 𝑅𝐼 𝑠 = 𝑉 𝑠 The initial current is zero 0 = 0 , 𝑖(𝑡) is zero for negative time since the switch is open for 𝑡 < 0 and the current in an inductance cannot change instantaneously. 𝐼 𝑠 = 𝑉 𝑠 𝐿𝑠 + 𝑅 = 𝑉 𝐿 𝑠 𝑠 + 𝑅 𝐿 𝑑𝑖𝑣𝑖𝑑𝑖𝑛𝑔 𝑏𝑦 𝐿 Solve with partial fraction: 𝐼 𝑠 = 𝑉 𝐿 𝑠 𝑠 + 𝑅 𝐿 = 𝑎 𝑠 + 𝑏 𝑠 + 𝑅 𝐿 = 𝑎𝑠 + 𝑎 𝑅 𝐿 + 𝑏𝑠 𝑠 𝑠 + 𝑅 𝐿
  • 27. 27 = 𝑎 + 𝑏 𝑠 + 𝑎 𝑅 𝐿 𝑠(𝑠 + 𝑅 𝐿) 𝑎 + 𝑏 = 0 → 𝑎 = −𝑏 𝑎 𝑅 𝐿 = 𝑉 𝐿 → 𝑎 = 𝑉 𝑅 𝐼 𝑠 = 𝑉 𝑅 𝑠 − 𝑉 𝑅 𝑠 + 𝑅 𝐿 𝐴 = 𝑠 . 𝑉 𝑅 𝑠.(𝑠+𝑅 𝐿 ) 𝑤ℎ𝑒𝑛 𝑠 = 0 𝐴 = 𝑉 𝑅 𝐵 = 𝑠 + 𝑅 𝐿 . 𝑉 𝐿 𝑠. 𝑠+𝑅 𝐿 𝑤ℎ𝑒𝑛 𝑠 = −𝑅 𝐿 𝐵 = 𝑉 𝐿 − 𝑅 𝐿 = − 𝑉 𝑅 ℒ𝐼(𝑠)−1 = 𝑖 𝑡 = 𝑉 𝑅 − 𝑉 𝑅 𝑒− 𝑅 𝐿𝑡 𝑖 𝑡 = 𝑉 𝑅 1 − 𝑒−( 𝑅 𝐿)𝑡 𝑡 > 0 The initial condition 𝑖 0 = 0 is satisfied by 𝑖 𝑡 also substitution of 𝑖 𝑡 into the differential equation satisfies that equation.
  • 28. 28 - Example: Solve the following differential equation: 𝑦′′ − 4𝑦′ + 5𝑦 = 𝑥 𝑡 𝑦 0 = 0 , 𝑦 0 ′ 𝑠2 𝑦 𝑠 − 𝑠𝑦 0 − 𝑦′ 0 − 4 𝑠𝑦 𝑠 − 𝑦 0 + 5𝑦 𝑠 = 𝑥 𝑠 𝑠2𝑦 𝑠 − 4𝑠𝑦 𝑠 + 5𝑦 𝑠 = 𝑥 𝑠 𝑦 𝑠 𝑠2 − 4𝑠 + 5 = 𝑥 𝑠 𝑦(𝑠) 𝑥(𝑠) = 1 𝑠2 − 4𝑠 + 5 - Home Work : 1. 𝑦′′ − 3𝑦′ + 2𝑦 = 𝑢 𝑡 2. 𝑦′′ + 4𝑦′ + 20𝑦 = 𝑢(𝑡)
  • 29. 29 6. Real Shifting: 𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 = 𝑓 𝑡 − 𝑡0 𝑡 > 𝑡0 1. 𝑡 < 𝑡0 ℒ 𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 = 0 ∞ 𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 𝑒−𝑠𝑡. 𝑑𝑡 = 0 ∞ 𝑓(𝑡 − 𝑡0) 𝑒−𝑠𝑡 . 𝑑𝑡 We make the change of variable 𝑡 − 𝑡0 = 𝜏 , hence 𝑡 = (𝜏 + 𝑡0), 𝑑𝑡 = 𝑑𝜏 and ℒ 𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 = 0 ∞ 𝑓 𝜏 𝑒−𝑠(𝜏+𝑡0). 𝑑𝜏 = 𝑒−𝑡0𝑠 0 ∞ 𝑓 𝜏 𝑒−𝑠𝜏 . 𝑑𝜏 = 𝑒−𝑡0𝑠 . 𝑓(𝑠)
  • 30. 30 Since 𝜏 is the variable of integration and can be replaced with , the integral on the right side is 𝑓(𝑠) , hence the Laplace transform of the shifted time function is given by: ℒ 𝑓 𝑡 − 𝑡0 𝑢 𝑡 − 𝑡0 = 𝑒−𝑡0𝑠𝑓(𝑠) 𝑡0 ≥ 0 And ℒ 𝑓 𝑡 = 𝑓(𝑠). This relationship called the real translation, properly applies for a function of the type in the figure: It is necessary that the function to be zero in time less than 𝑡0 , the amount of the shift.
  • 31. 31 - Example: Find the Laplace transform of a delayed exponential function: 𝑓 𝑡 = 5𝑒−0.3 𝑡−2 𝑢(𝑡 − 2) 𝑤ℎ𝑒𝑟𝑒 𝑡 = 2 , ℒ𝑓 𝑡 = 𝑒−2𝑠 𝑓 𝑠 = 5𝑒−2𝑠 𝑠 + 0.3
  • 32. 32 7. Time Integral: 𝑔 𝑡 = 0 𝑡 𝑓 𝜏 . 𝑑𝜏 ℒ𝑔 𝑡 = ℒ[ 0 𝑡 𝑓 𝜏 . 𝑑𝜏] ∴ 0 ∞ [ 0 𝑡 𝑓 𝜏 . 𝑑𝜏]𝑒−𝑠𝑡 . 𝑑𝑡 𝑢 = 0 𝑡 𝑓 𝜏 . 𝑑𝜏 𝑑𝑣 = 𝑒−𝑠𝑡 𝑑𝑢 = 𝑓 𝑡 . 𝑑𝑡 𝑣 = 𝑒−𝑠𝑡 −𝑠 𝑢𝑑𝑣 = 𝑢𝑣 − 𝑣𝑑𝑢 𝑒−𝑠𝑡 −𝑠 . 0 𝑡 𝑓 𝜏 . 𝑑𝜏 𝑤𝑖𝑡ℎ 𝑙𝑖𝑚𝑖𝑡𝑠 𝑓𝑟𝑜𝑚 0 𝑡𝑜 ∞ − 0 ∞ 𝑒−𝑠𝑡 −𝑠 𝑓 𝑡 . 𝑑𝑡 = 1 𝑠 0 − 0 + 1 𝑠 0 ∞ 𝑓(𝑡)𝑒−𝑠𝑡 . 𝑑𝑡
  • 33. 33 ∴ ℒ[ 0 𝑡 𝑓 𝜏 . 𝑑𝜏] = 1 𝑠 0 ∞ 𝑓 𝑡 𝑒−𝑠𝑡 . 𝑑𝑡 ∴ 𝑓(𝑠) 𝑠 - Example: Find the Laplace transform for 𝑓 𝑡 = 0 ∞ 𝑠𝑖𝑛𝑡. 𝑑𝑡 By integration the sine the result will be cosine and have the Laplace 𝑠 𝑠2+1 By using the Laplace transform properties, the result will be ℒ 1 𝑠2+1 Then the Laplace transform for integration the sine is 1 𝑠2+1 𝑠 Which leads the result to 𝑠 𝑠2+1
  • 34. 34 8.Initial Value Theorem The initial value 𝑓(0) of the function 𝑓(𝑡) whose L.T is 𝑓(𝑠) is: 𝑓 0 = lim 𝑡→0 𝑓(𝑡) = lim 𝑠→∞ 𝑠𝑓(𝑠) - Example: For the function 𝑓 𝑡 = 3𝑒−2𝑡, prove the initial – value theorem: ℒ3𝑒−2𝑡 = 3 𝑠2 + 2 𝑓 0 = lim 𝑡→0 3𝑒−2𝑡 = lim 𝑠→∞ 𝑠 3 𝑠2 + 2 3 = 3 According to Lobital rule in limits that states when there is ∞ ∞ then the limit is taking the derivative of the function of both the nominators and denominators which is in this case 3 1
  • 35. 35 9. Final value theorem: The final value of the function 𝑓(𝑡) whose L.T is𝑓 ∞ = lim 𝑡→∞ 𝑓(𝑡) = lim 𝑠→0 𝑠𝑓(𝑠) - Example: For the function 𝑓 𝑡 = 3𝑒−2𝑡 , prove the final – value theorem: 𝑓 ∞ = lim 𝑡→∞ 3𝑒−2𝑡 = lim 𝑠→0 𝑠 3 𝑠2 + 2 0 = 0