SlideShare una empresa de Scribd logo
1 de 23
Descargar para leer sin conexión
Short-time wavelet estimation
 in the homomorphic domain
  Roberto H. Herrera and Mirko van der Baan
   University of Alberta, Edmonton, Canada
             rhherrer@ualberta.ca
Homomorphic wavelet estimation
• Objective:
  – Introduce a variant of short-time homomorphic
    wavelet estimation.
• Possible applications:
  – nonminimum phase surface consistent
    deconvolution. FWI, AVO.
• Main problem
  – To find a consistent wavelet estimation method
    based on homomorphic analysis. SCD done in
    homomorphic domain.
Wavelet estimation
How many eligible                                                                              Convolutional
wavelets are there?                                      S ( z)  W (Z ) R(Z )                 Model




                                 m- roots                 n- roots
                                                                                        m = 3000; % length(s(t))
                                                                 Possible
                                                                                        n = 100; % length(w(t))
                                                                 solutions
                                                                     Example                    Nw  2100
                                                               How to find the n roots of the wavelet, from the m
                                                               roots of the seismogram ? Combinatorial
                                                               problem!!!

                                                                      m!
 * Ziolkowski, A. (2001). CSEG Recorder, 26(6), 18–28.
                                                          Nw 
                                                                 n ! m  n !
                                                                                                 Nw  10200
Homomorphic wavelet estimation
• Why revisit homomorphic wavelet estimation?
   – Homomorphic = log (spectrum)
   – No minimum phase assumption

• Main challenges:
   – Phase unwrapping
   – Somewhat sparse reflectivity
Homomorphic wavelet estimation
• Steps (Ulrych, Geophysics, 1971):
   – Take log( FT( observed signal) )
      • s(t) = r(t)*w(t) <=> log(S(f)) = log(R(f)) + log(W(f))
   – Real part is log (amplitude spectrum)
   – Imaginary part is phase
   – Natural separation amplitude and phase spectrum
   – Apply phase unwrapping + deramping
   – Take inverse Fourier transform: ŝ(t)=FT-1(log(S))
   – Apply bandpass filtering on ŝ(t) = liftering
      • Or simply time-domain windowing + inverse transform
   – Recover the wavelet w(t)
Homomorphic wavelet estimation
                             Math                                                                 Forward          Backward

                  s(t )  w(t )  r (t )                                                            time             time
                                           FT                                                              FT               IFT
                                                                                                    frequency       frequency
                   S ( f )  W ( f ) R( f )
                                                                                                           log              exp
                                           log
ˆ                                                                                                   log-spectrum    log-spectrum
S ( f )  log(S ( f ))  log(| S ( f ) | e j arg[ S ( f )] )  log | S ( f ) |  j arg[S ( f )]

                                            IFT                                                            IFT               FFT
                   s(t )  w(t )  r (t )
                   ˆ       ˆ       ˆ                                                                quefrency       quefrency
Homomorphic wavelet estimation
•Assumptions (Ulrych, Geophysics, 1971):
   –Somewhat sparse reflectivity
   –Minimum phase reflectivity
      •Exponential damping applied otherwise
•Rationale:
   –Log leads to spectral whitening and wavelet
   shrinkage => isolation of single wavelet
   –Min phase reflectivity + deramping =>
    Dominant contribution from near t=0 =>
    emphasis on first arrival => maintains phase
Illustration classical method
Single echo
Reflectivity = 2 spikes
r = [1, …, 0.9,…]

     a - is the amplitude of the first echo, 0.9 (forcing the reflectivity to be
     minimum phase)

     δ – is the Dirac delta function. And the echo delay is t_0 = 20 ms.




                                                                         Ulrych (1971)
Illustration classical method
                                                         True Wavelet                     Minimum Phase Ref                           Simulated Trace
                                                                                     1                                     1




                 Normalized Amplitude
True non-min                                  1
                                                                                  0.8
                                                                                                                         0.5
                                            0.5
phase wavelet                                                                     0.6
                                              0                                                                            0
                                                                                  0.4
                                        -0.5
Min phase refl                                                                    0.2
                                                                                                                         -0.5
                                             -1
                                                                                     0                                    -1
                                                  10    20 30 40        50   60       0    50      100    150   200         0         50      100    150   200
                                                          Time [ms]                             Time [ms]                                  Time [ms]
                                                          Log Amp Spectrum Wavelet                                     Log Amp Spectrum Trace
                                                                                                          0
                   Log-Amplitude




                                            -10                                                         -10

                                            -20                                                         -20
 Log-Spectrum                               -30                                                         -30

                                              0         50       100      150     200     250              0      50            100        150     200     250
                                                                Frequency [Hz]
                                                       Deramped Phase Spectrum Wavelet                           Deramped Phase Spectrum Trace

                                            80
                                                                                                         50
                          Phase [degrees]




                                            60

  Phase                                     40
                                                                                                          0

  Spectrum                                  20                                                          -50

                                             0
                                              0         50       100      150     200     250              0      50        100     150            200     250
                                                                Frequency [Hz]                                             Frequency [Hz]
Windowing Effects (Liftering)
                                                                           Complex cepstrum Trace + 3 Lifters
                                                    4




                             Normalized Amplitude
                                                    2

Complex                                             0
cepstrum                                            -2

                                                    -4

                                                    -6
                                                    -150          -100          -50          0          50            100         150
                                                                               Samples - Quefrency (segment)

                                                     Estimated Wavelet LF1         Estimated Wavelet LF2       Estimated Wavelet LF3
                                             0.2                                                           0.2
                                                                                0.2
            Normalized Amplitude




Estimated                                    0.1
                                                                                0.1
                                                                                                           0.1

wavelets
                                                    0                                                          0
                                                                                  0

                                     -0.1                                                                  -0.1
                                                                                -0.1

                                                           240   260     280           240   260     280           240   260     280
                                                           Samples - Time              Samples - Time              Samples - Time
Log spectral averaging

•   Liftering is “hopeless”
•   New assumption:
     random reflectivity but stationary wavelet
     the method becomes log-spectral averaging over
        many traces
• Calculate the log-spectrum of many traces and average
  => removes reflectivity
Log-spectrum
                                          Log-spectrum Wavelet(red) and Trace(blue)
                              0

           Log-magnitude      -5
Log-
spectrum                   -10

                           -15              Fundamental Period = 50 Hz

                           -20
                              0             50        100        150           200          250
                                                      Frequency [Hz]
                                                   Cepstrum of the Trace
                              5
                                                    First Rahmonic Peak at 20 ms
                  Amplitude




Complex
                              0
cepstrum


                              -5
                               -20    0       20     40    60     80     100    120   140
                                                       Quefrency [ms]
Our Approach
– Cepstral stacking (Log-spectral averaging)
   • Wavelet is invariant while reflectivity is spatially non-
     stationary
      – Following the Central Limit Theorem, r(t) will tend to a mean
        value !!!
   • Requires minimum-phase reflectivity or at least strong
     first arrival
– Averaging the log-spectrum of the STFT
   • Like the Welch transform in the log-spectrum domain.
Our Approach
                         Data IN

                      Spectrogram
               TF - Overlapping segments

                         Complex
  Re                   LOG-Spectrum             Img
Amplitude LOG-Spectrum             Phase Spectrum

                            Phase unwrapping + Deramping
   1/N   ∑ = Average
                                   1/N   ∑ = Average

                       EXP + IFT

              Estimated Wavelet
Our Approach
• Assumptions
  – Random reflectivity
  – Stationary wavelet
  – Nonminimum, frequency-dependent wavelet
    phase
  – Nonminimum-phase reflectivity
    • Deramping + Averaging of log(spectra) emphasizes
      main reflections => most important contribution to
      wavelet estimate
Realistic example
                                                                 Chevron - Dataset


Input data to STHWE                           0.2


Wavelet length (wl) = 220 ms                  0.4

Window length = 3 * wl                        0.6
Window type = Hamming
50 % Overlap                                  0.8

                                               1
                                   Time (s)



                                              1.2

                                              1.4
Comparisons with:
                                              1.6

-   Original-wav                              1.8
-   First arrival
-   Kurtosis Maximization (KPE).               2

           Van der Baan (2008)
                                              2.2
-   LSA                                             50   100   150     200       250   300   350   400
-   STHWE                                                              CDP
Elements of comparison
• Different wavelet estimates
  – Log spectral averaging of entire trace (LSA)
  – Constant-phase wavelet estimated using kurtosis
    maximization (= KPE)
  – STFT log spectral averaging (=STHWE)


• Compare with true wavelet + first arrival
Realistic example
                                                   Estimated Wavelets                                                   Amplitude Spectrum
                                     1
                                                                        Org-wav                                                              Org-wav
                                                                        FA                             10                                    FA
                                   0.8                                  KPE-wav                                                              KPE-wav
                                                                        LSA-wav                         8                                    LSA-wav
                                                                        STHWE-wav                                                            STHWE-wav
                                                                                                                                                                Amp




                                                                                          Amplitude
                                   0.6
                                                                                                        6
                                                                                                                                                                Spectrum
                                   0.4                                                                  4
Estimated
                                                                                                        2
wavelets                           0.2
            Normalized amplitude




                                                                                                        0
                                                                                                         0    20        40     60     80      100        120
                                     0                                                                                    Frequency [Hz]


                                   -0.2                                                                                  Phase Spectrum
                                                                                                       80
                                   -0.4                                                                60
                                                                                                       40
                                                                                                                                                                Phase
                                                                                     Phase [degrees]
                                   -0.6                                                                20                                                       Spectrum
                                                                                                        0
                                   -0.8                                                                -20                                   Org-wav
                                                                                                                                             FA
                                                                                                       -40                                   KPE-wav
                                    -1                                                                 -60                                   LSA-wav
                                                                                                                                             STHWE-wav
                                                                                                       -80
                                      -100   -50           0            50     100                       5   10    15     20    25   30      35     40     45
                                                       Time [ms]                                                          Frequency [Hz]
Real Example: Stacked section
                                                            Input data

Input data to STHWE
                                           0.5

Wavelet length (wl) = 220 ms                1
Window length = 3 * wl
Window type = Hamming                      1.5
50 % Overlap
                                Time (s)

                                            2

                                           2.5

                                            3

  Comparisons with:                        3.5

  -   First arrival                         4
  -   Kurtosis Maximization (KPE).
                                                 50   100     150        200   250   300
             Van der Baan (2008)                              CDP
  -   LSA
  -   STHWE
Real Example: Stacked section
                                               Estimated Wavelets                                                     Amplitude Spectrum
                                     1
                                                                    FA                                                                     FA
                                                                                                           7
                                                                    KPE-wav                                                                KPE-wav
                                   0.8                              LSA-wav                                6                               LSA-wav
                                                                    STHWE-wav
                                                                                                           5
                                                                                                                                           STHWE-wav
                                                                                                                                                             Amp




                                                                                               Amplitude
                                   0.6                                                                     4
                                                                                                                                                             Spectrum
                                                                                                           3
Estimated                          0.4                                                                     2
wavelets                                                                                                   1
            Normalized amplitude




                                   0.2                                                                     0
                                                                                                            0    20   40     60     80      100        120
                                                                                                                        Frequency [Hz]
                                     0

                                                                                                                       Phase Spectrum
                                   -0.2                                                               80                                   FA
                                                                                                                                           KPE-wav
                                                                                                      60
                                                                                                                                           LSA-wav
                                                                                                                                                             Phase
                                   -0.4                                                               40
                                                                                 Phase [degrees]      20
                                                                                                                                           STHWE-wav
                                                                                                                                                             Spectrum
                                   -0.6                                                                    0
                                                                                                   -20
                                                                                                   -40
                                   -0.8
                                                                                                   -60
                                                                                                   -80
                                    -1
                                      -100   -50       0            50     100                                  10       20        30             40
                                                   Time [ms]                                                            Frequency [Hz]
Discussion
Pros and cons
• Wavelet could be recovered without any a priori
  assumption regarding the wavelet or the reflectivity.
• Log spectral averaging softens the sparse reflectivity
  assumption by increasing the amount of traces +
  reduces estimation variances.

• Selection window length in STFT important
Conclusions
• The short-time homomorphic wavelet
  estimation method provides stable results.
  – Comparable with the constant-phase kurtosis
    maximization.


• Future work: nonminimum phase surface-
  consistent deconvolution …
BLISS sponsors
BLind Identification of Seismic Signals (BLISS)
  is supported by



We also thank:
-   Chevron for providing the synthetic data example (D.
    Wilkinson)
-   BP for permission to use the real data example
-   Mauricio Sacchi for many insightful discussions

Más contenido relacionado

La actualidad más candente

Digital Signal Processing by Dr. R. Prakash Rao
Digital Signal Processing by Dr. R. Prakash Rao Digital Signal Processing by Dr. R. Prakash Rao
Digital Signal Processing by Dr. R. Prakash Rao Prakash Rao
 
Underwater Target Tracking Using Unscented Kalman Filter
Underwater Target Tracking Using Unscented Kalman FilterUnderwater Target Tracking Using Unscented Kalman Filter
Underwater Target Tracking Using Unscented Kalman FilterIJAPEJOURNAL
 
Time reversed acoustics - Mathias Fink
Time reversed acoustics - Mathias FinkTime reversed acoustics - Mathias Fink
Time reversed acoustics - Mathias FinkSébastien Popoff
 
Від побудови сейсмічних зображень до інверсії
Від побудови сейсмічних зображень до інверсіїВід побудови сейсмічних зображень до інверсії
Від побудови сейсмічних зображень до інверсіїSergey Starokadomsky
 
X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)Nigel Simmons
 
1 radar basic -part i 1
1 radar basic -part i 11 radar basic -part i 1
1 radar basic -part i 1Solo Hermelin
 
Dissertation Slides
Dissertation SlidesDissertation Slides
Dissertation SlidesSanghui Ahn
 
Slightly fishy - Combining NSOM with SEA TADPOLE
Slightly fishy - Combining NSOM with SEA TADPOLESlightly fishy - Combining NSOM with SEA TADPOLE
Slightly fishy - Combining NSOM with SEA TADPOLEJohanna Trägårdh
 
Fundamentals of Passive and Active Sonar Technical Training Short Course Sampler
Fundamentals of Passive and Active Sonar Technical Training Short Course SamplerFundamentals of Passive and Active Sonar Technical Training Short Course Sampler
Fundamentals of Passive and Active Sonar Technical Training Short Course SamplerJim Jenkins
 
Fundamentals of music processing chapter 6 발표자료
Fundamentals of music processing chapter 6 발표자료Fundamentals of music processing chapter 6 발표자료
Fundamentals of music processing chapter 6 발표자료Jeong Choi
 
Majorana Representation in Quantum Optics - SU(2) Interferometry and Uncertai...
Majorana Representation in Quantum Optics - SU(2) Interferometry and Uncertai...Majorana Representation in Quantum Optics - SU(2) Interferometry and Uncertai...
Majorana Representation in Quantum Optics - SU(2) Interferometry and Uncertai...Saroosh Shabbir
 
10 range and doppler measurements in radar systems
10 range and doppler measurements in radar systems10 range and doppler measurements in radar systems
10 range and doppler measurements in radar systemsSolo Hermelin
 
Numerical Analysis of Transom stern high speed ship
Numerical Analysis of Transom stern high speed shipNumerical Analysis of Transom stern high speed ship
Numerical Analysis of Transom stern high speed shipELANGOVAN Muniyandy
 
Pdpta11 G-Ensemble for Meteorological Prediction Enhancement
Pdpta11 G-Ensemble for Meteorological Prediction EnhancementPdpta11 G-Ensemble for Meteorological Prediction Enhancement
Pdpta11 G-Ensemble for Meteorological Prediction EnhancementHisham Ihshaish
 

La actualidad más candente (19)

Digital Signal Processing by Dr. R. Prakash Rao
Digital Signal Processing by Dr. R. Prakash Rao Digital Signal Processing by Dr. R. Prakash Rao
Digital Signal Processing by Dr. R. Prakash Rao
 
Underwater Target Tracking Using Unscented Kalman Filter
Underwater Target Tracking Using Unscented Kalman FilterUnderwater Target Tracking Using Unscented Kalman Filter
Underwater Target Tracking Using Unscented Kalman Filter
 
Time reversed acoustics - Mathias Fink
Time reversed acoustics - Mathias FinkTime reversed acoustics - Mathias Fink
Time reversed acoustics - Mathias Fink
 
Seismic velocity analysis in Anisotropic media
Seismic velocity analysis in Anisotropic mediaSeismic velocity analysis in Anisotropic media
Seismic velocity analysis in Anisotropic media
 
Seismic velocity analysis _ aghazade
Seismic velocity analysis _ aghazadeSeismic velocity analysis _ aghazade
Seismic velocity analysis _ aghazade
 
Від побудови сейсмічних зображень до інверсії
Від побудови сейсмічних зображень до інверсіїВід побудови сейсмічних зображень до інверсії
Від побудови сейсмічних зображень до інверсії
 
X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)X2 T07 03 circular motion (2010)
X2 T07 03 circular motion (2010)
 
Presentation
PresentationPresentation
Presentation
 
1 radar basic -part i 1
1 radar basic -part i 11 radar basic -part i 1
1 radar basic -part i 1
 
Dissertation Slides
Dissertation SlidesDissertation Slides
Dissertation Slides
 
Slightly fishy - Combining NSOM with SEA TADPOLE
Slightly fishy - Combining NSOM with SEA TADPOLESlightly fishy - Combining NSOM with SEA TADPOLE
Slightly fishy - Combining NSOM with SEA TADPOLE
 
Fundamentals of Passive and Active Sonar Technical Training Short Course Sampler
Fundamentals of Passive and Active Sonar Technical Training Short Course SamplerFundamentals of Passive and Active Sonar Technical Training Short Course Sampler
Fundamentals of Passive and Active Sonar Technical Training Short Course Sampler
 
Sebastian
SebastianSebastian
Sebastian
 
Fundamentals of music processing chapter 6 발표자료
Fundamentals of music processing chapter 6 발표자료Fundamentals of music processing chapter 6 발표자료
Fundamentals of music processing chapter 6 발표자료
 
on Thomesn's strange anisotropy parameter
on Thomesn's strange anisotropy parameteron Thomesn's strange anisotropy parameter
on Thomesn's strange anisotropy parameter
 
Majorana Representation in Quantum Optics - SU(2) Interferometry and Uncertai...
Majorana Representation in Quantum Optics - SU(2) Interferometry and Uncertai...Majorana Representation in Quantum Optics - SU(2) Interferometry and Uncertai...
Majorana Representation in Quantum Optics - SU(2) Interferometry and Uncertai...
 
10 range and doppler measurements in radar systems
10 range and doppler measurements in radar systems10 range and doppler measurements in radar systems
10 range and doppler measurements in radar systems
 
Numerical Analysis of Transom stern high speed ship
Numerical Analysis of Transom stern high speed shipNumerical Analysis of Transom stern high speed ship
Numerical Analysis of Transom stern high speed ship
 
Pdpta11 G-Ensemble for Meteorological Prediction Enhancement
Pdpta11 G-Ensemble for Meteorological Prediction EnhancementPdpta11 G-Ensemble for Meteorological Prediction Enhancement
Pdpta11 G-Ensemble for Meteorological Prediction Enhancement
 

Similar a Short-time homomorphic wavelet estimation

2010 APS_ Broadband Characteristics of A Dome Dipole Antenna
2010 APS_ Broadband Characteristics of A Dome Dipole Antenna2010 APS_ Broadband Characteristics of A Dome Dipole Antenna
2010 APS_ Broadband Characteristics of A Dome Dipole AntennaJing Zhao
 
IGARSS2011-TDX_Kostas_v3.pdf
IGARSS2011-TDX_Kostas_v3.pdfIGARSS2011-TDX_Kostas_v3.pdf
IGARSS2011-TDX_Kostas_v3.pdfgrssieee
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : WaveletsGabriel Peyré
 
Ee443 phase locked loop - presentation - schwappach and brandy
Ee443   phase locked loop - presentation - schwappach and brandyEe443   phase locked loop - presentation - schwappach and brandy
Ee443 phase locked loop - presentation - schwappach and brandyLoren Schwappach
 
Quadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitterQuadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitterAsaad Drake
 
Wavelet transform and its applications in data analysis and signal and image ...
Wavelet transform and its applications in data analysis and signal and image ...Wavelet transform and its applications in data analysis and signal and image ...
Wavelet transform and its applications in data analysis and signal and image ...Sourjya Dutta
 
Algorithm to remove spectral leakage
Algorithm to remove spectral leakageAlgorithm to remove spectral leakage
Algorithm to remove spectral leakageFangXuIEEE
 
Pulse Code Modulation
Pulse Code Modulation Pulse Code Modulation
Pulse Code Modulation ZunAib Ali
 
Fourier3
Fourier3Fourier3
Fourier3bubud75
 
Color Img at Prisma Network meeting 2009
Color Img at Prisma Network meeting 2009Color Img at Prisma Network meeting 2009
Color Img at Prisma Network meeting 2009Juan Luis Nieves
 
signal homework
signal homeworksignal homework
signal homeworksokok22867
 
Monte Carlo Simulation
Monte Carlo SimulationMonte Carlo Simulation
Monte Carlo SimulationAguinaldo Flor
 
Matlab 2
Matlab 2Matlab 2
Matlab 2asguna
 
Speech waves in tube and filters
Speech waves in tube and filtersSpeech waves in tube and filters
Speech waves in tube and filtersNikolay Karpov
 
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...dishii
 
Neuron-computer interface in Dynamic-Clamp experiments
Neuron-computer interface in Dynamic-Clamp experimentsNeuron-computer interface in Dynamic-Clamp experiments
Neuron-computer interface in Dynamic-Clamp experimentsSSA KPI
 
Synthesis network
Synthesis networkSynthesis network
Synthesis networkkrishna0024
 

Similar a Short-time homomorphic wavelet estimation (20)

The FFT And Spectral Analysis
The FFT And Spectral AnalysisThe FFT And Spectral Analysis
The FFT And Spectral Analysis
 
2010 APS_ Broadband Characteristics of A Dome Dipole Antenna
2010 APS_ Broadband Characteristics of A Dome Dipole Antenna2010 APS_ Broadband Characteristics of A Dome Dipole Antenna
2010 APS_ Broadband Characteristics of A Dome Dipole Antenna
 
IGARSS2011-TDX_Kostas_v3.pdf
IGARSS2011-TDX_Kostas_v3.pdfIGARSS2011-TDX_Kostas_v3.pdf
IGARSS2011-TDX_Kostas_v3.pdf
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : Wavelets
 
Ee443 phase locked loop - presentation - schwappach and brandy
Ee443   phase locked loop - presentation - schwappach and brandyEe443   phase locked loop - presentation - schwappach and brandy
Ee443 phase locked loop - presentation - schwappach and brandy
 
Quadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitterQuadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitter
 
Wavelet transform and its applications in data analysis and signal and image ...
Wavelet transform and its applications in data analysis and signal and image ...Wavelet transform and its applications in data analysis and signal and image ...
Wavelet transform and its applications in data analysis and signal and image ...
 
Algorithm to remove spectral leakage
Algorithm to remove spectral leakageAlgorithm to remove spectral leakage
Algorithm to remove spectral leakage
 
Pulse Code Modulation
Pulse Code Modulation Pulse Code Modulation
Pulse Code Modulation
 
Fourier3
Fourier3Fourier3
Fourier3
 
Color Img at Prisma Network meeting 2009
Color Img at Prisma Network meeting 2009Color Img at Prisma Network meeting 2009
Color Img at Prisma Network meeting 2009
 
signal homework
signal homeworksignal homework
signal homework
 
Monte Carlo Simulation
Monte Carlo SimulationMonte Carlo Simulation
Monte Carlo Simulation
 
Matlab 2
Matlab 2Matlab 2
Matlab 2
 
Speech waves in tube and filters
Speech waves in tube and filtersSpeech waves in tube and filters
Speech waves in tube and filters
 
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
 
Unit 8
Unit 8Unit 8
Unit 8
 
Neuron-computer interface in Dynamic-Clamp experiments
Neuron-computer interface in Dynamic-Clamp experimentsNeuron-computer interface in Dynamic-Clamp experiments
Neuron-computer interface in Dynamic-Clamp experiments
 
Synthesis network
Synthesis networkSynthesis network
Synthesis network
 
141 physics of mri
141 physics of mri141 physics of mri
141 physics of mri
 

Último

GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdflior mazor
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfhans926745
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 

Último (20)

GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 

Short-time homomorphic wavelet estimation

  • 1. Short-time wavelet estimation in the homomorphic domain Roberto H. Herrera and Mirko van der Baan University of Alberta, Edmonton, Canada rhherrer@ualberta.ca
  • 2. Homomorphic wavelet estimation • Objective: – Introduce a variant of short-time homomorphic wavelet estimation. • Possible applications: – nonminimum phase surface consistent deconvolution. FWI, AVO. • Main problem – To find a consistent wavelet estimation method based on homomorphic analysis. SCD done in homomorphic domain.
  • 3. Wavelet estimation How many eligible Convolutional wavelets are there? S ( z)  W (Z ) R(Z ) Model m- roots n- roots m = 3000; % length(s(t)) Possible n = 100; % length(w(t)) solutions Example Nw  2100 How to find the n roots of the wavelet, from the m roots of the seismogram ? Combinatorial problem!!! m! * Ziolkowski, A. (2001). CSEG Recorder, 26(6), 18–28. Nw  n ! m  n ! Nw  10200
  • 4. Homomorphic wavelet estimation • Why revisit homomorphic wavelet estimation? – Homomorphic = log (spectrum) – No minimum phase assumption • Main challenges: – Phase unwrapping – Somewhat sparse reflectivity
  • 5. Homomorphic wavelet estimation • Steps (Ulrych, Geophysics, 1971): – Take log( FT( observed signal) ) • s(t) = r(t)*w(t) <=> log(S(f)) = log(R(f)) + log(W(f)) – Real part is log (amplitude spectrum) – Imaginary part is phase – Natural separation amplitude and phase spectrum – Apply phase unwrapping + deramping – Take inverse Fourier transform: ŝ(t)=FT-1(log(S)) – Apply bandpass filtering on ŝ(t) = liftering • Or simply time-domain windowing + inverse transform – Recover the wavelet w(t)
  • 6. Homomorphic wavelet estimation Math Forward Backward s(t )  w(t )  r (t ) time time FT FT IFT frequency frequency S ( f )  W ( f ) R( f ) log exp log ˆ log-spectrum log-spectrum S ( f )  log(S ( f ))  log(| S ( f ) | e j arg[ S ( f )] )  log | S ( f ) |  j arg[S ( f )] IFT IFT FFT s(t )  w(t )  r (t ) ˆ ˆ ˆ quefrency quefrency
  • 7. Homomorphic wavelet estimation •Assumptions (Ulrych, Geophysics, 1971): –Somewhat sparse reflectivity –Minimum phase reflectivity •Exponential damping applied otherwise •Rationale: –Log leads to spectral whitening and wavelet shrinkage => isolation of single wavelet –Min phase reflectivity + deramping => Dominant contribution from near t=0 => emphasis on first arrival => maintains phase
  • 8. Illustration classical method Single echo Reflectivity = 2 spikes r = [1, …, 0.9,…] a - is the amplitude of the first echo, 0.9 (forcing the reflectivity to be minimum phase) δ – is the Dirac delta function. And the echo delay is t_0 = 20 ms. Ulrych (1971)
  • 9. Illustration classical method True Wavelet Minimum Phase Ref Simulated Trace 1 1 Normalized Amplitude True non-min 1 0.8 0.5 0.5 phase wavelet 0.6 0 0 0.4 -0.5 Min phase refl 0.2 -0.5 -1 0 -1 10 20 30 40 50 60 0 50 100 150 200 0 50 100 150 200 Time [ms] Time [ms] Time [ms] Log Amp Spectrum Wavelet Log Amp Spectrum Trace 0 Log-Amplitude -10 -10 -20 -20 Log-Spectrum -30 -30 0 50 100 150 200 250 0 50 100 150 200 250 Frequency [Hz] Deramped Phase Spectrum Wavelet Deramped Phase Spectrum Trace 80 50 Phase [degrees] 60 Phase 40 0 Spectrum 20 -50 0 0 50 100 150 200 250 0 50 100 150 200 250 Frequency [Hz] Frequency [Hz]
  • 10. Windowing Effects (Liftering) Complex cepstrum Trace + 3 Lifters 4 Normalized Amplitude 2 Complex 0 cepstrum -2 -4 -6 -150 -100 -50 0 50 100 150 Samples - Quefrency (segment) Estimated Wavelet LF1 Estimated Wavelet LF2 Estimated Wavelet LF3 0.2 0.2 0.2 Normalized Amplitude Estimated 0.1 0.1 0.1 wavelets 0 0 0 -0.1 -0.1 -0.1 240 260 280 240 260 280 240 260 280 Samples - Time Samples - Time Samples - Time
  • 11. Log spectral averaging • Liftering is “hopeless” • New assumption:  random reflectivity but stationary wavelet  the method becomes log-spectral averaging over many traces • Calculate the log-spectrum of many traces and average => removes reflectivity
  • 12. Log-spectrum Log-spectrum Wavelet(red) and Trace(blue) 0 Log-magnitude -5 Log- spectrum -10 -15 Fundamental Period = 50 Hz -20 0 50 100 150 200 250 Frequency [Hz] Cepstrum of the Trace 5 First Rahmonic Peak at 20 ms Amplitude Complex 0 cepstrum -5 -20 0 20 40 60 80 100 120 140 Quefrency [ms]
  • 13. Our Approach – Cepstral stacking (Log-spectral averaging) • Wavelet is invariant while reflectivity is spatially non- stationary – Following the Central Limit Theorem, r(t) will tend to a mean value !!! • Requires minimum-phase reflectivity or at least strong first arrival – Averaging the log-spectrum of the STFT • Like the Welch transform in the log-spectrum domain.
  • 14. Our Approach Data IN Spectrogram TF - Overlapping segments Complex Re LOG-Spectrum Img Amplitude LOG-Spectrum Phase Spectrum Phase unwrapping + Deramping 1/N ∑ = Average 1/N ∑ = Average EXP + IFT Estimated Wavelet
  • 15. Our Approach • Assumptions – Random reflectivity – Stationary wavelet – Nonminimum, frequency-dependent wavelet phase – Nonminimum-phase reflectivity • Deramping + Averaging of log(spectra) emphasizes main reflections => most important contribution to wavelet estimate
  • 16. Realistic example Chevron - Dataset Input data to STHWE 0.2 Wavelet length (wl) = 220 ms 0.4 Window length = 3 * wl 0.6 Window type = Hamming 50 % Overlap 0.8 1 Time (s) 1.2 1.4 Comparisons with: 1.6 - Original-wav 1.8 - First arrival - Kurtosis Maximization (KPE). 2 Van der Baan (2008) 2.2 - LSA 50 100 150 200 250 300 350 400 - STHWE CDP
  • 17. Elements of comparison • Different wavelet estimates – Log spectral averaging of entire trace (LSA) – Constant-phase wavelet estimated using kurtosis maximization (= KPE) – STFT log spectral averaging (=STHWE) • Compare with true wavelet + first arrival
  • 18. Realistic example Estimated Wavelets Amplitude Spectrum 1 Org-wav Org-wav FA 10 FA 0.8 KPE-wav KPE-wav LSA-wav 8 LSA-wav STHWE-wav STHWE-wav Amp Amplitude 0.6 6 Spectrum 0.4 4 Estimated 2 wavelets 0.2 Normalized amplitude 0 0 20 40 60 80 100 120 0 Frequency [Hz] -0.2 Phase Spectrum 80 -0.4 60 40 Phase Phase [degrees] -0.6 20 Spectrum 0 -0.8 -20 Org-wav FA -40 KPE-wav -1 -60 LSA-wav STHWE-wav -80 -100 -50 0 50 100 5 10 15 20 25 30 35 40 45 Time [ms] Frequency [Hz]
  • 19. Real Example: Stacked section Input data Input data to STHWE 0.5 Wavelet length (wl) = 220 ms 1 Window length = 3 * wl Window type = Hamming 1.5 50 % Overlap Time (s) 2 2.5 3 Comparisons with: 3.5 - First arrival 4 - Kurtosis Maximization (KPE). 50 100 150 200 250 300 Van der Baan (2008) CDP - LSA - STHWE
  • 20. Real Example: Stacked section Estimated Wavelets Amplitude Spectrum 1 FA FA 7 KPE-wav KPE-wav 0.8 LSA-wav 6 LSA-wav STHWE-wav 5 STHWE-wav Amp Amplitude 0.6 4 Spectrum 3 Estimated 0.4 2 wavelets 1 Normalized amplitude 0.2 0 0 20 40 60 80 100 120 Frequency [Hz] 0 Phase Spectrum -0.2 80 FA KPE-wav 60 LSA-wav Phase -0.4 40 Phase [degrees] 20 STHWE-wav Spectrum -0.6 0 -20 -40 -0.8 -60 -80 -1 -100 -50 0 50 100 10 20 30 40 Time [ms] Frequency [Hz]
  • 21. Discussion Pros and cons • Wavelet could be recovered without any a priori assumption regarding the wavelet or the reflectivity. • Log spectral averaging softens the sparse reflectivity assumption by increasing the amount of traces + reduces estimation variances. • Selection window length in STFT important
  • 22. Conclusions • The short-time homomorphic wavelet estimation method provides stable results. – Comparable with the constant-phase kurtosis maximization. • Future work: nonminimum phase surface- consistent deconvolution …
  • 23. BLISS sponsors BLind Identification of Seismic Signals (BLISS) is supported by We also thank: - Chevron for providing the synthetic data example (D. Wilkinson) - BP for permission to use the real data example - Mauricio Sacchi for many insightful discussions