SlideShare una empresa de Scribd logo
1 de 36
Descargar para leer sin conexión
1 / 23
Hyperfunction Method for Numerical Integration
and Fredholm Integral Equations of the Second Kind
Hidenori Ogata
The University of Electro-Communications, Japan
13 July, 2017
Aim of this study
2 / 23
Hyperfunction theory (M. Sato, 1958)✓ ✏
• A theory of generalized functions based on complex function theory.
• A “hyperfunction” is expressed in terms of complex analytic functions.
hyperfunctions
= functions with singularities
pole
discontinuity
delta impluse, ...
←−
complex analytic function
easy to treat
numerically
✒ ✑
In this talk, we propose hyperfunction methods for
• numerical integration
• Fredholm integral equations of the second kind.
Contents
3 / 23
1. Hyperfunction thoery
2. Hyperfunction method for numerical integration
3. Hyperfunction method for Fredholm integral equations
4. Summary
Contents
4 / 23
1. Hyperfunction thoery
2. Hyperfunction method for numerical integration
3. Hyperfunction method for Fredholm integral equations
4. Summary
1. Hyperfunction theory
5 / 23
Hyperfunction theory (M. Sato, 1958)✓ ✏
• hyperfunction on an interval I
. . . the difference between the values of a complex analytic funtion F(z) on I
f(x) = [F(z)] ≡ F(x + i0) − F(x − i0).
F(z) : defining function of the hyperfunction f(x)
analytic in D  I, where D is a complex neighborhood of I
✒ ✑
D
I
F(z)
=Re z
m z
1. Hyperfunctions: examples
6 / 23
Dirac’s delta function
δ(x) = −
1
2πi
1
x + i0
−
1
x − i0
.
1. Hyperfunctions: examples
6 / 23
Dirac’s delta function
δ(x) = −
1
2πi
1
x + i0
−
1
x − i0
.
O
D
a b
C
+ǫ
−ǫ
Suppose that φ(z) is analytic in D. By Cauchy’s integral formula,
φ(0) =
b
a
φ(x)δ(x)dx = −
1
2πi
b
a
φ(x)
1
x + i0
−
1
x − i0
dx.
1. Hyperfunctions: examples
6 / 23
Dirac’s delta function
δ(x) = −
1
2πi
1
x + i0
−
1
x − i0
.
O
D
a b
C
+ǫ
−ǫ
Suppose that φ(z) is analytic in D. By Cauchy’s integral formula,
φ(0) =
b
a
φ(x)δ(x)dx = −
1
2πi
b
a
φ(x)
1
x + i0
−
1
x − i0
dx.
1. Hyperfunction: examples
7 / 23
Heaviside step function
H(x) =
1 ( x > 0 )
0 ( x < 0 )
= F(x + i0) − F(x − i0), F(z) = −
1
2πi
log(−z).
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1Re z
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
Im z
-1
-0.5
0
0.5
1
Re F(z)
The real part of F(z) = −
1
2πi
log(−z).
1. Hyperfunction theory: integral
8 / 23
integral of a hyperfunction✓ ✏
f(x) = F(x + i0) − F(x − i0) : hyperfunction on an interval I
I
f(x)dx ≡ −
C
F(z)dz,
C : closed path encircling I in the positive sense and included in D
(F(z) is analytic in D  I)
✒ ✑
D
C
I
1. Hyperfunction theory: integral
8 / 23
integral of a hyperfunction✓ ✏
f(x) = F(x + i0) − F(x − i0) : hyperfunction on an interval I
I
f(x)dx ≡ −
C
F(z)dz,
C : closed path encircling I in the positive sense and included in D
(F(z) is analytic in D  I)
✒ ✑
D
C
I
I
f(x)dx =
I
[F(x + i0) − F(x − i0)] dx.
Contents
9 / 23
1. Hyperfunction thoery
2. Hyperfunction method for numerical integration
3. Hyperfunction method for Fredholm integral equations
4. Summary
2. Hyperfunction method for numerical integration
10 / 23
We consider an integral of the form
I
f(x)w(x)dx,
f(x) : analytic in D (I ⊂ D ⊂ C, )
w(x) : weight function.
D
I
2. Hyperfunction method for numerical integration
10 / 23
We consider an integral of the form
I
f(x)w(x)dx,
f(x) : analytic in D (I ⊂ D ⊂ C, )
w(x) : weight function.
D
I
We can regard the integrand as a hyperfunction.
✓ ✏
f(x)w(x)χI(x) = −
1
2πi
{f(x + i0)Ψ(x + i0) − f(x − i0)Ψ(x − i0)}
with χI(x) =
1 (x ∈ I)
0 (x ∈ I)
, Ψ(z) =
I
w(x)
z − x
dx.
✒ ✑
2. Hyperfunction method for numerical integration
10 / 23
We consider an integral of the form
I
f(x)w(x)dx,
f(x) : analytic in D (I ⊂ D ⊂ C, )
w(x) : weight function.
D
C : z = ϕ(u)
I
We can regard the integrand as a hyperfunction.
✓ ✏
I
f(x)w(x)dx =
1
2πi C
f(z)Ψ(z)dz
=
1
2πi
τperiod
0
f(ϕ(τ))Ψ(ϕ(τ))ϕ′
(τ)dτ,
C : z = ϕ(τ) ( 0 ≦ τ ≦ τperiod ) periodic function (of period τperiod)
✒ ✑
Approximating the complex integral by the trapezoidal rule, we have ...
2. Hyperfunction method for numerical integration
11 / 23
Hyperfunction method✓ ✏
I
f(x)w(x)dx ≃
h
2πi
N−1
k=0
f(ϕ(kh))Ψ(ϕ(kh))ϕ′
(kh),
with Ψ(z) =
b
a
w(x)
z − x
dx and h =
τperiod
N
.
✒ ✑
D
C : z = ϕ(τ), 0 ≦ τ ≦ τperiod
I
2. Hyperfunction method for numerical integration
11 / 23
Hyperfunction method✓ ✏
I
f(x)w(x)dx ≃
h
2πi
N−1
k=0
f(ϕ(kh))Ψ(ϕ(kh))ϕ′
(kh),
with Ψ(z) =
b
a
w(x)
z − x
dx and h =
τperiod
N
.
✒ ✑
Ψ(z) for some typical weight functions w(x)
I w(x) Ψ(z)
(a, b) 1 log
z − a
z − b
∗
(0, 1) xα−1
(1 − x)β−1
B(α, β)z−1
F(α, 1; α + β; z−1
)∗∗
( α, β > 0 )
∗ log z is the branch s.t. −π ≦ arg z < π.
∗∗ F(α, 1; α + β; z−1
) can be easily evaluated using a continued fraction.
2. Hyperfunction method for numerical integration
11 / 23
Hyperfunction method✓ ✏
I
f(x)w(x)dx ≃
h
2πi
N−1
k=0
f(ϕ(kh))Ψ(ϕ(kh))ϕ′
(kh),
with Ψ(z) =
b
a
w(x)
z − x
dx and h =
τperiod
N
.
✒ ✑
If f(z) is real-valued on R, we can reduce the number of sampling points N by half
using the reflection principle.
2. Numerical integration: theoretical error estimate
12 / 23
theoretical error estimate✓ ✏
If f(ϕ(w)) and ϕ(w) are analytic in | Im w| < d0,
|error| ≦
τperiod
π
max
Im w=±d
|f(ϕ(w))Ψ(ϕ(w))ϕ′
(w)|
×
exp(−(4πd/τperiod)N)
1 − exp(−(4πd/uperiod)N)
( 0 < ∀d < d0 ).
. . . geometric convergence.
✒ ✑
2. Numerical integration: example
13 / 23
✓ ✏
1
0
ex
xα−1
(1 − x)β−1
dx = B(α, β)F(α; α + β; 1) ( α, β > 0 ).
✒ ✑
We computed this integral by
• hyperfunction method (with N reduction),
• DE formula (efficient for integrals with end-point singularities)
• Gauss-Jacobi formula
• C++ program, double precision
• complex integral path for the hyperfunction method (an ellipse)
z = ϕ(τ) =
1
2
+
1
4
ρ +
1
ρ
cos τ +
i
4
ρ −
1
ρ
sin τ ( ρ = 10 )
= 0.5 + 2.575 cos τ + i2.425 sin τ.
2. Numerical integration: example
14 / 23
-16
-14
-12
-10
-8
-6
-4
-2
0
0 10 20 30 40 50 60
log10(error)
N
hyperfunction
hyperfunction
Gauss-Jacobi
Gauss-Jacobi
DE
DE
-16
-14
-12
-10
-8
-6
-4
-2
0
0 20 40 60 80 100 120
log10(error)
N
hyperfunction
hyperfunction
Gauss-Jacobi
DE
DE
α = β = 0.5 α = β = 10−4
(very strong singularities)
The errors of the hyperfunction method, Gauss-Jacobi formula and the DE formula
hyperfunction Gauss-Jacobi DE
α = β = 0.5 O(0.025N
) O((8.2 × 10−4
)N
) O(0.36N
)
α = β = 10−4
O(0.029N
) — O(0.70N
)
2. Numerical integration: example
14 / 23
-16
-14
-12
-10
-8
-6
-4
-2
0
0 10 20 30 40 50 60
log10(error)
N
hyperfunction
hyperfunction
Gauss-Jacobi
Gauss-Jacobi
DE
DE
-16
-14
-12
-10
-8
-6
-4
-2
0
0 20 40 60 80 100 120
log10(error)
N
hyperfunction
hyperfunction
Gauss-Jacobi
DE
DE
α = β = 0.5 α = β = 10−4
(very strong singularities)
The hyperfunction method converges geometricaly,
and its performance is not affected by the end-point singularities.
Contents
15 / 23
1. Hyperfunction thoery
2. Hyperfunction method for numerical integration
3. Hyperfunction method for Fredholm integral equations
4. Summary
3. Hyperfunction method for integral equations
16 / 23
Fredholm integral equation for unknown u(x)✓ ✏
λu(x) −
b
a
K(x, ξ)u(ξ)w(ξ)dξ = g(x),
w(ξ) : weight function, K(x, ξ), g(x), λ(= 0) : given.
✒ ✑
We apply the hyperfunction method to this integral equation.
3. Hyperfunction method for integral equations
17 / 23
λu(x) −
b
a
K(x, ξ)u(ξ)w(ξ)dξ = g(x).
(Assumption)
• g(z) : analytic in D except for
a finite number of poles at a1, . . . , aK
• K(z, ζ) : analytic function in D w.r.t. z and ζ D
a b
ak
3. Hyperfunction method for integral equations
17 / 23
λu(x) −
b
a
K(x, ξ)u(ξ)w(ξ)dξ = g(x).
(Assumption)
• g(z) : analytic in D except for
a finite number of poles at a1, . . . , aK
• K(z, ζ) : analytic function in D w.r.t. z and ζ D
a b
ak
ua(z) ≡ u(z) − λ−1
g(z) is analytic in D.
ua(x) satisfies the integral equation
✓ ✏
λua(x) −
b
a
K(x, ξ)ua(ξ)w(ξ)dξ =
1
λ
b
a
K(x, ξ)g(ξ)w(ξ)dξ.
✒ ✑
1. We discretize the integral equation for ua(x) by the hyperfunction method.
2. We solve the discretized equation by the collocation method.
3. Integral equations: Collocation equation
18 / 23
h
2πi
N
k=1
λ
ϕ(kh) − zi
− K(zi, ϕ(kh))Ψ(ϕ(kh)) ϕ′
(ϕ(kh))ua(ϕ(kh))
=
1
2πiλ C
K(zi, ζ)g(ζ)Ψ(ζ)dζ−
1
λ
N
k=1
Res(K(zi, ·)Ψg, ak) (i = 1, . . . , N),
where
C : z = ϕ(τ) ( 0 ≦ τ ≦ τperiod ) closed path encircling [a, b],
periodic function (period τperiod)
z1, . . . , zN : the collocation points inside C, h = τperiod/N.
The collocation equation
... a system of linear equations for ua(ϕ(kh))
( k = 1, . . . , N ). a b
ak
C : z = ϕ(τ)
D
zi
3. Integral equations: Collocation equation
18 / 23
h
2πi
N
k=1
λ
ϕ(kh) − zi
− K(zi, ϕ(kh))Ψ(ϕ(kh)) ϕ′
(ϕ(kh))ua(ϕ(kh))
=
1
2πiλ C
K(zi, ζ)g(ζ)Ψ(ζ)dζ−
1
λ
N
k=1
Res(K(zi, ·)Ψg, ak) (i = 1, . . . , N),
where
C : z = ϕ(τ) ( 0 ≦ τ ≦ τperiod ) closed path encircling [a, b],
periodic function (period τperiod)
z1, . . . , zN : the collocation points inside C, h = τperiod/N.
The approximate solution u(z) is given by
u(z) =
1
2πi C
ua(ζ)
ζ − z
dζ + g(z)
≃
h
2πi
N
j=1
ua(ϕ(kh))
ϕ(kh) − z
ϕ′
(kh) + g(z).
a b
ak
C : z = ϕ(τ)
D
zi
3. Integral equations: example
19 / 23
✓ ✏
u(x) +
1
0
(x − ξ)u(ξ)ξα−1
(1 − ξ)β−1
dξ = g(x),
g(x) =
1
1 + x2
+ B(α, β) Re{F(α, 1; α + β; i)}x
− B(α + 1, β) Re{F(α + 1, 1; α + β + 1; i)} ( α = β = 0.5, 10−4
).
✒ ✑
We solved the integral equation by the hyperfunction method, DE-Nystr¨om method and
Gauss-Jacobi-Nystr¨om method.
• complex integral path
C : z = ϕ(τ) =
1
2
+
1
4
ρ +
1
ρ
cos τ +
i
4
ρ −
1
ρ
sin τ ( ρ = 200 )
• collocation points zi = ϕcol
2π(i − 1)
N
( i = 1, . . . , N )
ϕc(τ) =
1
2
+
1
4
ρc +
1
ρc
cos τ +
i
4
ρc −
1
ρc
sin τ ( 1 < ρc < ρ ).
3. Integral equations: example (α = β = 0.5)
20 / 23
-60
-50
-40
-30
-20
-10
0
0 20 40 60 80 100
log10(error)
N
rhoc=1.2
rhoc=2.0
rhoc=4.0
rhoc=6.0
rhoc=8.0
DE
Gauss-Jacobi
0
20
40
60
80
100
0 20 40 60 80 100
log10(cond)
N
rhoc=1.2
rhoc=2.0
rhoc=4.0
rhoc=6.0
rhoc=8.0
DE
Gauss-Jacobi
error ǫN condition number κN of
the collocation equation
(rhoc = ρc)
ρc/ρ 0.006 0.01 0.02 0.03 0.04
ǫN O(0.0058N
) O(0.010N
) O(0.020N
) O(0.030N
) O(0.040N
)
κN O(160N
) O(97N
) O(48N
) O(32N
) O(23N
)
3. Integral equations: example (α = β = 0.5)
20 / 23
-60
-50
-40
-30
-20
-10
0
0 20 40 60 80 100
log10(error)
N
rhoc=1.2
rhoc=2.0
rhoc=4.0
rhoc=6.0
rhoc=8.0
DE
Gauss-Jacobi
0
20
40
60
80
100
0 20 40 60 80 100
log10(cond)
N
rhoc=1.2
rhoc=2.0
rhoc=4.0
rhoc=6.0
rhoc=8.0
DE
Gauss-Jacobi
error ǫN condition number κN of
the collocation equation
(rhoc = ρc)
ρc/ρ 0.006 0.01 0.02 0.03 0.04
ǫN O(0.0058N
) O(0.010N
) O(0.020N
) O(0.030N
) O(0.040N
)
κN O(160N
) O(97N
) O(48N
) O(32N
) O(23N
)
• error ǫN = O[(ρc/ρ)N
], cond. number κN = O[(ρ/ρc)N
].
• converges faster than the DE-Nystr¨om method.
• The linear system of the collocation equation is very ill-conditioned.
3. Integral equations: example (α = β = 10−4
)
21 / 23
-60
-50
-40
-30
-20
-10
0
0 20 40 60 80 100
log10(error)
N
rhoc=1.2
rhoc=2.0
rhoc=4.0
rhoc=6.0
rhoc=8.0
DE
Gauss-Jacobi
0
20
40
60
80
100
0 20 40 60 80 100
log10(cond)
N
rhoc=1.2
rhoc=2.0
rhoc=4.0
rhoc=6.0
rhoc=8.0
DE
Gauss-Jacobi
error ǫN condition number κN of
the collocation equation
(rhoc = ρc)
ρcol/ρ 0.006 0.01 0.02 0.03 0.04
ǫN O(0.0058N
) O(0.010N
) O(0.020N
) O(0.030N
) O(0.040N
)
κN O(160N
) O(97N
) O(48N
) O(32N
) O(24N
)
3. Integral equations: example (α = β = 10−4
)
21 / 23
-60
-50
-40
-30
-20
-10
0
0 20 40 60 80 100
log10(error)
N
rhoc=1.2
rhoc=2.0
rhoc=4.0
rhoc=6.0
rhoc=8.0
DE
Gauss-Jacobi
0
20
40
60
80
100
0 20 40 60 80 100
log10(cond)
N
rhoc=1.2
rhoc=2.0
rhoc=4.0
rhoc=6.0
rhoc=8.0
DE
Gauss-Jacobi
error ǫN condition number κN of
the collocation equation
(rhoc = ρc)
ρcol/ρ 0.006 0.01 0.02 0.03 0.04
ǫN O(0.0058N
) O(0.010N
) O(0.020N
) O(0.030N
) O(0.040N
)
κN O(160N
) O(97N
) O(48N
) O(32N
) O(24N
)
• error ǫN = O[(ρcol/ρ)N
], cond. number κN = O[(ρ/ρcol)N
].
• The DE-Nystr¨om method does not work if the end-point singularities are
very strong.
Contents
22 / 23
1. Hyperfunction thoery
2. Hyperfunction method for numerical integration
3. Hyperfunction method for Fredholm integral equations
4. Summary
4. Summary
23 / 23
• We applied hyperfunction theory to numerical integration and Fredholm integral
equations of the second kind.
◦ Hyperfunction theory: a generalized function theory where a “hyperfunction” is
expressed in terms of complex analytic functions.
◦ A hyperfunction integral is given by a complex loop integral, which is evaluated
numerically in the hyperfunction method.
• Hyperfunction method
◦ (Theoretical error estimate) geometric convergence
◦ (Numerical examples) efficiency for problems with strong end-point singularities
◦ Integral equation: The linear system of the collocation equation is
very ill-conditioned.
• Problems for future study
◦ Volterra integral equations.
◦ theoretical error estimate.
4. Summary
23 / 23
• We applied hyperfunction theory to numerical integration and Fredholm integral
equations of the second kind.
◦ Hyperfunction theory: a generalized function theory where a “hyperfunction” is
expressed in terms of complex analytic functions.
◦ A hyperfunction integral is given by a complex loop integral, which is evaluated
numerically in the hyperfunction method.
• Hyperfunction method
◦ (Theoretical error estimate) geometric convergence
◦ (Numerical examples) efficiency for problems with strong end-point singularities
◦ Integral equation: The linear system of the collocation equation is
very ill-conditioned.
• Problems for future study
◦ Volterra integral equations.
◦ theoretical error estimate.
Thank you!

Más contenido relacionado

La actualidad más candente

Probability Formula sheet
Probability Formula sheetProbability Formula sheet
Probability Formula sheetHaris Hassan
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted ParaproductsVjekoslavKovac1
 
Proximal Splitting and Optimal Transport
Proximal Splitting and Optimal TransportProximal Splitting and Optimal Transport
Proximal Splitting and Optimal TransportGabriel Peyré
 
Probability cheatsheet
Probability cheatsheetProbability cheatsheet
Probability cheatsheetSuvrat Mishra
 
Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014Nikita V. Artamonov
 
slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceArthur Charpentier
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsVjekoslavKovac1
 
ABC based on Wasserstein distances
ABC based on Wasserstein distancesABC based on Wasserstein distances
ABC based on Wasserstein distancesChristian Robert
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsFrank Nielsen
 
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsA T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsVjekoslavKovac1
 
Multiple estimators for Monte Carlo approximations
Multiple estimators for Monte Carlo approximationsMultiple estimators for Monte Carlo approximations
Multiple estimators for Monte Carlo approximationsChristian Robert
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon informationFrank Nielsen
 
Testing for mixtures by seeking components
Testing for mixtures by seeking componentsTesting for mixtures by seeking components
Testing for mixtures by seeking componentsChristian Robert
 
Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Daisuke Yoneoka
 
Poster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conferencePoster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conferenceChristian Robert
 

La actualidad más candente (20)

QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Probability Formula sheet
Probability Formula sheetProbability Formula sheet
Probability Formula sheet
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted Paraproducts
 
Proximal Splitting and Optimal Transport
Proximal Splitting and Optimal TransportProximal Splitting and Optimal Transport
Proximal Splitting and Optimal Transport
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Probability cheatsheet
Probability cheatsheetProbability cheatsheet
Probability cheatsheet
 
Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014
 
slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial science
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
ABC based on Wasserstein distances
ABC based on Wasserstein distancesABC based on Wasserstein distances
ABC based on Wasserstein distances
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metrics
 
the ABC of ABC
the ABC of ABCthe ABC of ABC
the ABC of ABC
 
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsA T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
 
Prml
PrmlPrml
Prml
 
Multiple estimators for Monte Carlo approximations
Multiple estimators for Monte Carlo approximationsMultiple estimators for Monte Carlo approximations
Multiple estimators for Monte Carlo approximations
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon information
 
Testing for mixtures by seeking components
Testing for mixtures by seeking componentsTesting for mixtures by seeking components
Testing for mixtures by seeking components
 
Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9
 
Poster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conferencePoster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conference
 

Similar a Hyperfunction method for numerical integration and Fredholm integral equations of the second kind

Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Valentin De Bortoli
 
Tensor Train data format for uncertainty quantification
Tensor Train data format for uncertainty quantificationTensor Train data format for uncertainty quantification
Tensor Train data format for uncertainty quantificationAlexander Litvinenko
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus OlooPundit
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionCharles Deledalle
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfAlexander Litvinenko
 
03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctionsSufyan Sahoo
 
Backpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkBackpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkHiroshi Kuwajima
 
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMSSOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMSTahia ZERIZER
 
Roots equations
Roots equationsRoots equations
Roots equationsoscar
 
Roots equations
Roots equationsRoots equations
Roots equationsoscar
 
Differentiation
DifferentiationDifferentiation
Differentiationpuspitaaya
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptxlesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptxJohnReyManzano2
 

Similar a Hyperfunction method for numerical integration and Fredholm integral equations of the second kind (20)

Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...
 
Tensor Train data format for uncertainty quantification
Tensor Train data format for uncertainty quantificationTensor Train data format for uncertainty quantification
Tensor Train data format for uncertainty quantification
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
The integral
The integralThe integral
The integral
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
 
ma112011id535
ma112011id535ma112011id535
ma112011id535
 
Ece3075 a 8
Ece3075 a 8Ece3075 a 8
Ece3075 a 8
 
Maths AIP.pdf
Maths AIP.pdfMaths AIP.pdf
Maths AIP.pdf
 
Functions
FunctionsFunctions
Functions
 
03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctions
 
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
 
Backpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkBackpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural Network
 
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMSSOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
 
Roots equations
Roots equationsRoots equations
Roots equations
 
Roots equations
Roots equationsRoots equations
Roots equations
 
Differentiation
DifferentiationDifferentiation
Differentiation
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptxlesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
 

Último

VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 

Último (20)

VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 

Hyperfunction method for numerical integration and Fredholm integral equations of the second kind

  • 1. 1 / 23 Hyperfunction Method for Numerical Integration and Fredholm Integral Equations of the Second Kind Hidenori Ogata The University of Electro-Communications, Japan 13 July, 2017
  • 2. Aim of this study 2 / 23 Hyperfunction theory (M. Sato, 1958)✓ ✏ • A theory of generalized functions based on complex function theory. • A “hyperfunction” is expressed in terms of complex analytic functions. hyperfunctions = functions with singularities pole discontinuity delta impluse, ... ←− complex analytic function easy to treat numerically ✒ ✑ In this talk, we propose hyperfunction methods for • numerical integration • Fredholm integral equations of the second kind.
  • 3. Contents 3 / 23 1. Hyperfunction thoery 2. Hyperfunction method for numerical integration 3. Hyperfunction method for Fredholm integral equations 4. Summary
  • 4. Contents 4 / 23 1. Hyperfunction thoery 2. Hyperfunction method for numerical integration 3. Hyperfunction method for Fredholm integral equations 4. Summary
  • 5. 1. Hyperfunction theory 5 / 23 Hyperfunction theory (M. Sato, 1958)✓ ✏ • hyperfunction on an interval I . . . the difference between the values of a complex analytic funtion F(z) on I f(x) = [F(z)] ≡ F(x + i0) − F(x − i0). F(z) : defining function of the hyperfunction f(x) analytic in D I, where D is a complex neighborhood of I ✒ ✑ D I F(z) =Re z m z
  • 6. 1. Hyperfunctions: examples 6 / 23 Dirac’s delta function δ(x) = − 1 2πi 1 x + i0 − 1 x − i0 .
  • 7. 1. Hyperfunctions: examples 6 / 23 Dirac’s delta function δ(x) = − 1 2πi 1 x + i0 − 1 x − i0 . O D a b C +ǫ −ǫ Suppose that φ(z) is analytic in D. By Cauchy’s integral formula, φ(0) = b a φ(x)δ(x)dx = − 1 2πi b a φ(x) 1 x + i0 − 1 x − i0 dx.
  • 8. 1. Hyperfunctions: examples 6 / 23 Dirac’s delta function δ(x) = − 1 2πi 1 x + i0 − 1 x − i0 . O D a b C +ǫ −ǫ Suppose that φ(z) is analytic in D. By Cauchy’s integral formula, φ(0) = b a φ(x)δ(x)dx = − 1 2πi b a φ(x) 1 x + i0 − 1 x − i0 dx.
  • 9. 1. Hyperfunction: examples 7 / 23 Heaviside step function H(x) = 1 ( x > 0 ) 0 ( x < 0 ) = F(x + i0) − F(x − i0), F(z) = − 1 2πi log(−z). -0.4 -0.2 0 0.2 0.4 0.6 0.8 1Re z -0.6 -0.4 -0.2 0 0.2 0.4 0.6 Im z -1 -0.5 0 0.5 1 Re F(z) The real part of F(z) = − 1 2πi log(−z).
  • 10. 1. Hyperfunction theory: integral 8 / 23 integral of a hyperfunction✓ ✏ f(x) = F(x + i0) − F(x − i0) : hyperfunction on an interval I I f(x)dx ≡ − C F(z)dz, C : closed path encircling I in the positive sense and included in D (F(z) is analytic in D I) ✒ ✑ D C I
  • 11. 1. Hyperfunction theory: integral 8 / 23 integral of a hyperfunction✓ ✏ f(x) = F(x + i0) − F(x − i0) : hyperfunction on an interval I I f(x)dx ≡ − C F(z)dz, C : closed path encircling I in the positive sense and included in D (F(z) is analytic in D I) ✒ ✑ D C I I f(x)dx = I [F(x + i0) − F(x − i0)] dx.
  • 12. Contents 9 / 23 1. Hyperfunction thoery 2. Hyperfunction method for numerical integration 3. Hyperfunction method for Fredholm integral equations 4. Summary
  • 13. 2. Hyperfunction method for numerical integration 10 / 23 We consider an integral of the form I f(x)w(x)dx, f(x) : analytic in D (I ⊂ D ⊂ C, ) w(x) : weight function. D I
  • 14. 2. Hyperfunction method for numerical integration 10 / 23 We consider an integral of the form I f(x)w(x)dx, f(x) : analytic in D (I ⊂ D ⊂ C, ) w(x) : weight function. D I We can regard the integrand as a hyperfunction. ✓ ✏ f(x)w(x)χI(x) = − 1 2πi {f(x + i0)Ψ(x + i0) − f(x − i0)Ψ(x − i0)} with χI(x) = 1 (x ∈ I) 0 (x ∈ I) , Ψ(z) = I w(x) z − x dx. ✒ ✑
  • 15. 2. Hyperfunction method for numerical integration 10 / 23 We consider an integral of the form I f(x)w(x)dx, f(x) : analytic in D (I ⊂ D ⊂ C, ) w(x) : weight function. D C : z = ϕ(u) I We can regard the integrand as a hyperfunction. ✓ ✏ I f(x)w(x)dx = 1 2πi C f(z)Ψ(z)dz = 1 2πi τperiod 0 f(ϕ(τ))Ψ(ϕ(τ))ϕ′ (τ)dτ, C : z = ϕ(τ) ( 0 ≦ τ ≦ τperiod ) periodic function (of period τperiod) ✒ ✑ Approximating the complex integral by the trapezoidal rule, we have ...
  • 16. 2. Hyperfunction method for numerical integration 11 / 23 Hyperfunction method✓ ✏ I f(x)w(x)dx ≃ h 2πi N−1 k=0 f(ϕ(kh))Ψ(ϕ(kh))ϕ′ (kh), with Ψ(z) = b a w(x) z − x dx and h = τperiod N . ✒ ✑ D C : z = ϕ(τ), 0 ≦ τ ≦ τperiod I
  • 17. 2. Hyperfunction method for numerical integration 11 / 23 Hyperfunction method✓ ✏ I f(x)w(x)dx ≃ h 2πi N−1 k=0 f(ϕ(kh))Ψ(ϕ(kh))ϕ′ (kh), with Ψ(z) = b a w(x) z − x dx and h = τperiod N . ✒ ✑ Ψ(z) for some typical weight functions w(x) I w(x) Ψ(z) (a, b) 1 log z − a z − b ∗ (0, 1) xα−1 (1 − x)β−1 B(α, β)z−1 F(α, 1; α + β; z−1 )∗∗ ( α, β > 0 ) ∗ log z is the branch s.t. −π ≦ arg z < π. ∗∗ F(α, 1; α + β; z−1 ) can be easily evaluated using a continued fraction.
  • 18. 2. Hyperfunction method for numerical integration 11 / 23 Hyperfunction method✓ ✏ I f(x)w(x)dx ≃ h 2πi N−1 k=0 f(ϕ(kh))Ψ(ϕ(kh))ϕ′ (kh), with Ψ(z) = b a w(x) z − x dx and h = τperiod N . ✒ ✑ If f(z) is real-valued on R, we can reduce the number of sampling points N by half using the reflection principle.
  • 19. 2. Numerical integration: theoretical error estimate 12 / 23 theoretical error estimate✓ ✏ If f(ϕ(w)) and ϕ(w) are analytic in | Im w| < d0, |error| ≦ τperiod π max Im w=±d |f(ϕ(w))Ψ(ϕ(w))ϕ′ (w)| × exp(−(4πd/τperiod)N) 1 − exp(−(4πd/uperiod)N) ( 0 < ∀d < d0 ). . . . geometric convergence. ✒ ✑
  • 20. 2. Numerical integration: example 13 / 23 ✓ ✏ 1 0 ex xα−1 (1 − x)β−1 dx = B(α, β)F(α; α + β; 1) ( α, β > 0 ). ✒ ✑ We computed this integral by • hyperfunction method (with N reduction), • DE formula (efficient for integrals with end-point singularities) • Gauss-Jacobi formula • C++ program, double precision • complex integral path for the hyperfunction method (an ellipse) z = ϕ(τ) = 1 2 + 1 4 ρ + 1 ρ cos τ + i 4 ρ − 1 ρ sin τ ( ρ = 10 ) = 0.5 + 2.575 cos τ + i2.425 sin τ.
  • 21. 2. Numerical integration: example 14 / 23 -16 -14 -12 -10 -8 -6 -4 -2 0 0 10 20 30 40 50 60 log10(error) N hyperfunction hyperfunction Gauss-Jacobi Gauss-Jacobi DE DE -16 -14 -12 -10 -8 -6 -4 -2 0 0 20 40 60 80 100 120 log10(error) N hyperfunction hyperfunction Gauss-Jacobi DE DE α = β = 0.5 α = β = 10−4 (very strong singularities) The errors of the hyperfunction method, Gauss-Jacobi formula and the DE formula hyperfunction Gauss-Jacobi DE α = β = 0.5 O(0.025N ) O((8.2 × 10−4 )N ) O(0.36N ) α = β = 10−4 O(0.029N ) — O(0.70N )
  • 22. 2. Numerical integration: example 14 / 23 -16 -14 -12 -10 -8 -6 -4 -2 0 0 10 20 30 40 50 60 log10(error) N hyperfunction hyperfunction Gauss-Jacobi Gauss-Jacobi DE DE -16 -14 -12 -10 -8 -6 -4 -2 0 0 20 40 60 80 100 120 log10(error) N hyperfunction hyperfunction Gauss-Jacobi DE DE α = β = 0.5 α = β = 10−4 (very strong singularities) The hyperfunction method converges geometricaly, and its performance is not affected by the end-point singularities.
  • 23. Contents 15 / 23 1. Hyperfunction thoery 2. Hyperfunction method for numerical integration 3. Hyperfunction method for Fredholm integral equations 4. Summary
  • 24. 3. Hyperfunction method for integral equations 16 / 23 Fredholm integral equation for unknown u(x)✓ ✏ λu(x) − b a K(x, ξ)u(ξ)w(ξ)dξ = g(x), w(ξ) : weight function, K(x, ξ), g(x), λ(= 0) : given. ✒ ✑ We apply the hyperfunction method to this integral equation.
  • 25. 3. Hyperfunction method for integral equations 17 / 23 λu(x) − b a K(x, ξ)u(ξ)w(ξ)dξ = g(x). (Assumption) • g(z) : analytic in D except for a finite number of poles at a1, . . . , aK • K(z, ζ) : analytic function in D w.r.t. z and ζ D a b ak
  • 26. 3. Hyperfunction method for integral equations 17 / 23 λu(x) − b a K(x, ξ)u(ξ)w(ξ)dξ = g(x). (Assumption) • g(z) : analytic in D except for a finite number of poles at a1, . . . , aK • K(z, ζ) : analytic function in D w.r.t. z and ζ D a b ak ua(z) ≡ u(z) − λ−1 g(z) is analytic in D. ua(x) satisfies the integral equation ✓ ✏ λua(x) − b a K(x, ξ)ua(ξ)w(ξ)dξ = 1 λ b a K(x, ξ)g(ξ)w(ξ)dξ. ✒ ✑ 1. We discretize the integral equation for ua(x) by the hyperfunction method. 2. We solve the discretized equation by the collocation method.
  • 27. 3. Integral equations: Collocation equation 18 / 23 h 2πi N k=1 λ ϕ(kh) − zi − K(zi, ϕ(kh))Ψ(ϕ(kh)) ϕ′ (ϕ(kh))ua(ϕ(kh)) = 1 2πiλ C K(zi, ζ)g(ζ)Ψ(ζ)dζ− 1 λ N k=1 Res(K(zi, ·)Ψg, ak) (i = 1, . . . , N), where C : z = ϕ(τ) ( 0 ≦ τ ≦ τperiod ) closed path encircling [a, b], periodic function (period τperiod) z1, . . . , zN : the collocation points inside C, h = τperiod/N. The collocation equation ... a system of linear equations for ua(ϕ(kh)) ( k = 1, . . . , N ). a b ak C : z = ϕ(τ) D zi
  • 28. 3. Integral equations: Collocation equation 18 / 23 h 2πi N k=1 λ ϕ(kh) − zi − K(zi, ϕ(kh))Ψ(ϕ(kh)) ϕ′ (ϕ(kh))ua(ϕ(kh)) = 1 2πiλ C K(zi, ζ)g(ζ)Ψ(ζ)dζ− 1 λ N k=1 Res(K(zi, ·)Ψg, ak) (i = 1, . . . , N), where C : z = ϕ(τ) ( 0 ≦ τ ≦ τperiod ) closed path encircling [a, b], periodic function (period τperiod) z1, . . . , zN : the collocation points inside C, h = τperiod/N. The approximate solution u(z) is given by u(z) = 1 2πi C ua(ζ) ζ − z dζ + g(z) ≃ h 2πi N j=1 ua(ϕ(kh)) ϕ(kh) − z ϕ′ (kh) + g(z). a b ak C : z = ϕ(τ) D zi
  • 29. 3. Integral equations: example 19 / 23 ✓ ✏ u(x) + 1 0 (x − ξ)u(ξ)ξα−1 (1 − ξ)β−1 dξ = g(x), g(x) = 1 1 + x2 + B(α, β) Re{F(α, 1; α + β; i)}x − B(α + 1, β) Re{F(α + 1, 1; α + β + 1; i)} ( α = β = 0.5, 10−4 ). ✒ ✑ We solved the integral equation by the hyperfunction method, DE-Nystr¨om method and Gauss-Jacobi-Nystr¨om method. • complex integral path C : z = ϕ(τ) = 1 2 + 1 4 ρ + 1 ρ cos τ + i 4 ρ − 1 ρ sin τ ( ρ = 200 ) • collocation points zi = ϕcol 2π(i − 1) N ( i = 1, . . . , N ) ϕc(τ) = 1 2 + 1 4 ρc + 1 ρc cos τ + i 4 ρc − 1 ρc sin τ ( 1 < ρc < ρ ).
  • 30. 3. Integral equations: example (α = β = 0.5) 20 / 23 -60 -50 -40 -30 -20 -10 0 0 20 40 60 80 100 log10(error) N rhoc=1.2 rhoc=2.0 rhoc=4.0 rhoc=6.0 rhoc=8.0 DE Gauss-Jacobi 0 20 40 60 80 100 0 20 40 60 80 100 log10(cond) N rhoc=1.2 rhoc=2.0 rhoc=4.0 rhoc=6.0 rhoc=8.0 DE Gauss-Jacobi error ǫN condition number κN of the collocation equation (rhoc = ρc) ρc/ρ 0.006 0.01 0.02 0.03 0.04 ǫN O(0.0058N ) O(0.010N ) O(0.020N ) O(0.030N ) O(0.040N ) κN O(160N ) O(97N ) O(48N ) O(32N ) O(23N )
  • 31. 3. Integral equations: example (α = β = 0.5) 20 / 23 -60 -50 -40 -30 -20 -10 0 0 20 40 60 80 100 log10(error) N rhoc=1.2 rhoc=2.0 rhoc=4.0 rhoc=6.0 rhoc=8.0 DE Gauss-Jacobi 0 20 40 60 80 100 0 20 40 60 80 100 log10(cond) N rhoc=1.2 rhoc=2.0 rhoc=4.0 rhoc=6.0 rhoc=8.0 DE Gauss-Jacobi error ǫN condition number κN of the collocation equation (rhoc = ρc) ρc/ρ 0.006 0.01 0.02 0.03 0.04 ǫN O(0.0058N ) O(0.010N ) O(0.020N ) O(0.030N ) O(0.040N ) κN O(160N ) O(97N ) O(48N ) O(32N ) O(23N ) • error ǫN = O[(ρc/ρ)N ], cond. number κN = O[(ρ/ρc)N ]. • converges faster than the DE-Nystr¨om method. • The linear system of the collocation equation is very ill-conditioned.
  • 32. 3. Integral equations: example (α = β = 10−4 ) 21 / 23 -60 -50 -40 -30 -20 -10 0 0 20 40 60 80 100 log10(error) N rhoc=1.2 rhoc=2.0 rhoc=4.0 rhoc=6.0 rhoc=8.0 DE Gauss-Jacobi 0 20 40 60 80 100 0 20 40 60 80 100 log10(cond) N rhoc=1.2 rhoc=2.0 rhoc=4.0 rhoc=6.0 rhoc=8.0 DE Gauss-Jacobi error ǫN condition number κN of the collocation equation (rhoc = ρc) ρcol/ρ 0.006 0.01 0.02 0.03 0.04 ǫN O(0.0058N ) O(0.010N ) O(0.020N ) O(0.030N ) O(0.040N ) κN O(160N ) O(97N ) O(48N ) O(32N ) O(24N )
  • 33. 3. Integral equations: example (α = β = 10−4 ) 21 / 23 -60 -50 -40 -30 -20 -10 0 0 20 40 60 80 100 log10(error) N rhoc=1.2 rhoc=2.0 rhoc=4.0 rhoc=6.0 rhoc=8.0 DE Gauss-Jacobi 0 20 40 60 80 100 0 20 40 60 80 100 log10(cond) N rhoc=1.2 rhoc=2.0 rhoc=4.0 rhoc=6.0 rhoc=8.0 DE Gauss-Jacobi error ǫN condition number κN of the collocation equation (rhoc = ρc) ρcol/ρ 0.006 0.01 0.02 0.03 0.04 ǫN O(0.0058N ) O(0.010N ) O(0.020N ) O(0.030N ) O(0.040N ) κN O(160N ) O(97N ) O(48N ) O(32N ) O(24N ) • error ǫN = O[(ρcol/ρ)N ], cond. number κN = O[(ρ/ρcol)N ]. • The DE-Nystr¨om method does not work if the end-point singularities are very strong.
  • 34. Contents 22 / 23 1. Hyperfunction thoery 2. Hyperfunction method for numerical integration 3. Hyperfunction method for Fredholm integral equations 4. Summary
  • 35. 4. Summary 23 / 23 • We applied hyperfunction theory to numerical integration and Fredholm integral equations of the second kind. ◦ Hyperfunction theory: a generalized function theory where a “hyperfunction” is expressed in terms of complex analytic functions. ◦ A hyperfunction integral is given by a complex loop integral, which is evaluated numerically in the hyperfunction method. • Hyperfunction method ◦ (Theoretical error estimate) geometric convergence ◦ (Numerical examples) efficiency for problems with strong end-point singularities ◦ Integral equation: The linear system of the collocation equation is very ill-conditioned. • Problems for future study ◦ Volterra integral equations. ◦ theoretical error estimate.
  • 36. 4. Summary 23 / 23 • We applied hyperfunction theory to numerical integration and Fredholm integral equations of the second kind. ◦ Hyperfunction theory: a generalized function theory where a “hyperfunction” is expressed in terms of complex analytic functions. ◦ A hyperfunction integral is given by a complex loop integral, which is evaluated numerically in the hyperfunction method. • Hyperfunction method ◦ (Theoretical error estimate) geometric convergence ◦ (Numerical examples) efficiency for problems with strong end-point singularities ◦ Integral equation: The linear system of the collocation equation is very ill-conditioned. • Problems for future study ◦ Volterra integral equations. ◦ theoretical error estimate. Thank you!