SlideShare una empresa de Scribd logo
1 de 32
Descargar para leer sin conexión
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 1
CE370
REINFORCED CONCRETE-I
Prof. Abdelhamid CHARIF
Ultimate Flexural Analysis of Beams
According to SBC / ACI Codes
Concrete Stress-Strain
2
• Ultimate concrete
strain varies between
0.003 and 0.0045
• Lower strength
concrete has a higher
value .
• SBC and ACI codes fix
the ultimate concrete
compressive strain to
0.003 for all grades of
normal concrete.
003.0cu
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 2
Stress Distribution at Ultimate Stage
3
d
b
sA
(a) Section
(b) Strain
(d) Whitney’s
assumed stress
N.A.
003.0
s (c) Actual
stress
ca 1
abfC c
'
85.0
'
85.0 cf
ss fAT 
c
sf
'
cf
Whitney replaced the curved stress block with an equivalent
rectangular one having the same area and the same centroid.
 65.0,008.009.1Max:MPa30For
85.0:MPa30For
depthand850ofstressConstant
1
1
1
'
c
'
c
'
c
'
c
ff
f
caf.






Nominal and Design Flexural Strength
4
d
b
sA
N.A.
c ca 1 abfC c
'
85.0
'
85.0 cf
ss fAT 
un MM 
Theoretical or Nominal Flexural Moment (Strength) noted : Mn
Design or Usable Flexural Moment (Strength) noted : Mn
Design Moment = Nominal Moment X Strength Reduction Factor
Design moment must be equal to or greater than ultimate moment
caused by factored loads:
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 3
5
• In all structural members, moments are computed about the
centroid of the gross section.
• For beams with no external force, the two internal forces are
equal C = T. Thus : Moment = Moment of a force couple
• Moment = T x Lever arm = C x Lever arm.
Moments in RC Beams
d
b
sA
N.A.
c ca 1 abfC c
'
85.0
'
85.0 cf
ss fAT 













22
a
dC
a
dTMn
Tension steel ratio for RC beams
• In reinforced concrete beams subjected to bending,
it is common to express the tension steel amount
using either the area As or the corresponding steel
ratio (no unit) defined as:
6
bdA
bd
A
s
s
 
Where b and d are the width of the section and the
depth of the tension steel respectively.
Note that the steel ratio in beams is not related to the
gross section area as in columns.
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 4
Minimum Steel Ratio
• The applied bending moment (Mu) may sometimes be so small
that an unreinforced concrete section can theoretically resist it.
• However, the section will fail immediately when a crack occurs.
• The cracks may occur even if the member is unloaded because of
shrinkage effects. This type of failure is brittle with no warning.
• To prevent such a possibility, codes specify a minimum amount of
reinforcement that must be satisfied at every section of flexural
members.
7



















yy
c
w
s
w
w
yy
c
s
ff
f
db
A
b
db
ff
f
A
4.1
,
4
Max
beamofwidthwebwhere
4.1
,
4
Max
'
min
min,
min
'
min,

Section Types Based on Ductility
8
memberscontrollednCompressioorBrittleCalled
yieldssteelbeforecrushesConcrete
:)reinforced-(overfailureBrittle
memberscontrolledTensionorDuctileCalled
crushesconcretebeforeyieldsSteel
:)reinforced-(underfailureDuctile
members/sectionsBalancedCalled
crushesconcretewhenyieldreachesSteel
:sectionBalanced






b
b
b



25-Feb-13
CE 370 : Prof. Abdelhamid Charif 5
Balanced Section
 A section that has a steel ratio such that the steel
reaches yield strain εy (= fy /Es) when the concrete
strain attains the ultimate value of 0.003.
9
d
b
sA
c
003.0
cd 
syy Ef /
b
s
bd
A




:sectionbalancedFor
ratioStee
Brittle Members
 Members whose steel tensile strain εt at the extreme bottom
layer is equal to or less than εy when the concrete strain
reaches 0.003 are called compression-controlled –
considered to be brittle by SBC and ACI.
 Concrete crushes before steel yields.
 Deflections are small and there is little warning of failure.
10
d
b
sA
c
003.0
cd 
yt  
ts
t
s
εε
ε
ε
:onlylayeroneofIn
layerbottomextremeatStrain:
centroidsteelat tensionStrain:
:usedNotations
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 6
Ductile members
 Members whose steel tensile strain εt at the extreme bottom
layer is equal to greater than 0.005 (more than yield strain)
when the concrete strain reaches 0.003 are called tension-
controlled – considered to be fully ductile by SBC and ACI
 Steel yields well before concrete crushes
 Deflections are large and there is warning before failure
11
d
b
sA
c
003.0
cd 
005.0t
12
Transition Region
 Members with steel strains between y and 0.005 are
in a transition region (y < εt < 0.005)
12
d
b
sA
c
003.0
cd 
005.0 ty 
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 7
Balanced Steel Ratio
13
d
b
sA
N.A.
003.0
yt  
ca 1 abfC c
'
85.0
'
85.0 cf
ys fAT 
c
At the balanced point, steel reaches its yield strain at the same
time as concrete reaches its ultimate strain of 0.003
The corresponding steel ratio is called balanced steel ratio ρb
The balanced steel ratio is obtained by equating two different
expressions of the neutral axis depth.
Balanced Steel Ratio
14
(b)










s
y
y
E
f
d
c
d
c
003.0
003.0
003.0
003.0
:ianglessimilar trFrom

(a)'
c
y
s
'
c
y
yys
'
c
f
df
c
a
c
bd
A
f
df
a
bdffAabf.
TC
11 85.0
with,
85.0
850
:mequilibriuForce










d
b
sA
003.0
s
y
y
E
f

ca 1
abfC c
'
85.0
'
85.0 cf
ys fAT 
c
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 8
Balanced Steel Ratio
15

















































yy
'
c
yy
'
c
b
yy
'
c
yb
s
s
y
'
c
yb
ff
f
f
f
fff
f
E
E
f
d
f
df
600
60085.0
003.0
003.085.0
600
600
2000000
003.0
003.0
85.0
MPa)102(
003.0
003.0
85.0
11
1
6
1








d
b
sA
003.0
s
y
y
E
f

ca 1
abfC c
'
85.0
'
85.0 cf
ys fAT 
c
(b)
(a)









s
y
'
c
y
E
f
d
c
f
df
c
003.0
003.0
85.0 1

Maximum Steel Ratio
16
 
(b)dc
d
c
8
3
8
3
005.0003.0
003.0
:ianglessimilar trFrom



d
b
sA
003.0
005.0
ca 1
abfC c
'
85.0
'
85.0 cf
ys fAT 
c
In order to have the members ductile enough, steel tensile strain
should not be less than 0.005 (when concrete strain reaches 0.003)..
This corresponds to the maximum tension steel ratio. It is again
obtained by equating two expressions of the neutral axis depth.
(a)'
c
y
s
'
c
y
yys
'
c
f
df
c
a
c
bd
A
f
df
a
bdffAabf.
TC
11 85.0
with,
85.0
850
:mequilibriuForce










25-Feb-13
CE 370 : Prof. Abdelhamid Charif 9
Maximum Steel Ratio
17
max
1
max
1
max
1
max
005.0
8
385.0
8
385.0
8
3
85.0










t
y
'
c
y
'
c
'
c
y
ε
f
f
f
fd
f
df
d
b
sA
003.0
005.0
ca 1
abfC c
'
85.0
'
85.0 cf
ys fAT 
c
(b)
(a)
dc
f
df
c '
c
y
8
3
85.0 1




18
b
y
y
b
y
'
c
yy
'
c
b
f
f
f
f











008.0
003.0
3
8
003.0
003.0
8
385.0
003.0
003.085.0
:ratiostwofor thesexpressionpreviousUsing
max
max
1
max
1








d
003.0
max
005.0



t
maxc
003.0
b
yt




bc
Maximum and Balanced Steel Ratios








max
max
max
5686.1
6375.0
8
1.5
008.0
0051.0
0021.0:420For




b
b
bb
yy MPaf
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 10
Tension steel strain check
Maximum steel ratio check
Neutral axis depth check
• Ensuring that steel ratio is less than or equal to the
maximum limit is equivalent to checking that tensile steel
strain is equal to or greater than 0.005
• This is also equivalent to checking that neutral axis depth
is limited such (using similar triangles):
19
dc
d
c
d
c
t
t
t
375.0005.0
375.0
8
3
005.0
003.0
003.0
max 






d
003.0
005.0t
c
• These three checks are equivalent.
• The tension steel strain is sufficient and more
informative about steel strain values.
• In case of many tension steel layers, the maximum
steel ratio check and the neutral axis depth check
may be misleading.
• It is therefore recommended to always use steel
strain check and discard the other two checks.
20
Tension steel strain check
Maximum steel ratio check
Neutral axis depth check
dct 375.0005.0 max  
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 11
Strength Reduction Factors 
Strength reduction factors () account for :
• Uncertainties in material strength
• Approximations in analysis and simplifications in equations
• Variations in dimensions and in placement of reinforcement
• Type of failure (Tension-control or compression-control)
Typical values of  :
• Tension controlled sections :  = 0.90
• Compression members and Tied Columns :  = 0.65
• Compression Spiral Columns :  = 0.70
• Flexure and compression (transition) :  = 0.65 (0.70) to 0.90
• Shear and torsion :  = 0.75
• Bearing on concrete :  = 0.65
21
22
Variation of  with Tensile Steel Strain
 The strength reduction factor varies in the transition region.
 Beams must have a tensile steel strain of at least 0.005 for
SBC code (0.004 for ACI code).
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 12
23
Types of Beams
Analysis of RC Beams
Determination of moment capacity
24
• Analysis of existing RC beams is somewhat different from
the analysis and check involved in the design stage.
• For new beams to be designed, all code provisions must be
enforced. If any condition is not satisfied, the design must
be repeated.
• For existing beams, the analysis must be completed and any
deficiencies reported. If for instance the section is not tension
controlled or not satisfying minimum steel condition, its
nominal and design moments must still be determined using
appropriate strength reduction factors.
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 13
25
Values of strength reduction factor  for beams
• Tension control condition is required in all beam design
problems, with a strength reduction factor ( = 0.90)
• In analysis problems however, other cases may be met.
• The value of the strength reduction factor depends on the
tensile steel strain at the extreme (bottom) layer:
65.0:controlnCompressioIf
005.0
25.065.0:zoneTransition005.0If
90.0:controlTension005.0If










yt
y
yt
ty
t
26
d
b
sA
N.A.
c ca 1 abfC c
'
85.0
'
85.0 cf
ss fAT 
The main difficulty in analysis problems is that it is not known
whether steel has yielded or not. Existing beams may have been
designed as over reinforced with steel not yielding at failure.
Yielding case is much simpler as the steel stress is then known and
constant fy
It is usually first assumed that steel has yielded and if turns out that
it has not, then a different method is used.
Nominal Moment in RC Beams
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 14
27

















22
:momentNominal
:continueyiedling,OK:If0030ianglesSimilar tr
850
850
1
a
dfAM
a
dTM
ε
c
cd
.ε
a
c
bf.
fA
afAabf.TC
ysnn
ytt
'
c
ys
ys
'
c


Nominal Moment – Tension Steel Yielding
d
b
sA
(a) Section
(b) Strains
(c) Stresses / Forces
N.A.
003.0
yt  
ca 1
abfC c
'
85.0
'
85.0 cf
ys fAT 
c
28
0600600850
)(600850600850
:givesand850850
600)200000(
2
1
2
11
1







dAcAcbf.
cdAcbf.
c
cd
Acbf.
TCcbf.abf.C
c
cd
ATMPaE
ss
'
c
s
'
cs
'
c
'
c
'
c
ss



Nominal Moment – Tension Steel Not Yielding
c
cd
.EAT
c
cd
EAfAT
ss
t
tssss
yt






0030
003.0
:ianglesSimilar tr
:ThenIf



d
b
sA
N.A.
003.0
yt  
ca 1
abfC c
'
85.0
'
85.0 cf
tssss EAfAT 
c
(a) Section
(b) Strains
(c) Stresses / Forces
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 15
29
Nominal Moment – Tension Steel Not Yielding





























22
:momentNominal
:yieldednothassteelionthat tensConfirm
600and003.0,:Deduce
1
4
1
2
:issolutionPositive
solutions.ith twoequation wQuadratic
85.0
600
with0
0600600850
1
1
'
2
2
1
a
dfAM
a
dTM
c
cd
εEf
c
cd
ca
P
dP
c
bf
A
PPdPcc
dAcAcbf.
ssnn
yt
tsst
c
s
ss
'
c




Analysis of a rectangular RC section
Steps in determining design moment
30
6Goto



















2
:yieldingOKIf4/
003.0strainsteelTensile/3
and
85.0
yieldingsteelAssume/2
:Check
4.1
,
4
Max,
:valuesratiosteelminimumandactualCompute1/
t
1
min
'
min
a
dfAM
c
cd
a
c
bf
fA
a
ff
f
bd
A
ysny
t
'
c
ys
yy
cs




25-Feb-13
CE 370 : Prof. Abdelhamid Charif 16
Steps in determining design moment – Cont.
31
 
n
t
yt
y
yt
ty
t
ssnn
tssytt
c
s
yt
M
ε
ε.
εε
ε
a
dfAM
a
dTM
εEf
c
cd
ca
bf
A
P
P
dP
c








ismomentDesign/7
SBC)byRejected,controllednNot tensio:005.0(If
0.65:controlnCompressioIf
0050
25.065.0:zoneionIn transit005.0If
0.90:controlTension005.0If
:factorreductionSrength6/
22
:momentNominal
:check003.0,
85.0
600
with,1
4
1
2
:yieldingnotSteel:If5/
1
1
'































Problem 1
32
85.0MPa30MPa420 1  '
cy ff
600
375
284
75
675
 
OK
00333.000333.0,00326.0Max
420
4.1
,
4204
30
Max
4.1
,
4
Max
0109.0
600375
0.2463
:ratioSteel
0.246382
4
4:areaSteel
min
min
'
min
22




































yy
c
s
s
ff
f
bd
A
mmA
Determine the nominal and design moments of the beam
section shown.
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 17
33
mm3.127
85.0
2.108
mm2.108
3753085.0
4200.2463
85.0
yiedingsteelAssume
1







a
c
a
bf
fA
a
ff
'
c
ys
ys
0.90
controltensionandyieldingSteel
005.00111.0
0111.0
3.127
3.127600
003.0
003.0












yt
t
t
c
cd
kN.m508.24
kN.m71.5649.0:momentDesign
kN.m71.564N.mm1071.564
2
2.108
6004200.2463
22
6























n
n
n
n
ysn
M
M
M
M
a
dfA
a
dTM


Solution 1
3.127
003.0
7.472
s
600
375
284
Problem 2
Determine the nominal and design moments of the beam
section shown. fc’ = 20 MPa and fy = 420 MPa
34
525
600
mm350
283
 
OK
00333.000333.0,00266.0Max
420
4.1
,
4204
20
Max
4.1
,
4
Max
01005.0
525350
25.1847
:ratioSteel
25.184782
4
3:areaSteel
min
min
'
min
22




































yy
c
s
s
ff
f
bd
A
mmA
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 18
35
mkNM
a
dfAM
MOK
c
cd
mm
a
c
n
t
ysn
nyt
t
.03.3217.35690.0
control)(Tension90.0005.000726.0
kN.m7.356N.mm107.356
2
39.130
52542025.1847
2
:forContinue.assumedasyieldedhassteel0021.000726.0
00726.0
4.153
4.153525
003.0003.04.153
85.0
39.130
:yieldedhassteelCheck that
6
1


























525
350
283
ca 1
abfC c
'
85.0
'
85.0 cf
ys fAT 
2
a
d 
Solution 2: Assume steel yielding
mm39.130
3502085.0
42025.1847
85.0
25.184728
4
3
'
22







a
bf
fA
aTC
mmA
fATff
c
ys
s
ysysys


Problem 3
Determine the nominal and design moments of the beam
section shown. Same as previous problem but with one more
steel bar. fc’ = 20 MPa and fy = 420 Mpa
36
 
OK
00333.000333.0,00266.0Max
420
4.1
,
4204
20
Max
4.1
,
4
Max
0134.0
525350
0.2463
:ratioSteel
0.246382
4
4:areaSteel
min
min
'
min
22




































yy
c
s
s
ff
f
bd
A
mmA
525
600
mm350
284
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 19
37mkNM
a
dfAM
MOK
c
cd
mm
a
c
n
t
ty
ysn
nyt
t
.06.39616.453874.0
874.0
0021.0005.0
0021.00047.0
25.065.0
005.0
25.065.0:Transition005.00047.0
kN.m53.164N.mm1016.453
2
86.173
5254202463
2
:forContinue.assumedasyieldedhassteel0021.00047.0
0047.0
54.204
54.204525
003.0003.054.204
85.0
86.173
y
y
6
1



































Solution 3: Assume steel yielding
:strainsteelCheck
mm86.173
3502085.0
4200.2463
85.0 '






a
bf
fA
aTC
fATff
c
ys
ysysyt 
525
350
284
ca 1
abfC c
'
85.0
'
85.0 cf
ys fAT 
2
a
d 
Problem 4
• The reinforcement of 2945 mm2 is from
six 25-mm bars which are arranged in
two layers but are assembled (lumped)
together in a single compact layer.
38
Determine the nominal and design moments
of the beam section shown.
fc’ = 20 MPa and fy = 420 MPa
510
250
2945
90
600
2
mm
  OK00333.000333.0,00266.0Max
420
4.1
,
4204
20
Max
4.1
,
4
Max
0231.0
510250
2945
:ratioSteel
minmin
'
min


























yy
c
s
ff
f
bd
A
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 20
39
mm4.342
85.0
04.291
mm04.291
2502085.0
4200.2945
85.0
yiedingsteelAssume
1







a
c
bf
fA
a
ff
'
c
ys
ys
mmcammc
cP
bf
A
P
P
dP
c
c
cd
c
s
yt
t
82.26455.31185.055.311
1
135.489
5104
1
2
135.489
135.489
85.02502085.0
2945600
85.0
600
with,1
4
1
2
yieldingNot0147.0
00147.0
4.342
4.342510
003.0003.0
1
1
'


































Solution 4
510
250
2945
90
600
2
mm
40
kN.m.24762kN.m98.42465.0:momentDesign
0.65:controlnCompressio
kN.m98.424N.mm1098.424
2
82.264
51018.3820.2945
22
6






















n
yt
n
ssn
M
M
a
dfA
a
dTM


Solution 4 - Continued
)(18.3820019109.0200000
yieldingNotOK0019109.0
55.311
55.311510
003.0003.0
82.26455.311
ytss
yt
fMPaEf
c
cd
mmammc









This beam is over reinforced (compression controlled) and is not
allowed by SBC / ACI codes. The two steel layers were lumped at
their centroid but lumping is allowed only if all layers are yielding.
Non yielding with many layers can only be analyzed using the
strain compatibility method described later.
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 21
41
Lumping of tension steel layers at centroid
• If tension steel is arranged in two or more layers, these can be,
in the calculations, replaced by a single steel area at their
centroid. This Layer lumping (assembly) simplifies analysis and
design equations. Standard beam design cannot in fact deal
with more than one tension steel layer.
• As layer strains are different, lumping is only justified if all
tension layers have yielded (and have the same yield stress).
• Tension steel depth d must therefore be computed at the
centroid of the layers.
• Yielding must be checked at the least tensioned layer with
minimum depth dmin
• It is therefore unsafe to check yielding at the centroid
• Performing tension control check at the centroid is
uneconomical. It should be performed at the most tensioned
extreme bottom layer.
42
0.003
d
dt
c
Depths Strains
005.0t
yε min
dmin
s
Lumping of tension steel layers at centroid






005.0
:layersMany
005.0:layerOne
min
t
y
t
ε



Required steel
strain checks :
ts
ts
ε
ε




min
min
:layersMany
:layerOne
centroidsteelAt tension:,
layer(bottom)max.depthAt:,
layerdepthminimumAt:,
:usedNotations
minmin
s
tt
εd
εd
εd
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 22
Determine design moment for the shown section with six
20-mm bars in two layers. Bar / layer spacing is 30 mm.
43
MPa420andMPa20  y
'
c ff
250
206
650
Problem 5
mm
dd
d
mmdd
dSddd
mmdd
d
dhdd
bl
t
b
st
565
2
:centroidatdepthsteelEffective
5402030590
:layerSecond
590
2
20
1004650
2
cover:layerbottomFirst
:depthsSteel
21
min2
1min2
1
1







Solution 5
44
 
OK
00333.000333.0,00266.0Max
420
4.1
,
4204
20
Max
4.1
,
4
Max
0133.0
565250
96.1884
:ratioStee
96.188402
4
6:areaSteel
min
min
'
min
22




































yy
c
s
s
ff
f
bd
A
mmA
250
206
565
mm15.219
85.0
28.186
mm28.186
2502085.0
42096.1884
85.0
depthblockStress
:steelofyieldingAssume
1
1 






a
cca
bf
fA
a '
c
ys

25-Feb-13
CE 370 : Prof. Abdelhamid Charif 23
45
layer.steelbottomattestcontroltensionperformBetter
controlled-nnot tensioissectionthecentroid,At the
005.00047.0
15.219
15.219565
003.0003.0
:centroidsteelatcheckStrain:Important
0.90controlTensionOKandyieldOK
005.000507.0
15.219
15.219590
003.0003.0
:layer)(bottomdepthmaximumatcheckcontrolTension
0021.00044.0
15.219
15.219540
003.0003.0
:depthminimumatstrainsteelofcheckYield
min
min


















c
cd
c
cd
OK
c
cd
s
y
t
t
y




Solution 5 Continued
46
kN.m20.363
kN.m56.3739.0:momentDesign
kN.m56.373N.mm1056.373
2
28.186
56542096.1884
22
6






















n
n
n
ysn
M
M
M
a
dfA
a
dTM


Solution 5 Continued
15.219
003.0
0044.0
250
206
565
00507.0
0047.0
This example shows the importance
(economy) of performing the tension
control check at the extreme bottom
layer of tension steel.
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 24
Determine the design moment for the shown section
47
MPa420andMPa27  y
'
c ff
Problem 6
mm
dd
d
mmdd
mmdd t
608
2
:centroidatdepthsteelEffective
580:layerSecond
636:layerbottomFirst
21
min2
1





  OK00333.000333.0,00309.0Max
420
4.1
,
4204
27
Max
4.1
,
4
Max
0270.0
608300
0.4926
0.492682
4
8
minmin
'
min
22

































yy
c
s
s
ff
f
bd
A
mmA
300
288
700
Solution 6 (assume steel yielding)
48
ys
ty
t
t
y
'
c
ys
c
cd
c
cd
c
cd
a
c
bf
fA
a
























00216.0
53.353
53.353608
003.0003.0:straincentroidSteel:Important
ionIn transit005.000240.0
53.353
53.353636
003.0003.0
:layer)(bottomdepthmaximumatcheckcontrolTension
justifiednotLumpingyieldingNo00192.0
53.353
53.353580
003.0
003.0:depthminimumatstrainsteelofcheckYield
mm53.353mm50.300
3002785.0
4200.4926
85.0
depthBlock
min
min
min
1
Steel is not yielding at the minimum depth layer although it is
yielding at the centroid. Lumping is therefore unjustified and would
unsafely deliver a higher moment capacity. This example proves
that it is unsafe to perform the yield check at the centroid.
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 25
49
mkNM
a
dfAM
n
ysn
.2.640kN.m05.947676.0:momentDesign
676.0
0021.0005.0
0021.00024.0
25.065.0transitionIn005.000240.0
kN.m05.947N.mm1005.947
2
5.300
6084200.4926
2
tt
6




















Solution 6 Continued
This example shows the importance
(safety) of performing the steel yield
check at the least tensioned steel
layer (with minimum depth).
The unsafe (over estimated) moment
capacity would be as :
This result is of course unsafely false because of an unjustified use
of layer lumping. The exact nominal moment obtained using the
strain compatibility method is 935.76 kN.m
53.353
003.0
00192.0
300
288
608
00240.0
00216.0
Determine design moment for the shown section
(shallow beam very popular in KSA) with nine 20-mm
bars in three layers. Layer spacing is equal to 30 mm.
It is obvious this is not a correct bar arrangement as the
beam width can accommodate more than three bars.
However design and / or execution errors are
unfortunately always possible.
50
 
0026.0and
802.065.0,008.009.1Max
MPa520andMPa36
y
1




 '
c
y
'
c
f
ff
Problem 7 – Special and Important
500
209
380
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 26
51
Solution of Problem 7
mmd
ddd
d
mmdd
dSddd
mmd
dSdd
mmdd
d
dhdd
bl
bl
t
b
st
270
3
:centroidatdepthsteelEffective
2202030270
:layerThird
2702030320
:layerSecond
320
2
20
1004380
2
cover:layerbottomFirst
:depthsSteel
2
321
min3
2min3
2
12
1
1









500
209
380
Solution 7
52
 
OK
00284.000269.0,00284.0Max
520
4.1
,
5204
35
Max
4.1
,
4
Max
0209.0
270500
4.2827
:ratioStee
4.282702
4
9:areaSteel
min
min
'
min
22




































yy
c
s
s
ff
f
bd
A
mmA
mm81.119
802.0
09.96
mm09.96
5003685.0
5204.2827
85.0
depthblockStress:yieldingsteelAssume
1





a
ca
bf
fA
a '
c
ys
500
209
380
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 27
53
ys
t
t
t
y
c
cd
c
cd
c
cd






















00376.0
81.119
81.119270
003.0003.0
:centroidsteelatcheckStrain:Important
ControlTensionOK005.000501.0
00501.0
81.119
81.119320
003.0003.0
:layer)(bottomdepthmaximumatcheckcontrolTension
OKNOTCheckYield0026.000251.0
00251.0
81.119
81.119220
003.0003.0
:depthminimumatstrainsteelofcheckYield
min
min
min
Solution 7 Continued
54
The section is tension-controlled (accepted by SBC) as the bottom
strain is just greater than the 0.005 limit.
However, although steel has yielded at the centroid, the strain in
the upper layer is less than the yield limit.
The previous calculations, based on the assumption of yielding of
all steel, are thus incorrect and unsafe.
It is therefore more exact and safer to perform the yield check at
the upper layer with minimum depth.
ys
t
y








00376.0
ControlTensionOK
005.000501.0
OKNOTYield
0026.000251.0min
8.119
003.0
00251.0
500
209
270
00501.0
00376.0
Solution 7 Continued
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 28
55
kN.m70.293kN.m33.3269.0:momentDesign
kN.m33.326N.mm1033.326
2
09.96
2705204.2827
22
6





















n
n
ysn
M
M
a
dfA
a
dTM

Solution 7 Continued
This example shows the
importance (safety) of
performing the tension
control check at the upper
layer of tension steel.
This incorrect solution for
the nominal and design
moments is :
8.119
003.0
00251.0
500
209
270
00501.0
00376.0
The exact solution based on the actual strain in every layer, would
deliver lower values of moments. As the strain in the upper layer is
close to yield, the exact solution should be just slightly lower.
56
Strain Compatibility Solution 7
• The strain compatibility method is a very powerful analysis tool
for complex situations, with many steel layers.
• It is based on the linear variation of strains resulting from the
assumption of sections remaining plane after bending.
• The stress at any level or layer is related to the strain through the
material model (stress-strain curve). No layer lumping is used.
• All strains are expressed in terms of the neutral axis depth c
which is the main problem unknown.
c
003.0
3s
500b
2033 
1s
2s
c
cd
i
i
si

 003.0
:layerAt

25-Feb-13
CE 370 : Prof. Abdelhamid Charif 29
57
Strain Compatibility Solution 7 – Cont.
• The method is more effective if a good initial assumption is
made about yielding (or not) of the various steel layers.
• It is reasonable to assume that at failure the bottom two layers
have yielded and that the third is in the elastic range (stress
proportional to strain through Young’s modulus). The strains and
forces are therefore as shown in the figure.
c
003.0
ys  3
500
2033 
ys  1
ys  2
ca 1
'
85.0 cf
33 sss EA 
ys fA1
ys fA 2
abfc
'
85.0
Section Strains Forcesc
cdi
si

 003.0
58
Strain Compatibility Solution 7 – Cont.
• The two unknown forces are the concrete compression and the
tension in the third layer. They are both expressed in terms of
the neutral axis depth (using 200000 MPa for steel modulus) :
c
cd
A
c
cd
EAEATcbfabfC sssssssccc



 3
3
3
33331
''
600003.085.085.0 
c
003.0
ys  3
500
2033 
ys  1
ys  2
ca 1
'
85.0 cf
33 sss EA 
ys fA1
ys fA 2
abfc
'
85.0
Section Strains Forcesc
cdi
si

 003.0
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 30
59
Strain Compatibility Solution 7 – Cont.
• We now express the force equilibrium :
c
cd
AEATcbfabfC sssssccc

 3
33331
''
60085.085.0 
c
cd
AfAfAcbfTTTC sysyscsssc

 3
3211
'
321 60085.0 
• Remark: If more than one layer has not yielded, its strain, stress
and force are again expressed in terms of the neutral axis depth
(c) and the latter will remain the only unknown in the final
equilibrium equation.
• We multiply by c and after assembling, we obtain a quadratic
equation :
   
  060060085.0
60085.0
33321
2
1
'
3321
2
1
'


dAcAfAfAcbf
cdAcfAfAcbf
ssysysc
sysysc


60
Strain Compatibility Solution 7 – Cont.
• Substitution with the given data leads to :
002546.000381.000507.0003.0
0.119:issolutionPositive
2.20463.41696
0632.10138795.33
012440709632.4146906.12270
321
2
2







sss
i
si
c
cd
mmc
cc
cc

 
mmdmmdmmd
mmAAA
mmbMPafMPaf
dAcAfAfAcbf
sss
yc
ssysysc
220270320
478.942
802.050052036
060060085.0
321
2
331
1
'
33321
2
1
'






25-Feb-13
CE 370 : Prof. Abdelhamid Charif 31
61
Strain Compatibility Solution 7 – Cont.
• The assumed steel strain conditions are confirmed. The third
layer has not reached the yield limit but is very close to it.
• If the assumed yielding (or not) condition is violated in any
layer, then new calculations must be carried out.
• The strain in the bottom layer confirms that the section is
tension controlled :
• Substitution gives the forces, which must satisfy equilibrium.
002546.000381.000507.00.119 321  sssmmc 
kNTkNTTkNC
c
cd
ATfATfATcbfC
sssc
ssyssysscc
95.47909.49020.1460
60085.0
321
3
3322111
'


 
• Equilibrium is checked. The sum of the steel tensile forces is
equal to concrete compression force.
62
Strain Compatibility Solution 7 – Cont.
• The nominal moment is
better determined as the
moment of the steel
tensile forces about the
compression centroid.
• Using kN and meter units :
'
85.0 cf
33 sss EA 
ys fA1
ys fA 2
abfc
'
85.0
44.95
1ca 
'
85.0 cf
95.479
09.490
09.490
20.1460
mkNMmkNM
M
a
dT
a
dT
a
dTM
nn
n
sssn
.55.29206.32590.0.06.325
2
09544.0
22.095.479
2
09544.0
27.009.490
2
09544.0
32.009.490
222
332211








































• This exact solution is less than but close to the previous false one
because the third layer was very close to yielding. Despite non
yielding of the top layer, the section is still tension controlled.
25-Feb-13
CE 370 : Prof. Abdelhamid Charif 32
6363
Lumping of many tension steel layers
Caution
• Lumping all steel layers at the centroid
may only be valid for normal beams not
exceeding three to four layers.
• For deep beams or columns and walls
with many steel layers, and for beams
with mid-height side (skin) bars, lumping
cannot be used and appropriate methods
must be used (strain compatibility).
• The two shown skin bars (imposed by
codes of practice for deep beams) must
not be included in the lumping process.
63
Skin bars
RCcolumnRCdeepbeam
Homework Problems
64
1/ Determine the design moment capacity for the beams shown.
f’c = 30 MPa , fy = 420 MPa.
600
375
363
75
675
600
375
283
75
675
Beam 1 Beam 2
2/ Re-solve problem 6. Obtain the given exact solution using the
strain compatibility method.

Más contenido relacionado

La actualidad más candente

Design of two way slab
Design of two way slabDesign of two way slab
Design of two way slab
sarani_reza
 
Footing design
Footing designFooting design
Footing design
Yasin J
 
Lesson 04, shearing force and bending moment 01
Lesson 04, shearing force and bending moment 01Lesson 04, shearing force and bending moment 01
Lesson 04, shearing force and bending moment 01
Msheer Bargaray
 

La actualidad más candente (20)

Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
 
Shear and diagonal tension in beams
Shear and diagonal tension in beamsShear and diagonal tension in beams
Shear and diagonal tension in beams
 
Column design: as per bs code
Column design: as per bs codeColumn design: as per bs code
Column design: as per bs code
 
Bs8110 design notes
Bs8110 design notesBs8110 design notes
Bs8110 design notes
 
Design of isolated footing by ACI code
Design of isolated footing by ACI codeDesign of isolated footing by ACI code
Design of isolated footing by ACI code
 
06-Strength of Double Angle Welded Tension Members (Steel Structural Design &...
06-Strength of Double Angle Welded Tension Members (Steel Structural Design &...06-Strength of Double Angle Welded Tension Members (Steel Structural Design &...
06-Strength of Double Angle Welded Tension Members (Steel Structural Design &...
 
Flexural design of Beam...PRC-I
Flexural design of Beam...PRC-IFlexural design of Beam...PRC-I
Flexural design of Beam...PRC-I
 
Analysis of T-Beam
Analysis of T-BeamAnalysis of T-Beam
Analysis of T-Beam
 
Lecture notes doubly reinforced beams
Lecture notes doubly reinforced beamsLecture notes doubly reinforced beams
Lecture notes doubly reinforced beams
 
Flexural design of beam...PRC-I
Flexural design of beam...PRC-IFlexural design of beam...PRC-I
Flexural design of beam...PRC-I
 
Chapter 6-influence lines for statically determinate structures
Chapter 6-influence lines for statically  determinate structuresChapter 6-influence lines for statically  determinate structures
Chapter 6-influence lines for statically determinate structures
 
Steel design-examples
Steel design-examplesSteel design-examples
Steel design-examples
 
Design of two way slab
Design of two way slabDesign of two way slab
Design of two way slab
 
Lec 4-flexural analysis and design of beamns
Lec 4-flexural analysis and design of beamnsLec 4-flexural analysis and design of beamns
Lec 4-flexural analysis and design of beamns
 
Serviceability(images are taken for reference from net and important points a...
Serviceability(images are taken for reference from net and important points a...Serviceability(images are taken for reference from net and important points a...
Serviceability(images are taken for reference from net and important points a...
 
Footing design
Footing designFooting design
Footing design
 
Footing design
Footing designFooting design
Footing design
 
Unit 3 flexibility-anujajape
Unit 3 flexibility-anujajapeUnit 3 flexibility-anujajape
Unit 3 flexibility-anujajape
 
Beam design
Beam designBeam design
Beam design
 
Lesson 04, shearing force and bending moment 01
Lesson 04, shearing force and bending moment 01Lesson 04, shearing force and bending moment 01
Lesson 04, shearing force and bending moment 01
 

Similar a Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)

rectangular and section analysis in bending and shear
rectangular and section analysis in bending and shearrectangular and section analysis in bending and shear
rectangular and section analysis in bending and shear
queripan
 
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptxLecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
AbelMulugeta8
 

Similar a Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif) (20)

Lec 10
Lec 10Lec 10
Lec 10
 
Lec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamnsLec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamns
 
Lec.5 strength design method rectangular sections 1
Lec.5   strength design method rectangular sections  1Lec.5   strength design method rectangular sections  1
Lec.5 strength design method rectangular sections 1
 
Lec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamnsLec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamns
 
Aci reinforcement limits
Aci reinforcement limitsAci reinforcement limits
Aci reinforcement limits
 
10.01.03.153
10.01.03.15310.01.03.153
10.01.03.153
 
Lec.8 strength design method t beams
Lec.8   strength design method t beamsLec.8   strength design method t beams
Lec.8 strength design method t beams
 
Rcs1-Chapter5-ULS
Rcs1-Chapter5-ULSRcs1-Chapter5-ULS
Rcs1-Chapter5-ULS
 
Final Steel Jury Neel Shah UCT20102.pdf
Final Steel Jury  Neel Shah UCT20102.pdfFinal Steel Jury  Neel Shah UCT20102.pdf
Final Steel Jury Neel Shah UCT20102.pdf
 
Lec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beamsLec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beams
 
Lec 11 12
Lec 11 12Lec 11 12
Lec 11 12
 
Concrete beam design
Concrete beam designConcrete beam design
Concrete beam design
 
Div_Syd_detailing_of_reinforcement_in_concrete_structures.pdf
Div_Syd_detailing_of_reinforcement_in_concrete_structures.pdfDiv_Syd_detailing_of_reinforcement_in_concrete_structures.pdf
Div_Syd_detailing_of_reinforcement_in_concrete_structures.pdf
 
rectangular and section analysis in bending and shear
rectangular and section analysis in bending and shearrectangular and section analysis in bending and shear
rectangular and section analysis in bending and shear
 
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptxLecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
 
Dos & Donts in Civil Engg-converted.pdf
Dos & Donts in Civil Engg-converted.pdfDos & Donts in Civil Engg-converted.pdf
Dos & Donts in Civil Engg-converted.pdf
 
Lec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beamsLec 11 12 -flexural analysis and design of beams
Lec 11 12 -flexural analysis and design of beams
 
Sd i-module2- rajesh sir
Sd i-module2- rajesh sirSd i-module2- rajesh sir
Sd i-module2- rajesh sir
 
James Wight - ACI Building Code-01-54.pdf
James Wight - ACI Building Code-01-54.pdfJames Wight - ACI Building Code-01-54.pdf
James Wight - ACI Building Code-01-54.pdf
 
Shear lug verification example
Shear lug verification exampleShear lug verification example
Shear lug verification example
 

Más de Hossam Shafiq II

Más de Hossam Shafiq II (20)

Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-AghaBasics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
 
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
 
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
 
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
 
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
 
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
 
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
 
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
 
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
 
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
 
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
 
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
 
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
 
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
 
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
 
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
Lec11 Continuous Beams and One Way Slabs(1) (Reinforced Concrete Design I & P...
 
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
 
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
 
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concret...
 
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
 

Último

"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 

Último (20)

Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Bridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptxBridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptx
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Rums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfRums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdf
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 

Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)

  • 1. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 1 CE370 REINFORCED CONCRETE-I Prof. Abdelhamid CHARIF Ultimate Flexural Analysis of Beams According to SBC / ACI Codes Concrete Stress-Strain 2 • Ultimate concrete strain varies between 0.003 and 0.0045 • Lower strength concrete has a higher value . • SBC and ACI codes fix the ultimate concrete compressive strain to 0.003 for all grades of normal concrete. 003.0cu
  • 2. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 2 Stress Distribution at Ultimate Stage 3 d b sA (a) Section (b) Strain (d) Whitney’s assumed stress N.A. 003.0 s (c) Actual stress ca 1 abfC c ' 85.0 ' 85.0 cf ss fAT  c sf ' cf Whitney replaced the curved stress block with an equivalent rectangular one having the same area and the same centroid.  65.0,008.009.1Max:MPa30For 85.0:MPa30For depthand850ofstressConstant 1 1 1 ' c ' c ' c ' c ff f caf.       Nominal and Design Flexural Strength 4 d b sA N.A. c ca 1 abfC c ' 85.0 ' 85.0 cf ss fAT  un MM  Theoretical or Nominal Flexural Moment (Strength) noted : Mn Design or Usable Flexural Moment (Strength) noted : Mn Design Moment = Nominal Moment X Strength Reduction Factor Design moment must be equal to or greater than ultimate moment caused by factored loads:
  • 3. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 3 5 • In all structural members, moments are computed about the centroid of the gross section. • For beams with no external force, the two internal forces are equal C = T. Thus : Moment = Moment of a force couple • Moment = T x Lever arm = C x Lever arm. Moments in RC Beams d b sA N.A. c ca 1 abfC c ' 85.0 ' 85.0 cf ss fAT               22 a dC a dTMn Tension steel ratio for RC beams • In reinforced concrete beams subjected to bending, it is common to express the tension steel amount using either the area As or the corresponding steel ratio (no unit) defined as: 6 bdA bd A s s   Where b and d are the width of the section and the depth of the tension steel respectively. Note that the steel ratio in beams is not related to the gross section area as in columns.
  • 4. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 4 Minimum Steel Ratio • The applied bending moment (Mu) may sometimes be so small that an unreinforced concrete section can theoretically resist it. • However, the section will fail immediately when a crack occurs. • The cracks may occur even if the member is unloaded because of shrinkage effects. This type of failure is brittle with no warning. • To prevent such a possibility, codes specify a minimum amount of reinforcement that must be satisfied at every section of flexural members. 7                    yy c w s w w yy c s ff f db A b db ff f A 4.1 , 4 Max beamofwidthwebwhere 4.1 , 4 Max ' min min, min ' min,  Section Types Based on Ductility 8 memberscontrollednCompressioorBrittleCalled yieldssteelbeforecrushesConcrete :)reinforced-(overfailureBrittle memberscontrolledTensionorDuctileCalled crushesconcretebeforeyieldsSteel :)reinforced-(underfailureDuctile members/sectionsBalancedCalled crushesconcretewhenyieldreachesSteel :sectionBalanced       b b b   
  • 5. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 5 Balanced Section  A section that has a steel ratio such that the steel reaches yield strain εy (= fy /Es) when the concrete strain attains the ultimate value of 0.003. 9 d b sA c 003.0 cd  syy Ef / b s bd A     :sectionbalancedFor ratioStee Brittle Members  Members whose steel tensile strain εt at the extreme bottom layer is equal to or less than εy when the concrete strain reaches 0.003 are called compression-controlled – considered to be brittle by SBC and ACI.  Concrete crushes before steel yields.  Deflections are small and there is little warning of failure. 10 d b sA c 003.0 cd  yt   ts t s εε ε ε :onlylayeroneofIn layerbottomextremeatStrain: centroidsteelat tensionStrain: :usedNotations
  • 6. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 6 Ductile members  Members whose steel tensile strain εt at the extreme bottom layer is equal to greater than 0.005 (more than yield strain) when the concrete strain reaches 0.003 are called tension- controlled – considered to be fully ductile by SBC and ACI  Steel yields well before concrete crushes  Deflections are large and there is warning before failure 11 d b sA c 003.0 cd  005.0t 12 Transition Region  Members with steel strains between y and 0.005 are in a transition region (y < εt < 0.005) 12 d b sA c 003.0 cd  005.0 ty 
  • 7. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 7 Balanced Steel Ratio 13 d b sA N.A. 003.0 yt   ca 1 abfC c ' 85.0 ' 85.0 cf ys fAT  c At the balanced point, steel reaches its yield strain at the same time as concrete reaches its ultimate strain of 0.003 The corresponding steel ratio is called balanced steel ratio ρb The balanced steel ratio is obtained by equating two different expressions of the neutral axis depth. Balanced Steel Ratio 14 (b)           s y y E f d c d c 003.0 003.0 003.0 003.0 :ianglessimilar trFrom  (a)' c y s ' c y yys ' c f df c a c bd A f df a bdffAabf. TC 11 85.0 with, 85.0 850 :mequilibriuForce           d b sA 003.0 s y y E f  ca 1 abfC c ' 85.0 ' 85.0 cf ys fAT  c
  • 8. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 8 Balanced Steel Ratio 15                                                  yy ' c yy ' c b yy ' c yb s s y ' c yb ff f f f fff f E E f d f df 600 60085.0 003.0 003.085.0 600 600 2000000 003.0 003.0 85.0 MPa)102( 003.0 003.0 85.0 11 1 6 1         d b sA 003.0 s y y E f  ca 1 abfC c ' 85.0 ' 85.0 cf ys fAT  c (b) (a)          s y ' c y E f d c f df c 003.0 003.0 85.0 1  Maximum Steel Ratio 16   (b)dc d c 8 3 8 3 005.0003.0 003.0 :ianglessimilar trFrom    d b sA 003.0 005.0 ca 1 abfC c ' 85.0 ' 85.0 cf ys fAT  c In order to have the members ductile enough, steel tensile strain should not be less than 0.005 (when concrete strain reaches 0.003).. This corresponds to the maximum tension steel ratio. It is again obtained by equating two expressions of the neutral axis depth. (a)' c y s ' c y yys ' c f df c a c bd A f df a bdffAabf. TC 11 85.0 with, 85.0 850 :mequilibriuForce          
  • 9. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 9 Maximum Steel Ratio 17 max 1 max 1 max 1 max 005.0 8 385.0 8 385.0 8 3 85.0           t y ' c y ' c ' c y ε f f f fd f df d b sA 003.0 005.0 ca 1 abfC c ' 85.0 ' 85.0 cf ys fAT  c (b) (a) dc f df c ' c y 8 3 85.0 1     18 b y y b y ' c yy ' c b f f f f            008.0 003.0 3 8 003.0 003.0 8 385.0 003.0 003.085.0 :ratiostwofor thesexpressionpreviousUsing max max 1 max 1         d 003.0 max 005.0    t maxc 003.0 b yt     bc Maximum and Balanced Steel Ratios         max max max 5686.1 6375.0 8 1.5 008.0 0051.0 0021.0:420For     b b bb yy MPaf
  • 10. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 10 Tension steel strain check Maximum steel ratio check Neutral axis depth check • Ensuring that steel ratio is less than or equal to the maximum limit is equivalent to checking that tensile steel strain is equal to or greater than 0.005 • This is also equivalent to checking that neutral axis depth is limited such (using similar triangles): 19 dc d c d c t t t 375.0005.0 375.0 8 3 005.0 003.0 003.0 max        d 003.0 005.0t c • These three checks are equivalent. • The tension steel strain is sufficient and more informative about steel strain values. • In case of many tension steel layers, the maximum steel ratio check and the neutral axis depth check may be misleading. • It is therefore recommended to always use steel strain check and discard the other two checks. 20 Tension steel strain check Maximum steel ratio check Neutral axis depth check dct 375.0005.0 max  
  • 11. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 11 Strength Reduction Factors  Strength reduction factors () account for : • Uncertainties in material strength • Approximations in analysis and simplifications in equations • Variations in dimensions and in placement of reinforcement • Type of failure (Tension-control or compression-control) Typical values of  : • Tension controlled sections :  = 0.90 • Compression members and Tied Columns :  = 0.65 • Compression Spiral Columns :  = 0.70 • Flexure and compression (transition) :  = 0.65 (0.70) to 0.90 • Shear and torsion :  = 0.75 • Bearing on concrete :  = 0.65 21 22 Variation of  with Tensile Steel Strain  The strength reduction factor varies in the transition region.  Beams must have a tensile steel strain of at least 0.005 for SBC code (0.004 for ACI code).
  • 12. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 12 23 Types of Beams Analysis of RC Beams Determination of moment capacity 24 • Analysis of existing RC beams is somewhat different from the analysis and check involved in the design stage. • For new beams to be designed, all code provisions must be enforced. If any condition is not satisfied, the design must be repeated. • For existing beams, the analysis must be completed and any deficiencies reported. If for instance the section is not tension controlled or not satisfying minimum steel condition, its nominal and design moments must still be determined using appropriate strength reduction factors.
  • 13. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 13 25 Values of strength reduction factor  for beams • Tension control condition is required in all beam design problems, with a strength reduction factor ( = 0.90) • In analysis problems however, other cases may be met. • The value of the strength reduction factor depends on the tensile steel strain at the extreme (bottom) layer: 65.0:controlnCompressioIf 005.0 25.065.0:zoneTransition005.0If 90.0:controlTension005.0If           yt y yt ty t 26 d b sA N.A. c ca 1 abfC c ' 85.0 ' 85.0 cf ss fAT  The main difficulty in analysis problems is that it is not known whether steel has yielded or not. Existing beams may have been designed as over reinforced with steel not yielding at failure. Yielding case is much simpler as the steel stress is then known and constant fy It is usually first assumed that steel has yielded and if turns out that it has not, then a different method is used. Nominal Moment in RC Beams
  • 14. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 14 27                  22 :momentNominal :continueyiedling,OK:If0030ianglesSimilar tr 850 850 1 a dfAM a dTM ε c cd .ε a c bf. fA afAabf.TC ysnn ytt ' c ys ys ' c   Nominal Moment – Tension Steel Yielding d b sA (a) Section (b) Strains (c) Stresses / Forces N.A. 003.0 yt   ca 1 abfC c ' 85.0 ' 85.0 cf ys fAT  c 28 0600600850 )(600850600850 :givesand850850 600)200000( 2 1 2 11 1        dAcAcbf. cdAcbf. c cd Acbf. TCcbf.abf.C c cd ATMPaE ss ' c s ' cs ' c ' c ' c ss    Nominal Moment – Tension Steel Not Yielding c cd .EAT c cd EAfAT ss t tssss yt       0030 003.0 :ianglesSimilar tr :ThenIf    d b sA N.A. 003.0 yt   ca 1 abfC c ' 85.0 ' 85.0 cf tssss EAfAT  c (a) Section (b) Strains (c) Stresses / Forces
  • 15. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 15 29 Nominal Moment – Tension Steel Not Yielding                              22 :momentNominal :yieldednothassteelionthat tensConfirm 600and003.0,:Deduce 1 4 1 2 :issolutionPositive solutions.ith twoequation wQuadratic 85.0 600 with0 0600600850 1 1 ' 2 2 1 a dfAM a dTM c cd εEf c cd ca P dP c bf A PPdPcc dAcAcbf. ssnn yt tsst c s ss ' c     Analysis of a rectangular RC section Steps in determining design moment 30 6Goto                    2 :yieldingOKIf4/ 003.0strainsteelTensile/3 and 85.0 yieldingsteelAssume/2 :Check 4.1 , 4 Max, :valuesratiosteelminimumandactualCompute1/ t 1 min ' min a dfAM c cd a c bf fA a ff f bd A ysny t ' c ys yy cs    
  • 16. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 16 Steps in determining design moment – Cont. 31   n t yt y yt ty t ssnn tssytt c s yt M ε ε. εε ε a dfAM a dTM εEf c cd ca bf A P P dP c         ismomentDesign/7 SBC)byRejected,controllednNot tensio:005.0(If 0.65:controlnCompressioIf 0050 25.065.0:zoneionIn transit005.0If 0.90:controlTension005.0If :factorreductionSrength6/ 22 :momentNominal :check003.0, 85.0 600 with,1 4 1 2 :yieldingnotSteel:If5/ 1 1 '                                Problem 1 32 85.0MPa30MPa420 1  ' cy ff 600 375 284 75 675   OK 00333.000333.0,00326.0Max 420 4.1 , 4204 30 Max 4.1 , 4 Max 0109.0 600375 0.2463 :ratioSteel 0.246382 4 4:areaSteel min min ' min 22                                     yy c s s ff f bd A mmA Determine the nominal and design moments of the beam section shown.
  • 17. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 17 33 mm3.127 85.0 2.108 mm2.108 3753085.0 4200.2463 85.0 yiedingsteelAssume 1        a c a bf fA a ff ' c ys ys 0.90 controltensionandyieldingSteel 005.00111.0 0111.0 3.127 3.127600 003.0 003.0             yt t t c cd kN.m508.24 kN.m71.5649.0:momentDesign kN.m71.564N.mm1071.564 2 2.108 6004200.2463 22 6                        n n n n ysn M M M M a dfA a dTM   Solution 1 3.127 003.0 7.472 s 600 375 284 Problem 2 Determine the nominal and design moments of the beam section shown. fc’ = 20 MPa and fy = 420 MPa 34 525 600 mm350 283   OK 00333.000333.0,00266.0Max 420 4.1 , 4204 20 Max 4.1 , 4 Max 01005.0 525350 25.1847 :ratioSteel 25.184782 4 3:areaSteel min min ' min 22                                     yy c s s ff f bd A mmA
  • 18. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 18 35 mkNM a dfAM MOK c cd mm a c n t ysn nyt t .03.3217.35690.0 control)(Tension90.0005.000726.0 kN.m7.356N.mm107.356 2 39.130 52542025.1847 2 :forContinue.assumedasyieldedhassteel0021.000726.0 00726.0 4.153 4.153525 003.0003.04.153 85.0 39.130 :yieldedhassteelCheck that 6 1                           525 350 283 ca 1 abfC c ' 85.0 ' 85.0 cf ys fAT  2 a d  Solution 2: Assume steel yielding mm39.130 3502085.0 42025.1847 85.0 25.184728 4 3 ' 22        a bf fA aTC mmA fATff c ys s ysysys   Problem 3 Determine the nominal and design moments of the beam section shown. Same as previous problem but with one more steel bar. fc’ = 20 MPa and fy = 420 Mpa 36   OK 00333.000333.0,00266.0Max 420 4.1 , 4204 20 Max 4.1 , 4 Max 0134.0 525350 0.2463 :ratioSteel 0.246382 4 4:areaSteel min min ' min 22                                     yy c s s ff f bd A mmA 525 600 mm350 284
  • 19. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 19 37mkNM a dfAM MOK c cd mm a c n t ty ysn nyt t .06.39616.453874.0 874.0 0021.0005.0 0021.00047.0 25.065.0 005.0 25.065.0:Transition005.00047.0 kN.m53.164N.mm1016.453 2 86.173 5254202463 2 :forContinue.assumedasyieldedhassteel0021.00047.0 0047.0 54.204 54.204525 003.0003.054.204 85.0 86.173 y y 6 1                                    Solution 3: Assume steel yielding :strainsteelCheck mm86.173 3502085.0 4200.2463 85.0 '       a bf fA aTC fATff c ys ysysyt  525 350 284 ca 1 abfC c ' 85.0 ' 85.0 cf ys fAT  2 a d  Problem 4 • The reinforcement of 2945 mm2 is from six 25-mm bars which are arranged in two layers but are assembled (lumped) together in a single compact layer. 38 Determine the nominal and design moments of the beam section shown. fc’ = 20 MPa and fy = 420 MPa 510 250 2945 90 600 2 mm   OK00333.000333.0,00266.0Max 420 4.1 , 4204 20 Max 4.1 , 4 Max 0231.0 510250 2945 :ratioSteel minmin ' min                           yy c s ff f bd A
  • 20. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 20 39 mm4.342 85.0 04.291 mm04.291 2502085.0 4200.2945 85.0 yiedingsteelAssume 1        a c bf fA a ff ' c ys ys mmcammc cP bf A P P dP c c cd c s yt t 82.26455.31185.055.311 1 135.489 5104 1 2 135.489 135.489 85.02502085.0 2945600 85.0 600 with,1 4 1 2 yieldingNot0147.0 00147.0 4.342 4.342510 003.0003.0 1 1 '                                   Solution 4 510 250 2945 90 600 2 mm 40 kN.m.24762kN.m98.42465.0:momentDesign 0.65:controlnCompressio kN.m98.424N.mm1098.424 2 82.264 51018.3820.2945 22 6                       n yt n ssn M M a dfA a dTM   Solution 4 - Continued )(18.3820019109.0200000 yieldingNotOK0019109.0 55.311 55.311510 003.0003.0 82.26455.311 ytss yt fMPaEf c cd mmammc          This beam is over reinforced (compression controlled) and is not allowed by SBC / ACI codes. The two steel layers were lumped at their centroid but lumping is allowed only if all layers are yielding. Non yielding with many layers can only be analyzed using the strain compatibility method described later.
  • 21. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 21 41 Lumping of tension steel layers at centroid • If tension steel is arranged in two or more layers, these can be, in the calculations, replaced by a single steel area at their centroid. This Layer lumping (assembly) simplifies analysis and design equations. Standard beam design cannot in fact deal with more than one tension steel layer. • As layer strains are different, lumping is only justified if all tension layers have yielded (and have the same yield stress). • Tension steel depth d must therefore be computed at the centroid of the layers. • Yielding must be checked at the least tensioned layer with minimum depth dmin • It is therefore unsafe to check yielding at the centroid • Performing tension control check at the centroid is uneconomical. It should be performed at the most tensioned extreme bottom layer. 42 0.003 d dt c Depths Strains 005.0t yε min dmin s Lumping of tension steel layers at centroid       005.0 :layersMany 005.0:layerOne min t y t ε    Required steel strain checks : ts ts ε ε     min min :layersMany :layerOne centroidsteelAt tension:, layer(bottom)max.depthAt:, layerdepthminimumAt:, :usedNotations minmin s tt εd εd εd
  • 22. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 22 Determine design moment for the shown section with six 20-mm bars in two layers. Bar / layer spacing is 30 mm. 43 MPa420andMPa20  y ' c ff 250 206 650 Problem 5 mm dd d mmdd dSddd mmdd d dhdd bl t b st 565 2 :centroidatdepthsteelEffective 5402030590 :layerSecond 590 2 20 1004650 2 cover:layerbottomFirst :depthsSteel 21 min2 1min2 1 1        Solution 5 44   OK 00333.000333.0,00266.0Max 420 4.1 , 4204 20 Max 4.1 , 4 Max 0133.0 565250 96.1884 :ratioStee 96.188402 4 6:areaSteel min min ' min 22                                     yy c s s ff f bd A mmA 250 206 565 mm15.219 85.0 28.186 mm28.186 2502085.0 42096.1884 85.0 depthblockStress :steelofyieldingAssume 1 1        a cca bf fA a ' c ys 
  • 23. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 23 45 layer.steelbottomattestcontroltensionperformBetter controlled-nnot tensioissectionthecentroid,At the 005.00047.0 15.219 15.219565 003.0003.0 :centroidsteelatcheckStrain:Important 0.90controlTensionOKandyieldOK 005.000507.0 15.219 15.219590 003.0003.0 :layer)(bottomdepthmaximumatcheckcontrolTension 0021.00044.0 15.219 15.219540 003.0003.0 :depthminimumatstrainsteelofcheckYield min min                   c cd c cd OK c cd s y t t y     Solution 5 Continued 46 kN.m20.363 kN.m56.3739.0:momentDesign kN.m56.373N.mm1056.373 2 28.186 56542096.1884 22 6                       n n n ysn M M M a dfA a dTM   Solution 5 Continued 15.219 003.0 0044.0 250 206 565 00507.0 0047.0 This example shows the importance (economy) of performing the tension control check at the extreme bottom layer of tension steel.
  • 24. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 24 Determine the design moment for the shown section 47 MPa420andMPa27  y ' c ff Problem 6 mm dd d mmdd mmdd t 608 2 :centroidatdepthsteelEffective 580:layerSecond 636:layerbottomFirst 21 min2 1        OK00333.000333.0,00309.0Max 420 4.1 , 4204 27 Max 4.1 , 4 Max 0270.0 608300 0.4926 0.492682 4 8 minmin ' min 22                                  yy c s s ff f bd A mmA 300 288 700 Solution 6 (assume steel yielding) 48 ys ty t t y ' c ys c cd c cd c cd a c bf fA a                         00216.0 53.353 53.353608 003.0003.0:straincentroidSteel:Important ionIn transit005.000240.0 53.353 53.353636 003.0003.0 :layer)(bottomdepthmaximumatcheckcontrolTension justifiednotLumpingyieldingNo00192.0 53.353 53.353580 003.0 003.0:depthminimumatstrainsteelofcheckYield mm53.353mm50.300 3002785.0 4200.4926 85.0 depthBlock min min min 1 Steel is not yielding at the minimum depth layer although it is yielding at the centroid. Lumping is therefore unjustified and would unsafely deliver a higher moment capacity. This example proves that it is unsafe to perform the yield check at the centroid.
  • 25. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 25 49 mkNM a dfAM n ysn .2.640kN.m05.947676.0:momentDesign 676.0 0021.0005.0 0021.00024.0 25.065.0transitionIn005.000240.0 kN.m05.947N.mm1005.947 2 5.300 6084200.4926 2 tt 6                     Solution 6 Continued This example shows the importance (safety) of performing the steel yield check at the least tensioned steel layer (with minimum depth). The unsafe (over estimated) moment capacity would be as : This result is of course unsafely false because of an unjustified use of layer lumping. The exact nominal moment obtained using the strain compatibility method is 935.76 kN.m 53.353 003.0 00192.0 300 288 608 00240.0 00216.0 Determine design moment for the shown section (shallow beam very popular in KSA) with nine 20-mm bars in three layers. Layer spacing is equal to 30 mm. It is obvious this is not a correct bar arrangement as the beam width can accommodate more than three bars. However design and / or execution errors are unfortunately always possible. 50   0026.0and 802.065.0,008.009.1Max MPa520andMPa36 y 1      ' c y ' c f ff Problem 7 – Special and Important 500 209 380
  • 26. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 26 51 Solution of Problem 7 mmd ddd d mmdd dSddd mmd dSdd mmdd d dhdd bl bl t b st 270 3 :centroidatdepthsteelEffective 2202030270 :layerThird 2702030320 :layerSecond 320 2 20 1004380 2 cover:layerbottomFirst :depthsSteel 2 321 min3 2min3 2 12 1 1          500 209 380 Solution 7 52   OK 00284.000269.0,00284.0Max 520 4.1 , 5204 35 Max 4.1 , 4 Max 0209.0 270500 4.2827 :ratioStee 4.282702 4 9:areaSteel min min ' min 22                                     yy c s s ff f bd A mmA mm81.119 802.0 09.96 mm09.96 5003685.0 5204.2827 85.0 depthblockStress:yieldingsteelAssume 1      a ca bf fA a ' c ys 500 209 380
  • 27. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 27 53 ys t t t y c cd c cd c cd                       00376.0 81.119 81.119270 003.0003.0 :centroidsteelatcheckStrain:Important ControlTensionOK005.000501.0 00501.0 81.119 81.119320 003.0003.0 :layer)(bottomdepthmaximumatcheckcontrolTension OKNOTCheckYield0026.000251.0 00251.0 81.119 81.119220 003.0003.0 :depthminimumatstrainsteelofcheckYield min min min Solution 7 Continued 54 The section is tension-controlled (accepted by SBC) as the bottom strain is just greater than the 0.005 limit. However, although steel has yielded at the centroid, the strain in the upper layer is less than the yield limit. The previous calculations, based on the assumption of yielding of all steel, are thus incorrect and unsafe. It is therefore more exact and safer to perform the yield check at the upper layer with minimum depth. ys t y         00376.0 ControlTensionOK 005.000501.0 OKNOTYield 0026.000251.0min 8.119 003.0 00251.0 500 209 270 00501.0 00376.0 Solution 7 Continued
  • 28. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 28 55 kN.m70.293kN.m33.3269.0:momentDesign kN.m33.326N.mm1033.326 2 09.96 2705204.2827 22 6                      n n ysn M M a dfA a dTM  Solution 7 Continued This example shows the importance (safety) of performing the tension control check at the upper layer of tension steel. This incorrect solution for the nominal and design moments is : 8.119 003.0 00251.0 500 209 270 00501.0 00376.0 The exact solution based on the actual strain in every layer, would deliver lower values of moments. As the strain in the upper layer is close to yield, the exact solution should be just slightly lower. 56 Strain Compatibility Solution 7 • The strain compatibility method is a very powerful analysis tool for complex situations, with many steel layers. • It is based on the linear variation of strains resulting from the assumption of sections remaining plane after bending. • The stress at any level or layer is related to the strain through the material model (stress-strain curve). No layer lumping is used. • All strains are expressed in terms of the neutral axis depth c which is the main problem unknown. c 003.0 3s 500b 2033  1s 2s c cd i i si   003.0 :layerAt 
  • 29. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 29 57 Strain Compatibility Solution 7 – Cont. • The method is more effective if a good initial assumption is made about yielding (or not) of the various steel layers. • It is reasonable to assume that at failure the bottom two layers have yielded and that the third is in the elastic range (stress proportional to strain through Young’s modulus). The strains and forces are therefore as shown in the figure. c 003.0 ys  3 500 2033  ys  1 ys  2 ca 1 ' 85.0 cf 33 sss EA  ys fA1 ys fA 2 abfc ' 85.0 Section Strains Forcesc cdi si   003.0 58 Strain Compatibility Solution 7 – Cont. • The two unknown forces are the concrete compression and the tension in the third layer. They are both expressed in terms of the neutral axis depth (using 200000 MPa for steel modulus) : c cd A c cd EAEATcbfabfC sssssssccc     3 3 3 33331 '' 600003.085.085.0  c 003.0 ys  3 500 2033  ys  1 ys  2 ca 1 ' 85.0 cf 33 sss EA  ys fA1 ys fA 2 abfc ' 85.0 Section Strains Forcesc cdi si   003.0
  • 30. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 30 59 Strain Compatibility Solution 7 – Cont. • We now express the force equilibrium : c cd AEATcbfabfC sssssccc   3 33331 '' 60085.085.0  c cd AfAfAcbfTTTC sysyscsssc   3 3211 ' 321 60085.0  • Remark: If more than one layer has not yielded, its strain, stress and force are again expressed in terms of the neutral axis depth (c) and the latter will remain the only unknown in the final equilibrium equation. • We multiply by c and after assembling, we obtain a quadratic equation :       060060085.0 60085.0 33321 2 1 ' 3321 2 1 '   dAcAfAfAcbf cdAcfAfAcbf ssysysc sysysc   60 Strain Compatibility Solution 7 – Cont. • Substitution with the given data leads to : 002546.000381.000507.0003.0 0.119:issolutionPositive 2.20463.41696 0632.10138795.33 012440709632.4146906.12270 321 2 2        sss i si c cd mmc cc cc    mmdmmdmmd mmAAA mmbMPafMPaf dAcAfAfAcbf sss yc ssysysc 220270320 478.942 802.050052036 060060085.0 321 2 331 1 ' 33321 2 1 '      
  • 31. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 31 61 Strain Compatibility Solution 7 – Cont. • The assumed steel strain conditions are confirmed. The third layer has not reached the yield limit but is very close to it. • If the assumed yielding (or not) condition is violated in any layer, then new calculations must be carried out. • The strain in the bottom layer confirms that the section is tension controlled : • Substitution gives the forces, which must satisfy equilibrium. 002546.000381.000507.00.119 321  sssmmc  kNTkNTTkNC c cd ATfATfATcbfC sssc ssyssysscc 95.47909.49020.1460 60085.0 321 3 3322111 '     • Equilibrium is checked. The sum of the steel tensile forces is equal to concrete compression force. 62 Strain Compatibility Solution 7 – Cont. • The nominal moment is better determined as the moment of the steel tensile forces about the compression centroid. • Using kN and meter units : ' 85.0 cf 33 sss EA  ys fA1 ys fA 2 abfc ' 85.0 44.95 1ca  ' 85.0 cf 95.479 09.490 09.490 20.1460 mkNMmkNM M a dT a dT a dTM nn n sssn .55.29206.32590.0.06.325 2 09544.0 22.095.479 2 09544.0 27.009.490 2 09544.0 32.009.490 222 332211                                         • This exact solution is less than but close to the previous false one because the third layer was very close to yielding. Despite non yielding of the top layer, the section is still tension controlled.
  • 32. 25-Feb-13 CE 370 : Prof. Abdelhamid Charif 32 6363 Lumping of many tension steel layers Caution • Lumping all steel layers at the centroid may only be valid for normal beams not exceeding three to four layers. • For deep beams or columns and walls with many steel layers, and for beams with mid-height side (skin) bars, lumping cannot be used and appropriate methods must be used (strain compatibility). • The two shown skin bars (imposed by codes of practice for deep beams) must not be included in the lumping process. 63 Skin bars RCcolumnRCdeepbeam Homework Problems 64 1/ Determine the design moment capacity for the beams shown. f’c = 30 MPa , fy = 420 MPa. 600 375 363 75 675 600 375 283 75 675 Beam 1 Beam 2 2/ Re-solve problem 6. Obtain the given exact solution using the strain compatibility method.