SlideShare una empresa de Scribd logo
1 de 59
Descargar para leer sin conexión
What could Hinode
results tell us
about cosmic
magnetic fields?
1
Saku Tsuneta
Institute of Space and Astronautical Science, JAXA
ISAS Astrophysics Colloquia
2015 February 26 11-12am
EUV Imaging
Spectrometer(EIS)
Solar Optical
Telescope(SOT)
X-ray Telescope
(XRT)
Japan-US-UK-ESA project
Orbit: Polar Sun Synchronous
Launched 2006 Autumn
Satellite Hinode (JAXA SOLAR-B)
2
EUV Imaging
Spectrometer(EIS)
Solar Optical
Telescope(SOT)
X-ray Telescope
(XRT)
Hinode mission objective:
Systems approach to understand
generation, transport and ultimate
dissipation of solar magnetic fields with
3 well-coordinated advanced telescopes.
Japan-US-UK-ESA project
Orbit: Polar Sun Synchronous
Launched 2006 Autumn
Satellite Hinode (JAXA SOLAR-B)
3
Too-strong Magnetic field in the Universe
How does Universe create such strong fields?
• Early universe: 10-21G?
• Galaxies and Clusters of Galaxy: 10-6 G
• Late type stars 103G
• Bottom of convection zone 105 G
• Pulser 1012G
• Magnetor 1015 G
4
Fossil or Compressive process?
Dynamo?
global dynamo?
Local (turbulent) dynamo?
Too-strong Magnetic field in the Universe
How does Universe create such strong fields?
• Early universe: 10-21G?
• Galaxies and Clusters of Galaxy: 10-6 G
• Late type stars 103G
• Bottom of convection zone 105 G
• Pulser 1012G
• Magnetor 1015 G
Fossil or Compressive process?
Dynamo?
global dynamo?
Local (turbulent) dynamo?
Dynamo+?
Dynamo+compression
Dynamo+?
Dynamo
Compression and fossil?
needs dynamo
needs dynamo
Compression and fossil
Any dynamo mechanism can amplify the magnetic fields
upto equi-partition fields Be
But not beyond! We sometimes need a mechanism to go
beyond the equi-partition fields.
Kinetic
Energy
Magnetic
Energy
2
2
2
1
8
ru
p
»eB
5
l 1.4 GHz
lVLA
Galactic center Solar corona
Does nature prefer flux tubes?
i.e. Does nature prefer higher magnetic energy state?6
Courtesy of Sofue
NASA TRACE
7
l 300 MHz
lStrong magnetic field of mG
lMuch smaller than equi-partition field corresponding
to the local gas
lEquivalent to equi-partition field corresponding to
galactic rotation (100-200 km/s)
Courtesy of Sofue
Galactic center:flux tubes? vertical to the G-plane
8
9
Emergenceofmagneticfields
inaformofslenderfluxtubes
WithBaroundequi-partition
Magnetic fields have a form of flux tube
Strong kG magnetic
field in between
convection cells
exceeding equi-
partition B
10
11
1000km
12
Hinode highest resolution
Stokes-V map
(vertical component of B)
Does nature prefer
isolated flux tubes?
1000km
Ishikawa+09
Distribution function of
magnetic field strength
Peaks at 1.5kG
Super-equipartition
majority:below500G
Sub-equipartition
Two components
13
Hinode result
Equi-partition
field strength
14
Sub-equipartition B
500G
Super-equipartition B
2000G
200 sec
Formation of super equipartition from
sub-equipartition magnetic fields
Parker prediction:supersonic down flow associated with
thermal instability results in compression of magnetic fields
Nagata+08
Convection plus weak magnetic fields result in
strong magnetic fields
Parker (1978); Hasan (1985), Hasan et al. (2003), Bunte, Hasan,Kalkofen, (1983)
G4004
2
1
8
2
2
»»
»
upr
ru
p
B
Be
kG21
8
2
-»
=+
B
PBP ei p
Magnetic
Flux tube
Solar
surface
Convection
flow
Downflow
Inside flux tube
15
15
Sub-equipartition B Super-equipartition B
Inhibit thermal
energy due to B
Cooling and
downflow
Stronger B due
to lateral P balance
Ishikawa+08
Convective collapse creates1.5kG flux tubes
(This is not dynamo)
Convective collapse!! 500G 1.5kG
Smaller total B
energy
Larger total B
energy
Peak at 1.5kG
due to convective
collapse
90% is below 500G
Just born?
Higher T.
Lower T.
Reduce heat
Input from below
Lateral heat input
from side
Slender flux tube
You are looking at
deeper layer due to
magnetic pressure
Dark sunspot and bright faculae
Emission
From hot wall Solar surface is a
rias coastline due to
thin flux tubes. It
serves as heat sink.
17
Same temperature
Sun as seen in UV
Bright faculae
Dark sunpsot
18
0.1-0.2%
Non-constant solar constant
Faculae (slender flux tubes win)!
Solarconstant
year
amplitude of 0.1-0.2%
Vertical magnetic fluxHorizontal magnetic flux
Quiet Sun magnetic fields
Ubiquitous linear polarization patches
Lites+08, Orozco+07,08, Centeno+08
Ishikawa+08, 09, 10,11ab, Jin+09,
Martınez Gonzalez+09 etc, Danilovic+10
Wherever convection, horizontal fields exist!?
250000km
120000km
Lites+08
22
Local dynamo process
discovered with Hinode
Ishikawa & Tsuneta (2008)
Total flux = 10-100 x sunspot
Field strength < equi-partition
Life time < granulation lifetime
Size <granulation size
Horizontal B below
equi-partition
Equi-partition
field strength
Discovery of New Dynamo Mechanism
with Hinode
• Differential rotation of
Sun amplifies magnetic
field
北極
南極
Magnetic
field
Convection
Energy
Magnetic
Energy
北極
南極
北極
南極
Rotation
Energy
Magnetic
Energy
Convection cell 1000km Magnetic field
• Convection motion of
plasma amplifies
magnetic field
Sunspot Horizontal fields
Known mechanism Newly discovered
2006 Dec 17 20:00-21:00 UT CaII H broad band filter images taken with Hinode/SOT
Chromosphere more dynamic than expected!
Chromospheric jets and fountain
driven by magnetic force
24
25
KM late type star:
Fully convective
Active corona
Not consistent with
Solar paradigm
Early type star:
No convection zone
No corona
Hayashi track:
Proto star
Convection dominant
Active corona
Differential rotation driven global scale
Dynamo and convection-driven dynamo
T tauri star:
Convection
Fast rotation
Sunspot, wind
Strong X-rays
26
KM late type star:
Fully convective
Active corona
Not consistent with
Solar paradigm
Early type star:
No convection zone
No corona
Hayashi track:
Proto star
Convection dominant
Active corona
Differential rotation driven global scale
Dynamo and convection-driven dynamo
T tauri star:
Convection
Fast rotation
Sunspot, wind
Strong X-rays
Convection
convection-driven local dynamo
rotation⇒Reynolds stress
⇒differential rotation
⇒global dynamo
Takeda & Takada-Hidai, PASJ (2011)
• Subaru observations on 24
moderately to extremely metal-poor
late type MS stars
– Probably slowly or non-rotating
stars with global dynamo not
operative
• HeI 1083nm detected for all stars
– High excitation line (19.7 eV)
– Excellent indicator for coronal
&chromospheric activities
– He abundance independent of
metallicity
• Nearly constant EW for all stars
– Corona exists regardless of
metallicity (i.e. age, rotation
period)
• Not driven by global dynamo
Sun
Extremely
metal-poor
Neutral universe with
zero magnetic field due
to zero electric current
First stars and
re-ionization
B=1-30μG
B=0G
28
From website
Conservation of magnetic flux
29
0)(0)0(
0
=FÞ==F
=
F
tt
Dt
D
How could we make such a strong
magnetic fields currently observed?
Early universe present time
)()(,0;0
)(
)(
;)0(
2
2
ttBBt
B
e
Mc
e
p
cv
t
v
en
pn
cBv
t
B
j
en
p
c
Bv
E
e
e
ww
w
r
r
w
w
w
µ===
=
Ñ´Ñ
-´´Ñ=
¶
¶
´Ñ=
Ñ´Ñ
-´´Ñ=
¶
¶
=
Ñ
-=
´
+
じ;式が同じなら解も同
;渦度の誘導方程式
;渦度の定義
;誘導方程式
運動方程式
SimilarityofInductioneq.
andvortexeq.
30
R. Kulsrud, 2005, Plasma physics for astrophysics
Princeton University Press
Initial magnetic field strength
after re-ionization epoch
• If baroclinic, vorticity exists and Biermann
battery mechanism works, resulting in
magnetic fields from zero value.
• How large is the magnetic fields?
– r=100kpc, M=1011Mo
– v=3x105 m/s(virial theorem)
– ω∼v/r=10-16 /s
– B∼10-20G!
31
• Equi-partition field due to local dynamo OK!
– n=10-3 cm-3
– v=3x105 m/s
– T=100eV (106K)
• Maximum turnover time OK!
– r/v=3x1023cm/3x107cm/s=1016s<<4x1017s (cosmic
life time)
– Since actual Eddy size is smaller than the largest
scale size r taken here, this is a conservative
estimate.
• A potential problem: not organized field
Turbulent dynamo then works to amplify the
small magnetic fields to the current values
32
G10
8
5
2
2
-
»
=
eq
eq
B
v
B
r
p
宇宙は電離しておらず
電流なしのため磁場
ゼロ
第1世代銀河の形成
と宇宙の再電離
B=1μG
B=0G
33
Vortex in proto-galaxy produces magnetic fields as
large as B=10-20G(Biermann Battery)
↓
Hinode: convection-driven dynamo amplifies B
upto B=Beq=10-6G
↓
Global galactic dynamo B>10-6G
From website
34
Galactic magnetic fields
along spiral arms
• Highly organized
• Observed magnetic
fields comparable to
equi-partition field
strength for local
velocity dispersion
• Umag=B2/8π=U(ISM)
• B=10μG
Courtesy of Sofue
Discovery of transverse waves along
magnetic field with Hinode (Okamoto et al 2008)
Spicules, coronal rains, and prominece
over an active region
35
Transverse Wave along
magnetic field line carrying
substantial amount of energy
Alfven wave
Magnetic fields
gas
Figures Courtesy Joten Okamoto
Polarimetric data provides phase relationship among magnetic,
velocity and intensity fluctuation, confirming transverse MHD
waves (Fujimura, Tsuneta, 2009).
36
In-Situ-like observations of
MHD waves in solar photosphere
Field
strength
Stokes-IPhotometirc
Intensity
Stokes-V
• mode of waves
• direction of wave
• propagating or
• standing waves
• properties of flux
• tubes
Observables:
• δInteisnty(t)
• δB/ / (t), δB┴(t)
• δVLOS(t)
• center-to-limb var.
Doppler vel.
37
Half of flux tubes show
such clean common peak
Velocity IntensityMagnetic flux
TimeProfilePowerspectra Fujimura&Tsuneta 09
Fujimura&Tsuneta 09
Phase difference (deg) Phase difference (deg)
Phase difference (deg) Phase difference (deg)
φB-φV φV-φI(core)
φI(core)-φB φI(cont)-φI(core)
Fujimura&Tsuneta 09
--90deg --90deg
180deg -0 deg
-3-9min
Solid: pores+flux tubes
Dashed: pores
39
Velocity leads magnetic fields
by quarter of waves.
Importance of phase relation
to identify wave mode and direction of
propagation
Discovery of Alfven waves from phase
relation between δB and δ v, but almost
stationary waves!
δB- δ v:0 or 180 deg
δB- δ v:90 deg
Significant reflection of upward
waves at photosphere-corona
transition layer
Kink
mode
Sausage
mode
Fujimura&Tsuneta 09
Residual Poyning Flux of kink wave
Differential (upward – downward) Poynting flux is
proportional to cos(φB – φv)
An example with low intensity fluctuation
(dI/I=0.3%)
f=0.73, B0=1.7x103 (G), δB=21(G),
δv=0.059(km/ s), φB−φv=−96˚ giving
ΔF=2.7x106 (erg/ s/ cm2)
f : average filling factor B0 : vertical magnetic field
δB/ δv: root-mean-square transverse magnetic
field/ velocity fluctuation
)cos(
4
vBvB
fB
F ffdd
p
--=D
Fujimura&Tsuneta 09
Sunspot number is a good proxy for
magnetic activity of the Sun
11 year cycle of sunspot number from the era of Galileo
42
Year
Sunspotnumber
Maunder minimum Dalton minimum
Gradual decrease of solar activity
Mean Sunspot number
1.0
0.0
-1.0 North
South
High latitude average magnetic flux Wilcox
Royal Belgium observatory
西暦
西暦
Reversal of high latitude field
At around solar maximum 43
Importance of polar fields to predict future
solar activity (Choudhuri)
N
S
N
S
N
S
Cause
Weak
polar field
Result
Less number
of sunspots
130 rotations in 11 year
▽Ω-dynamo
45ひので
西暦 西暦
Magnetic
Flux (G)
Minus Plus
MinusPlus
Asymmetric north and south poles
Still significant as of now
• Northern flux decreases rapidly
• Southern flux has much slower decrease.
North South
Quadruple poloidal fields
(sketch)
QuadrupleBipolar 47
N
S
N
N
Bipolar mode Quadruple mode
Bipolar + Quadruple
Strong diffusionWeak diffusion
Sokoloff and Nesme-Ribes1994
Anti-Joy’s law due to
quadruple poloidal field
NN
N
S
N S
Bipolar SunQuadruple Sun
Anti-Joy’s law AR#11429
signature of quadruple poloidal field?
50
N
N
S
S
NS
51
1950-1990 (Recent normal cycle)
1670-1710 (Maunder minimum)
Smaller number
of sunspots are
located only in
Southern
hemisphere
North
North
South
South
1680 1690 1700 1710 17201680
1950 1960 1970 1980 1990
LatitudeLatitude
+50
-50
Sokoloff and Nesme-Ribes1994
Location of sunspot emergence
The dynamo equation
2015/2/26 52
[ ]
operation)in(dynamo)(
1
)(Eq.inductionofcomponent
1
)(Eq.inductionofcomponent
2
2
2
2
ff
f
f
fff
f
f
f
ah
h
BcEA
r
rA
r
vp
r
t
A
BBpoloidal
B
rr
v
rB
r
B
vpr
t
B
BBtoroidal
vvv
BBB
pp
p
p
p
p
p
p
=+ú
û
ù
ê
ë
é
-Ñ=ú
û
ù
ê
ë
é
Ñ×+
¶
¶
Þ
úû
ù
êë
é
-Ñ+ú
û
ù
ê
ë
é
Ñ×=Ñ×+
¶
¶
Þ
+=
+=
S
Bp
Ap
On meridional plane: poloidal
Perpen. to M.P.: toroidal
One interpretation
If cyclic phase differs between hemispheres,
Vector
potential
Near-surface higher
turbulent diffusivity
Hotta, Yokoyama, 2010Fast meridional flow
Cycle length: 12.6 year!
黒
点
数
西暦年
黒
点
数
Longer cycle period
is also seen just
before Dalton minimum
Dalton minimum
Year
Sunspotnumber
Past 6 cycles (overlaid)
Current cycle
Northern hemispehre
Southern hemisphere
Sunspotnumber
NAOJ solar observatory
More anomaly
of the Sun
period∼14yr
period∼13yr
period∼12.6yr
Are we entering
Maunder minimum?
55
NS-asymmetry
N-S asymmetry?
55
present
11400yr
4000yr
Sunspot number in the past 11400 years 56
57
“Sports on a Frozen River” by Aert van der Neer
Courtesy: The Metropolitan Museum of Art
The Maunder minimum
58
Rotation
Turbulence
⇒ Differential rotation
Solitary star like the sun has
strong magnetic fields!
⇒Local dynamo
⇒ Global dynamo
Role of Magnetic fields
in Stars and Cosmos and Hinode
• Carry energy through waves
• Store energy
• Dissipate stored energy with magnetic
reconnection
• Induce MHD instability and eruptions
• Suppress cross-field transport for mass
and heat
• Suppress convection i.e. energy transport
59

Más contenido relacionado

La actualidad más candente

Powehi EAO PPT from Director Paul Ho
Powehi EAO PPT from Director Paul HoPowehi EAO PPT from Director Paul Ho
Powehi EAO PPT from Director Paul HoILOAHawaii
 
"""Program and planning at JAXA-Space Science"" National Research Council Sp...
"""Program and planning at JAXA-Space Science""  National Research Council Sp..."""Program and planning at JAXA-Space Science""  National Research Council Sp...
"""Program and planning at JAXA-Space Science"" National Research Council Sp...ISAS_Director_Tsuneta
 
Gf europe 2018 vienna iloa ppt
Gf europe 2018 vienna   iloa pptGf europe 2018 vienna   iloa ppt
Gf europe 2018 vienna iloa pptILOAHawaii
 
Earth Observation Satellites
Earth Observation SatellitesEarth Observation Satellites
Earth Observation SatellitesDivya Basuti
 
Galaxy forum vienna_2018_cv1
Galaxy forum vienna_2018_cv1Galaxy forum vienna_2018_cv1
Galaxy forum vienna_2018_cv1ILOAHawaii
 
Lunar observatories 2018-08-23-ilo-vienna
Lunar observatories 2018-08-23-ilo-viennaLunar observatories 2018-08-23-ilo-vienna
Lunar observatories 2018-08-23-ilo-viennaILOAHawaii
 
Iloa ngizani2020
Iloa ngizani2020Iloa ngizani2020
Iloa ngizani2020ILOAHawaii
 
Lunar Ultraviolet Cosmic Imager (LUCI)
Lunar Ultraviolet Cosmic Imager (LUCI)Lunar Ultraviolet Cosmic Imager (LUCI)
Lunar Ultraviolet Cosmic Imager (LUCI)ILOAHawaii
 
The Invention Of Satellite
The Invention Of SatelliteThe Invention Of Satellite
The Invention Of Satellitesjenglishclub
 
Satellites presentation
Satellites presentationSatellites presentation
Satellites presentationVikas Sharma
 
ILOA Galaxy Forum Canada 2013 - John Chapman
ILOA Galaxy Forum Canada 2013 - John ChapmanILOA Galaxy Forum Canada 2013 - John Chapman
ILOA Galaxy Forum Canada 2013 - John ChapmanILOAHawaii
 
Transit observations of_the_hot_jupiter_hd189733b_at_xray_wavelenghts
Transit observations of_the_hot_jupiter_hd189733b_at_xray_wavelenghtsTransit observations of_the_hot_jupiter_hd189733b_at_xray_wavelenghts
Transit observations of_the_hot_jupiter_hd189733b_at_xray_wavelenghtsSérgio Sacani
 
Artificial satellites elisenda
Artificial satellites elisendaArtificial satellites elisenda
Artificial satellites elisendaraltafulla
 
Space Debris Removal System
Space Debris Removal SystemSpace Debris Removal System
Space Debris Removal SystemMohammad Shadab
 
CFHT proposed Maunakea Spectroscopic Explorer
CFHT proposed Maunakea Spectroscopic ExplorerCFHT proposed Maunakea Spectroscopic Explorer
CFHT proposed Maunakea Spectroscopic ExplorerILOAHawaii
 
NASA Research & Research Missions: Applications for Space Weather Forecasting
NASA Research & Research Missions: Applications for Space Weather ForecastingNASA Research & Research Missions: Applications for Space Weather Forecasting
NASA Research & Research Missions: Applications for Space Weather ForecastingAmerican Astronautical Society
 

La actualidad más candente (20)

Powehi EAO PPT from Director Paul Ho
Powehi EAO PPT from Director Paul HoPowehi EAO PPT from Director Paul Ho
Powehi EAO PPT from Director Paul Ho
 
"""Program and planning at JAXA-Space Science"" National Research Council Sp...
"""Program and planning at JAXA-Space Science""  National Research Council Sp..."""Program and planning at JAXA-Space Science""  National Research Council Sp...
"""Program and planning at JAXA-Space Science"" National Research Council Sp...
 
Gf europe 2018 vienna iloa ppt
Gf europe 2018 vienna   iloa pptGf europe 2018 vienna   iloa ppt
Gf europe 2018 vienna iloa ppt
 
Earth Observation Satellites
Earth Observation SatellitesEarth Observation Satellites
Earth Observation Satellites
 
Galaxy forum vienna_2018_cv1
Galaxy forum vienna_2018_cv1Galaxy forum vienna_2018_cv1
Galaxy forum vienna_2018_cv1
 
Lunar observatories 2018-08-23-ilo-vienna
Lunar observatories 2018-08-23-ilo-viennaLunar observatories 2018-08-23-ilo-vienna
Lunar observatories 2018-08-23-ilo-vienna
 
Iloa ngizani2020
Iloa ngizani2020Iloa ngizani2020
Iloa ngizani2020
 
Lunar Ultraviolet Cosmic Imager (LUCI)
Lunar Ultraviolet Cosmic Imager (LUCI)Lunar Ultraviolet Cosmic Imager (LUCI)
Lunar Ultraviolet Cosmic Imager (LUCI)
 
1207 worden[1]
1207 worden[1]1207 worden[1]
1207 worden[1]
 
Satellites
SatellitesSatellites
Satellites
 
The Invention Of Satellite
The Invention Of SatelliteThe Invention Of Satellite
The Invention Of Satellite
 
Satellites presentation
Satellites presentationSatellites presentation
Satellites presentation
 
ILOA Galaxy Forum Canada 2013 - John Chapman
ILOA Galaxy Forum Canada 2013 - John ChapmanILOA Galaxy Forum Canada 2013 - John Chapman
ILOA Galaxy Forum Canada 2013 - John Chapman
 
AAS National Conference 2008: Graham Gibbs
AAS National Conference 2008: Graham GibbsAAS National Conference 2008: Graham Gibbs
AAS National Conference 2008: Graham Gibbs
 
Transit observations of_the_hot_jupiter_hd189733b_at_xray_wavelenghts
Transit observations of_the_hot_jupiter_hd189733b_at_xray_wavelenghtsTransit observations of_the_hot_jupiter_hd189733b_at_xray_wavelenghts
Transit observations of_the_hot_jupiter_hd189733b_at_xray_wavelenghts
 
Artificial satellites elisenda
Artificial satellites elisendaArtificial satellites elisenda
Artificial satellites elisenda
 
Space Debris Removal System
Space Debris Removal SystemSpace Debris Removal System
Space Debris Removal System
 
Physics hhw
Physics hhwPhysics hhw
Physics hhw
 
CFHT proposed Maunakea Spectroscopic Explorer
CFHT proposed Maunakea Spectroscopic ExplorerCFHT proposed Maunakea Spectroscopic Explorer
CFHT proposed Maunakea Spectroscopic Explorer
 
NASA Research & Research Missions: Applications for Space Weather Forecasting
NASA Research & Research Missions: Applications for Space Weather ForecastingNASA Research & Research Missions: Applications for Space Weather Forecasting
NASA Research & Research Missions: Applications for Space Weather Forecasting
 

Similar a """What could Hinode results tell us about cosmic magnetic fields?"" ISAS Astrophysics Colloquia, 26 February 2015 "

Magnetism and Matter,Current loop as a magnetic dipole and its magnetic dipo...
 Magnetism and Matter,Current loop as a magnetic dipole and its magnetic dipo... Magnetism and Matter,Current loop as a magnetic dipole and its magnetic dipo...
Magnetism and Matter,Current loop as a magnetic dipole and its magnetic dipo...Oleepari
 
NRT polarimetry and neutron star mergers - Nam 2019
NRT polarimetry and neutron star mergers - Nam 2019NRT polarimetry and neutron star mergers - Nam 2019
NRT polarimetry and neutron star mergers - Nam 2019Joseph Fernandez
 
tangentgalvanometerforupload-180124071501.pdf
tangentgalvanometerforupload-180124071501.pdftangentgalvanometerforupload-180124071501.pdf
tangentgalvanometerforupload-180124071501.pdfsaurabh338711
 
tangentgalvanometerforupload-180124071501 (1).pdf
tangentgalvanometerforupload-180124071501 (1).pdftangentgalvanometerforupload-180124071501 (1).pdf
tangentgalvanometerforupload-180124071501 (1).pdfGitanshSharma7
 
tangentgalvanometerforupload-180124071501.pdf
tangentgalvanometerforupload-180124071501.pdftangentgalvanometerforupload-180124071501.pdf
tangentgalvanometerforupload-180124071501.pdfPrakharAwasthi33
 
To Study the earth's magnetic field using a tangent galvanometer Tangent galv...
To Study the earth's magnetic field using a tangent galvanometer Tangent galv...To Study the earth's magnetic field using a tangent galvanometer Tangent galv...
To Study the earth's magnetic field using a tangent galvanometer Tangent galv...Arjun Kumar Sah
 
Saturn’s magnetic field revealed by the Cassini Grand Finale
Saturn’s magnetic field revealed by the Cassini Grand FinaleSaturn’s magnetic field revealed by the Cassini Grand Finale
Saturn’s magnetic field revealed by the Cassini Grand FinaleSérgio Sacani
 
Relativistic Compact Outflows in Radio-quiet AGN
Relativistic Compact Outflows in Radio-quiet AGNRelativistic Compact Outflows in Radio-quiet AGN
Relativistic Compact Outflows in Radio-quiet AGNAshkbiz Danehkar
 
PHY PUC 2 NOTES:- MAGNETISM AND MATTER
PHY PUC 2 NOTES:- MAGNETISM AND MATTERPHY PUC 2 NOTES:- MAGNETISM AND MATTER
PHY PUC 2 NOTES:- MAGNETISM AND MATTERstudy material
 
Alfvén Waves and Space Weather
Alfvén Waves and Space WeatherAlfvén Waves and Space Weather
Alfvén Waves and Space WeatherSSA KPI
 
Geomagnetism Geophysics(Geol409).pptx
Geomagnetism Geophysics(Geol409).pptxGeomagnetism Geophysics(Geol409).pptx
Geomagnetism Geophysics(Geol409).pptxThomIya
 
Antigravity: Biefeld-Brown Effect / ZPF field
Antigravity: Biefeld-Brown Effect / ZPF fieldAntigravity: Biefeld-Brown Effect / ZPF field
Antigravity: Biefeld-Brown Effect / ZPF fieldVapula
 
Astrophysics and Solar Physics
Astrophysics and Solar PhysicsAstrophysics and Solar Physics
Astrophysics and Solar PhysicsSSA KPI
 
Solar dynamo1
Solar dynamo1Solar dynamo1
Solar dynamo1eftis
 
Lecture 8 3_n_8_4_magnetic_force
Lecture 8 3_n_8_4_magnetic_forceLecture 8 3_n_8_4_magnetic_force
Lecture 8 3_n_8_4_magnetic_forceKhairul Azhar
 

Similar a """What could Hinode results tell us about cosmic magnetic fields?"" ISAS Astrophysics Colloquia, 26 February 2015 " (20)

Magnetism and Matter,Current loop as a magnetic dipole and its magnetic dipo...
 Magnetism and Matter,Current loop as a magnetic dipole and its magnetic dipo... Magnetism and Matter,Current loop as a magnetic dipole and its magnetic dipo...
Magnetism and Matter,Current loop as a magnetic dipole and its magnetic dipo...
 
Electromagnetic
ElectromagneticElectromagnetic
Electromagnetic
 
NRT polarimetry and neutron star mergers - Nam 2019
NRT polarimetry and neutron star mergers - Nam 2019NRT polarimetry and neutron star mergers - Nam 2019
NRT polarimetry and neutron star mergers - Nam 2019
 
tangentgalvanometerforupload-180124071501.pdf
tangentgalvanometerforupload-180124071501.pdftangentgalvanometerforupload-180124071501.pdf
tangentgalvanometerforupload-180124071501.pdf
 
tangentgalvanometerforupload-180124071501 (1).pdf
tangentgalvanometerforupload-180124071501 (1).pdftangentgalvanometerforupload-180124071501 (1).pdf
tangentgalvanometerforupload-180124071501 (1).pdf
 
tangentgalvanometerforupload-180124071501.pdf
tangentgalvanometerforupload-180124071501.pdftangentgalvanometerforupload-180124071501.pdf
tangentgalvanometerforupload-180124071501.pdf
 
To Study the earth's magnetic field using a tangent galvanometer Tangent galv...
To Study the earth's magnetic field using a tangent galvanometer Tangent galv...To Study the earth's magnetic field using a tangent galvanometer Tangent galv...
To Study the earth's magnetic field using a tangent galvanometer Tangent galv...
 
Saturn’s magnetic field revealed by the Cassini Grand Finale
Saturn’s magnetic field revealed by the Cassini Grand FinaleSaturn’s magnetic field revealed by the Cassini Grand Finale
Saturn’s magnetic field revealed by the Cassini Grand Finale
 
Relativistic Compact Outflows in Radio-quiet AGN
Relativistic Compact Outflows in Radio-quiet AGNRelativistic Compact Outflows in Radio-quiet AGN
Relativistic Compact Outflows in Radio-quiet AGN
 
PHY PUC 2 NOTES:- MAGNETISM AND MATTER
PHY PUC 2 NOTES:- MAGNETISM AND MATTERPHY PUC 2 NOTES:- MAGNETISM AND MATTER
PHY PUC 2 NOTES:- MAGNETISM AND MATTER
 
Alfvén Waves and Space Weather
Alfvén Waves and Space WeatherAlfvén Waves and Space Weather
Alfvén Waves and Space Weather
 
Geomagnetism Geophysics(Geol409).pptx
Geomagnetism Geophysics(Geol409).pptxGeomagnetism Geophysics(Geol409).pptx
Geomagnetism Geophysics(Geol409).pptx
 
Antigravity: Biefeld-Brown Effect / ZPF field
Antigravity: Biefeld-Brown Effect / ZPF fieldAntigravity: Biefeld-Brown Effect / ZPF field
Antigravity: Biefeld-Brown Effect / ZPF field
 
Astrophysics and Solar Physics
Astrophysics and Solar PhysicsAstrophysics and Solar Physics
Astrophysics and Solar Physics
 
Solar dynamo1
Solar dynamo1Solar dynamo1
Solar dynamo1
 
Lecture 8 3_n_8_4_magnetic_force
Lecture 8 3_n_8_4_magnetic_forceLecture 8 3_n_8_4_magnetic_force
Lecture 8 3_n_8_4_magnetic_force
 
Week-13.pdf
Week-13.pdfWeek-13.pdf
Week-13.pdf
 
Magniticfield 1
Magniticfield 1Magniticfield 1
Magniticfield 1
 
ChiangMai20180306.ppt
ChiangMai20180306.pptChiangMai20180306.ppt
ChiangMai20180306.ppt
 
Electromagnetic counterparts of Gravitational Waves - Elena Pian
Electromagnetic counterparts of Gravitational Waves - Elena PianElectromagnetic counterparts of Gravitational Waves - Elena Pian
Electromagnetic counterparts of Gravitational Waves - Elena Pian
 

Más de ISAS_Director_Tsuneta

JIMTOF 2016: 日本の宇宙科学を支える技術開発
JIMTOF 2016: 日本の宇宙科学を支える技術開発JIMTOF 2016: 日本の宇宙科学を支える技術開発
JIMTOF 2016: 日本の宇宙科学を支える技術開発ISAS_Director_Tsuneta
 
What Can We Learn Cosmic Magnetic Field from "Hinode" Observational Data?
What Can We Learn Cosmic Magnetic Field from "Hinode" Observational Data? What Can We Learn Cosmic Magnetic Field from "Hinode" Observational Data?
What Can We Learn Cosmic Magnetic Field from "Hinode" Observational Data? ISAS_Director_Tsuneta
 
平成25年度−29年度科研費Sによる研究_研究概要
平成25年度−29年度科研費Sによる研究_研究概要平成25年度−29年度科研費Sによる研究_研究概要
平成25年度−29年度科研費Sによる研究_研究概要ISAS_Director_Tsuneta
 
平成25年度−29年度科研費Sによる研究_研究進捗評価
平成25年度−29年度科研費Sによる研究_研究進捗評価 平成25年度−29年度科研費Sによる研究_研究進捗評価
平成25年度−29年度科研費Sによる研究_研究進捗評価 ISAS_Director_Tsuneta
 
年次報告_所長挨拶2012年度(日本語)
年次報告_所長挨拶2012年度(日本語)年次報告_所長挨拶2012年度(日本語)
年次報告_所長挨拶2012年度(日本語)ISAS_Director_Tsuneta
 
年次報告_所長挨拶2013年度(日本語)
年次報告_所長挨拶2013年度(日本語)年次報告_所長挨拶2013年度(日本語)
年次報告_所長挨拶2013年度(日本語)ISAS_Director_Tsuneta
 
年次報告_所長挨拶2014年度(日本語)
年次報告_所長挨拶2014年度(日本語)年次報告_所長挨拶2014年度(日本語)
年次報告_所長挨拶2014年度(日本語)ISAS_Director_Tsuneta
 
年次報告_所長挨拶2015年度(日本語)
年次報告_所長挨拶2015年度(日本語)年次報告_所長挨拶2015年度(日本語)
年次報告_所長挨拶2015年度(日本語)ISAS_Director_Tsuneta
 
"年頭の挨拶2014年(日本語) "
"年頭の挨拶2014年(日本語)  ""年頭の挨拶2014年(日本語)  "
"年頭の挨拶2014年(日本語) "ISAS_Director_Tsuneta
 
年頭の挨拶2015年(日本語)
年頭の挨拶2015年(日本語) 年頭の挨拶2015年(日本語)
年頭の挨拶2015年(日本語) ISAS_Director_Tsuneta
 
年頭の挨拶2016年(日本語)
年頭の挨拶2016年(日本語) 年頭の挨拶2016年(日本語)
年頭の挨拶2016年(日本語) ISAS_Director_Tsuneta
 
"「宇宙科学プロジェクトの実行改善について」 創立記念日講演,2014年10月16日 "
"「宇宙科学プロジェクトの実行改善について」 創立記念日講演,2014年10月16日 ""「宇宙科学プロジェクトの実行改善について」 創立記念日講演,2014年10月16日 "
"「宇宙科学プロジェクトの実行改善について」 創立記念日講演,2014年10月16日 "ISAS_Director_Tsuneta
 
"「研究開発成果の最大化に向けた取り組み」 創立記念日講演,2015年10月6日 "
"「研究開発成果の最大化に向けた取り組み」 創立記念日講演,2015年10月6日 ""「研究開発成果の最大化に向けた取り組み」 創立記念日講演,2015年10月6日 "
"「研究開発成果の最大化に向けた取り組み」 創立記念日講演,2015年10月6日 "ISAS_Director_Tsuneta
 
"「宇宙科学と産業振興」 創立記念日講演,2016年10月4日 "
"「宇宙科学と産業振興」 創立記念日講演,2016年10月4日 ""「宇宙科学と産業振興」 創立記念日講演,2016年10月4日 "
"「宇宙科学と産業振興」 創立記念日講演,2016年10月4日 "ISAS_Director_Tsuneta
 
"「2026年の宇宙科学研究所」 JAXA相模原キャンパス特別公開2014,宇宙科学セミナー,平成26年7月26日 "
"「2026年の宇宙科学研究所」 JAXA相模原キャンパス特別公開2014,宇宙科学セミナー,平成26年7月26日  ""「2026年の宇宙科学研究所」 JAXA相模原キャンパス特別公開2014,宇宙科学セミナー,平成26年7月26日  "
"「2026年の宇宙科学研究所」 JAXA相模原キャンパス特別公開2014,宇宙科学セミナー,平成26年7月26日 "ISAS_Director_Tsuneta
 
"「最近の太陽活動の異変と地球環境」 JAXA相模原キャンパス特別公開2015,宇宙科学セミナー,平成27年7月25日 "
"「最近の太陽活動の異変と地球環境」 JAXA相模原キャンパス特別公開2015,宇宙科学セミナー,平成27年7月25日 ""「最近の太陽活動の異変と地球環境」 JAXA相模原キャンパス特別公開2015,宇宙科学セミナー,平成27年7月25日 "
"「最近の太陽活動の異変と地球環境」 JAXA相模原キャンパス特別公開2015,宇宙科学セミナー,平成27年7月25日 "ISAS_Director_Tsuneta
 
"「太陽と惑星と生命と」 JAXA相模原キャンパス特別公開2016,宇宙科学セミナー,平成28年7月30日 "
"「太陽と惑星と生命と」 JAXA相模原キャンパス特別公開2016,宇宙科学セミナー,平成28年7月30日 ""「太陽と惑星と生命と」 JAXA相模原キャンパス特別公開2016,宇宙科学セミナー,平成28年7月30日 "
"「太陽と惑星と生命と」 JAXA相模原キャンパス特別公開2016,宇宙科学セミナー,平成28年7月30日 "ISAS_Director_Tsuneta
 
2010年5月号(No.350) 46億年の太陽史(ISAS客員教授時)
2010年5月号(No.350) 46億年の太陽史(ISAS客員教授時)2010年5月号(No.350) 46億年の太陽史(ISAS客員教授時)
2010年5月号(No.350) 46億年の太陽史(ISAS客員教授時)ISAS_Director_Tsuneta
 
2013年4月号(No.385) 所長就任に当たって
2013年4月号(No.385) 所長就任に当たって2013年4月号(No.385) 所長就任に当たって
2013年4月号(No.385) 所長就任に当たってISAS_Director_Tsuneta
 
2014年1月号(No.394) 2026年の宇宙科学研究所 ー2014年の初夢ー
2014年1月号(No.394) 2026年の宇宙科学研究所 ー2014年の初夢ー 2014年1月号(No.394) 2026年の宇宙科学研究所 ー2014年の初夢ー
2014年1月号(No.394) 2026年の宇宙科学研究所 ー2014年の初夢ー ISAS_Director_Tsuneta
 

Más de ISAS_Director_Tsuneta (20)

JIMTOF 2016: 日本の宇宙科学を支える技術開発
JIMTOF 2016: 日本の宇宙科学を支える技術開発JIMTOF 2016: 日本の宇宙科学を支える技術開発
JIMTOF 2016: 日本の宇宙科学を支える技術開発
 
What Can We Learn Cosmic Magnetic Field from "Hinode" Observational Data?
What Can We Learn Cosmic Magnetic Field from "Hinode" Observational Data? What Can We Learn Cosmic Magnetic Field from "Hinode" Observational Data?
What Can We Learn Cosmic Magnetic Field from "Hinode" Observational Data?
 
平成25年度−29年度科研費Sによる研究_研究概要
平成25年度−29年度科研費Sによる研究_研究概要平成25年度−29年度科研費Sによる研究_研究概要
平成25年度−29年度科研費Sによる研究_研究概要
 
平成25年度−29年度科研費Sによる研究_研究進捗評価
平成25年度−29年度科研費Sによる研究_研究進捗評価 平成25年度−29年度科研費Sによる研究_研究進捗評価
平成25年度−29年度科研費Sによる研究_研究進捗評価
 
年次報告_所長挨拶2012年度(日本語)
年次報告_所長挨拶2012年度(日本語)年次報告_所長挨拶2012年度(日本語)
年次報告_所長挨拶2012年度(日本語)
 
年次報告_所長挨拶2013年度(日本語)
年次報告_所長挨拶2013年度(日本語)年次報告_所長挨拶2013年度(日本語)
年次報告_所長挨拶2013年度(日本語)
 
年次報告_所長挨拶2014年度(日本語)
年次報告_所長挨拶2014年度(日本語)年次報告_所長挨拶2014年度(日本語)
年次報告_所長挨拶2014年度(日本語)
 
年次報告_所長挨拶2015年度(日本語)
年次報告_所長挨拶2015年度(日本語)年次報告_所長挨拶2015年度(日本語)
年次報告_所長挨拶2015年度(日本語)
 
"年頭の挨拶2014年(日本語) "
"年頭の挨拶2014年(日本語)  ""年頭の挨拶2014年(日本語)  "
"年頭の挨拶2014年(日本語) "
 
年頭の挨拶2015年(日本語)
年頭の挨拶2015年(日本語) 年頭の挨拶2015年(日本語)
年頭の挨拶2015年(日本語)
 
年頭の挨拶2016年(日本語)
年頭の挨拶2016年(日本語) 年頭の挨拶2016年(日本語)
年頭の挨拶2016年(日本語)
 
"「宇宙科学プロジェクトの実行改善について」 創立記念日講演,2014年10月16日 "
"「宇宙科学プロジェクトの実行改善について」 創立記念日講演,2014年10月16日 ""「宇宙科学プロジェクトの実行改善について」 創立記念日講演,2014年10月16日 "
"「宇宙科学プロジェクトの実行改善について」 創立記念日講演,2014年10月16日 "
 
"「研究開発成果の最大化に向けた取り組み」 創立記念日講演,2015年10月6日 "
"「研究開発成果の最大化に向けた取り組み」 創立記念日講演,2015年10月6日 ""「研究開発成果の最大化に向けた取り組み」 創立記念日講演,2015年10月6日 "
"「研究開発成果の最大化に向けた取り組み」 創立記念日講演,2015年10月6日 "
 
"「宇宙科学と産業振興」 創立記念日講演,2016年10月4日 "
"「宇宙科学と産業振興」 創立記念日講演,2016年10月4日 ""「宇宙科学と産業振興」 創立記念日講演,2016年10月4日 "
"「宇宙科学と産業振興」 創立記念日講演,2016年10月4日 "
 
"「2026年の宇宙科学研究所」 JAXA相模原キャンパス特別公開2014,宇宙科学セミナー,平成26年7月26日 "
"「2026年の宇宙科学研究所」 JAXA相模原キャンパス特別公開2014,宇宙科学セミナー,平成26年7月26日  ""「2026年の宇宙科学研究所」 JAXA相模原キャンパス特別公開2014,宇宙科学セミナー,平成26年7月26日  "
"「2026年の宇宙科学研究所」 JAXA相模原キャンパス特別公開2014,宇宙科学セミナー,平成26年7月26日 "
 
"「最近の太陽活動の異変と地球環境」 JAXA相模原キャンパス特別公開2015,宇宙科学セミナー,平成27年7月25日 "
"「最近の太陽活動の異変と地球環境」 JAXA相模原キャンパス特別公開2015,宇宙科学セミナー,平成27年7月25日 ""「最近の太陽活動の異変と地球環境」 JAXA相模原キャンパス特別公開2015,宇宙科学セミナー,平成27年7月25日 "
"「最近の太陽活動の異変と地球環境」 JAXA相模原キャンパス特別公開2015,宇宙科学セミナー,平成27年7月25日 "
 
"「太陽と惑星と生命と」 JAXA相模原キャンパス特別公開2016,宇宙科学セミナー,平成28年7月30日 "
"「太陽と惑星と生命と」 JAXA相模原キャンパス特別公開2016,宇宙科学セミナー,平成28年7月30日 ""「太陽と惑星と生命と」 JAXA相模原キャンパス特別公開2016,宇宙科学セミナー,平成28年7月30日 "
"「太陽と惑星と生命と」 JAXA相模原キャンパス特別公開2016,宇宙科学セミナー,平成28年7月30日 "
 
2010年5月号(No.350) 46億年の太陽史(ISAS客員教授時)
2010年5月号(No.350) 46億年の太陽史(ISAS客員教授時)2010年5月号(No.350) 46億年の太陽史(ISAS客員教授時)
2010年5月号(No.350) 46億年の太陽史(ISAS客員教授時)
 
2013年4月号(No.385) 所長就任に当たって
2013年4月号(No.385) 所長就任に当たって2013年4月号(No.385) 所長就任に当たって
2013年4月号(No.385) 所長就任に当たって
 
2014年1月号(No.394) 2026年の宇宙科学研究所 ー2014年の初夢ー
2014年1月号(No.394) 2026年の宇宙科学研究所 ー2014年の初夢ー 2014年1月号(No.394) 2026年の宇宙科学研究所 ー2014年の初夢ー
2014年1月号(No.394) 2026年の宇宙科学研究所 ー2014年の初夢ー
 

Último

GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000Sapana Sha
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 

Último (20)

GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 

"""What could Hinode results tell us about cosmic magnetic fields?"" ISAS Astrophysics Colloquia, 26 February 2015 "

  • 1. What could Hinode results tell us about cosmic magnetic fields? 1 Saku Tsuneta Institute of Space and Astronautical Science, JAXA ISAS Astrophysics Colloquia 2015 February 26 11-12am
  • 2. EUV Imaging Spectrometer(EIS) Solar Optical Telescope(SOT) X-ray Telescope (XRT) Japan-US-UK-ESA project Orbit: Polar Sun Synchronous Launched 2006 Autumn Satellite Hinode (JAXA SOLAR-B) 2
  • 3. EUV Imaging Spectrometer(EIS) Solar Optical Telescope(SOT) X-ray Telescope (XRT) Hinode mission objective: Systems approach to understand generation, transport and ultimate dissipation of solar magnetic fields with 3 well-coordinated advanced telescopes. Japan-US-UK-ESA project Orbit: Polar Sun Synchronous Launched 2006 Autumn Satellite Hinode (JAXA SOLAR-B) 3
  • 4. Too-strong Magnetic field in the Universe How does Universe create such strong fields? • Early universe: 10-21G? • Galaxies and Clusters of Galaxy: 10-6 G • Late type stars 103G • Bottom of convection zone 105 G • Pulser 1012G • Magnetor 1015 G 4 Fossil or Compressive process? Dynamo? global dynamo? Local (turbulent) dynamo?
  • 5. Too-strong Magnetic field in the Universe How does Universe create such strong fields? • Early universe: 10-21G? • Galaxies and Clusters of Galaxy: 10-6 G • Late type stars 103G • Bottom of convection zone 105 G • Pulser 1012G • Magnetor 1015 G Fossil or Compressive process? Dynamo? global dynamo? Local (turbulent) dynamo? Dynamo+? Dynamo+compression Dynamo+? Dynamo Compression and fossil? needs dynamo needs dynamo Compression and fossil Any dynamo mechanism can amplify the magnetic fields upto equi-partition fields Be But not beyond! We sometimes need a mechanism to go beyond the equi-partition fields. Kinetic Energy Magnetic Energy 2 2 2 1 8 ru p »eB 5
  • 6. l 1.4 GHz lVLA Galactic center Solar corona Does nature prefer flux tubes? i.e. Does nature prefer higher magnetic energy state?6 Courtesy of Sofue NASA TRACE
  • 7. 7 l 300 MHz lStrong magnetic field of mG lMuch smaller than equi-partition field corresponding to the local gas lEquivalent to equi-partition field corresponding to galactic rotation (100-200 km/s) Courtesy of Sofue Galactic center:flux tubes? vertical to the G-plane
  • 8. 8
  • 10. Magnetic fields have a form of flux tube Strong kG magnetic field in between convection cells exceeding equi- partition B 10
  • 12. 12 Hinode highest resolution Stokes-V map (vertical component of B) Does nature prefer isolated flux tubes? 1000km
  • 13. Ishikawa+09 Distribution function of magnetic field strength Peaks at 1.5kG Super-equipartition majority:below500G Sub-equipartition Two components 13 Hinode result Equi-partition field strength
  • 14. 14 Sub-equipartition B 500G Super-equipartition B 2000G 200 sec Formation of super equipartition from sub-equipartition magnetic fields Parker prediction:supersonic down flow associated with thermal instability results in compression of magnetic fields Nagata+08
  • 15. Convection plus weak magnetic fields result in strong magnetic fields Parker (1978); Hasan (1985), Hasan et al. (2003), Bunte, Hasan,Kalkofen, (1983) G4004 2 1 8 2 2 »» » upr ru p B Be kG21 8 2 -» =+ B PBP ei p Magnetic Flux tube Solar surface Convection flow Downflow Inside flux tube 15 15 Sub-equipartition B Super-equipartition B Inhibit thermal energy due to B Cooling and downflow Stronger B due to lateral P balance
  • 16. Ishikawa+08 Convective collapse creates1.5kG flux tubes (This is not dynamo) Convective collapse!! 500G 1.5kG Smaller total B energy Larger total B energy Peak at 1.5kG due to convective collapse 90% is below 500G Just born?
  • 17. Higher T. Lower T. Reduce heat Input from below Lateral heat input from side Slender flux tube You are looking at deeper layer due to magnetic pressure Dark sunspot and bright faculae Emission From hot wall Solar surface is a rias coastline due to thin flux tubes. It serves as heat sink. 17 Same temperature
  • 18. Sun as seen in UV Bright faculae Dark sunpsot 18
  • 19. 0.1-0.2% Non-constant solar constant Faculae (slender flux tubes win)! Solarconstant year amplitude of 0.1-0.2%
  • 20. Vertical magnetic fluxHorizontal magnetic flux Quiet Sun magnetic fields
  • 21. Ubiquitous linear polarization patches Lites+08, Orozco+07,08, Centeno+08 Ishikawa+08, 09, 10,11ab, Jin+09, Martınez Gonzalez+09 etc, Danilovic+10 Wherever convection, horizontal fields exist!? 250000km 120000km Lites+08
  • 22. 22 Local dynamo process discovered with Hinode Ishikawa & Tsuneta (2008) Total flux = 10-100 x sunspot Field strength < equi-partition Life time < granulation lifetime Size <granulation size Horizontal B below equi-partition Equi-partition field strength
  • 23. Discovery of New Dynamo Mechanism with Hinode • Differential rotation of Sun amplifies magnetic field 北極 南極 Magnetic field Convection Energy Magnetic Energy 北極 南極 北極 南極 Rotation Energy Magnetic Energy Convection cell 1000km Magnetic field • Convection motion of plasma amplifies magnetic field Sunspot Horizontal fields Known mechanism Newly discovered
  • 24. 2006 Dec 17 20:00-21:00 UT CaII H broad band filter images taken with Hinode/SOT Chromosphere more dynamic than expected! Chromospheric jets and fountain driven by magnetic force 24
  • 25. 25 KM late type star: Fully convective Active corona Not consistent with Solar paradigm Early type star: No convection zone No corona Hayashi track: Proto star Convection dominant Active corona Differential rotation driven global scale Dynamo and convection-driven dynamo T tauri star: Convection Fast rotation Sunspot, wind Strong X-rays
  • 26. 26 KM late type star: Fully convective Active corona Not consistent with Solar paradigm Early type star: No convection zone No corona Hayashi track: Proto star Convection dominant Active corona Differential rotation driven global scale Dynamo and convection-driven dynamo T tauri star: Convection Fast rotation Sunspot, wind Strong X-rays Convection convection-driven local dynamo rotation⇒Reynolds stress ⇒differential rotation ⇒global dynamo
  • 27. Takeda & Takada-Hidai, PASJ (2011) • Subaru observations on 24 moderately to extremely metal-poor late type MS stars – Probably slowly or non-rotating stars with global dynamo not operative • HeI 1083nm detected for all stars – High excitation line (19.7 eV) – Excellent indicator for coronal &chromospheric activities – He abundance independent of metallicity • Nearly constant EW for all stars – Corona exists regardless of metallicity (i.e. age, rotation period) • Not driven by global dynamo Sun Extremely metal-poor
  • 28. Neutral universe with zero magnetic field due to zero electric current First stars and re-ionization B=1-30μG B=0G 28 From website
  • 29. Conservation of magnetic flux 29 0)(0)0( 0 =FÞ==F = F tt Dt D How could we make such a strong magnetic fields currently observed? Early universe present time
  • 31. Initial magnetic field strength after re-ionization epoch • If baroclinic, vorticity exists and Biermann battery mechanism works, resulting in magnetic fields from zero value. • How large is the magnetic fields? – r=100kpc, M=1011Mo – v=3x105 m/s(virial theorem) – ω∼v/r=10-16 /s – B∼10-20G! 31
  • 32. • Equi-partition field due to local dynamo OK! – n=10-3 cm-3 – v=3x105 m/s – T=100eV (106K) • Maximum turnover time OK! – r/v=3x1023cm/3x107cm/s=1016s<<4x1017s (cosmic life time) – Since actual Eddy size is smaller than the largest scale size r taken here, this is a conservative estimate. • A potential problem: not organized field Turbulent dynamo then works to amplify the small magnetic fields to the current values 32 G10 8 5 2 2 - » = eq eq B v B r p
  • 33. 宇宙は電離しておらず 電流なしのため磁場 ゼロ 第1世代銀河の形成 と宇宙の再電離 B=1μG B=0G 33 Vortex in proto-galaxy produces magnetic fields as large as B=10-20G(Biermann Battery) ↓ Hinode: convection-driven dynamo amplifies B upto B=Beq=10-6G ↓ Global galactic dynamo B>10-6G From website
  • 34. 34 Galactic magnetic fields along spiral arms • Highly organized • Observed magnetic fields comparable to equi-partition field strength for local velocity dispersion • Umag=B2/8π=U(ISM) • B=10μG Courtesy of Sofue
  • 35. Discovery of transverse waves along magnetic field with Hinode (Okamoto et al 2008) Spicules, coronal rains, and prominece over an active region 35
  • 36. Transverse Wave along magnetic field line carrying substantial amount of energy Alfven wave Magnetic fields gas Figures Courtesy Joten Okamoto Polarimetric data provides phase relationship among magnetic, velocity and intensity fluctuation, confirming transverse MHD waves (Fujimura, Tsuneta, 2009). 36
  • 37. In-Situ-like observations of MHD waves in solar photosphere Field strength Stokes-IPhotometirc Intensity Stokes-V • mode of waves • direction of wave • propagating or • standing waves • properties of flux • tubes Observables: • δInteisnty(t) • δB/ / (t), δB┴(t) • δVLOS(t) • center-to-limb var. Doppler vel. 37
  • 38. Half of flux tubes show such clean common peak Velocity IntensityMagnetic flux TimeProfilePowerspectra Fujimura&Tsuneta 09 Fujimura&Tsuneta 09
  • 39. Phase difference (deg) Phase difference (deg) Phase difference (deg) Phase difference (deg) φB-φV φV-φI(core) φI(core)-φB φI(cont)-φI(core) Fujimura&Tsuneta 09 --90deg --90deg 180deg -0 deg -3-9min Solid: pores+flux tubes Dashed: pores 39 Velocity leads magnetic fields by quarter of waves. Importance of phase relation to identify wave mode and direction of propagation
  • 40. Discovery of Alfven waves from phase relation between δB and δ v, but almost stationary waves! δB- δ v:0 or 180 deg δB- δ v:90 deg Significant reflection of upward waves at photosphere-corona transition layer Kink mode Sausage mode Fujimura&Tsuneta 09
  • 41. Residual Poyning Flux of kink wave Differential (upward – downward) Poynting flux is proportional to cos(φB – φv) An example with low intensity fluctuation (dI/I=0.3%) f=0.73, B0=1.7x103 (G), δB=21(G), δv=0.059(km/ s), φB−φv=−96˚ giving ΔF=2.7x106 (erg/ s/ cm2) f : average filling factor B0 : vertical magnetic field δB/ δv: root-mean-square transverse magnetic field/ velocity fluctuation )cos( 4 vBvB fB F ffdd p --=D Fujimura&Tsuneta 09
  • 42. Sunspot number is a good proxy for magnetic activity of the Sun 11 year cycle of sunspot number from the era of Galileo 42 Year Sunspotnumber Maunder minimum Dalton minimum
  • 43. Gradual decrease of solar activity Mean Sunspot number 1.0 0.0 -1.0 North South High latitude average magnetic flux Wilcox Royal Belgium observatory 西暦 西暦 Reversal of high latitude field At around solar maximum 43
  • 44. Importance of polar fields to predict future solar activity (Choudhuri) N S N S N S Cause Weak polar field Result Less number of sunspots 130 rotations in 11 year ▽Ω-dynamo
  • 46. 西暦 西暦 Magnetic Flux (G) Minus Plus MinusPlus Asymmetric north and south poles Still significant as of now • Northern flux decreases rapidly • Southern flux has much slower decrease. North South
  • 48. N S N N Bipolar mode Quadruple mode Bipolar + Quadruple Strong diffusionWeak diffusion Sokoloff and Nesme-Ribes1994
  • 49. Anti-Joy’s law due to quadruple poloidal field NN N S N S Bipolar SunQuadruple Sun
  • 50. Anti-Joy’s law AR#11429 signature of quadruple poloidal field? 50 N N S S NS
  • 51. 51 1950-1990 (Recent normal cycle) 1670-1710 (Maunder minimum) Smaller number of sunspots are located only in Southern hemisphere North North South South 1680 1690 1700 1710 17201680 1950 1960 1970 1980 1990 LatitudeLatitude +50 -50 Sokoloff and Nesme-Ribes1994 Location of sunspot emergence
  • 52. The dynamo equation 2015/2/26 52 [ ] operation)in(dynamo)( 1 )(Eq.inductionofcomponent 1 )(Eq.inductionofcomponent 2 2 2 2 ff f f fff f f f ah h BcEA r rA r vp r t A BBpoloidal B rr v rB r B vpr t B BBtoroidal vvv BBB pp p p p p p p =+ú û ù ê ë é -Ñ=ú û ù ê ë é Ñ×+ ¶ ¶ Þ úû ù êë é -Ñ+ú û ù ê ë é Ñ×=Ñ×+ ¶ ¶ Þ += += S Bp Ap On meridional plane: poloidal Perpen. to M.P.: toroidal
  • 53. One interpretation If cyclic phase differs between hemispheres, Vector potential Near-surface higher turbulent diffusivity Hotta, Yokoyama, 2010Fast meridional flow
  • 54. Cycle length: 12.6 year! 黒 点 数 西暦年 黒 点 数 Longer cycle period is also seen just before Dalton minimum Dalton minimum Year Sunspotnumber Past 6 cycles (overlaid) Current cycle Northern hemispehre Southern hemisphere Sunspotnumber NAOJ solar observatory More anomaly of the Sun
  • 55. period∼14yr period∼13yr period∼12.6yr Are we entering Maunder minimum? 55 NS-asymmetry N-S asymmetry? 55
  • 56. present 11400yr 4000yr Sunspot number in the past 11400 years 56
  • 57. 57 “Sports on a Frozen River” by Aert van der Neer Courtesy: The Metropolitan Museum of Art The Maunder minimum
  • 58. 58 Rotation Turbulence ⇒ Differential rotation Solitary star like the sun has strong magnetic fields! ⇒Local dynamo ⇒ Global dynamo
  • 59. Role of Magnetic fields in Stars and Cosmos and Hinode • Carry energy through waves • Store energy • Dissipate stored energy with magnetic reconnection • Induce MHD instability and eruptions • Suppress cross-field transport for mass and heat • Suppress convection i.e. energy transport 59