SlideShare una empresa de Scribd logo
1 de 205
Descargar para leer sin conexión
Statistical Tools for the Quality Control
  Laboratory and Validation Studies:
               Session 1
     l  STEVEN S. KUWAHARA, Ph.D.
            l  GXP BioTechnology LLC
                     l  PMB #506
           l  1669-2 Hollenbeck Avenue
      l  Sunnyvale, CA 94087-5042 USA
            l  Tel. & FAX 408-530-9338
     l  e-Mail: s.s.kuwahara@gmail.com
        l  Website: www.gxpbiotech.org
                   IVTPHL1012S1             1
NORMAL DISTRIBUTION


                                         2
                             ⎛ X − µ ⎞
               e
     1                  −1/ 2⎜  i
                                      ⎟
Y=                           ⎝ σ ⎠
   σ 2Π
         IVTPHL1012S1                        2
IVTPHL1012S1   3
IVTPHL1012S1   4
IVTPHL1012S1   5
NORMAL DISTRIBUTION
           PROPERTIES
l  The normal distribution has the following
properties:
l  Bell-shaped
l  Unimodal
l  Symmetrical
l  Extends from -∞ to +∞ (tails never reach zero
frequency)
l  Same value for mean, median, and mode
l  This pattern of variation is common for
manufacturing processes.


                       IVTPHL1012S1                 6
IVTPHL1012S1   7
VARIANCE (S2)

                                   2
          ΣX i
                   2
                       −
                         (ΣX i )
S2 =                           n
                       n −1
                               2

S   2
        =
            (
          Σ Xi − X             )
             n −1
               2         2
          nΣX i − (ΣX i )
S2      =
             n(n − 1)

                IVTPHL1012S1           8
Averages and Standard Deviations and the
                SEM. 1.
l    All of the n measurements that go into the mean
      () must be measurements of the same thing.
      l  The mean of fruits and the mean of oranges are
          different things unless all of the fruits are oranges.
      l  But then it is still the mean of oranges not fruits.

l    The standard deviation (s) is a measure of the
      variation among the n components of  NOT the
      variation of  itself.
      l    Thus the next item (n + 1) from the original population
            should have a 95% chance of being within ± 1.96s of 
            but not the next average (1).
Averages and Standard Deviations and
            the SEM. 2.
  l    The variation in the averages is the standard
        error of the mean (SEM) which is: s/√n.
        l    Thus the next average (1) has a 95% probability
              of being within ±1.96(s/√n) or ±1.96SEM of the
              original mean ().
  l    When dealing with single numbers, s is used,
        but when dealing with means the SEM is the
        number to use.
        l    It is incorrect to use s to set a specification on a
              value that is actually an average.
RANGE AND C.V.

l    The range can be related to the standard deviation
      for n<16.
                  XL − Xs
               s=                     d 2 is a tabular value.
                    d2


                      S
               C.V . = X 100 = % RSD
                      X

                           IVTPHL1012S1                     11
F - TEST
                  2
                 s2
Fα ,df 1,df 2   = 2 Note : This is slightly different
                 s1
from the F - test that is used for ANOVA
and factorial experiments.


Note : F0.05,3,3 = 9.28
F0.05,10,10 = 2.98

                                                  12
Student’s t

   x−µ
t=         Basic form.
    s
       n
df = n − 1
     x1 − x2
t=              Independent averages,
     σ 12 σ 2
            2
         +
     n1 n2
known variances.
                                   13
t-TEST vs THEORETICAL OR KNOWN
                       VALUE
l    CHON Analysis. 9.55% H calculated.
l    Data: 9.17, 9.09, 9.14, 9.10, 9.13, 9.27. n = 6, ! = 9.15,
      s = ± 0.0654
l    t0.05/2, 5= 2.57, t0.01/2, 5 = 4.032, t0.001/2, 5 = 6.869, p < 0.001

                  x − µ 9.15 − 9.55
               t=       =           = 14.98
                   s      0.0654
                      n           6

                                                                             14
KNOWN VARIANCES, t-TEST OF TWO
                   AVERAGES

l    Karl Fischer H2O.           σ = 0.025 from historical data.
l    Data: Lot A: 0.50, 0.53, 0.47.
l    Lot B: 0.53, 0.56, 0.51, 0.53, 0.50
l    n1=3, n2=5, x1=0.500, x2=0.526
l    t0.05/2.∞=1.96, df = n1 + n2 – 2 = 6, t0.05/2, 6 =2.447

                                0.500 − 0.526
                    t=                                          = 1.424
                                        2                2
                             (0.025)        +
                                              (0.025)
                                  3                5

                                                                     15
t for Unknown and Equal Variances

         x − x               n n
     t = 1     2               1 2
           s                n + n
             p               1     2


                                x − x     n
     if   n       = n       t = 1     2
              1         2         s       2
                                    p
     df = n + n             − 2
           1    2

                                              16
t-TEST, UNKNOWN BUT EQUAL VARIANCES,
                 1.


l    Data (mg/L Fe3+): Lot A: 6.1, 5.8, 7.0.
l    Lot B: 5.9, 5.7, 6.1. xA=6.30, sA=0.6245, xB=5.90,
      sB=0.2000.
          F0.05 / 2, 2 , 2 = 39.00
                             2
          F =
               (0.6245) = 9.75
                        2
               (0.2000 )
                            2          2
                 2(0.6245) + 2(0.20 )
          sP =                                      = 0.4637
                     (3 − 1) + (3 − 1)
                                                           17
t-TEST UNKNOWN BUT EQUAL VARIANCES. 2.

l    df = n1 + n2 - 2   df = 4


                6.30 − 5.90 3 X 3
          t=                      = 1.056
                     0.4637   3+3
          t0.05 / 2, 4 = 2.78

                                      18
POOLED VARIANCE



              2          2
       n1 −1 s1 + n2 −1 s2
       (    ) (          )
sp =
           n1 +n2 −2

                             19
t for Independent Averages with
unknown and unequal variances.

         x1 − x2
 t =
          2    2
         s1   s2
            +
         n1   n2
                 2      2
           ⎛ s1     s2 ⎞
           ⎜
           ⎜ n    +      ⎟
           ⎝ 1      n2 ⎟⎠
  df =           2              2
                                  −2
           2              2
       ⎛ s1 ⎞      ⎛ s2 ⎞
       ⎜
       ⎜ n ⎟⎟     ⎜
                     ⎜ n ⎟ ⎟
       ⎝ 1 ⎠ + ⎝ 2 ⎠
        n1 + 1        n2 + 1           20
t-TEST UNKNOWN AND UNEQUAL
         VARIANCES, 1.
       l    Data:Extension of Previous Fe+3 mg/L study
  1           6.1     5.9         l  xA = 6.13, sA = 0.3529
  2           5.8     5.7         l  xB = 5.76, sB = 0.1647
  3           7.0     6.1                     l  nA = nB = 10
  4           6.1      5.8
                                          l  F0.05/2,9,9 = 4.03
  5           6.1      5.7
                              l  F = (0.3529)2 / (0.1647)2
  6           6.4      5.6
  7           6.1      5.6                         l  F = 4.59
  8           6.0        5.9
  9           5.9        5.7
  10          5.8        5.6

                                                            21
t-TEST UNKNOWN AND UNEQUAL
               VARIANCES, 2.

           t=              6.13 − 5.76
                    ⎜ 0.3529 ⎞
                    ⎛        ⎟
                                 2   ⎜ 0.1647 ⎞
                                     ⎛        ⎟
                                                  2
                    ⎝        ⎠
                                   + ⎝        ⎠

                          10               10
                        0.37
           t=                       = 3.0044
                    0.0151664

l        t.05/2,17 = 2.110

                                                22
t-TEST UNKNOWN AND UNEQUAL
         VARIANCES, 3.


                        2
             2      2
        ⎛ s 1     s ⎞
                    2
        ⎜
        ⎜ n     +     ⎟
                       ⎟
        ⎝ 1       n2 ⎠
df =            2
                               −2
           2              2
     ⎛ s1 ⎞       ⎛ s2 ⎞
     ⎜
     ⎜ n ⎟ ⎟     ⎜
                    ⎜ n ⎟ ⎟
     ⎝ 1 ⎠ + ⎝ 2 ⎠
      n1 + 1        n2 + 1
                                    23
t-TEST UNKNOWN AND UNEQUAL
         VARIANCES, 4.

     ⎡                                 ⎤
     ⎢
df = ⎢
                 (0.0395799 )2          ⎥
                                           −2
                      2               2 ⎥
     ⎢ (0.01245384 ) + (0.0271261) ⎥
     ⎢
     ⎣       11               11       ⎥
                                        ⎦
             0.0015666            0.0015666
df =                           =
     0.0000141 + 0.0000669         0.000081
df = 19.3 − 2 = 17 rounded to a whole number


                                         24
Paired t-Test

   d
t=    n       d = xi1 − xi 2   df = n −1
   sd

                         2
          2     (∑ d )
       ∑d −
sd =                 n
              n −1
                                           25
DATA FOR t -TESTS
l    Sample   New      Original   d
l    1.       12.1%    14.7%      2.6%
l    2.       10.9     14.0       3.1
l    3.       13.1     12.9       -0.2
l    4.       14.5     16.2       1.7
l    5.         9.6    10.2       0.6
l    6.       11.2     12.4       1.2
l    7.         9.8    12.0       2.2
l    8.       13.7     14.8       1.1
l    9.       12.0     11.8       -0.2
l    10         9.1     9.7        0.6
l    ave.     11.60    12.87       1.27
l    s         1.814   2.075       1.126

                                            26
Paired t-Test Calculation

   d          1.27
t=         n=       10 = 3.567
   Sd         1.126
t 0.05 / 2,9 = 2.26
Therefore a significant
difference exists.

                                 27
t-Test for unknown but equal variances.

          X1 − X 2           n1n2
      t =
            Sp              n1 + n2
        11.60 − 12.87     100
      =
            1.9488      10 + 10
      t = 1.457   df = n1 + n2 − 2 = 18
      t 0.05/2,18 = 2.10

l         Showing that there is no significant difference?
                                                         28
Student’s t to a C.I.

   x−µ                    ts
t=         Basic form.       = x−µ
    s                      n
       n
df = n − 1
           ts
µ = x±         The value of t is taken from a t - table
            n
for n - 1 degrees of freedom and the desired confidence.



                                                    29
CONFIDENCE INTERVAL 1.

C.I . = µ ± 1.96σ
              ts
C.I . = X ±
                n
t0.05,n −1  t0.05, 2 = 4.30

                              30
DATA SET FOR SETTING SPECS. 1.

}    67.0   65.8     78.1      66.4        69.0       70.5
}    67.5   75.6     74.2      74.5        85.0       81.1
}    76.0   71.9     70.8      67.3        75.0       74.0
}    72.7   68.8     84.9      73.2        74.7       76.6
}    73.1   82.6     72.2      68.7        69.5       64.2

}    n = 30, range = 64.2 - 85.0 ! range = 20.8
}    Ave. = 73.03 s or σ = 5.4416 SQRT(30) = 5.4772
}    t0.995, 29=2.756 99%C.I.(t) = 70.29 - 75.77


                             IVTPHL1012S1                     31
DATA SET FOR SETTING SPECS. 2.
                    SETS OF 3
l        67.0 72.7 71.9 82.6 70.8 66.4 73.2 85.0 69.5 74.0
l        67.5 73.1 68.8 78.1 84.9 74.5 68.7 75.0 70.5 64.2
l        76.0 65.8 75.6 74.2 72.2 67.3 69.0 74.7 81.1 64.2

l    Ave.70.2 70.5 72.1 78.3 76.0 69.4 70.3 78.2 73.7 71.6
l    s = 5.06 4.10 3.40 4.20 7.77 4.44 2.52 5.86 6.43 6.54
l    CV. 7.21 5.82 4.72 5.37 10.23 6.40 3.58 7.49 8.72 9.13
l    CI ±29.0 23.5 19.5 24.1 44.5 25.4 14.4 33.6 36.8 37.5
l        X3 = 73.03, s = 3.36, C.V.=3.5%, n=10, t0.995,9 = 3.250
l             99%C.I.(ave) = ±3.46 = 69.67 - 76.49

                                IVTPHL1012S1                        32
DATA SET FOR SETTING SPECS. 3.
                   SETS OF 10

}    Set A: 67.0 67.5 76.0 72.7 73.1 65.8 75.6 71.9 68.8 82.6
}    Set B: 78.1 74.2 70.8 84.9 72.2 66.4 74.5 67.3 73.2 68.7
}    Set C: 69.0 85.0 75.0 74.7 69.5 70.5 81.1 74.0 76.6 64.2
}    SQRT(10) = 3.162278        t0.995, 9 = 3.250
}        A                  B                     C
}    72.1 ± 5.13, 7.1% 73.0 ± 5.49, 7.5% 74.0 ± 6.08, 8.2%
}    CI.66.8 - 77.37: 5.2 67.4 - 80.6: 5.64 65.7 - 82.2: 8.23
}    Ave(10s)= 73.03, s = 0.9300, C.V. = 1.3%, 99%C.I. = ± 5.33
}    99%CI = 67.7 - 78.4.        SQRT(3) = 1.7321 t0.995,2 = 9.925

                               IVTPHL1012S1                      33
DATA SET FOR SETTING SPECS. 4.
              CUMULATIVE
}  n    Ave.    s       C.V. 99%C.I.    SQRT(n)   t0.995,n-1
}  2    67.25   0.35   0.5   15.9       1.4142     63.66
}  3    70.17   5.06   7.2   42.8       1.1731      9.925
}  4    70.80   4.32   6.1   12.6       2.0000      5.841
}  5    71.26   3.88   5.4    8.0       2.2361      4.604
}  6    70.35   4.12   5.9    6.8       2.4495      4.032
}  9    70.93   3.78   5.3    4.2       3.0000      3.355
}  12   72.78   4.97   6.8    4.5       3.4641      3.106
}  18   72.74   5.40   7.4    3.7       4.2426      2.898
}  24   73.13   5.45   7.5    3.1       4.8990      2.807
}  30   73.03   5.44   7.5    2.7       5.4773      2.756


                          IVTPHL1012S1                          34
Wilcoxon’s Signed Rank Test 1.

l    Nonparametric test for paired test results.
l    Does the same thing as the paired t-test but without the
      assumption of normalcy.
l    First, take your paired data and calculate the
      differences, including their signs.
l    Second, place the differences in order (low to high)
      based on their absolute values.
l    Third, assign a rank to the differences and assign to the
      rank a sign according to the sign of the original
      difference. (continued)


                                                              35
Wilcoxon’s Signed Rank Test 2.

l    Fourth, count the number or positive or
      negative ranks, take the group with the smaller
      number of members, and sum the absolute
      values of the ranks in that group. This will give
      a value, Tn, where n = the number of pairs.
l    Go to a Wilcoxon table for n pairs and
      significance level of at least 95% to obtain a
      tabular value of Tn. For significance, the
      calculated value must be smaller than the
      tabular value for Tn.


                                                      36
Signed Rank Test: Example

l    A minimum of 6 pairs is needed.
l    With 6 pairs, all of the differences must have the same
      sign. This gives T6 = 0 which is significant at the 95%
      level.
l    Differences from 19 pairs of test results.
l    Diff : +2, -4, -6, +8, +10, -11, -12, +13, +22, -25,
l    Rank:+1, -2, -3, +4, +5, -6, -7, +8, +9, -10,
l    Diff: -33, +33, +41, -45, +45, +45, +81, +92, +139
l    Rank:-11.5,+11.5,+13,-15, +15, +15, +17, +18, +19



                                                                37
Signed Rank Test: Example: Continued

l  There   are 7 negative ranks and 12 positive
    ranks, so the absolute sum is taken of:
l  -2, -3, -6, -7, -10, -11.5, and -15, this gives:
l  T19 = 54.5. The tabular value for T0.05, 19 is
    46, so the data show no difference between
    the groups.



                                                   38
A Simpler Nonparametric Test 1.

l    The following is not as powerful as the Signed
      Rank Test, but is faster and easier. It tests the
      hypothesis that p = 0.5 for a given sign. It is a Chi-
      square (χ2) test.

                                                         2
                    2        ( n1 − n2    − 1)
                χ       =
                                    n1 + n2
                                                          39
Simpler Signed Rank Test 2.

l    n1 and n2 are the number of positive and
      negative differences. From the previous data
      there are 12 positive and 7 negative differences
      so:
                                 2       2
          2     (12 − 7 − 1)          4 16
        χ =                          = = < 1.0
                     12 + 7           19 19
                                                         40
Simpler Signed Rank Test 3.
l  Usually,  Χ2 > 1.0, so this indicates that
    there is no significance since the
    calculated Х2 should be larger than the
    tabular Χ2 for significance.
l  This test can be adopted as a rapid and
    easy method to decide if further
    investigation is required. It is even
    possible to have prepared tables for use.

                                             41
Basic Statistics for Quality Control and
     Validation Studies: Session 2
        •  Steven S. Kuwahara, Ph.D.

        •  GXP BioTechnology, LLC
       •  PMB 506, 1669-2 Hollenbeck Ave.
           •  Sunnyvale, CA 94087-5402
          •  Tel. & FAX (408) 530-9338
     •  E-Mail: s.s.kuwahara@gmail.com
        •  Website: www.gxpbiotech.org


                   ValWkPHL1012S2           1
Sample Number Determination 1.

•  One of the major difficulties with setting the
   number of samples to take lies in determining the
   levels of risk that are acceptable. It is in this area
   that managerial inaction is often found, leaving a
   QC supervisor or senior analyst to make the
   decision on the level of risk the company will
   accept. If this happens, management has failed its
   responsibility.



                        ValWkPHL1012S2                      2
Sample Number Determination 2.

•  The problem is that all sampling plans, being statistical in
   nature, will possess some risk. For instance, if we randomly
   draw a new sample from a population we could assume or
   predict that a test result from that sample will fall within
   ±3σ of the true average 99.7% of the time, but there is still
   0.3% (3 parts-per-thousand) of the time when the result
   will be outside the range for no reason other than random
   error. Thus a good lot could be rejected. This is known as a
   false positive or a Type I error.
•  This is the type of error that is most commonly considered,
   but there is type II error also.


                           ValWkPHL1012S2                      3
Sample Number Determination 3.

•  False positives occur when you declare that there is a
   difference when one does not really exist (example given in
   the previous slide). Sometimes called producer’s risk,
   because the producer will dump a lot that was okay.

•  False negatives occur when you declare that a difference
   does not exist when, in fact, the difference does exist.
   Sometimes called customer’s risk, because the customer
   ends up with a defective product. It is also known as a
   Type II error.



                          ValWkPHL1012S2                         4
SIMPLIFIED FORM OF n CALCULATION
        n for an ! to compare with a µ




      xi − µ     ⎛ s ⎞ = x − µ
  t=           t ⎜   ⎟ i
       s         ⎝ n ⎠
           n
   2 2                         2 2
  ts         2                ts
    n
        ( )
        = x−µ =Δ    2
                          n= 2
                               Δ
                  ValWkPHL1012S2         5
EXAMPLE OF SIMPLIFIED METHOD
           WITH ITERATION
•    Δ = 51- 50 = 1 s = ± 2 Z0.025=1.96
•    n = (1.96)2 (2)2 / 1 = 3.8416 X 4 = 15.4 ~ 16
•    t0.025,15= 2.131 (2.131)2 = 4.541161
•    n = 4.54116 X 4 = 18.16 ~ 19
•    t0.025,18= 2.101 (2.101)2 = 4.414201
•    n = 4.414201 X 4 = 17.66 ~ 18
•    t0.025,17= 2.110 (2.110)2 = 4.4521
•    n = 4.4521 X 4 = 17.81 ~ 18

                          ValWkPHL1012S2             6
Sample Number Determination 6.

•  Because of the need to define risk and consider the
   level of variation that is present, sampling plans
   that do not allow for these factors are not valid.
•  Examples of these are: Take 10% of the lot below
   N=200 and then 5% thereafter. The more famous
   one is to take :
•  in samples.              N +1

                      ValWkPHL1012S2                 7
DEVELOPMENT OF A SAMPLING PLAN
•  Consider a situation where a product must contain
   at least 42 mg/mL of a drug. At 41 mg/mL the
   product fails. Because we want to allow for the test
   and product variability, we decide that we want a
   95% probability of accepting a lot that is at 42 mg/
   mL, but we want only a 1% chance of accepting a
   lot that is at 41 mg/mL.
•  For the sampling plan we need to know the
   number (n) of test results to take and average.
•  We will accept the lot if the average () exceeds k
   mg/mL.

                       ValWkPHL1012S2                 8
SAMPLING PLAN CALCULATIONS A.
     You will need the table of the normal distribution for this.

• Suppose we have a lot that is at 42.0 mg/mL.
•  would be normally distributed with µ=42.0
    – And the SEM = s/!n. We want !>k

               x − 42.0 k − 42.0
           x=           >
                   s        s
                    n        n
           x = standard normal deviate
   From a “normal” table (or “x” with ν = ∞) we want a
   probability of 0.95 that “x” will be greater than the
   “k” expression.

                            ValWkPHL1012S2                          9
SAMPLING PLAN CALCULATIONS A1.
  You will need a normal distribution table for this

•  x0.95,∞ = 1.645 (cumulative probability of 0.95)
•  We know that this must be greater than the “k”
   expression.
•  We also know that k must be less than 42.0 since
   the smallest acceptable  will be 42.0.
•  Therefore:
   k − 42.0
            = 1.645                    since k < x
     s
        n
                      ValWkPHL1012S2                   10
SAMPLING PLAN CALCULATIONS B.


• Now suppose that the correct value for the lot is 41.0 mg/
mL. So now µ = 41.0 and we want a probability of 0.01
that !>k. Now:

              x − 41.0 k − 41.0
          x=           >         = −2.326
                s          s
                   n          n
          k − 42.0    1.645
                   =         = −0.707
          k − 41.0 − 2.326

          k = 41.59


                        ValWkPHL1012S2                         11
SAMPLING PLAN CALCULATIONS C.

• Going back to the original equation for a passing result
and knowing that s = ± 0.45 (From our assay validation
studies?)

 k − 42.0 41.59 − 42.0 − 0.41
         =            =       = −1.64
   s          s         s
      n          n         n
                                                       2
[−1.64]s
         = (− 0.41) or n =
                           ([− 1.64][0.45])
                                       2
    n                          (− 0.41)
    0.544644
n=            = 3.24
     0.1681

                        ValWkPHL1012S2                       12
SAMPLING PLAN

•  The sampling plan now says: To have a 95%
   probability of accepting a lot at 42.0 mg/mL or
   better and a 1% probability of accepting a lot at
   41.0 mg/mL or worse, given a standard deviation
   of ± 0.45 mg/mL for the test method; run four
   samples and average them. Accept the lot if the
   mean is 41.59 mg/mL or better.
•  Note that the calculated value of n is close enough
   to 3 that some would argue for 3 samples.



                       ValWkPHL1012S2                    13
SAMPLE SIZES FOR MEANS

• Suppose we want to determine µ using a test where we
know the standard deviation (s) of the population.
• How many replicates will we need in the sample?
• The length of a confidence interval = L

                       2 2              2 2
   2ts 2 4t s                         4t s
L=     L =                         n = 2 L = 2Δ
     n     n                           L


                       ValWkPHL1012S2                    14
Recalculation of Earlier Problem.
                              2     2
                    4t s
                 n=    2
                     L
L = 2, s = ±2, t0.95,∞=1.960 (two sided)
          2       2
    4(2) (1.96 )         61.4656
n=             2
                       =
          (2)               4
n = 15.4 or 16
Iterate : (t )0.95,15 = 2.131 n = 18.16, (t )0.95,18 = 2.101 n = 17.66
(t )0.95,17 = 2.110   n = 17.81 so n = 18


                                  ValWkPHL1012S2                         15
Sample size for estimating µ

• Note the statement: We are determining the % of drug
present and we wish to bracket the true amount (µ%)
by ± 0.5% and do this with 95% confidence, so L = 2 x
0.5 = 1.0
• We have 22 previous estimates for which s = 0.45
• Now at the 95% level of significance (1–0.95), t0.975,21 =
2.080.
                           2              2
       4(2.080) (0.45 )
    n=           2
                        = 3.5
            (1.0)
                         ValWkPHL1012S2                        16
POOLED VARIANCE



              2          2
       n1 −1 s1 + n2 −1 s2
       (     ) (             )
sp =
           n1 +n2 −2

            ValWkPHL1012S2       17
Calculating the Confidence Interval, Sp

 • The results of the four determinations are: 42.37%,
 42.18%, 42.71%, 42.41%.
 • ! = 42.42% and s = 0.22% (n2 – 1) = 3
 • Using the extra 3 df and s = 0.22% we have:


                           2                  2
           21(0.45 ) + 3(0.22 )
Sp =                            = 0.43
                  21 + 3

                         ValWkPHL1012S2                  18
Calculating the Confidence Interval, L

• Sp = s, the new estimate of the standard deviation, so a
new confidence interval can be calculated with 24 df.
t(0.975, 24)= 2.064.

 L = 2(2.064)(0.43)
                      4
L = 0.88752, rather than 1.0.
         ( )
C.I. = ± L = 0.44376 or ± 0.45
            2
C.I. 95% = 42.42 ± 0.45 or 41.97 - 42.87
 Note that n = 4 not 25 for calculating L.
                         ValWkPHL1012S2                      19
Sample Sizes for Estimating Standard Deviations. I.

•  The problem is to choose n so that s at n – 1 will be
   within a given ratio of s/σ.
•  Examples are found in reproducibility,
   repeatability, and intermediate precision
   measurements.
•  s = standard deviation experimentally determined.
   σ = population or true standard deviation. s2 and
   σ2 are corresponding variances.
•  You will use n to derive s.

                       ValWkPHL1012S2                 20
Sample Sizes for Estimating Standard Deviations. χ2

  • This is the asymmetric
                                                                       2
  distribution for σ2.
  • Now as an example,             χ     2
                                                =
                                                  (n − 1)s
  assume n-1 = 12. At 12 df,             n −1                   2
  χ2 will exceed 21.0261 5%                             σ
  of the time and it will                 2                 2
  exceed 5.2260 95% of the           χ    n −1          s
  time. Therefore 90% of the                        =       2
  time, χ2 will lie between
  5.2260 and 21.0261 for 12
                                   (n − 1)              σ
  df.                                           2                   2
  • Check your tables to           ⎛ s ⎞ ⎛ χ       ⎞            n −1
  confirm this.                    ⎜ ⎟ = ⎜         ⎟
                                           ⎜ (n − 1) ⎟
                                   ⎝ σ ⎠ ⎝         ⎠
                        ValWkPHL1012S2                                     21
Confidence interval for the standard deviation.

•  Given the data in the previous slide, we know that
   (s2/σ2) will lie between (5.2260/12) and
   (21.0261/12), or between 0.4355 and 1.7552.
•  Thus the ratio of s/σ will lie between the square
   roots of these numbers or between 0.66 and 1.32
   or 0.66 < s/σ < 1.32. This gives:
•  s/1.32 < σ < s/0.66. If you know s this gives you a
   90% confidence interval for the standard
   deviation.
•  Now let’s reverse our thinking.
                       ValWkPHL1012S2                22
Sample Sizes for Estimating Standard Deviations.
                   Continued. I.

•  Instead of the confidence interval, suppose we say
   that we want to determine s to be within ± 20% of
   σ with 90% confidence. So:
•  1 – 0.2 < s/σ < 1+ 0.2 or 0.8 < s/σ < 1.2
•  This is the same as: 0.64 < (s/σ)2 < 1.44
•  Since we want 90% confidence we use levels of
   significance at 0.05 and 0.95.
•  Now go to the χ2 table under the 0.95 column and
   look for a combination where χ2/df is not < 0.64,
   but df is as large as possible.
                      ValWkPHL1012S2                23
Sample Sizes for Estimating Standard Deviations.
                  Continued. II.

•  Trial and error shows this number to be about 50.
•  Next we go to the column under 0.05 and look for
   a ratio that does not exceed 1.44, but df is as small
   as possible.
•  Trial and error will show this number to be
   between 30 and 40.
•  You must take the larger of the two numbers and
   since df = n – 1, n = 51 replicates.


                        ValWkPHL1012S2                 24
Do Not Panic. Consider This!

•  Instead of the confidence interval, suppose we say
   that we want to determine s to be within ± 50% of
   σ with 95% confidence. So:
•  1 – 0.5 < s/σ < 1+ 0.5 or 0.5 < s/σ < 1.5
•  This is the same as: 0.25 < (s/σ)2 < 2.25
•  Since we want 95% confidence we use levels of
   significance at 0.025 and 0.975.
•  Now go to the χ2 table under the 0.975 column and
   look for a combination where χ2/df is not < 0.25,
   but df is as large as possible.

                      ValWkPHL1012S2                25
Greater Confidence, But Lesser Certainty

•  Trial and error shows this number to be 8.
•  Next we go to the column under 0.025 and look for
   a ratio that does not exceed 2.25, but df is as small
   as possible.
•  Trial and error will show this number to be 8. The
   same as the other df.
•  You must take the larger of the two numbers and
   but in this case df = 8 and n = 9.
•  You have a greater confidence interval for a
   smaller n.
                       ValWkPHL1012S2                  26
n for Comparing Two Averages

                    x1 − x2
tα , df =                                     Δ = x1 − x2 n1 = n2
                σ 12              2
                                 σ2
                             +
                    n1           n2
                                            2
                     Δ   2
                                          t α ,df
 2
tα .df =
            σ   2
                             σ   2
                                            n
                                                    (σ   2
                                                         1       )
                                                             + σ 2 = Δ2
                                                                 2

                1                2
                     +
                n   n

n=
       2
      tα , df   (2     2
                σ1 + σ 2              )
                    Δ2

                                     ValWkPHL1012S2                       27
Introduction to the Analysis of Variance
                 (ANOVA) I.
This method was aimed at deciding whether or not
  differences among averages were due to
  experimental or natural variations or true
  differences among averages.
  R.A. Fisher developed a method based on
  comparing the variances of the treatment means
  and the variances of the individual measurements
  that generated the means.
      The technique has been extended into the field
  known as DOE or factorial experiments

                      ValWkPHL1012S2               28
Introduction to the Analysis of Variance
                 (ANOVA) II.
•  The method is based on the use of the F-test and
   the F-distribution (Named after him.)
   –  The F-distribution, and all distributions related to
      errors, is a skewed, unsymmetrical distribution.
                                      2
                                   ns y
                        F=         2
                               s   pooled
   –  S2y represents the variance among the treatments and
      s2pooled is the variance of the individual results (system
      noise).

                           ValWkPHL1012S2                          29
Introduction to the Analysis of Variance
                (ANOVA) III.
•  F increases as the number of replicates increases.
   –  In simple ANOVA systems n is the same for all
      treatments.
   –  By increasing n you amplify small differences between
      the variances of the treatment means and the system
      noise.
   –  An F value of 1.0 or less says that the system noise is
      greater than the variance of the means. This suggests
      that the differences among the means are due to
      experimental or environmental variations.


                          ValWkPHL1012S2                        30
Introduction to the Analysis of Variance
                (ANOVA) IV.
•  Because of the importance of system noise, before
   doing an ANOVA or factorial experiment, you
   should reduce variation in the system to a
   minimum.
   –  You should remove all special cause variation and
      minimize common cause variation.
   –  Methods such as Statistical Process Control (SPC)
      should be used to reduce variations.
      •  Note: A system where special cause variation has been
         eliminated and only common cause variation is left is known as
         a system under statistical control.

                            ValWkPHL1012S2                            31
Introduction to the Analysis of Variance (ANOVA)
                        V.
•  The F-distribution depends on the number of degrees
   of freedom of the numerator and denominator and the
   level of type 1 error that you will accept.
   –  For each level of type 1 error there are different
      distribution tables. The exact value of F then depends
      on the number of degrees of freedom of the numerator
      and denominator.
      •  If the calculated F exceeds the tabular F, it is then significant at
         the1-α level. Where α is the level of type 1 error that you are
         willing to accept.
      •  α is the p value. Most statistical software programs will
         calculate the p value. Normally, you want 0.05 or 0.01.
      •  Type-1 error is where you falsely conclude that there is a
         difference. AKA: False positive, producer’s risk.

                              ValWkPHL1012S2                               32
Fairness of 4 sets of dice. (Taken from Anderson, MJ and
  Whitcomb, PJ, DOE Simplified, CRC Press, Boca Raton, FL, 2007.)

    •  Frequency distribution for 56 rolls of dice.
       Dots         White            Blue       Green      Purple

         6           6+6              6+6         6+6         6
         5            5                5           5          5
         4            4               4+4         4+4         4
         3        3+3+3+3+3        3+3+3+3      3+3+3+3   3+3+3+3+3
         2          2+2+2          2+2+2+2      2+2+2+2   2+2+2+2+2
         1           1+1               1           1          1
      Mean (y)       3.14            3.29        3.29       2.93
      Var. (s2)      2.59            2.37        2.37       1.76
       n = 14     Grand Ave.       = 3.1625

•  Grand average = Total of all dots/56 dice (4X14)
                               ValWkPHL1012S2                         33
Fairness of 4 sets of dice. Calculation of F.
                    Note differences in denominator.
     Since F is much less than 1.0 we can assume that there is no
     significant difference among the colors even without looking
                              at an F table.



s2 =
     (3.14 − 3.1625)2 + (3.29 − 3.1625)2 + (3.29 − 3.1625)2 + (2.93 − 3.1625)2
 y
                                       4 −1
  2
s y = 0.029

s 2 = 2.59 + 2.37 + +2.37 + 1.76 = 2.28
  pooled
                       4
              2
       n * s y 14 * 0.029
F= 2            =         = 0.18
       s pooled   2.28
                                 ValWkPHL1012S2                             34
Fairness of 4 sets of dice. How about a loaded
                       set?
  Dots         White          Blue         Green    Purple
    6            1              3            6        1
    5            1              2            5        2
    4            1              3            1        3
    3            2              4            1        1
    2            5              1            0        2
    1            4              1            1        5
 Mean (y)       2.50          3.93          4.93     2.86
 Var. (s2)      2.42          2.38          2.07     3.21
  n = 14     Grand Ave.     = 3.555
    δ=         -1.055        0.375          1.375   -0.695
   δ2 =        1.1130       0.1406         1.8906   0.4830
  Σδ2 =        3.6245     Σδ2/3 = s2y =    1.2082

                          ValWkPHL1012S2                     35
Fairness of 4 sets of dice. How about a loaded
                     set? ANOVA

 2        2.42 + 2.38 + 2.07 + 3.21
spooled =                           = 2.52 df = 4(14 - 1) = 52
                      4
  2
s y = 1.21 df = 3 (4 - 1)
   14 *1.21
F=            = 6.71 F3,52 = 6.71
      2.52
Tabular F3,52 = 2.839 − 2.758 at 5%, p = 0.05
and 4.313 - 4.126 at 1%, and 6.595 - 6.171 at 0.1%.
Range is for F3,40 to F3,60 . Significant at p = 0.001
                           ValWkPHL1012S2                36
Least Significant Difference
      Lucy in the Sky with Diamonds (LSD)
•  DO NOT EVER USE THIS METHOD WITHOUT THE
   PROTECTION OF A SIGNIFICANT ANOVA
   RESULT ! ! !
•  There are 45 combinations of 10 results taken in pairs. If you focus
   mainly on the high and low results, you are almost guaranteed to
   encounter a type-1 error.
    –  This is why you need to use the ANOVA coupled with an LSD
       determination.
•  The LSD is based on the equations for confidence intervals.
                                                                   n 2

   LSD = ± t(1−α ,df ) × s pooled 2 / n s pooled =
                                                               ∑s  1 i
                                                                  n
                               ValWkPHL1012S2                             37
LSD for the Current Problem

              2.42 + 2.38 + 2.07 + 3.21
s pooled =                              = 2.52 = 1.59
                          4
                  2
LSD = 2.01 ×1.59     = ±1.21
                 14
at 99% LSD = ±1.333 for t (0.99,df =52 ) ≅ 2.68
•  The (1-α) level of the t determines the level of
   significance for the LSD.
•  n = 14 for replicates, but s2pooled had   4X(14-1)
   = 52 df.
                        ValWkPHL1012S2                  38
So where are the bad dice?

•  Given the LSD = ±1.333, the result can be displayed in
   different ways.
•  Plot the result as the mean of the average count of the
   treatments (colors) ± ½ LSD.
   –  Then look for overlaps. A significant difference will not have
      an overlap.
•  Or take the difference between means and compare
   them to the LSD.
   –  In the present case, the white and purple dice are similar, but
      the green dice are definitely higher, with the blue dice
      different from the white, but not from the green and only
      marginally different from the purple.

                            ValWkPHL1012S2                         39
White = 2.50    Blue = 3.93     Green=4.93   Purple=2.86
  White = 2.50                       1.43           2.43         0.36
  Blue = 3.93        1.43                           1.00         1.07
  Green=4.93         2.43            1.00                        2.07
  Purple=2.86        0.36            1.07           2.07


For 95% confidence, the LSD is ± 1.21 and for 99%, the LDS
is ± 1.33.
So blue and green are different from white, and green is
different from purple and white at the 99% level.
White and purple are the same as are blue and green.
Purple is also similar to blue, but not to green.
All of this holds at the 99% level, thus at p = 0.01 we conclude
that blue and green dice run to higher numbers than white
and purple.
                                ValWkPHL1012S2                          40
David.LeBlond@sbcglobal.net	
  
“Designing	
  an	
  efficient	
  process	
  with	
  an	
  effec;ve	
  process	
  
control	
  approach	
  is	
  dependent	
  on	
  the	
  process	
  knowledge	
  and	
  
understanding	
  obtained.	
  Design	
  of	
  Experiment	
  (DOE)	
  studies	
  
can	
  help	
  develop	
  process	
  knowledge	
  by	
  revealing	
  
rela;onships,	
  including	
  mul;-­‐factorial	
  interac;ons,	
  between	
  
the	
  variable	
  inputs	
  …	
  and	
  the	
  resul;ng	
  outputs.	
  	
  
	
  
Risk	
  analysis	
  tools	
  can	
  be	
  used	
  to	
  screen	
  poten;al	
  variables	
  
for	
  DOE	
  studies	
  to	
  minimize	
  the	
  total	
  number	
  of	
  experiments	
  
conducted	
  while	
  	
  maximizing	
  knowledge	
  gained.	
  	
  
	
  
The	
  results	
  of	
  DOE	
  studies	
  can	
  provide	
  jus;fica;on	
  for	
  
establishing	
  ranges	
  of	
  incoming	
  component	
  quality,	
  
equipment	
  parameters,	
  and	
  in	
  process	
  material	
  quality	
  
aKributes.”	
  
                                                                                    2
What	
  is	
  it?	
  
     The	
  ability	
  to	
  accurately	
  predict/control	
  process	
  responses.	
  
     	
  
How	
  do	
  we	
  acquire	
  it?	
  
     Scien;fic	
  experimenta;on	
  and	
  modeling.	
  
     	
  
How	
  do	
  we	
  communicate	
  it?	
  
     Tell	
  a	
  compelling	
  scien;fic	
  story.	
  
     Give	
  the	
  prior	
  knowledge,	
  theory,	
  assump;ons.	
  
     Show	
  the	
  model.	
  
     Quan;fy	
  the	
  risks,	
  and	
  uncertain;es.	
  	
  
     Outline	
  the	
  boundaries	
  of	
  the	
  model.	
  
     Use	
  pictures.	
  
     Demonstrate	
  predictability.	
  
                                                                            3
Screening	
  Designs
                                      	
  
• 	
  2	
  level	
  factorial/	
  frac;onal	
  factorial	
  designs	
  	
  
• 	
  Weed	
  out	
  the	
  less	
  important	
  factors	
  
• 	
  Skeleton	
  for	
  a	
  follow-­‐up	
  RSM	
  design	
  


                                                                           Response	
  Surface	
  Designs
                                                                                                        	
  
                                                                   • 	
  3+	
  level	
  designs	
  	
  	
  
                                                                   • 	
  Find	
  design	
  space	
  
                                                                   • 	
  Explore	
  limits	
  of	
  experimental	
  region	
  




                      Confirmatory  	
  
                        Designs
                              	
  
             • 	
  	
  Confirm	
  Findings	
  
             • 	
  	
  Characterize	
  Variability	
  
                                                                                                              4
Key	
  
 Factors	
                                                    Key	
  
                                                           Responses	
  




Cau;on:	
  EVERYTHING	
  depends	
  on	
  gecng	
  this	
  right	
  !!!	
  
                                                                  5
Fixed	
  Factors	
                                            Responses	
  
     Disint	
  (A	
  or	
  B)	
  
                                                            Dissolu;on%	
  (>90%)	
  
   Drug%	
  (5-­‐15%)	
                                     	
  
                                           Make	
  
                                                            	
  
    Disint%	
  (1-­‐4%)	
                  ACE	
            	
  
 DrugPS	
  (10-­‐40%)	
  
                                          Tablets	
         WeightRSD%(<2%)	
  
                                                            	
  
       Lub%	
  (1-­‐2%)	
  



                                             Day	
  
                                    Random	
  Factors	
  
                                                                       6
Trial	
            DrugPS	
                    Lub%	
              Disso%	
  
                                                 	
  
  1	
                        25	
                1	
                  85	
  
  2	
                        25	
                2	
                  95	
  
  3	
                        10	
               1.5	
                 90	
  
  4	
                        40	
               1.5	
                 70	
  
            Lubricant%	
  

                              2	
              95	
  
                                      90	
                70	
  
                             1	
               85	
  
                                      10	
     40	
  
                                         DrugPS	
  
                                                                                7
Lubricant%	
  
                  2	
              95	
  
                          90	
              70	
  
                  1	
              85	
  
                          10	
     40	
  
                             DrugPS	
  
Disso% = 86.667
       +10 × Lub%
       −0.667 × DrugPS
                          +ε
                                                     8
ž  Previous	
  example	
  had	
  only	
  2	
  factors.	
  
    Ø Factor	
  space	
  is	
  2D.	
  We	
  can	
  visualize	
  on	
  paper.	
  
ž  With	
  3	
  factors	
  we	
  need	
  3D	
  paper.	
  
      Ø Corners	
  even	
  further	
  away	
  




ž  Most	
  new	
  processes	
  have	
  >3	
  factors	
  
ž  OFAT	
  can	
  only	
  accommodate	
  addi;ve	
  models	
  
ž  We	
  need	
  a	
  more	
  efficient	
  approach	
  
                                                           9
True	
  response	
                  • Goal:	
  Maximize	
  
                                                                response	
  
                                                              • Fix	
  Factor	
  2	
  at	
  A.	
  
Factor	
  2	
  



                                                              • Op;mize	
  Factor	
  1	
  to	
  B.	
  
                                          80	
  
                  E	
                           60	
  
                                                     40	
     • Fix	
  Factor	
  1	
  at	
  B.	
  
                  C	
                                         • Op;mize	
  Factor	
  2	
  to	
  C.	
  
                  A	
  
                                                              • Done?	
  	
  True	
  op;mum	
  is	
  
                                                                Factor	
  1	
  =	
  D	
  and	
  	
  
                          B	
       D	
                         Factor	
  2	
  =	
  E.	
  
                                  Factor	
  1	
  
                                                              • We	
  need	
  to	
  
                                                                accommodate	
  curvature	
  
                                                                and	
  interac/ons	
  
                                                                                                10
Response	
  




                                     A	
   B	
        C	
                        D	
  
                                                    Factor	
  level	
  
•  A	
  to	
  B	
  may	
  give	
  poor	
  signal	
  to	
  noise	
  
•  A	
  to	
  C	
  gives	
  beKer	
  signal	
  to	
  noise	
  and	
  rela;onship	
  is	
  s;ll	
  
   nearly	
  linear	
  
•  A	
  to	
  D	
  may	
  give	
  poor	
  signal	
  to	
  noise	
  and	
  completely	
  miss	
  
   curvature	
  
•  Rule	
  of	
  thumb:	
  Be	
  bold	
  (but	
  not	
  too	
  bold)	
  
                                                                                         11
Trial	
           DrugPS	
                    Lub%	
             Disso%	
  
                                                	
  
  1	
                        10	
               1	
                 75	
  
  2	
                        10	
               2	
                100	
  
  3	
                        40	
               1	
                 75	
  
  4	
                        40	
               2	
                 80	
  

                              2	
   100	
               80	
  
            Lubricant%	
  




                              1	
   75	
           75	
  
                                    10	
           40	
  
                                         DrugPS	
                             12
Lubricant%	
      2	
   100	
           80	
  



                     1	
   75	
           75	
  
                           10	
           40	
  
                                DrugPS	
  

Disso% = 43.33
                    +0.667 × DrugPS
                    +31.667 × Lub%
                    −0.667 × DrugPS × Lub%
                    +ε
                                                    13
ž  Model	
  non-­‐addiKve	
  behavior	
  

    ›  interacKons,	
  curvature	
  

ž  Efficiently	
  explore	
  the	
  factor	
  space	
  

ž  Take	
  advantage	
  of	
  hidden	
  replicaKon	
  




                                                         14
Planar:	
  no	
  interac;on	
         Non-­‐planar:	
  interac;on	
  

 Y = a + b ⋅ X1 + c ⋅ X 2         Y = a + b ⋅ X1 + c ⋅ X 2 + d ⋅ X 1 ⋅X2



                                                                 15
16
17
18
2	
   A	
              B	
     Trial	
   DrugPS	
   Lub%	
       Disso%	
  
Lub%	
  
                                           1	
        10	
       1	
           C	
  
                                           2	
        10	
       2	
           A	
  
           1	
   C	
             D	
       3	
        40	
       1	
           D	
  
                 10	
            40	
      4	
        40	
       2	
           B	
  
                       DrugPS	
  
                                      B +D A +C                    A	
     B	
  
                 MainEffectDrugPS =       −
                                        2    2                     C	
     D	
  
                                      A +B C +D                    A	
     B	
  
                  MainEffectLub% =        −
                                        2    2                     C	
     D	
  
                                      C +B A +D                    A	
     B	
  
       InteractionEffectDrugPS×Lub% =     −
                                        2    2                     C	
     D	
  
                                                                                   19
Uncoded	
  Units	
                                      Coded	
  Units	
  
    Trial	
   DrugPS	
   Lub%	
                          Trial	
   DrugPS	
   Lub%	
  
     1	
        10	
       1	
                            1	
        -­‐1	
     -­‐1	
  
     2	
        10	
       2	
                            2	
        -­‐1	
    +1	
  
     3	
        40	
       1	
                            3	
        +1	
       -­‐1	
  
     4	
        40	
       2	
                            4	
        +1	
      +1	
  

•  Coding	
  helps	
  us	
  evaluate	
  design	
  proper;es	
  
•  Some	
  sta;s;cal	
  tests	
  use	
  coded	
  factor	
  units	
  for	
  analysis	
  
   (automa;cally	
  handled	
  by	
  sotware)	
  
•  Easy	
  to	
  convert	
  between	
  coded	
  (C)	
  and	
  uncoded	
  (U)	
  factor	
  levels	
  
              U − Umid
          C=             ⇔ U = C(Umax − Umid ) + Umid
             Umax − Umid

                                                                                                 20
+1	
  A	
                      B	
     Trial	
   DrugPS	
   Lub%	
   DrugPS Disso%	
  
                                                                         	
     *Lub%	
  
Lub%	
  



                                                   1	
           -­‐1	
     -­‐1	
     +1	
            C	
  
                                                   2	
          -­‐1	
      +1	
       -­‐1	
          A	
  
           -­‐1	
   C	
                  D	
  
                    -­‐1	
               +1	
      3	
          +1	
        -­‐1	
     -­‐1	
          D	
  
                               DrugPS	
            4	
          +1	
        +1	
       +1	
            B	
  

   Disso = a                                               a = (+ A + B + C + D) / 4
                    +b × Lub%                              b = MEDrugPS / 2 = (−A + B − C + D) / 4
                    +c × DrugPS                            c = MELub% / 2 = (+ A + B − C − D) / 4
                    +d × Lub% × DrugPS                     d = IEDrugPS×Lub% / 2 = (−A + B + C − D) / 4
                    +ε
                                                                                                  21
Disso = a + b × Lub + c × DrugPS + d × Lub × DrugPS + ε
ž  It	
  is	
  obtained	
  through	
  the	
  “magic”	
  of	
  regression.	
  
ž  b	
  measures	
  the	
  “main	
  effect”	
  of	
  Lub	
  
ž  c	
  measures	
  the	
  “main	
  effect”	
  of	
  DrugPS	
  
ž  d	
  measures	
  the	
  “interac;on	
  effect”	
  between	
  Lub	
  and	
  
    DrugPS	
  
    Ø  if	
  d	
  =	
  0,	
  effects	
  of	
  Lub	
  and	
  DrugPS	
  are	
  addi;ve	
  
    Ø  if	
  d	
  ≠	
  0,	
  effects	
  of	
  Lub	
  and	
  DrugPS	
  are	
  non-­‐addi;ve	
  
ž  ε	
  represents	
  trial	
  to	
  trial	
  random	
  noise	
  
                                                                                     22
+1	
                                                                                      +1	
                                                                                +1	
  




                                                                                                                                                                              Lub%	
  
                                                                                         Lub%	
  
Lub%	
  




           -­‐1	
                                                                                    -­‐1	
                                                                              -­‐1	
  
                      -­‐1	
           +1	
                                                                     -­‐1	
           +1	
                                                               -­‐1	
           +1	
  
                                 DrugPS	
                                                                                  DrugPS	
                                                                            DrugPS	
  

Trial	
   DrugPS	
   Lub%	
                                                             Trial	
   DrugPS	
   Lub%	
                                                              Trial	
   DrugPS	
   Lub%	
  
    1	
                          -­‐1	
                -­‐1	
                                1	
                      -­‐1	
                    -­‐1	
                                1	
                      -­‐1	
                   -­‐1	
  
    2	
                          -­‐1	
                +1	
                                  2	
                      -­‐1	
                     0	
                                  2	
                      -­‐1	
                   -­‐1	
  
    3	
                      +1	
                      -­‐1	
                                3	
                      +1	
                       0	
                                  3	
                      +1	
                    +1	
  
    4	
                      +1	
                      +1	
                                  4	
                      +1	
                     +1	
                                   4	
                      +1	
                    +1	
  

           Inner	
  product:	
  
           	
  	
  	
  	
  	
  +1-­‐1-­‐1+1=0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  +1+0+0+1=2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  +1+1+1+1=4	
  
                                                                                                                                                                                                                          23
24
Dissolu;on	
  (%LC)	
                                       1%	
  Lubricant	
  


                                                            2%	
  Lubricant	
  
                          90	
  




                                   10	
            40	
  
                                      DrugPS	
  

                                                                              25
y = a + bA + cB + dC + eAB + fAC + gBC + hABC + ε
                                                   •    Average	
  
Number	
  of	
       Number	
  of	
                •    Main	
  Effects	
  
Factors	
  (k)	
     Trials	
  (df	
  =	
          •    2-­‐way	
  interac;ons	
  
                         2k)	
                     •    Higher	
  order	
  
       0	
                    1	
                       interac;ons	
  (or	
  
       1	
                    2	
                       es;mates	
  of	
  noise)	
  
       2	
                    4	
  
       3	
                    8	
  
       4	
                   16	
  
       5	
                   32	
  
       6	
                   64	
  
                                                                    26
Main Effects


                  Trial	
     I	
      A	
       B	
       C	
   D=AB	
   E=AC	
   F=BC	
   ABC	
  
                   1	
        +	
      -­‐	
     -­‐	
     -­‐	
   +	
      +	
      +	
     -­‐	
  
                   2	
        +	
      +	
       -­‐	
     -­‐	
   -­‐	
    -­‐	
    +	
     +	
  
                   3	
        +	
      -­‐	
     +	
       -­‐	
   -­‐	
    +	
      -­‐	
   +	
  
                   4	
        +	
      +	
       +	
       -­‐	
   +	
      -­‐	
    -­‐	
   -­‐	
  
                   5	
        +	
      -­‐	
     -­‐	
     +	
     +	
      -­‐	
    -­‐	
   +	
  
                   6	
        +	
      +	
       -­‐	
     +	
     -­‐	
    +	
      -­‐	
   -­‐	
  
                   7	
        +	
      -­‐	
     +	
       +	
     -­‐	
    -­‐	
    +	
     -­‐	
  
                   8	
        +	
      +	
       +	
       +	
     +	
      +	
      +	
     +	
  

                                      y = a + bA + cB + dC + eD + fE + gF + ε
•  Can	
  include	
  addi;onal	
  variables	
  in	
  our	
  experiment	
  by	
  aliasing	
  with	
  
   interac;on	
  columns.	
  
•  Leave	
  some	
  columns	
  to	
  es;mate	
  residual	
  error	
  for	
  sta;s;cal	
  tests	
  
                                                                                                       27
Trial	
     I	
     A	
       B	
       C	
       AB	
       AC	
       BC	
       ABC	
  
                                           1	
        +	
     -­‐	
     -­‐	
     -­‐	
      +	
        +	
        +	
        -­‐	
  
                                           2	
        +	
     +	
       -­‐	
     -­‐	
      -­‐	
      -­‐	
      +	
        +	
  
 +1                                        3	
        +	
     -­‐	
     +	
       -­‐	
      -­‐	
      +	
        -­‐	
      +	
  
                                           4	
        +	
     +	
       +	
       -­‐	
      +	
        -­‐	
      -­‐	
      -­‐	
  
     C                                     5	
        +	
     -­‐	
     -­‐	
     +	
        +	
        -­‐	
      -­‐	
      +	
  
                               +1
                               B           6	
        +	
     +	
       -­‐	
     +	
        -­‐	
      +	
        -­‐	
      -­‐	
  
     -1                   -1               7	
        +	
     -­‐	
     +	
       +	
        -­‐	
      -­‐	
      +	
        -­‐	
  
          -1   A     +1
                                           8	
        +	
     +	
       +	
       +	
        +	
        +	
        +	
        +	
  
                                                 y = a + bA + cB + dC


•     Create	
  a	
  half	
  frac;on	
  by	
  running	
  only	
  the	
  ABC	
  =	
  +1	
  trials	
  
•     Note	
  confounding	
  between	
  main	
  effects	
  and	
  interac;ons	
  
•     Compromise:	
  must	
  assume	
  interac;ons	
  are	
  negligible	
  
•     In	
  this	
  case	
  (not	
  always)	
  design	
  is	
  “saturated”	
  (no	
  df	
  for	
  sta;s;cal	
  
      tests).	
  
                                                                                                                    28
•  “I=ABC”	
  for	
  this	
  23-­‐1	
  half	
  frac;on	
  is	
  called	
  the	
  “Defining	
  Rela;on”	
  
 •  Note	
  that	
  “I=ABC”	
  implies	
  that	
  “A=BC”,	
  “B=AC”,	
  and	
  “C=AB”.	
  




•  3-­‐way	
  interac;ons	
  are	
  confounded	
  with	
  the	
  intercept	
  
•  Main	
  effects	
  are	
  confounded	
  with	
  2-­‐way	
  interac;ons	
  
•  The	
  number	
  of	
  factors	
  in	
  a	
  defining	
  rela;on	
  is	
  called	
  the	
  “Resolu;on”	
  
•  This	
  23-­‐1	
  half	
  frac;on	
  has	
  resolu;on	
  III	
  
•  We	
  denote	
  this	
  frac;onal	
  factorial	
  design	
  as	
  2III3-­‐1	
  
                                                                                             29
•  I=ABCD	
  for	
  this	
  24-­‐1	
  half	
  frac;on	
  is	
  called	
  the	
  Defining	
  Rela;on	
  
•  Note	
  that	
  I=ABCD	
  implies	
  
     • 	
  A=BCD,	
  B=ACD,	
  C=ABD,	
  and	
  D=ABC.	
  
     • 	
  AB=CD,	
  AC=BD,	
  AD=BC	
  




     • 	
  Main	
  effects	
  are	
  confounded	
  with	
  3-­‐way	
  interac;ons	
  
     • 	
  Some	
  2-­‐way	
  interac;ons	
  are	
  confounded	
  with	
  others.	
  
We	
  like	
  our	
  screening	
  designs	
  to	
  be	
  at	
  least	
  resolu;on	
  IV	
  (I=ABCD)	
  

                                                                                             30
Number	
  of	
  Factors	
  
                                                  2	
       3	
       4	
      5	
      6	
       7	
     8	
     9	
   10	
   11	
   12	
   13	
   14	
   15	
  
                                         4	
   Full	
   III	
         	
        	
       	
        	
      	
      	
      	
      	
      	
       	
       	
          	
  
                                         6	
       	
      IV	
       	
        	
       	
        	
      	
      	
      	
      	
      	
       	
       	
          	
  
                                         8	
       	
     Full	
   IV	
   III	
   III	
   III	
            	
      	
      	
      	
      	
       	
       	
          	
  
Number	
  of	
  Design	
  Points	
  




                                        12	
       	
       	
       V	
   IV	
   IV	
   III	
   III	
   III	
   III	
   III	
             	
       	
       	
          	
  
                                        16	
       	
       	
      Full	
   V	
   IV	
   IV	
   IV	
   III	
   III	
   III	
   III	
   III	
   III	
   III	
  
                                        20	
       	
       	
        	
        	
       	
        	
      	
      	
      	
     III	
   III	
   III	
   III	
   III	
  
                                        24	
       	
       	
        	
        	
       	
        	
      	
     IV	
   IV	
   IV	
   IV	
   III	
   III	
   III	
  
                                        32	
       	
       	
        	
      Full	
   VI	
   IV	
   IV	
   IV	
   IV	
   IV	
   IV	
   IV	
   IV	
   IV	
  
                                        48	
       	
       	
        	
        	
       	
       V	
     V	
      	
      	
      	
      	
       	
       	
          	
  
                                        64	
       	
       	
        	
        	
     Full	
   VII	
   V	
   IV	
   IV	
   IV	
   IV	
   IV	
   IV	
   IV	
  
                                        96	
       	
       	
        	
        	
       	
        	
      	
     V	
     V	
     V	
      	
       	
       	
          	
  
                                       128	
       	
       	
        	
        	
       	
     Full	
   VIII	
   VI	
   V	
      V	
   IV	
   IV	
   IV	
   IV	
  
                                                                                                                                                                    31
Trial	
   DrugPS	
   Lub%      Disso%	
  
                       	
                                2 98,102      88,82
  1	
       10	
       1	
       76	
  




                                                  Lub%
  2	
       10	
       2	
       98	
  
  3	
       40	
       1	
       73	
  
  4	
       40	
       2	
       82	
  
                                                         1 76,84   73,77
  5	
       10	
       1	
       84	
  
                                                           10        40
  6	
       10	
       2	
       102	
  
  7	
       40	
       1	
       77	
                         DrugPS
  8	
       40	
       2	
       88	
  



                                     FiKed	
  model	
  is	
  based	
  on	
  averages	
  
                                                               SDindividual
                                           SDaverage =
                                                         number of replicates

                                                                          32
ReplicaKng	
                          1	
  measurement	
  
batch	
           3	
  batches	
            per	
  	
  batch	
  
producKon	
  




Repeated	
                           3	
  measurements	
  
                  1	
  batch	
             per	
  	
  batch	
  
measurement	
  

                                                    33
Trial	
   DrugPS	
   Lub%      Disso%	
      ReplicaKon	
  
                       	
                    1.  Every	
  operaKon	
  that	
  
  1	
       10	
       1	
       76	
  
                                                  contributes	
  to	
  variaKon	
  is	
  
  2	
       10	
       2	
       98	
  
  3	
       40	
       1	
       73	
             redone	
  with	
  each	
  trial.	
  
  4	
       40	
       2	
       82	
        2.  Measurements	
  are	
  
  5	
       10	
       1	
       84	
             independent.	
  
  6	
       10	
       2	
       102	
       3.  Individual	
  responses	
  are	
  
  7	
       40	
       1	
       77	
  
                                                  analyzed.	
  
  8	
       40	
       2	
       88	
  
                                             RepeKKon	
  
Trial	
   DrugPS	
   Lub%      Disso%	
      1.  Some	
  operaKons	
  that	
  
                       	
                        contribute	
  variaKon	
  are	
  not	
  
  1	
       10	
       1	
     76, 84	
          redone.	
  
  2	
       10	
       2	
     98, 102	
  
  3	
       40	
       1	
     73, 77	
      2.  Measurements	
  are	
  correlated.	
  
  4	
       40	
       2	
     82, 88	
      3.  The	
  averages	
  of	
  the	
  repeats	
  
                                                 should	
  be	
  analyzed	
  (usually).	
  
                                                                                  34
ž Frac;onal	
  factorial	
  designs	
  are	
  generally	
  used	
  for	
  
   “screening”	
  
ž Sta;s;cal	
  tests	
  (e.g.,	
  t-­‐test)	
  are	
  used	
  to	
  “detect”	
  an	
  
   effect.	
  
ž The	
  power	
  of	
  a	
  sta;s;cal	
  test	
  to	
  detect	
  an	
  effect	
  
   depends	
  on	
  the	
  total	
  number	
  of	
  replicates	
  =	
  (trials/
   design)	
  x	
  (replicates/trial)	
  
ž If	
  our	
  experiment	
  is	
  under	
  powered,	
  we	
  will	
  miss	
  
   important	
  effects.	
  
ž If	
  our	
  experiment	
  is	
  over-­‐powered,	
  we	
  will	
  waste	
  
   resources.	
  
ž Prior	
  to	
  experimen;ng,	
  we	
  need	
  to	
  assess	
  the	
  need	
  
   for	
  replica;on.	
  
                                                                                   35
2             2
                                                                                                   ⎛ σ ⎞
N = (#points	
  in	
  design)(replicates/point) ≅ 4 z1−α + z1−β          (       2
                                                                                             )     ⎜ ⎟
                                                                                                   ⎝ δ ⎠
     σ	
  =	
  replicate	
  SD	
  
     δ	
  	
  =	
  size	
  of	
  effect	
  (high	
  –	
  low)	
  to	
  be	
  detected.	
  
     α	
  =	
  probability	
  of	
  false	
  detec;on	
  
     β	
  =	
  probability	
  of	
  failure	
  to	
  detect	
  an	
  effect	
  of	
  size	
  δ	


 α	

    z1-­‐α/2	
            β	

      z1-­‐β	

                                                                                                       2
0.01	
   2.58	
              0.1	
      1.28	
                                      ⎛ σ ⎞
0.05	
   1.96	
  
                                                                             N ≅ 16 ⎜ ⎟
                             0.2	
      0.85	
                                      ⎝ δ ⎠
0.10	
   1.65	
              0.5	
      0.00	
  

     •  While	
  not	
  exact,	
  this	
  ROT	
  is	
  easy	
  to	
  apply	
  and	
  useful.	
  
     •  Commercial	
  sotware	
  will	
  have	
  more	
  accurate	
  formulas.	
  
                                                                                              36
2              2
                                                                             ⎛ σ ⎞
                                                          (
 N = (#points	
  in	
  design)(replicates/point) ≅ 4 z1−α + z1−β
                                                                 2
                                                                       )     ⎜ ⎟
                                                                             ⎝ δ ⎠


                                                         Disso%	
     WtRSD	
  
        Replicate	
  SD	
                    σ	

          1.3	
       0.1	
  
     Difference	
  to	
  detect	
             δ	

          2.0	
       0.2	
  
 False	
  detecKon	
  probability	
          α	

         0.05	
       0.05	
  
                                          z1-­‐α/2	
      1.96	
       1.96	
  
DetecKon	
  failure	
  probability	
        β	

           0.2	
        0.2	
  
                                           z1-­‐β	

      0.85	
       0.85	
  
 Required	
  number	
  of	
  trials	
        N	
          13.3	
           8	
  
                                                                        37
Run   A   B   C   D   E   Confounding Table
  1   -   -   -   -   +   I = ABCDE
  2   +   -   -   -   -   A = BCDE
  3   -   +   -   -   -   B = ACDE
  4   +   +   -   -   +   C = ABDE
  5   -   -   +   -   -   D = ABCE
  6   +   -   +   -   +   E = ABCD
  7   -   +   +   -   +   AB = CDE
  8   +   +   +   -   -   AC = BDE
  9   -   -   -   +   -   AD = BCE
 10   +   -   -   +   +   AE = BCD
 11   -   +   -   +   +   BC = ADE
 12   +   +   -   +   -   BD = ACE
 13   -   -   +   +   +   BE = ACD
 14   +   -   +   +   -   CD = ABE
 15   -   +   +   +   -   CE = ABD
 16   +   +   +   +   +   DE = ABC
                                              38
ž  Sta;s;cal	
  	
  test	
  for	
  presence	
  of	
  curvature	
  (lack	
  of	
  fit)	
  
ž  Addi;onal	
  degrees	
  of	
  freedom	
  for	
  sta;s;cal	
  tests	
  
ž  May	
  be	
  process	
  “target”	
  secngs	
  
ž  Used	
  as	
  “controls”	
  in	
  sequen;al	
  experiments.	
  
ž  Spaced	
  out	
  in	
  run	
  order	
  as	
  a	
  check	
  for	
  drit.	
  
                                                                                  39
Complete	
  RandomizaKon:	
  	
  
•  Is	
  the	
  cornerstone	
  of	
  sta;s;cal	
  analysis	
  
•  Insures	
  observa;ons	
  are	
  independent	
  	
  
•  Protects	
  against	
  “lurking	
  variables”	
  
•  Requires	
  a	
  process	
  	
  (e.g.,	
  draw	
  from	
  a	
  hat)	
  
•  May	
  be	
  costly/	
  imprac;cal	
  

Restricted	
  RandomizaKon:	
  
•  “Difficult	
  to	
  change	
  factors	
  (e.g.,	
  bath	
  temperature)	
  are	
  “batched”	
  
•  Analysis	
  requires	
  special	
  approaches	
  (split	
  plot	
  analysis)	
  

Blocking:	
  
•  Include	
  uncontrollable	
  random	
  variable	
  (e.g.,	
  day)	
  in	
  design.	
  
•  Assume	
  no	
  interac;on	
  between	
  block	
  variable	
  and	
  other	
  factors	
  
•  Excellent	
  way	
  to	
  reduce	
  varia;on.	
  
•  Rule	
  of	
  thumb:	
  “Block	
  when	
  you	
  can.	
  Randomize	
  when	
  you	
  can’t	
  block”.	
  
                                                                                                       40
41
Confounding Table
I = ABCDE
Blk = AB = CDE
A = BCDE
B = ACDE
C = ABDE
D = ABCE
E = ABCD
AC = BDE
AD = BCE
AE = BCD
BC = ADE
BD = ACE
BE = ACD
CD = ABE
CE = ABD
DE = ABC
          42
StdOrder   	
  RunOrder 	
  CenterPt   	
  Blocks   	
  Disint   	
  Drug%   	
  Disint%   	
  DrugPS    	
  Lub%	
  
11         	
  1        	
  1          	
  2        	
  A        	
  5       	
  1.0       	
  10        	
  2.0	
  
13         	
  2        	
  1          	
  2        	
  A        	
  5       	
  4.0       	
  10        	
  1.0	
  
19         	
  3        	
  0          	
  2        	
  A        	
  10      	
  2.5       	
  25        	
  1.5	
  
15         	
  4        	
  1          	
  2        	
  A        	
  5       	
  1.0       	
  40        	
  1.0	
  
18         	
  5        	
  1          	
  2        	
  B        	
  15      	
  4.0       	
  40        	
  2.0	
  
14         	
  6        	
  1          	
  2        	
  B        	
  15      	
  4.0       	
  10        	
  1.0	
  
20         	
  7        	
  0          	
  2        	
  B        	
  10      	
  2.5       	
  25        	
  1.5	
  
16         	
  8        	
  1          	
  2        	
  B        	
  15      	
  1.0       	
  40        	
  1.0	
  
17         	
  9        	
  1          	
  2        	
  A        	
  5       	
  4.0       	
  40        	
  2.0	
  
12         	
  10       	
  1          	
  2        	
  B        	
  15      	
  1.0       	
  10        	
  2.0	
  
9          	
  11       	
  0          	
  1        	
  A        	
  10      	
  2.5       	
  25        	
  1.5	
  
7          	
  12       	
  1          	
  1        	
  B        	
  5       	
  4.0       	
  40        	
  1.0	
  
1          	
  13       	
  1          	
  1        	
  B        	
  5       	
  1.0       	
  10        	
  1.0	
  
2          	
  14       	
  1          	
  1        	
  A        	
  15      	
  1.0       	
  10        	
  1.0	
  
4          	
  15       	
  1          	
  1        	
  A        	
  15      	
  4.0       	
  10        	
  2.0	
  
3          	
  16       	
  1          	
  1        	
  B        	
  5       	
  4.0       	
  10        	
  2.0	
  
10         	
  17       	
  0          	
  1        	
  B        	
  10      	
  2.5       	
  25        	
  1.5	
  
5          	
  18       	
  1          	
  1        	
  B        	
  5       	
  1.0       	
  40        	
  2.0	
  
8          	
  19       	
  1          	
  1        	
  A        	
  15      	
  4.0       	
  40        	
  1.0	
  
6          	
  20       	
  1          	
  1        	
  A        	
  15      	
  1.0       	
  40        	
  2.0	
  
                                                                                                        43
RunOrder 	
  CenterPt   	
  Blocks   	
  Disint   	
  Drug%   	
  Disint%   	
  DrugPS   	
  Lub%   	
  Disso%   	
  WtRSD	
  
1        	
  1          	
  2        	
  A        	
  5       	
  1.0       	
  10       	
  2.0    	
  100.4    	
  1.6	
  
2        	
  1          	
  2        	
  A        	
  5       	
  4.0       	
  10       	
  1.0    	
  103.0    	
  2.1	
  
3        	
  0          	
  2        	
  A        	
  10      	
  2.5       	
  25       	
  1.5    	
  88.8     	
  1.6	
  
4        	
  1          	
  2        	
  A        	
  5       	
  1.0       	
  40       	
  1.0    	
  94.3     	
  2.3	
  
5        	
  1          	
  2        	
  B        	
  15      	
  4.0       	
  40       	
  2.0    	
  78.9     	
  1.6	
  
6        	
  1          	
  2        	
  B        	
  15      	
  4.0       	
  10       	
  1.0    	
  102.9    	
  2.0	
  
7        	
  0          	
  2        	
  B        	
  10      	
  2.5       	
  25       	
  1.5    	
  90.9     	
  1.4	
  
8        	
  1          	
  2        	
  B        	
  15      	
  1.0       	
  40       	
  1.0    	
  91.8     	
  2.2	
  
9        	
  1          	
  2        	
  A        	
  5       	
  4.0       	
  40       	
  2.0    	
  76.3     	
  1.4	
  
10       	
  1          	
  2        	
  B        	
  15      	
  1.0       	
  10       	
  2.0    	
  103.4    	
  1.6	
  
11       	
  0          	
  1        	
  A        	
  10      	
  2.5       	
  25       	
  1.5    	
  89.9     	
  1.8	
  
12       	
  1          	
  1        	
  B        	
  5       	
  4.0       	
  40       	
  1.0    	
  91.8     	
  2.2	
  
13       	
  1          	
  1        	
  B        	
  5       	
  1.0       	
  10       	
  1.0    	
  101.2    	
  2.2	
  
14       	
  1          	
  1        	
  A        	
  15      	
  1.0       	
  10       	
  1.0    	
  101.8    	
  2.6	
  
15       	
  1          	
  1        	
  A        	
  15      	
  4.0       	
  10       	
  2.0    	
  102.5    	
  1.4	
  
16       	
  1          	
  1        	
  B        	
  5       	
  4.0       	
  10       	
  2.0    	
  100.3    	
  1.5	
  
17       	
  0          	
  1        	
  B        	
  10      	
  2.5       	
  25       	
  1.5    	
  91.2     	
  1.6	
  
18       	
  1          	
  1        	
  B        	
  5       	
  1.0       	
  40       	
  2.0    	
  76.3     	
  1.3	
  
19       	
  1          	
  1        	
  A        	
  15      	
  4.0       	
  40       	
  1.0    	
  92.4     	
  2.1	
  
20       	
  1          	
  1        	
  A        	
  15      	
  1.0       	
  40       	
  2.0    	
  76.8     	
  1.6	
  

                                                                                                         44
45
46
47
48
49
Source    DF    Adj MS        F             P
Blocks     1      2.21     0.11         0.745
Disint     1      0.30     0.01         0.905
Drug%      1      2.94     0.15         0.707
Disint%    1      0.30     0.01         0.905
DrugPS     1   1174.45    58.93         0.000
Lub%       1    258.61    12.98         0.004
Curvature 1      32.68     1.64         0.225
Res Error 12     19.93




                         2.179	
  is	
  the	
  1-­‐α/2	
  
                         th	
  quan;le	
  of	
  the	
  t-­‐
                         distribu;on	
  having	
  
                         12	
  df.	
  




                                           50
Source    DF    Adj MS       F       P
Blocks     1   0.01090    0.51   0.487
Disint     1   0.03751    1.77   0.208
Drug%      1   0.00847    0.40   0.539
Disint%    1   0.08282    3.91   0.071
DrugPS     1   0.00189    0.09   0.770
Lub%       1   2.10586   99.46   0.000
Curvature 1    0.21198   10.01   0.008
Res Error 12   0.02117




                                 51
Disso%	
  
•  Only	
  DrugPS	
  and	
  Lub%	
  show	
  significant	
  main	
  effects	
  
•  Plot	
  of	
  Disso%	
  residuals	
  vs	
  predicted	
  Disso%	
  shows	
  systema;c	
  
   paKern.	
  
•  The	
  residual	
  SD	
  (4.5)	
  is	
  considerably	
  larger	
  than	
  expected	
  (1.3)	
  
WtRSD	
  
•  Only	
  Lub%	
  shows	
  a	
  sta;s;cally	
  significant	
  main	
  effect	
  
•  Curvature	
  is	
  significant	
  for	
  WtRSD	
  
Therefore	
  
•  Only	
  DrugPS	
  and	
  Lub%	
  need	
  to	
  be	
  considered	
  further	
  
•  The	
  other	
  3	
  factors	
  can	
  fixed	
  at	
  nominal	
  levels.	
  
•  The	
  predic;on	
  model	
  is	
  inadequate.	
  Addi;onal	
  experimenta;on	
  
   is	
  needed.	
  

                                                                                     52
Trial	
   DrugPS	
     Lub%	
      Disso%	
  
                                                    1	
       10	
         1	
           C	
  
                                                    2	
       10	
         2	
           A	
  
                    2	
   A	
     F	
     B	
       3	
       40	
         1	
           D	
  
         Lub%	
  

                                                    4	
       40	
         2	
           B	
  
                        G	
       I	
     H	
  
                                                    5	
       25	
         1	
           E	
  
                    1	
   C	
   E	
   D	
           6	
       25	
         2	
           F	
  
                          10	
        40	
  
                                                    7	
       10	
        1.5	
          G	
  
                               DrugPS	
  
                                                    8	
       40	
        1.5	
          H	
  
                                                    9	
       25	
        1.5	
           I	
  




Disso = a + b × Lub% + c × DrugPS + d × Lub% × DrugPS + e × Lub%2 + f × DrugPS2 + ε
Disso = a + b × Lub% + c × DrugPS + d × Lub% × DrugPS + ε
                                                                                    53
Response	
  




               Factor	
  


                            54
Response surface
design




Factorial or
fractional factorial
screening design




        55
56
• 	
  	
  “Cube	
  Oriented”	
  
                                               • 	
  	
  	
  3	
  or	
  5	
  levels	
  for	
  each	
  factor	
  
In	
  3	
  factors	
                           	
  




  Factorial	
  or       	
                           	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Center	
  Points	
  
                                                                                                                      	
  	
  
                                         +	
  
  FracKonal	
  Factorial	
  	
  	
  	
  	
                     	
                                                     	
  	
            	
  	
  	
  +	
     	
  	
  	
  	
  	
  Axial	
  Points	
  



                    =	
      Central	
  Composite	
  Design	
  




                                                                                                                                                                                               57
58
59
60
Std     	
  Run     	
  Center      	
  Block   	
  Disint 	
  Drug% 	
  Disint% 	
  DrugPS 	
  Lub%   	
  Disso% 	
  WtRSD	
  
Order   	
  Order   	
  Point	
  
11      	
  1       	
  1           	
  2       	
  A      	
  5      	
  1.0    	
  10     	
  2.0    	
  100.4   	
  1.6	
  
13      	
  2       	
  1           	
  2       	
  A      	
  5      	
  4.0    	
  10     	
  1.0    	
  103.0   	
  2.1	
  
19      	
  3       	
  0           	
  2       	
  A      	
  10     	
  2.5    	
  25     	
  1.5    	
  88.8    	
  1.6	
  
15      	
  4       	
  1           	
  2       	
  A      	
  5      	
  1.0    	
  40     	
  1.0    	
  94.3    	
  2.3	
  
18      	
  5       	
  1           	
  2       	
  B      	
  15     	
  4.0    	
  40     	
  2.0    	
  78.9    	
  1.6	
  
…	
  
10      	
  17      	
  0           	
  1       	
  B      	
  10     	
  2.5    	
  25     	
  1.5    	
  91.2    	
  1.6	
  
5       	
  18      	
  1           	
  1       	
  B      	
  5      	
  1.0    	
  40     	
  2.0    	
  76.3    	
  1.3	
  
8       	
  19      	
  1           	
  1       	
  A      	
  15     	
  4.0    	
  40     	
  1.0    	
  92.4    	
  2.1	
  
6       	
  20      	
  1           	
  1       	
  A      	
  15     	
  1.0    	
  40     	
  2.0    	
  76.8    	
  1.6	
  
21      	
  21      	
  -­‐1        	
  3       	
  A      	
  10     	
  2.5    	
  10     	
  1.5    	
          	
  	
  
22      	
  22      	
  -­‐1        	
  3       	
  A      	
  10     	
  2.5    	
  40     	
  1.5    	
          	
  	
  
23      	
  23      	
  -­‐1        	
  3       	
  A      	
  10     	
  2.5    	
  25     	
  1.0    	
          	
  	
  
24      	
  24      	
  -­‐1        	
  3       	
  A      	
  10     	
  2.5    	
  25     	
  2.0    	
          	
  	
  
25      	
  25      	
  0           	
  3       	
  A      	
  10     	
  2.5    	
  25     	
  1.5    	
          	
  	
  
26      	
  26      	
  0           	
  3       	
  A      	
  10     	
  2.5    	
  25     	
  1.5    	
          	
  	
  
                                                                                                              61
Std     	
  Run     	
  Center      	
  Block   	
  Disint 	
  Drug% 	
  Disint% 	
  DrugPS 	
  Lub%   	
  Disso% 	
  WtRSD	
  
Order   	
  Order   	
  Point	
  
11      	
  1       	
  1           	
  2       	
  A      	
  5      	
  1.0    	
  10     	
  2.0    	
  100.4   	
  1.6	
  
13      	
  2       	
  1           	
  2       	
  A      	
  5      	
  4.0    	
  10     	
  1.0    	
  103.0   	
  2.1	
  
19      	
  3       	
  0           	
  2       	
  A      	
  10     	
  2.5    	
  25     	
  1.5    	
  88.8    	
  1.6	
  
15      	
  4       	
  1           	
  2       	
  A      	
  5      	
  1.0    	
  40     	
  1.0    	
  94.3    	
  2.3	
  
18      	
  5       	
  1           	
  2       	
  B      	
  15     	
  4.0    	
  40     	
  2.0    	
  78.9    	
  1.6	
  
…	
  
10      	
  17      	
  0           	
  1       	
  B      	
  10     	
  2.5    	
  25     	
  1.5    	
  91.2    	
  1.6	
  
5       	
  18      	
  1           	
  1       	
  B      	
  5      	
  1.0    	
  40     	
  2.0    	
  76.3    	
  1.3	
  
8       	
  19      	
  1           	
  1       	
  A      	
  15     	
  4.0    	
  40     	
  1.0    	
  92.4    	
  2.1	
  
6       	
  20      	
  1           	
  1       	
  A      	
  15     	
  1.0    	
  40     	
  2.0    	
  76.8    	
  1.6	
  
21      	
  21      	
  -­‐1        	
  3       	
  A      	
  10     	
  2.5    	
  10     	
  1.5    	
  101.8   	
  1.7	
  
22      	
  22      	
  -­‐1        	
  3       	
  A      	
  10     	
  2.5    	
  40     	
  1.5    	
  84.0    	
  1.7	
  
23      	
  23      	
  -­‐1        	
  3       	
  A      	
  10     	
  2.5    	
  25     	
  1.0    	
  96.7    	
  2.1	
  
24      	
  24      	
  -­‐1        	
  3       	
  A      	
  10     	
  2.5    	
  25     	
  2.0    	
  82.8    	
  1.4	
  
25      	
  25      	
  0           	
  3       	
  A      	
  10     	
  2.5    	
  25     	
  1.5    	
  92.3    	
  1.5	
  
26      	
  26      	
  0           	
  3       	
  A      	
  10     	
  2.5    	
  25     	
  1.5    	
  91.9    	
  1.2	
  
                                                                                                             62
63
Y = a + b ⋅ DrugPS + c ⋅ Lub% + d ⋅ DrugPS2 + e ⋅ Lub%2 + f ⋅ Drug ⋅ PSLub% + ε

                                                                      64
65
66
67
Source              DF   Adj SS    Adj MS         F       P
Blocks               2     2.27      1.13      0.48   0.625
Regression
  Linear
    DrugPS           1   1331.87   1331.87   567.73   0.000
    Lub%             1    340.61    340.61   145.19   0.000
  Square
    DrugPS*DrugPS    1     27.39     27.39    11.68   0.003
    Lub%*Lub%        1      0.14      0.14     0.06   0.811
  Interaction
    DrugPS*Lub%      1    222.98    222.98    95.05   0.000
Residual Error      18     42.23      2.35
  Lack-of-Fit        7     25.15      3.59     2.32   0.103
  Pure Error        11     17.07      1.55


                                                      68
Source              DF    Adj SS    Adj MS       F       P
Blocks               2   0.02341   0.01171    0.41   0.671
Regression
  Linear
    DrugPS           1   0.00118   0.00118    0.04   0.842
    Lub%             1   2.31351   2.31351   80.72   0.000
  Square
    DrugPS*DrugPS    1   0.04980   0.04980    1.74   0.204
    Lub%*Lub%        1   0.09743   0.09743    3.40   0.082
  Interaction
    DrugPS*Lub%      1   0.00234   0.00234    0.08   0.778
Residual Error      18   0.51589   0.02866
  Lack-of-Fit        7   0.28587   0.04084    1.95   0.154
  Pure Error        11   0.23003   0.02091


                                                     69
StaKsKcal	
  Significance?	
  
                Model	
  Term	
          Disso%	
         WtRSD	
  
                  DrugPS	
                  P	
             P	
  
                   Lub%	
                   P	
             P	
  
                  DrugPS2	
                 P	
             P	
  
                   Lub%2	
                                   ?	
  
               DrugPS	
  ×	
  Lub%	
        P	
             P	
  
                 Lack	
  of	
  Fit	
  


                                                  ?	
  
Y = a + b ⋅ DrugPS + c ⋅ Lub% + d ⋅ DrugPS2 + e ⋅ Lub%2 + f ⋅ Drug ⋅ PSLub% + ε

                                                                         70
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies
Statistical Tools for the Quality Control Laboratory and Validation Studies

Más contenido relacionado

La actualidad más candente (16)

Chapter 04
Chapter 04Chapter 04
Chapter 04
 
Donohue Alzforum Webinar Feb 28 2013
Donohue Alzforum Webinar Feb 28 2013Donohue Alzforum Webinar Feb 28 2013
Donohue Alzforum Webinar Feb 28 2013
 
Chapter 4 Simplex Method ppt
Chapter 4  Simplex Method pptChapter 4  Simplex Method ppt
Chapter 4 Simplex Method ppt
 
Ch07 6
Ch07 6Ch07 6
Ch07 6
 
BS2506 tutorial3
BS2506 tutorial3BS2506 tutorial3
BS2506 tutorial3
 
Regression (II)
Regression (II)Regression (II)
Regression (II)
 
BS2506 tutorial 1
BS2506 tutorial 1BS2506 tutorial 1
BS2506 tutorial 1
 
Ch07 8
Ch07 8Ch07 8
Ch07 8
 
Session 20
Session 20Session 20
Session 20
 
Algo Final
Algo FinalAlgo Final
Algo Final
 
IMT, col space again
IMT, col space againIMT, col space again
IMT, col space again
 
Ch07 7
Ch07 7Ch07 7
Ch07 7
 
patel
patelpatel
patel
 
Simplex Method
Simplex MethodSimplex Method
Simplex Method
 
Artificial variable technique big m method (1)
Artificial variable technique big m method (1)Artificial variable technique big m method (1)
Artificial variable technique big m method (1)
 
It 05104 digsig_1
It 05104 digsig_1It 05104 digsig_1
It 05104 digsig_1
 

Destacado (15)

Técnicas de comprensión de textos y organizadores visuales
Técnicas de comprensión de textos y organizadores visualesTécnicas de comprensión de textos y organizadores visuales
Técnicas de comprensión de textos y organizadores visuales
 
pp lich sử-PP nghien cuu khoa hoc
pp lich sử-PP nghien cuu khoa hocpp lich sử-PP nghien cuu khoa hoc
pp lich sử-PP nghien cuu khoa hoc
 
Perry el ornitorrinco blog
Perry el ornitorrinco blogPerry el ornitorrinco blog
Perry el ornitorrinco blog
 
Fda validation inspections
Fda validation inspectionsFda validation inspections
Fda validation inspections
 
Comparative Analysis Of Mutual Funds
Comparative Analysis Of Mutual Funds Comparative Analysis Of Mutual Funds
Comparative Analysis Of Mutual Funds
 
Implementing risk management
Implementing risk managementImplementing risk management
Implementing risk management
 
Affects of
Affects ofAffects of
Affects of
 
Steganography
SteganographySteganography
Steganography
 
Know the Global Regulations for Change Control
Know the Global Regulations for Change ControlKnow the Global Regulations for Change Control
Know the Global Regulations for Change Control
 
Fda validation inspections
Fda validation inspectionsFda validation inspections
Fda validation inspections
 
Competència lectora 1
Competència  lectora 1Competència  lectora 1
Competència lectora 1
 
A christmas wish list
A christmas wish listA christmas wish list
A christmas wish list
 
Introduction to doe
Introduction to doeIntroduction to doe
Introduction to doe
 
Child friendlysummaries-090419003610-phpapp01
Child friendlysummaries-090419003610-phpapp01Child friendlysummaries-090419003610-phpapp01
Child friendlysummaries-090419003610-phpapp01
 
Apply Risk Management to Computerized and Automated Systems
Apply Risk Management to Computerized and Automated SystemsApply Risk Management to Computerized and Automated Systems
Apply Risk Management to Computerized and Automated Systems
 

Similar a Statistical Tools for the Quality Control Laboratory and Validation Studies

Tables and Formulas for Sullivan, Statistics Informed Decisio.docx
Tables and Formulas for Sullivan, Statistics Informed Decisio.docxTables and Formulas for Sullivan, Statistics Informed Decisio.docx
Tables and Formulas for Sullivan, Statistics Informed Decisio.docxmattinsonjanel
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010zabidah awang
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFTtaha25
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010zabidah awang
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010zabidah awang
 
Dr hasany 2467_16649_1_lec-2-zabist
Dr hasany 2467_16649_1_lec-2-zabistDr hasany 2467_16649_1_lec-2-zabist
Dr hasany 2467_16649_1_lec-2-zabistGatewayggg Testeru
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)tejaspatel1997
 
Statistical methods
Statistical methods Statistical methods
Statistical methods rcm business
 
Jacobi and gauss-seidel
Jacobi and gauss-seidelJacobi and gauss-seidel
Jacobi and gauss-seidelarunsmm
 

Similar a Statistical Tools for the Quality Control Laboratory and Validation Studies (20)

Tables and Formulas for Sullivan, Statistics Informed Decisio.docx
Tables and Formulas for Sullivan, Statistics Informed Decisio.docxTables and Formulas for Sullivan, Statistics Informed Decisio.docx
Tables and Formulas for Sullivan, Statistics Informed Decisio.docx
 
Bab13
Bab13Bab13
Bab13
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
Stat5 the t test
Stat5 the t testStat5 the t test
Stat5 the t test
 
Stat5 the t test
Stat5 the t testStat5 the t test
Stat5 the t test
 
Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
 
Lecture 9 f17
Lecture 9 f17Lecture 9 f17
Lecture 9 f17
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
 
Dr hasany 2467_16649_1_lec-2-zabist
Dr hasany 2467_16649_1_lec-2-zabistDr hasany 2467_16649_1_lec-2-zabist
Dr hasany 2467_16649_1_lec-2-zabist
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)
 
Statistical methods
Statistical methods Statistical methods
Statistical methods
 
Chapter 06
Chapter 06Chapter 06
Chapter 06
 
Ch15s
Ch15sCh15s
Ch15s
 
Jacobi and gauss-seidel
Jacobi and gauss-seidelJacobi and gauss-seidel
Jacobi and gauss-seidel
 
Statistics for qc 2
Statistics for qc 2Statistics for qc 2
Statistics for qc 2
 
NotesLaplace.pdf
NotesLaplace.pdfNotesLaplace.pdf
NotesLaplace.pdf
 

Más de Institute of Validation Technology

Incorporate Domestic and International Regulations for Effective GMP Auditing
Incorporate Domestic and International Regulations for Effective GMP AuditingIncorporate Domestic and International Regulations for Effective GMP Auditing
Incorporate Domestic and International Regulations for Effective GMP AuditingInstitute of Validation Technology
 
Notification Tactics for Improved Notification Tactics For Improved Field Act...
Notification Tactics for Improved Notification Tactics For Improved Field Act...Notification Tactics for Improved Notification Tactics For Improved Field Act...
Notification Tactics for Improved Notification Tactics For Improved Field Act...Institute of Validation Technology
 
Computer System Validation Then and Now — Learning Management in the Cloud
Computer System Validation Then and Now — Learning Management in the CloudComputer System Validation Then and Now — Learning Management in the Cloud
Computer System Validation Then and Now — Learning Management in the CloudInstitute of Validation Technology
 
Management Strategies to Facilitate Continual Quality Improvement
Management Strategies to Facilitate Continual Quality ImprovementManagement Strategies to Facilitate Continual Quality Improvement
Management Strategies to Facilitate Continual Quality ImprovementInstitute of Validation Technology
 
Understand the Evolving Regulations for Aseptic Cleaning and Environmental Mo...
Understand the Evolving Regulations for Aseptic Cleaning and Environmental Mo...Understand the Evolving Regulations for Aseptic Cleaning and Environmental Mo...
Understand the Evolving Regulations for Aseptic Cleaning and Environmental Mo...Institute of Validation Technology
 
Designing Stability Studies for Early Stages of Pharmaceutical Development
Designing Stability Studies for Early Stages of Pharmaceutical DevelopmentDesigning Stability Studies for Early Stages of Pharmaceutical Development
Designing Stability Studies for Early Stages of Pharmaceutical DevelopmentInstitute of Validation Technology
 
Incorporate CPV and Continual Improvement into your Validation Plan
Incorporate CPV and Continual Improvement into your Validation PlanIncorporate CPV and Continual Improvement into your Validation Plan
Incorporate CPV and Continual Improvement into your Validation PlanInstitute of Validation Technology
 
Introduction to Statistical Applications for Process Validation
Introduction to Statistical Applications for Process ValidationIntroduction to Statistical Applications for Process Validation
Introduction to Statistical Applications for Process ValidationInstitute of Validation Technology
 
GMP Systems Integration–Combine Results and Utilize as a Compliance Tool
GMP Systems Integration–Combine Results and Utilize as a Compliance ToolGMP Systems Integration–Combine Results and Utilize as a Compliance Tool
GMP Systems Integration–Combine Results and Utilize as a Compliance ToolInstitute of Validation Technology
 

Más de Institute of Validation Technology (20)

Incorporate Domestic and International Regulations for Effective GMP Auditing
Incorporate Domestic and International Regulations for Effective GMP AuditingIncorporate Domestic and International Regulations for Effective GMP Auditing
Incorporate Domestic and International Regulations for Effective GMP Auditing
 
Notification Tactics for Improved Notification Tactics For Improved Field Act...
Notification Tactics for Improved Notification Tactics For Improved Field Act...Notification Tactics for Improved Notification Tactics For Improved Field Act...
Notification Tactics for Improved Notification Tactics For Improved Field Act...
 
Lifecycle Approach to Cleaning Validation
Lifecycle Approach to Cleaning ValidationLifecycle Approach to Cleaning Validation
Lifecycle Approach to Cleaning Validation
 
Computer System Validation Then and Now — Learning Management in the Cloud
Computer System Validation Then and Now — Learning Management in the CloudComputer System Validation Then and Now — Learning Management in the Cloud
Computer System Validation Then and Now — Learning Management in the Cloud
 
Applying QbD to Biotech Process Validation
Applying QbD to Biotech Process ValidationApplying QbD to Biotech Process Validation
Applying QbD to Biotech Process Validation
 
Management Strategies to Facilitate Continual Quality Improvement
Management Strategies to Facilitate Continual Quality ImprovementManagement Strategies to Facilitate Continual Quality Improvement
Management Strategies to Facilitate Continual Quality Improvement
 
Understand the Evolving Regulations for Aseptic Cleaning and Environmental Mo...
Understand the Evolving Regulations for Aseptic Cleaning and Environmental Mo...Understand the Evolving Regulations for Aseptic Cleaning and Environmental Mo...
Understand the Evolving Regulations for Aseptic Cleaning and Environmental Mo...
 
Effective Use of Environmental Monitoring Data Trending
Effective Use of Environmental Monitoring Data TrendingEffective Use of Environmental Monitoring Data Trending
Effective Use of Environmental Monitoring Data Trending
 
Mock Inspection Case Studies
Mock Inspection Case StudiesMock Inspection Case Studies
Mock Inspection Case Studies
 
Validation Master Plan
Validation Master PlanValidation Master Plan
Validation Master Plan
 
Designing Stability Studies for Early Stages of Pharmaceutical Development
Designing Stability Studies for Early Stages of Pharmaceutical DevelopmentDesigning Stability Studies for Early Stages of Pharmaceutical Development
Designing Stability Studies for Early Stages of Pharmaceutical Development
 
Determine Exceptions to Validation
Determine Exceptions to ValidationDetermine Exceptions to Validation
Determine Exceptions to Validation
 
Conduct a Gap Analysis of a Validation Programme
Conduct a Gap Analysis of a Validation ProgrammeConduct a Gap Analysis of a Validation Programme
Conduct a Gap Analysis of a Validation Programme
 
FDA Inspection
FDA InspectionFDA Inspection
FDA Inspection
 
Incorporate CPV and Continual Improvement into your Validation Plan
Incorporate CPV and Continual Improvement into your Validation PlanIncorporate CPV and Continual Improvement into your Validation Plan
Incorporate CPV and Continual Improvement into your Validation Plan
 
Compliance by Design and Compliance Master Plan
Compliance by Design and Compliance Master PlanCompliance by Design and Compliance Master Plan
Compliance by Design and Compliance Master Plan
 
Introduction to Statistical Applications for Process Validation
Introduction to Statistical Applications for Process ValidationIntroduction to Statistical Applications for Process Validation
Introduction to Statistical Applications for Process Validation
 
Risk-Based Approaches in GMP’s Project Life Cycles
Risk-Based Approaches in GMP’s Project Life CyclesRisk-Based Approaches in GMP’s Project Life Cycles
Risk-Based Approaches in GMP’s Project Life Cycles
 
GMP Systems Integration–Combine Results and Utilize as a Compliance Tool
GMP Systems Integration–Combine Results and Utilize as a Compliance ToolGMP Systems Integration–Combine Results and Utilize as a Compliance Tool
GMP Systems Integration–Combine Results and Utilize as a Compliance Tool
 
A Lifecycle Approach to Process Validation
A Lifecycle Approach to Process ValidationA Lifecycle Approach to Process Validation
A Lifecycle Approach to Process Validation
 

Último

Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...Taniya Sharma
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...narwatsonia7
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...hotbabesbook
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Dipal Arora
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeCall Girls Delhi
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Servicevidya singh
 
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...narwatsonia7
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...jageshsingh5554
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiAlinaDevecerski
 
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...parulsinha
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Dipal Arora
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escortsvidya singh
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...astropune
 
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...Taniya Sharma
 
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 

Último (20)

Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
 
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
 
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony 📳 7877925207 For 18+ VIP Call Girl At Th...
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
 
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
 
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Aurangabad Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
 
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
 
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 9907093804 Top Class Call Girl Service Available
 

Statistical Tools for the Quality Control Laboratory and Validation Studies

  • 1. Statistical Tools for the Quality Control Laboratory and Validation Studies: Session 1 l  STEVEN S. KUWAHARA, Ph.D. l  GXP BioTechnology LLC l  PMB #506 l  1669-2 Hollenbeck Avenue l  Sunnyvale, CA 94087-5042 USA l  Tel. & FAX 408-530-9338 l  e-Mail: s.s.kuwahara@gmail.com l  Website: www.gxpbiotech.org IVTPHL1012S1 1
  • 2. NORMAL DISTRIBUTION 2 ⎛ X − µ ⎞ e 1 −1/ 2⎜ i ⎟ Y= ⎝ σ ⎠ σ 2Π IVTPHL1012S1 2
  • 6. NORMAL DISTRIBUTION PROPERTIES l  The normal distribution has the following properties: l  Bell-shaped l  Unimodal l  Symmetrical l  Extends from -∞ to +∞ (tails never reach zero frequency) l  Same value for mean, median, and mode l  This pattern of variation is common for manufacturing processes. IVTPHL1012S1 6
  • 8. VARIANCE (S2) 2 ΣX i 2 − (ΣX i ) S2 = n n −1 2 S 2 = ( Σ Xi − X ) n −1 2 2 nΣX i − (ΣX i ) S2 = n(n − 1) IVTPHL1012S1 8
  • 9. Averages and Standard Deviations and the SEM. 1. l  All of the n measurements that go into the mean () must be measurements of the same thing. l  The mean of fruits and the mean of oranges are different things unless all of the fruits are oranges. l  But then it is still the mean of oranges not fruits. l  The standard deviation (s) is a measure of the variation among the n components of  NOT the variation of  itself. l  Thus the next item (n + 1) from the original population should have a 95% chance of being within ± 1.96s of  but not the next average (1).
  • 10. Averages and Standard Deviations and the SEM. 2. l  The variation in the averages is the standard error of the mean (SEM) which is: s/√n. l  Thus the next average (1) has a 95% probability of being within ±1.96(s/√n) or ±1.96SEM of the original mean (). l  When dealing with single numbers, s is used, but when dealing with means the SEM is the number to use. l  It is incorrect to use s to set a specification on a value that is actually an average.
  • 11. RANGE AND C.V. l  The range can be related to the standard deviation for n<16. XL − Xs s= d 2 is a tabular value. d2 S C.V . = X 100 = % RSD X IVTPHL1012S1 11
  • 12. F - TEST 2 s2 Fα ,df 1,df 2 = 2 Note : This is slightly different s1 from the F - test that is used for ANOVA and factorial experiments. Note : F0.05,3,3 = 9.28 F0.05,10,10 = 2.98 12
  • 13. Student’s t x−µ t= Basic form. s n df = n − 1 x1 − x2 t= Independent averages, σ 12 σ 2 2 + n1 n2 known variances. 13
  • 14. t-TEST vs THEORETICAL OR KNOWN VALUE l  CHON Analysis. 9.55% H calculated. l  Data: 9.17, 9.09, 9.14, 9.10, 9.13, 9.27. n = 6, ! = 9.15, s = ± 0.0654 l  t0.05/2, 5= 2.57, t0.01/2, 5 = 4.032, t0.001/2, 5 = 6.869, p < 0.001 x − µ 9.15 − 9.55 t= = = 14.98 s 0.0654 n 6 14
  • 15. KNOWN VARIANCES, t-TEST OF TWO AVERAGES l  Karl Fischer H2O. σ = 0.025 from historical data. l  Data: Lot A: 0.50, 0.53, 0.47. l  Lot B: 0.53, 0.56, 0.51, 0.53, 0.50 l  n1=3, n2=5, x1=0.500, x2=0.526 l  t0.05/2.∞=1.96, df = n1 + n2 – 2 = 6, t0.05/2, 6 =2.447 0.500 − 0.526 t= = 1.424 2 2 (0.025) + (0.025) 3 5 15
  • 16. t for Unknown and Equal Variances x − x n n t = 1 2 1 2 s n + n p 1 2 x − x n if n = n t = 1 2 1 2 s 2 p df = n + n − 2 1 2 16
  • 17. t-TEST, UNKNOWN BUT EQUAL VARIANCES, 1. l  Data (mg/L Fe3+): Lot A: 6.1, 5.8, 7.0. l  Lot B: 5.9, 5.7, 6.1. xA=6.30, sA=0.6245, xB=5.90, sB=0.2000. F0.05 / 2, 2 , 2 = 39.00 2 F = (0.6245) = 9.75 2 (0.2000 ) 2 2 2(0.6245) + 2(0.20 ) sP = = 0.4637 (3 − 1) + (3 − 1) 17
  • 18. t-TEST UNKNOWN BUT EQUAL VARIANCES. 2. l  df = n1 + n2 - 2 df = 4 6.30 − 5.90 3 X 3 t= = 1.056 0.4637 3+3 t0.05 / 2, 4 = 2.78 18
  • 19. POOLED VARIANCE 2 2 n1 −1 s1 + n2 −1 s2 ( ) ( ) sp = n1 +n2 −2 19
  • 20. t for Independent Averages with unknown and unequal variances. x1 − x2 t = 2 2 s1 s2 + n1 n2 2 2 ⎛ s1 s2 ⎞ ⎜ ⎜ n + ⎟ ⎝ 1 n2 ⎟⎠ df = 2 2 −2 2 2 ⎛ s1 ⎞ ⎛ s2 ⎞ ⎜ ⎜ n ⎟⎟ ⎜ ⎜ n ⎟ ⎟ ⎝ 1 ⎠ + ⎝ 2 ⎠ n1 + 1 n2 + 1 20
  • 21. t-TEST UNKNOWN AND UNEQUAL VARIANCES, 1. l  Data:Extension of Previous Fe+3 mg/L study 1 6.1 5.9 l  xA = 6.13, sA = 0.3529 2 5.8 5.7 l  xB = 5.76, sB = 0.1647 3 7.0 6.1 l  nA = nB = 10 4 6.1 5.8 l  F0.05/2,9,9 = 4.03 5 6.1 5.7 l  F = (0.3529)2 / (0.1647)2 6 6.4 5.6 7 6.1 5.6 l  F = 4.59 8 6.0 5.9 9 5.9 5.7 10 5.8 5.6 21
  • 22. t-TEST UNKNOWN AND UNEQUAL VARIANCES, 2. t= 6.13 − 5.76 ⎜ 0.3529 ⎞ ⎛ ⎟ 2 ⎜ 0.1647 ⎞ ⎛ ⎟ 2 ⎝ ⎠ + ⎝ ⎠ 10 10 0.37 t= = 3.0044 0.0151664 l  t.05/2,17 = 2.110 22
  • 23. t-TEST UNKNOWN AND UNEQUAL VARIANCES, 3. 2 2 2 ⎛ s 1 s ⎞ 2 ⎜ ⎜ n + ⎟ ⎟ ⎝ 1 n2 ⎠ df = 2 −2 2 2 ⎛ s1 ⎞ ⎛ s2 ⎞ ⎜ ⎜ n ⎟ ⎟ ⎜ ⎜ n ⎟ ⎟ ⎝ 1 ⎠ + ⎝ 2 ⎠ n1 + 1 n2 + 1 23
  • 24. t-TEST UNKNOWN AND UNEQUAL VARIANCES, 4. ⎡ ⎤ ⎢ df = ⎢ (0.0395799 )2 ⎥ −2 2 2 ⎥ ⎢ (0.01245384 ) + (0.0271261) ⎥ ⎢ ⎣ 11 11 ⎥ ⎦ 0.0015666 0.0015666 df = = 0.0000141 + 0.0000669 0.000081 df = 19.3 − 2 = 17 rounded to a whole number 24
  • 25. Paired t-Test d t= n d = xi1 − xi 2 df = n −1 sd 2 2 (∑ d ) ∑d − sd = n n −1 25
  • 26. DATA FOR t -TESTS l  Sample New Original d l  1. 12.1% 14.7% 2.6% l  2. 10.9 14.0 3.1 l  3. 13.1 12.9 -0.2 l  4. 14.5 16.2 1.7 l  5. 9.6 10.2 0.6 l  6. 11.2 12.4 1.2 l  7. 9.8 12.0 2.2 l  8. 13.7 14.8 1.1 l  9. 12.0 11.8 -0.2 l  10 9.1 9.7 0.6 l  ave. 11.60 12.87 1.27 l  s 1.814 2.075 1.126 26
  • 27. Paired t-Test Calculation d 1.27 t= n= 10 = 3.567 Sd 1.126 t 0.05 / 2,9 = 2.26 Therefore a significant difference exists. 27
  • 28. t-Test for unknown but equal variances. X1 − X 2 n1n2 t = Sp n1 + n2 11.60 − 12.87 100 = 1.9488 10 + 10 t = 1.457 df = n1 + n2 − 2 = 18 t 0.05/2,18 = 2.10 l  Showing that there is no significant difference? 28
  • 29. Student’s t to a C.I. x−µ ts t= Basic form. = x−µ s n n df = n − 1 ts µ = x± The value of t is taken from a t - table n for n - 1 degrees of freedom and the desired confidence. 29
  • 30. CONFIDENCE INTERVAL 1. C.I . = µ ± 1.96σ ts C.I . = X ± n t0.05,n −1 t0.05, 2 = 4.30 30
  • 31. DATA SET FOR SETTING SPECS. 1. }  67.0 65.8 78.1 66.4 69.0 70.5 }  67.5 75.6 74.2 74.5 85.0 81.1 }  76.0 71.9 70.8 67.3 75.0 74.0 }  72.7 68.8 84.9 73.2 74.7 76.6 }  73.1 82.6 72.2 68.7 69.5 64.2 }  n = 30, range = 64.2 - 85.0 ! range = 20.8 }  Ave. = 73.03 s or σ = 5.4416 SQRT(30) = 5.4772 }  t0.995, 29=2.756 99%C.I.(t) = 70.29 - 75.77 IVTPHL1012S1 31
  • 32. DATA SET FOR SETTING SPECS. 2. SETS OF 3 l  67.0 72.7 71.9 82.6 70.8 66.4 73.2 85.0 69.5 74.0 l  67.5 73.1 68.8 78.1 84.9 74.5 68.7 75.0 70.5 64.2 l  76.0 65.8 75.6 74.2 72.2 67.3 69.0 74.7 81.1 64.2 l  Ave.70.2 70.5 72.1 78.3 76.0 69.4 70.3 78.2 73.7 71.6 l  s = 5.06 4.10 3.40 4.20 7.77 4.44 2.52 5.86 6.43 6.54 l  CV. 7.21 5.82 4.72 5.37 10.23 6.40 3.58 7.49 8.72 9.13 l  CI ±29.0 23.5 19.5 24.1 44.5 25.4 14.4 33.6 36.8 37.5 l  X3 = 73.03, s = 3.36, C.V.=3.5%, n=10, t0.995,9 = 3.250 l  99%C.I.(ave) = ±3.46 = 69.67 - 76.49 IVTPHL1012S1 32
  • 33. DATA SET FOR SETTING SPECS. 3. SETS OF 10 }  Set A: 67.0 67.5 76.0 72.7 73.1 65.8 75.6 71.9 68.8 82.6 }  Set B: 78.1 74.2 70.8 84.9 72.2 66.4 74.5 67.3 73.2 68.7 }  Set C: 69.0 85.0 75.0 74.7 69.5 70.5 81.1 74.0 76.6 64.2 }  SQRT(10) = 3.162278 t0.995, 9 = 3.250 }  A B C }  72.1 ± 5.13, 7.1% 73.0 ± 5.49, 7.5% 74.0 ± 6.08, 8.2% }  CI.66.8 - 77.37: 5.2 67.4 - 80.6: 5.64 65.7 - 82.2: 8.23 }  Ave(10s)= 73.03, s = 0.9300, C.V. = 1.3%, 99%C.I. = ± 5.33 }  99%CI = 67.7 - 78.4. SQRT(3) = 1.7321 t0.995,2 = 9.925 IVTPHL1012S1 33
  • 34. DATA SET FOR SETTING SPECS. 4. CUMULATIVE }  n Ave. s C.V. 99%C.I. SQRT(n) t0.995,n-1 }  2 67.25 0.35 0.5 15.9 1.4142 63.66 }  3 70.17 5.06 7.2 42.8 1.1731 9.925 }  4 70.80 4.32 6.1 12.6 2.0000 5.841 }  5 71.26 3.88 5.4 8.0 2.2361 4.604 }  6 70.35 4.12 5.9 6.8 2.4495 4.032 }  9 70.93 3.78 5.3 4.2 3.0000 3.355 }  12 72.78 4.97 6.8 4.5 3.4641 3.106 }  18 72.74 5.40 7.4 3.7 4.2426 2.898 }  24 73.13 5.45 7.5 3.1 4.8990 2.807 }  30 73.03 5.44 7.5 2.7 5.4773 2.756 IVTPHL1012S1 34
  • 35. Wilcoxon’s Signed Rank Test 1. l  Nonparametric test for paired test results. l  Does the same thing as the paired t-test but without the assumption of normalcy. l  First, take your paired data and calculate the differences, including their signs. l  Second, place the differences in order (low to high) based on their absolute values. l  Third, assign a rank to the differences and assign to the rank a sign according to the sign of the original difference. (continued) 35
  • 36. Wilcoxon’s Signed Rank Test 2. l  Fourth, count the number or positive or negative ranks, take the group with the smaller number of members, and sum the absolute values of the ranks in that group. This will give a value, Tn, where n = the number of pairs. l  Go to a Wilcoxon table for n pairs and significance level of at least 95% to obtain a tabular value of Tn. For significance, the calculated value must be smaller than the tabular value for Tn. 36
  • 37. Signed Rank Test: Example l  A minimum of 6 pairs is needed. l  With 6 pairs, all of the differences must have the same sign. This gives T6 = 0 which is significant at the 95% level. l  Differences from 19 pairs of test results. l  Diff : +2, -4, -6, +8, +10, -11, -12, +13, +22, -25, l  Rank:+1, -2, -3, +4, +5, -6, -7, +8, +9, -10, l  Diff: -33, +33, +41, -45, +45, +45, +81, +92, +139 l  Rank:-11.5,+11.5,+13,-15, +15, +15, +17, +18, +19 37
  • 38. Signed Rank Test: Example: Continued l  There are 7 negative ranks and 12 positive ranks, so the absolute sum is taken of: l  -2, -3, -6, -7, -10, -11.5, and -15, this gives: l  T19 = 54.5. The tabular value for T0.05, 19 is 46, so the data show no difference between the groups. 38
  • 39. A Simpler Nonparametric Test 1. l  The following is not as powerful as the Signed Rank Test, but is faster and easier. It tests the hypothesis that p = 0.5 for a given sign. It is a Chi- square (χ2) test. 2 2 ( n1 − n2 − 1) χ = n1 + n2 39
  • 40. Simpler Signed Rank Test 2. l  n1 and n2 are the number of positive and negative differences. From the previous data there are 12 positive and 7 negative differences so: 2 2 2 (12 − 7 − 1) 4 16 χ = = = < 1.0 12 + 7 19 19 40
  • 41. Simpler Signed Rank Test 3. l  Usually, Χ2 > 1.0, so this indicates that there is no significance since the calculated Х2 should be larger than the tabular Χ2 for significance. l  This test can be adopted as a rapid and easy method to decide if further investigation is required. It is even possible to have prepared tables for use. 41
  • 42. Basic Statistics for Quality Control and Validation Studies: Session 2 •  Steven S. Kuwahara, Ph.D. •  GXP BioTechnology, LLC •  PMB 506, 1669-2 Hollenbeck Ave. •  Sunnyvale, CA 94087-5402 •  Tel. & FAX (408) 530-9338 •  E-Mail: s.s.kuwahara@gmail.com •  Website: www.gxpbiotech.org ValWkPHL1012S2 1
  • 43. Sample Number Determination 1. •  One of the major difficulties with setting the number of samples to take lies in determining the levels of risk that are acceptable. It is in this area that managerial inaction is often found, leaving a QC supervisor or senior analyst to make the decision on the level of risk the company will accept. If this happens, management has failed its responsibility. ValWkPHL1012S2 2
  • 44. Sample Number Determination 2. •  The problem is that all sampling plans, being statistical in nature, will possess some risk. For instance, if we randomly draw a new sample from a population we could assume or predict that a test result from that sample will fall within ±3σ of the true average 99.7% of the time, but there is still 0.3% (3 parts-per-thousand) of the time when the result will be outside the range for no reason other than random error. Thus a good lot could be rejected. This is known as a false positive or a Type I error. •  This is the type of error that is most commonly considered, but there is type II error also. ValWkPHL1012S2 3
  • 45. Sample Number Determination 3. •  False positives occur when you declare that there is a difference when one does not really exist (example given in the previous slide). Sometimes called producer’s risk, because the producer will dump a lot that was okay. •  False negatives occur when you declare that a difference does not exist when, in fact, the difference does exist. Sometimes called customer’s risk, because the customer ends up with a defective product. It is also known as a Type II error. ValWkPHL1012S2 4
  • 46. SIMPLIFIED FORM OF n CALCULATION n for an ! to compare with a µ xi − µ ⎛ s ⎞ = x − µ t= t ⎜ ⎟ i s ⎝ n ⎠ n 2 2 2 2 ts 2 ts n ( ) = x−µ =Δ 2 n= 2 Δ ValWkPHL1012S2 5
  • 47. EXAMPLE OF SIMPLIFIED METHOD WITH ITERATION •  Δ = 51- 50 = 1 s = ± 2 Z0.025=1.96 •  n = (1.96)2 (2)2 / 1 = 3.8416 X 4 = 15.4 ~ 16 •  t0.025,15= 2.131 (2.131)2 = 4.541161 •  n = 4.54116 X 4 = 18.16 ~ 19 •  t0.025,18= 2.101 (2.101)2 = 4.414201 •  n = 4.414201 X 4 = 17.66 ~ 18 •  t0.025,17= 2.110 (2.110)2 = 4.4521 •  n = 4.4521 X 4 = 17.81 ~ 18 ValWkPHL1012S2 6
  • 48. Sample Number Determination 6. •  Because of the need to define risk and consider the level of variation that is present, sampling plans that do not allow for these factors are not valid. •  Examples of these are: Take 10% of the lot below N=200 and then 5% thereafter. The more famous one is to take : •  in samples. N +1 ValWkPHL1012S2 7
  • 49. DEVELOPMENT OF A SAMPLING PLAN •  Consider a situation where a product must contain at least 42 mg/mL of a drug. At 41 mg/mL the product fails. Because we want to allow for the test and product variability, we decide that we want a 95% probability of accepting a lot that is at 42 mg/ mL, but we want only a 1% chance of accepting a lot that is at 41 mg/mL. •  For the sampling plan we need to know the number (n) of test results to take and average. •  We will accept the lot if the average () exceeds k mg/mL. ValWkPHL1012S2 8
  • 50. SAMPLING PLAN CALCULATIONS A. You will need the table of the normal distribution for this. • Suppose we have a lot that is at 42.0 mg/mL. •  would be normally distributed with µ=42.0 – And the SEM = s/!n. We want !>k x − 42.0 k − 42.0 x= > s s n n x = standard normal deviate From a “normal” table (or “x” with ν = ∞) we want a probability of 0.95 that “x” will be greater than the “k” expression. ValWkPHL1012S2 9
  • 51. SAMPLING PLAN CALCULATIONS A1. You will need a normal distribution table for this •  x0.95,∞ = 1.645 (cumulative probability of 0.95) •  We know that this must be greater than the “k” expression. •  We also know that k must be less than 42.0 since the smallest acceptable  will be 42.0. •  Therefore: k − 42.0 = 1.645 since k < x s n ValWkPHL1012S2 10
  • 52. SAMPLING PLAN CALCULATIONS B. • Now suppose that the correct value for the lot is 41.0 mg/ mL. So now µ = 41.0 and we want a probability of 0.01 that !>k. Now: x − 41.0 k − 41.0 x= > = −2.326 s s n n k − 42.0 1.645 = = −0.707 k − 41.0 − 2.326 k = 41.59 ValWkPHL1012S2 11
  • 53. SAMPLING PLAN CALCULATIONS C. • Going back to the original equation for a passing result and knowing that s = ± 0.45 (From our assay validation studies?) k − 42.0 41.59 − 42.0 − 0.41 = = = −1.64 s s s n n n 2 [−1.64]s = (− 0.41) or n = ([− 1.64][0.45]) 2 n (− 0.41) 0.544644 n= = 3.24 0.1681 ValWkPHL1012S2 12
  • 54. SAMPLING PLAN •  The sampling plan now says: To have a 95% probability of accepting a lot at 42.0 mg/mL or better and a 1% probability of accepting a lot at 41.0 mg/mL or worse, given a standard deviation of ± 0.45 mg/mL for the test method; run four samples and average them. Accept the lot if the mean is 41.59 mg/mL or better. •  Note that the calculated value of n is close enough to 3 that some would argue for 3 samples. ValWkPHL1012S2 13
  • 55. SAMPLE SIZES FOR MEANS • Suppose we want to determine µ using a test where we know the standard deviation (s) of the population. • How many replicates will we need in the sample? • The length of a confidence interval = L 2 2 2 2 2ts 2 4t s 4t s L= L = n = 2 L = 2Δ n n L ValWkPHL1012S2 14
  • 56. Recalculation of Earlier Problem. 2 2 4t s n= 2 L L = 2, s = ±2, t0.95,∞=1.960 (two sided) 2 2 4(2) (1.96 ) 61.4656 n= 2 = (2) 4 n = 15.4 or 16 Iterate : (t )0.95,15 = 2.131 n = 18.16, (t )0.95,18 = 2.101 n = 17.66 (t )0.95,17 = 2.110 n = 17.81 so n = 18 ValWkPHL1012S2 15
  • 57. Sample size for estimating µ • Note the statement: We are determining the % of drug present and we wish to bracket the true amount (µ%) by ± 0.5% and do this with 95% confidence, so L = 2 x 0.5 = 1.0 • We have 22 previous estimates for which s = 0.45 • Now at the 95% level of significance (1–0.95), t0.975,21 = 2.080. 2 2 4(2.080) (0.45 ) n= 2 = 3.5 (1.0) ValWkPHL1012S2 16
  • 58. POOLED VARIANCE 2 2 n1 −1 s1 + n2 −1 s2 ( ) ( ) sp = n1 +n2 −2 ValWkPHL1012S2 17
  • 59. Calculating the Confidence Interval, Sp • The results of the four determinations are: 42.37%, 42.18%, 42.71%, 42.41%. • ! = 42.42% and s = 0.22% (n2 – 1) = 3 • Using the extra 3 df and s = 0.22% we have: 2 2 21(0.45 ) + 3(0.22 ) Sp = = 0.43 21 + 3 ValWkPHL1012S2 18
  • 60. Calculating the Confidence Interval, L • Sp = s, the new estimate of the standard deviation, so a new confidence interval can be calculated with 24 df. t(0.975, 24)= 2.064. L = 2(2.064)(0.43) 4 L = 0.88752, rather than 1.0. ( ) C.I. = ± L = 0.44376 or ± 0.45 2 C.I. 95% = 42.42 ± 0.45 or 41.97 - 42.87 Note that n = 4 not 25 for calculating L. ValWkPHL1012S2 19
  • 61. Sample Sizes for Estimating Standard Deviations. I. •  The problem is to choose n so that s at n – 1 will be within a given ratio of s/σ. •  Examples are found in reproducibility, repeatability, and intermediate precision measurements. •  s = standard deviation experimentally determined. σ = population or true standard deviation. s2 and σ2 are corresponding variances. •  You will use n to derive s. ValWkPHL1012S2 20
  • 62. Sample Sizes for Estimating Standard Deviations. χ2 • This is the asymmetric 2 distribution for σ2. • Now as an example, χ 2 = (n − 1)s assume n-1 = 12. At 12 df, n −1 2 χ2 will exceed 21.0261 5% σ of the time and it will 2 2 exceed 5.2260 95% of the χ n −1 s time. Therefore 90% of the = 2 time, χ2 will lie between 5.2260 and 21.0261 for 12 (n − 1) σ df. 2 2 • Check your tables to ⎛ s ⎞ ⎛ χ ⎞ n −1 confirm this. ⎜ ⎟ = ⎜ ⎟ ⎜ (n − 1) ⎟ ⎝ σ ⎠ ⎝ ⎠ ValWkPHL1012S2 21
  • 63. Confidence interval for the standard deviation. •  Given the data in the previous slide, we know that (s2/σ2) will lie between (5.2260/12) and (21.0261/12), or between 0.4355 and 1.7552. •  Thus the ratio of s/σ will lie between the square roots of these numbers or between 0.66 and 1.32 or 0.66 < s/σ < 1.32. This gives: •  s/1.32 < σ < s/0.66. If you know s this gives you a 90% confidence interval for the standard deviation. •  Now let’s reverse our thinking. ValWkPHL1012S2 22
  • 64. Sample Sizes for Estimating Standard Deviations. Continued. I. •  Instead of the confidence interval, suppose we say that we want to determine s to be within ± 20% of σ with 90% confidence. So: •  1 – 0.2 < s/σ < 1+ 0.2 or 0.8 < s/σ < 1.2 •  This is the same as: 0.64 < (s/σ)2 < 1.44 •  Since we want 90% confidence we use levels of significance at 0.05 and 0.95. •  Now go to the χ2 table under the 0.95 column and look for a combination where χ2/df is not < 0.64, but df is as large as possible. ValWkPHL1012S2 23
  • 65. Sample Sizes for Estimating Standard Deviations. Continued. II. •  Trial and error shows this number to be about 50. •  Next we go to the column under 0.05 and look for a ratio that does not exceed 1.44, but df is as small as possible. •  Trial and error will show this number to be between 30 and 40. •  You must take the larger of the two numbers and since df = n – 1, n = 51 replicates. ValWkPHL1012S2 24
  • 66. Do Not Panic. Consider This! •  Instead of the confidence interval, suppose we say that we want to determine s to be within ± 50% of σ with 95% confidence. So: •  1 – 0.5 < s/σ < 1+ 0.5 or 0.5 < s/σ < 1.5 •  This is the same as: 0.25 < (s/σ)2 < 2.25 •  Since we want 95% confidence we use levels of significance at 0.025 and 0.975. •  Now go to the χ2 table under the 0.975 column and look for a combination where χ2/df is not < 0.25, but df is as large as possible. ValWkPHL1012S2 25
  • 67. Greater Confidence, But Lesser Certainty •  Trial and error shows this number to be 8. •  Next we go to the column under 0.025 and look for a ratio that does not exceed 2.25, but df is as small as possible. •  Trial and error will show this number to be 8. The same as the other df. •  You must take the larger of the two numbers and but in this case df = 8 and n = 9. •  You have a greater confidence interval for a smaller n. ValWkPHL1012S2 26
  • 68. n for Comparing Two Averages x1 − x2 tα , df = Δ = x1 − x2 n1 = n2 σ 12 2 σ2 + n1 n2 2 Δ 2 t α ,df 2 tα .df = σ 2 σ 2 n (σ 2 1 ) + σ 2 = Δ2 2 1 2 + n n n= 2 tα , df (2 2 σ1 + σ 2 ) Δ2 ValWkPHL1012S2 27
  • 69. Introduction to the Analysis of Variance (ANOVA) I. This method was aimed at deciding whether or not differences among averages were due to experimental or natural variations or true differences among averages. R.A. Fisher developed a method based on comparing the variances of the treatment means and the variances of the individual measurements that generated the means. The technique has been extended into the field known as DOE or factorial experiments ValWkPHL1012S2 28
  • 70. Introduction to the Analysis of Variance (ANOVA) II. •  The method is based on the use of the F-test and the F-distribution (Named after him.) –  The F-distribution, and all distributions related to errors, is a skewed, unsymmetrical distribution. 2 ns y F= 2 s pooled –  S2y represents the variance among the treatments and s2pooled is the variance of the individual results (system noise). ValWkPHL1012S2 29
  • 71. Introduction to the Analysis of Variance (ANOVA) III. •  F increases as the number of replicates increases. –  In simple ANOVA systems n is the same for all treatments. –  By increasing n you amplify small differences between the variances of the treatment means and the system noise. –  An F value of 1.0 or less says that the system noise is greater than the variance of the means. This suggests that the differences among the means are due to experimental or environmental variations. ValWkPHL1012S2 30
  • 72. Introduction to the Analysis of Variance (ANOVA) IV. •  Because of the importance of system noise, before doing an ANOVA or factorial experiment, you should reduce variation in the system to a minimum. –  You should remove all special cause variation and minimize common cause variation. –  Methods such as Statistical Process Control (SPC) should be used to reduce variations. •  Note: A system where special cause variation has been eliminated and only common cause variation is left is known as a system under statistical control. ValWkPHL1012S2 31
  • 73. Introduction to the Analysis of Variance (ANOVA) V. •  The F-distribution depends on the number of degrees of freedom of the numerator and denominator and the level of type 1 error that you will accept. –  For each level of type 1 error there are different distribution tables. The exact value of F then depends on the number of degrees of freedom of the numerator and denominator. •  If the calculated F exceeds the tabular F, it is then significant at the1-α level. Where α is the level of type 1 error that you are willing to accept. •  α is the p value. Most statistical software programs will calculate the p value. Normally, you want 0.05 or 0.01. •  Type-1 error is where you falsely conclude that there is a difference. AKA: False positive, producer’s risk. ValWkPHL1012S2 32
  • 74. Fairness of 4 sets of dice. (Taken from Anderson, MJ and Whitcomb, PJ, DOE Simplified, CRC Press, Boca Raton, FL, 2007.) •  Frequency distribution for 56 rolls of dice. Dots White Blue Green Purple 6 6+6 6+6 6+6 6 5 5 5 5 5 4 4 4+4 4+4 4 3 3+3+3+3+3 3+3+3+3 3+3+3+3 3+3+3+3+3 2 2+2+2 2+2+2+2 2+2+2+2 2+2+2+2+2 1 1+1 1 1 1 Mean (y) 3.14 3.29 3.29 2.93 Var. (s2) 2.59 2.37 2.37 1.76 n = 14 Grand Ave. = 3.1625 •  Grand average = Total of all dots/56 dice (4X14) ValWkPHL1012S2 33
  • 75. Fairness of 4 sets of dice. Calculation of F. Note differences in denominator. Since F is much less than 1.0 we can assume that there is no significant difference among the colors even without looking at an F table. s2 = (3.14 − 3.1625)2 + (3.29 − 3.1625)2 + (3.29 − 3.1625)2 + (2.93 − 3.1625)2 y 4 −1 2 s y = 0.029 s 2 = 2.59 + 2.37 + +2.37 + 1.76 = 2.28 pooled 4 2 n * s y 14 * 0.029 F= 2 = = 0.18 s pooled 2.28 ValWkPHL1012S2 34
  • 76. Fairness of 4 sets of dice. How about a loaded set? Dots White Blue Green Purple 6 1 3 6 1 5 1 2 5 2 4 1 3 1 3 3 2 4 1 1 2 5 1 0 2 1 4 1 1 5 Mean (y) 2.50 3.93 4.93 2.86 Var. (s2) 2.42 2.38 2.07 3.21 n = 14 Grand Ave. = 3.555 δ= -1.055 0.375 1.375 -0.695 δ2 = 1.1130 0.1406 1.8906 0.4830 Σδ2 = 3.6245 Σδ2/3 = s2y = 1.2082 ValWkPHL1012S2 35
  • 77. Fairness of 4 sets of dice. How about a loaded set? ANOVA 2 2.42 + 2.38 + 2.07 + 3.21 spooled = = 2.52 df = 4(14 - 1) = 52 4 2 s y = 1.21 df = 3 (4 - 1) 14 *1.21 F= = 6.71 F3,52 = 6.71 2.52 Tabular F3,52 = 2.839 − 2.758 at 5%, p = 0.05 and 4.313 - 4.126 at 1%, and 6.595 - 6.171 at 0.1%. Range is for F3,40 to F3,60 . Significant at p = 0.001 ValWkPHL1012S2 36
  • 78. Least Significant Difference Lucy in the Sky with Diamonds (LSD) •  DO NOT EVER USE THIS METHOD WITHOUT THE PROTECTION OF A SIGNIFICANT ANOVA RESULT ! ! ! •  There are 45 combinations of 10 results taken in pairs. If you focus mainly on the high and low results, you are almost guaranteed to encounter a type-1 error. –  This is why you need to use the ANOVA coupled with an LSD determination. •  The LSD is based on the equations for confidence intervals. n 2 LSD = ± t(1−α ,df ) × s pooled 2 / n s pooled = ∑s 1 i n ValWkPHL1012S2 37
  • 79. LSD for the Current Problem 2.42 + 2.38 + 2.07 + 3.21 s pooled = = 2.52 = 1.59 4 2 LSD = 2.01 ×1.59 = ±1.21 14 at 99% LSD = ±1.333 for t (0.99,df =52 ) ≅ 2.68 •  The (1-α) level of the t determines the level of significance for the LSD. •  n = 14 for replicates, but s2pooled had 4X(14-1) = 52 df. ValWkPHL1012S2 38
  • 80. So where are the bad dice? •  Given the LSD = ±1.333, the result can be displayed in different ways. •  Plot the result as the mean of the average count of the treatments (colors) ± ½ LSD. –  Then look for overlaps. A significant difference will not have an overlap. •  Or take the difference between means and compare them to the LSD. –  In the present case, the white and purple dice are similar, but the green dice are definitely higher, with the blue dice different from the white, but not from the green and only marginally different from the purple. ValWkPHL1012S2 39
  • 81. White = 2.50 Blue = 3.93 Green=4.93 Purple=2.86 White = 2.50 1.43 2.43 0.36 Blue = 3.93 1.43 1.00 1.07 Green=4.93 2.43 1.00 2.07 Purple=2.86 0.36 1.07 2.07 For 95% confidence, the LSD is ± 1.21 and for 99%, the LDS is ± 1.33. So blue and green are different from white, and green is different from purple and white at the 99% level. White and purple are the same as are blue and green. Purple is also similar to blue, but not to green. All of this holds at the 99% level, thus at p = 0.01 we conclude that blue and green dice run to higher numbers than white and purple. ValWkPHL1012S2 40
  • 83. “Designing  an  efficient  process  with  an  effec;ve  process   control  approach  is  dependent  on  the  process  knowledge  and   understanding  obtained.  Design  of  Experiment  (DOE)  studies   can  help  develop  process  knowledge  by  revealing   rela;onships,  including  mul;-­‐factorial  interac;ons,  between   the  variable  inputs  …  and  the  resul;ng  outputs.       Risk  analysis  tools  can  be  used  to  screen  poten;al  variables   for  DOE  studies  to  minimize  the  total  number  of  experiments   conducted  while    maximizing  knowledge  gained.       The  results  of  DOE  studies  can  provide  jus;fica;on  for   establishing  ranges  of  incoming  component  quality,   equipment  parameters,  and  in  process  material  quality   aKributes.”   2
  • 84. What  is  it?   The  ability  to  accurately  predict/control  process  responses.     How  do  we  acquire  it?   Scien;fic  experimenta;on  and  modeling.     How  do  we  communicate  it?   Tell  a  compelling  scien;fic  story.   Give  the  prior  knowledge,  theory,  assump;ons.   Show  the  model.   Quan;fy  the  risks,  and  uncertain;es.     Outline  the  boundaries  of  the  model.   Use  pictures.   Demonstrate  predictability.   3
  • 85. Screening  Designs   •   2  level  factorial/  frac;onal  factorial  designs     •   Weed  out  the  less  important  factors   •   Skeleton  for  a  follow-­‐up  RSM  design   Response  Surface  Designs   •   3+  level  designs       •   Find  design  space   •   Explore  limits  of  experimental  region   Confirmatory   Designs   •     Confirm  Findings   •     Characterize  Variability   4
  • 86. Key   Factors   Key   Responses   Cau;on:  EVERYTHING  depends  on  gecng  this  right  !!!   5
  • 87. Fixed  Factors   Responses   Disint  (A  or  B)   Dissolu;on%  (>90%)   Drug%  (5-­‐15%)     Make     Disint%  (1-­‐4%)   ACE     DrugPS  (10-­‐40%)   Tablets   WeightRSD%(<2%)     Lub%  (1-­‐2%)   Day   Random  Factors   6
  • 88. Trial   DrugPS   Lub%   Disso%     1   25   1   85   2   25   2   95   3   10   1.5   90   4   40   1.5   70   Lubricant%   2   95   90   70   1   85   10   40   DrugPS   7
  • 89. Lubricant%   2   95   90   70   1   85   10   40   DrugPS   Disso% = 86.667 +10 × Lub% −0.667 × DrugPS +ε 8
  • 90. ž  Previous  example  had  only  2  factors.   Ø Factor  space  is  2D.  We  can  visualize  on  paper.   ž  With  3  factors  we  need  3D  paper.   Ø Corners  even  further  away   ž  Most  new  processes  have  >3  factors   ž  OFAT  can  only  accommodate  addi;ve  models   ž  We  need  a  more  efficient  approach   9
  • 91. True  response   • Goal:  Maximize   response   • Fix  Factor  2  at  A.   Factor  2   • Op;mize  Factor  1  to  B.   80   E   60   40   • Fix  Factor  1  at  B.   C   • Op;mize  Factor  2  to  C.   A   • Done?    True  op;mum  is   Factor  1  =  D  and     B   D   Factor  2  =  E.   Factor  1   • We  need  to   accommodate  curvature   and  interac/ons   10
  • 92. Response   A   B   C   D   Factor  level   •  A  to  B  may  give  poor  signal  to  noise   •  A  to  C  gives  beKer  signal  to  noise  and  rela;onship  is  s;ll   nearly  linear   •  A  to  D  may  give  poor  signal  to  noise  and  completely  miss   curvature   •  Rule  of  thumb:  Be  bold  (but  not  too  bold)   11
  • 93. Trial   DrugPS   Lub%   Disso%     1   10   1   75   2   10   2   100   3   40   1   75   4   40   2   80   2   100   80   Lubricant%   1   75   75   10   40   DrugPS   12
  • 94. Lubricant%   2   100   80   1   75   75   10   40   DrugPS   Disso% = 43.33 +0.667 × DrugPS +31.667 × Lub% −0.667 × DrugPS × Lub% +ε 13
  • 95. ž  Model  non-­‐addiKve  behavior   ›  interacKons,  curvature   ž  Efficiently  explore  the  factor  space   ž  Take  advantage  of  hidden  replicaKon   14
  • 96. Planar:  no  interac;on   Non-­‐planar:  interac;on   Y = a + b ⋅ X1 + c ⋅ X 2 Y = a + b ⋅ X1 + c ⋅ X 2 + d ⋅ X 1 ⋅X2 15
  • 97. 16
  • 98. 17
  • 99. 18
  • 100. 2   A   B   Trial   DrugPS   Lub%   Disso%   Lub%   1   10   1   C   2   10   2   A   1   C   D   3   40   1   D   10   40   4   40   2   B   DrugPS   B +D A +C A   B   MainEffectDrugPS = − 2 2 C   D   A +B C +D A   B   MainEffectLub% = − 2 2 C   D   C +B A +D A   B   InteractionEffectDrugPS×Lub% = − 2 2 C   D   19
  • 101. Uncoded  Units   Coded  Units   Trial   DrugPS   Lub%   Trial   DrugPS   Lub%   1   10   1   1   -­‐1   -­‐1   2   10   2   2   -­‐1   +1   3   40   1   3   +1   -­‐1   4   40   2   4   +1   +1   •  Coding  helps  us  evaluate  design  proper;es   •  Some  sta;s;cal  tests  use  coded  factor  units  for  analysis   (automa;cally  handled  by  sotware)   •  Easy  to  convert  between  coded  (C)  and  uncoded  (U)  factor  levels   U − Umid C= ⇔ U = C(Umax − Umid ) + Umid Umax − Umid 20
  • 102. +1  A   B   Trial   DrugPS   Lub%   DrugPS Disso%     *Lub%   Lub%   1   -­‐1   -­‐1   +1   C   2   -­‐1   +1   -­‐1   A   -­‐1   C   D   -­‐1   +1   3   +1   -­‐1   -­‐1   D   DrugPS   4   +1   +1   +1   B   Disso = a a = (+ A + B + C + D) / 4 +b × Lub% b = MEDrugPS / 2 = (−A + B − C + D) / 4 +c × DrugPS c = MELub% / 2 = (+ A + B − C − D) / 4 +d × Lub% × DrugPS d = IEDrugPS×Lub% / 2 = (−A + B + C − D) / 4 +ε 21
  • 103. Disso = a + b × Lub + c × DrugPS + d × Lub × DrugPS + ε ž  It  is  obtained  through  the  “magic”  of  regression.   ž  b  measures  the  “main  effect”  of  Lub   ž  c  measures  the  “main  effect”  of  DrugPS   ž  d  measures  the  “interac;on  effect”  between  Lub  and   DrugPS   Ø  if  d  =  0,  effects  of  Lub  and  DrugPS  are  addi;ve   Ø  if  d  ≠  0,  effects  of  Lub  and  DrugPS  are  non-­‐addi;ve   ž  ε  represents  trial  to  trial  random  noise   22
  • 104. +1   +1   +1   Lub%   Lub%   Lub%   -­‐1   -­‐1   -­‐1   -­‐1   +1   -­‐1   +1   -­‐1   +1   DrugPS   DrugPS   DrugPS   Trial   DrugPS   Lub%   Trial   DrugPS   Lub%   Trial   DrugPS   Lub%   1   -­‐1   -­‐1   1   -­‐1   -­‐1   1   -­‐1   -­‐1   2   -­‐1   +1   2   -­‐1   0   2   -­‐1   -­‐1   3   +1   -­‐1   3   +1   0   3   +1   +1   4   +1   +1   4   +1   +1   4   +1   +1   Inner  product:            +1-­‐1-­‐1+1=0                                                +1+0+0+1=2                                        +1+1+1+1=4   23
  • 105. 24
  • 106. Dissolu;on  (%LC)   1%  Lubricant   2%  Lubricant   90   10   40   DrugPS   25
  • 107. y = a + bA + cB + dC + eAB + fAC + gBC + hABC + ε •  Average   Number  of   Number  of   •  Main  Effects   Factors  (k)   Trials  (df  =   •  2-­‐way  interac;ons   2k)   •  Higher  order   0   1   interac;ons  (or   1   2   es;mates  of  noise)   2   4   3   8   4   16   5   32   6   64   26
  • 108. Main Effects Trial   I   A   B   C   D=AB   E=AC   F=BC   ABC   1   +   -­‐   -­‐   -­‐   +   +   +   -­‐   2   +   +   -­‐   -­‐   -­‐   -­‐   +   +   3   +   -­‐   +   -­‐   -­‐   +   -­‐   +   4   +   +   +   -­‐   +   -­‐   -­‐   -­‐   5   +   -­‐   -­‐   +   +   -­‐   -­‐   +   6   +   +   -­‐   +   -­‐   +   -­‐   -­‐   7   +   -­‐   +   +   -­‐   -­‐   +   -­‐   8   +   +   +   +   +   +   +   +   y = a + bA + cB + dC + eD + fE + gF + ε •  Can  include  addi;onal  variables  in  our  experiment  by  aliasing  with   interac;on  columns.   •  Leave  some  columns  to  es;mate  residual  error  for  sta;s;cal  tests   27
  • 109. Trial   I   A   B   C   AB   AC   BC   ABC   1   +   -­‐   -­‐   -­‐   +   +   +   -­‐   2   +   +   -­‐   -­‐   -­‐   -­‐   +   +   +1 3   +   -­‐   +   -­‐   -­‐   +   -­‐   +   4   +   +   +   -­‐   +   -­‐   -­‐   -­‐   C 5   +   -­‐   -­‐   +   +   -­‐   -­‐   +   +1 B 6   +   +   -­‐   +   -­‐   +   -­‐   -­‐   -1 -1 7   +   -­‐   +   +   -­‐   -­‐   +   -­‐   -1 A +1 8   +   +   +   +   +   +   +   +   y = a + bA + cB + dC •  Create  a  half  frac;on  by  running  only  the  ABC  =  +1  trials   •  Note  confounding  between  main  effects  and  interac;ons   •  Compromise:  must  assume  interac;ons  are  negligible   •  In  this  case  (not  always)  design  is  “saturated”  (no  df  for  sta;s;cal   tests).   28
  • 110. •  “I=ABC”  for  this  23-­‐1  half  frac;on  is  called  the  “Defining  Rela;on”   •  Note  that  “I=ABC”  implies  that  “A=BC”,  “B=AC”,  and  “C=AB”.   •  3-­‐way  interac;ons  are  confounded  with  the  intercept   •  Main  effects  are  confounded  with  2-­‐way  interac;ons   •  The  number  of  factors  in  a  defining  rela;on  is  called  the  “Resolu;on”   •  This  23-­‐1  half  frac;on  has  resolu;on  III   •  We  denote  this  frac;onal  factorial  design  as  2III3-­‐1   29
  • 111. •  I=ABCD  for  this  24-­‐1  half  frac;on  is  called  the  Defining  Rela;on   •  Note  that  I=ABCD  implies   •   A=BCD,  B=ACD,  C=ABD,  and  D=ABC.   •   AB=CD,  AC=BD,  AD=BC   •   Main  effects  are  confounded  with  3-­‐way  interac;ons   •   Some  2-­‐way  interac;ons  are  confounded  with  others.   We  like  our  screening  designs  to  be  at  least  resolu;on  IV  (I=ABCD)   30
  • 112. Number  of  Factors   2   3   4   5   6   7   8   9   10   11   12   13   14   15   4   Full   III                           6     IV                           8     Full   IV   III   III   III                   Number  of  Design  Points   12       V   IV   IV   III   III   III   III   III           16       Full   V   IV   IV   IV   III   III   III   III   III   III   III   20                     III   III   III   III   III   24                 IV   IV   IV   IV   III   III   III   32         Full   VI   IV   IV   IV   IV   IV   IV   IV   IV   IV   48             V   V                 64           Full   VII   V   IV   IV   IV   IV   IV   IV   IV   96                 V   V   V           128             Full   VIII   VI   V   V   IV   IV   IV   IV   31
  • 113. Trial   DrugPS   Lub% Disso%     2 98,102 88,82 1   10   1   76   Lub% 2   10   2   98   3   40   1   73   4   40   2   82   1 76,84 73,77 5   10   1   84   10 40 6   10   2   102   7   40   1   77   DrugPS 8   40   2   88   FiKed  model  is  based  on  averages   SDindividual SDaverage = number of replicates 32
  • 114. ReplicaKng   1  measurement   batch   3  batches   per    batch   producKon   Repeated   3  measurements   1  batch   per    batch   measurement   33
  • 115. Trial   DrugPS   Lub% Disso%   ReplicaKon     1.  Every  operaKon  that   1   10   1   76   contributes  to  variaKon  is   2   10   2   98   3   40   1   73   redone  with  each  trial.   4   40   2   82   2.  Measurements  are   5   10   1   84   independent.   6   10   2   102   3.  Individual  responses  are   7   40   1   77   analyzed.   8   40   2   88   RepeKKon   Trial   DrugPS   Lub% Disso%   1.  Some  operaKons  that     contribute  variaKon  are  not   1   10   1   76, 84   redone.   2   10   2   98, 102   3   40   1   73, 77   2.  Measurements  are  correlated.   4   40   2   82, 88   3.  The  averages  of  the  repeats   should  be  analyzed  (usually).   34
  • 116. ž Frac;onal  factorial  designs  are  generally  used  for   “screening”   ž Sta;s;cal  tests  (e.g.,  t-­‐test)  are  used  to  “detect”  an   effect.   ž The  power  of  a  sta;s;cal  test  to  detect  an  effect   depends  on  the  total  number  of  replicates  =  (trials/ design)  x  (replicates/trial)   ž If  our  experiment  is  under  powered,  we  will  miss   important  effects.   ž If  our  experiment  is  over-­‐powered,  we  will  waste   resources.   ž Prior  to  experimen;ng,  we  need  to  assess  the  need   for  replica;on.   35
  • 117. 2 2 ⎛ σ ⎞ N = (#points  in  design)(replicates/point) ≅ 4 z1−α + z1−β ( 2 ) ⎜ ⎟ ⎝ δ ⎠ σ  =  replicate  SD   δ    =  size  of  effect  (high  –  low)  to  be  detected.   α  =  probability  of  false  detec;on   β  =  probability  of  failure  to  detect  an  effect  of  size  δ α z1-­‐α/2   β z1-­‐β 2 0.01   2.58   0.1   1.28   ⎛ σ ⎞ 0.05   1.96   N ≅ 16 ⎜ ⎟ 0.2   0.85   ⎝ δ ⎠ 0.10   1.65   0.5   0.00   •  While  not  exact,  this  ROT  is  easy  to  apply  and  useful.   •  Commercial  sotware  will  have  more  accurate  formulas.   36
  • 118. 2 2 ⎛ σ ⎞ ( N = (#points  in  design)(replicates/point) ≅ 4 z1−α + z1−β 2 ) ⎜ ⎟ ⎝ δ ⎠ Disso%   WtRSD   Replicate  SD   σ 1.3   0.1   Difference  to  detect   δ 2.0   0.2   False  detecKon  probability   α 0.05   0.05   z1-­‐α/2   1.96   1.96   DetecKon  failure  probability   β 0.2   0.2   z1-­‐β 0.85   0.85   Required  number  of  trials   N   13.3   8   37
  • 119. Run A B C D E Confounding Table 1 - - - - + I = ABCDE 2 + - - - - A = BCDE 3 - + - - - B = ACDE 4 + + - - + C = ABDE 5 - - + - - D = ABCE 6 + - + - + E = ABCD 7 - + + - + AB = CDE 8 + + + - - AC = BDE 9 - - - + - AD = BCE 10 + - - + + AE = BCD 11 - + - + + BC = ADE 12 + + - + - BD = ACE 13 - - + + + BE = ACD 14 + - + + - CD = ABE 15 - + + + - CE = ABD 16 + + + + + DE = ABC 38
  • 120. ž  Sta;s;cal    test  for  presence  of  curvature  (lack  of  fit)   ž  Addi;onal  degrees  of  freedom  for  sta;s;cal  tests   ž  May  be  process  “target”  secngs   ž  Used  as  “controls”  in  sequen;al  experiments.   ž  Spaced  out  in  run  order  as  a  check  for  drit.   39
  • 121. Complete  RandomizaKon:     •  Is  the  cornerstone  of  sta;s;cal  analysis   •  Insures  observa;ons  are  independent     •  Protects  against  “lurking  variables”   •  Requires  a  process    (e.g.,  draw  from  a  hat)   •  May  be  costly/  imprac;cal   Restricted  RandomizaKon:   •  “Difficult  to  change  factors  (e.g.,  bath  temperature)  are  “batched”   •  Analysis  requires  special  approaches  (split  plot  analysis)   Blocking:   •  Include  uncontrollable  random  variable  (e.g.,  day)  in  design.   •  Assume  no  interac;on  between  block  variable  and  other  factors   •  Excellent  way  to  reduce  varia;on.   •  Rule  of  thumb:  “Block  when  you  can.  Randomize  when  you  can’t  block”.   40
  • 122. 41
  • 123. Confounding Table I = ABCDE Blk = AB = CDE A = BCDE B = ACDE C = ABDE D = ABCE E = ABCD AC = BDE AD = BCE AE = BCD BC = ADE BD = ACE BE = ACD CD = ABE CE = ABD DE = ABC 42
  • 124. StdOrder  RunOrder  CenterPt  Blocks  Disint  Drug%  Disint%  DrugPS  Lub%   11  1  1  2  A  5  1.0  10  2.0   13  2  1  2  A  5  4.0  10  1.0   19  3  0  2  A  10  2.5  25  1.5   15  4  1  2  A  5  1.0  40  1.0   18  5  1  2  B  15  4.0  40  2.0   14  6  1  2  B  15  4.0  10  1.0   20  7  0  2  B  10  2.5  25  1.5   16  8  1  2  B  15  1.0  40  1.0   17  9  1  2  A  5  4.0  40  2.0   12  10  1  2  B  15  1.0  10  2.0   9  11  0  1  A  10  2.5  25  1.5   7  12  1  1  B  5  4.0  40  1.0   1  13  1  1  B  5  1.0  10  1.0   2  14  1  1  A  15  1.0  10  1.0   4  15  1  1  A  15  4.0  10  2.0   3  16  1  1  B  5  4.0  10  2.0   10  17  0  1  B  10  2.5  25  1.5   5  18  1  1  B  5  1.0  40  2.0   8  19  1  1  A  15  4.0  40  1.0   6  20  1  1  A  15  1.0  40  2.0   43
  • 125. RunOrder  CenterPt  Blocks  Disint  Drug%  Disint%  DrugPS  Lub%  Disso%  WtRSD   1  1  2  A  5  1.0  10  2.0  100.4  1.6   2  1  2  A  5  4.0  10  1.0  103.0  2.1   3  0  2  A  10  2.5  25  1.5  88.8  1.6   4  1  2  A  5  1.0  40  1.0  94.3  2.3   5  1  2  B  15  4.0  40  2.0  78.9  1.6   6  1  2  B  15  4.0  10  1.0  102.9  2.0   7  0  2  B  10  2.5  25  1.5  90.9  1.4   8  1  2  B  15  1.0  40  1.0  91.8  2.2   9  1  2  A  5  4.0  40  2.0  76.3  1.4   10  1  2  B  15  1.0  10  2.0  103.4  1.6   11  0  1  A  10  2.5  25  1.5  89.9  1.8   12  1  1  B  5  4.0  40  1.0  91.8  2.2   13  1  1  B  5  1.0  10  1.0  101.2  2.2   14  1  1  A  15  1.0  10  1.0  101.8  2.6   15  1  1  A  15  4.0  10  2.0  102.5  1.4   16  1  1  B  5  4.0  10  2.0  100.3  1.5   17  0  1  B  10  2.5  25  1.5  91.2  1.6   18  1  1  B  5  1.0  40  2.0  76.3  1.3   19  1  1  A  15  4.0  40  1.0  92.4  2.1   20  1  1  A  15  1.0  40  2.0  76.8  1.6   44
  • 126. 45
  • 127. 46
  • 128. 47
  • 129. 48
  • 130. 49
  • 131. Source DF Adj MS F P Blocks 1 2.21 0.11 0.745 Disint 1 0.30 0.01 0.905 Drug% 1 2.94 0.15 0.707 Disint% 1 0.30 0.01 0.905 DrugPS 1 1174.45 58.93 0.000 Lub% 1 258.61 12.98 0.004 Curvature 1 32.68 1.64 0.225 Res Error 12 19.93 2.179  is  the  1-­‐α/2   th  quan;le  of  the  t-­‐ distribu;on  having   12  df.   50
  • 132. Source DF Adj MS F P Blocks 1 0.01090 0.51 0.487 Disint 1 0.03751 1.77 0.208 Drug% 1 0.00847 0.40 0.539 Disint% 1 0.08282 3.91 0.071 DrugPS 1 0.00189 0.09 0.770 Lub% 1 2.10586 99.46 0.000 Curvature 1 0.21198 10.01 0.008 Res Error 12 0.02117 51
  • 133. Disso%   •  Only  DrugPS  and  Lub%  show  significant  main  effects   •  Plot  of  Disso%  residuals  vs  predicted  Disso%  shows  systema;c   paKern.   •  The  residual  SD  (4.5)  is  considerably  larger  than  expected  (1.3)   WtRSD   •  Only  Lub%  shows  a  sta;s;cally  significant  main  effect   •  Curvature  is  significant  for  WtRSD   Therefore   •  Only  DrugPS  and  Lub%  need  to  be  considered  further   •  The  other  3  factors  can  fixed  at  nominal  levels.   •  The  predic;on  model  is  inadequate.  Addi;onal  experimenta;on   is  needed.   52
  • 134. Trial   DrugPS   Lub%   Disso%   1   10   1   C   2   10   2   A   2   A   F   B   3   40   1   D   Lub%   4   40   2   B   G   I   H   5   25   1   E   1   C   E   D   6   25   2   F   10   40   7   10   1.5   G   DrugPS   8   40   1.5   H   9   25   1.5   I   Disso = a + b × Lub% + c × DrugPS + d × Lub% × DrugPS + e × Lub%2 + f × DrugPS2 + ε Disso = a + b × Lub% + c × DrugPS + d × Lub% × DrugPS + ε 53
  • 135. Response   Factor   54
  • 136. Response surface design Factorial or fractional factorial screening design 55
  • 137. 56
  • 138. •     “Cube  Oriented”   •       3  or  5  levels  for  each  factor   In  3  factors     Factorial  or                                Center  Points       +   FracKonal  Factorial                      +            Axial  Points   =   Central  Composite  Design   57
  • 139. 58
  • 140. 59
  • 141. 60
  • 142. Std  Run  Center  Block  Disint  Drug%  Disint%  DrugPS  Lub%  Disso%  WtRSD   Order  Order  Point   11  1  1  2  A  5  1.0  10  2.0  100.4  1.6   13  2  1  2  A  5  4.0  10  1.0  103.0  2.1   19  3  0  2  A  10  2.5  25  1.5  88.8  1.6   15  4  1  2  A  5  1.0  40  1.0  94.3  2.3   18  5  1  2  B  15  4.0  40  2.0  78.9  1.6   …   10  17  0  1  B  10  2.5  25  1.5  91.2  1.6   5  18  1  1  B  5  1.0  40  2.0  76.3  1.3   8  19  1  1  A  15  4.0  40  1.0  92.4  2.1   6  20  1  1  A  15  1.0  40  2.0  76.8  1.6   21  21  -­‐1  3  A  10  2.5  10  1.5       22  22  -­‐1  3  A  10  2.5  40  1.5       23  23  -­‐1  3  A  10  2.5  25  1.0       24  24  -­‐1  3  A  10  2.5  25  2.0       25  25  0  3  A  10  2.5  25  1.5       26  26  0  3  A  10  2.5  25  1.5       61
  • 143. Std  Run  Center  Block  Disint  Drug%  Disint%  DrugPS  Lub%  Disso%  WtRSD   Order  Order  Point   11  1  1  2  A  5  1.0  10  2.0  100.4  1.6   13  2  1  2  A  5  4.0  10  1.0  103.0  2.1   19  3  0  2  A  10  2.5  25  1.5  88.8  1.6   15  4  1  2  A  5  1.0  40  1.0  94.3  2.3   18  5  1  2  B  15  4.0  40  2.0  78.9  1.6   …   10  17  0  1  B  10  2.5  25  1.5  91.2  1.6   5  18  1  1  B  5  1.0  40  2.0  76.3  1.3   8  19  1  1  A  15  4.0  40  1.0  92.4  2.1   6  20  1  1  A  15  1.0  40  2.0  76.8  1.6   21  21  -­‐1  3  A  10  2.5  10  1.5  101.8  1.7   22  22  -­‐1  3  A  10  2.5  40  1.5  84.0  1.7   23  23  -­‐1  3  A  10  2.5  25  1.0  96.7  2.1   24  24  -­‐1  3  A  10  2.5  25  2.0  82.8  1.4   25  25  0  3  A  10  2.5  25  1.5  92.3  1.5   26  26  0  3  A  10  2.5  25  1.5  91.9  1.2   62
  • 144. 63
  • 145. Y = a + b ⋅ DrugPS + c ⋅ Lub% + d ⋅ DrugPS2 + e ⋅ Lub%2 + f ⋅ Drug ⋅ PSLub% + ε 64
  • 146. 65
  • 147. 66
  • 148. 67
  • 149. Source DF Adj SS Adj MS F P Blocks 2 2.27 1.13 0.48 0.625 Regression Linear DrugPS 1 1331.87 1331.87 567.73 0.000 Lub% 1 340.61 340.61 145.19 0.000 Square DrugPS*DrugPS 1 27.39 27.39 11.68 0.003 Lub%*Lub% 1 0.14 0.14 0.06 0.811 Interaction DrugPS*Lub% 1 222.98 222.98 95.05 0.000 Residual Error 18 42.23 2.35 Lack-of-Fit 7 25.15 3.59 2.32 0.103 Pure Error 11 17.07 1.55 68
  • 150. Source DF Adj SS Adj MS F P Blocks 2 0.02341 0.01171 0.41 0.671 Regression Linear DrugPS 1 0.00118 0.00118 0.04 0.842 Lub% 1 2.31351 2.31351 80.72 0.000 Square DrugPS*DrugPS 1 0.04980 0.04980 1.74 0.204 Lub%*Lub% 1 0.09743 0.09743 3.40 0.082 Interaction DrugPS*Lub% 1 0.00234 0.00234 0.08 0.778 Residual Error 18 0.51589 0.02866 Lack-of-Fit 7 0.28587 0.04084 1.95 0.154 Pure Error 11 0.23003 0.02091 69
  • 151. StaKsKcal  Significance?   Model  Term   Disso%   WtRSD   DrugPS   P   P   Lub%   P   P   DrugPS2   P   P   Lub%2   ?   DrugPS  ×  Lub%   P   P   Lack  of  Fit   ?   Y = a + b ⋅ DrugPS + c ⋅ Lub% + d ⋅ DrugPS2 + e ⋅ Lub%2 + f ⋅ Drug ⋅ PSLub% + ε 70