SlideShare una empresa de Scribd logo
1 de 50
Chapter 9 - 1
ISSUES TO ADDRESS...
• When we mix two elements...
what equilibrium state do we get?
• In particular, if we specify...
--a composition (e.g., wt% Cu - wt% Ni), and
--a temperature (T )
then...
How many phases do we get?
What is the composition of each phase?
How much of each phase do we get (relative amount)?
Chapter 9: Phase Diagrams
Phase β
(A and B atoms)
Phase α
(A and B atoms)
Nickel atom
Copper atom
Structure
Properties
Processing
Chapter 9 - 2
Phase Equilibria:
Review: Solubility Limit
Introduction
- Solutions – solid solutions, single phase (e.g. syrup)
- Mixtures – more than one phase (syrup and solid sugar)
Phase: Homogeneous portion of a system that has uniform physical and
chemical properties
Solubility Limit:
Max concentration for which
only a single phase solution occurs.
Q: What is the solubility limit at 20°C?
Answer: 65 wt% sugar.
If Co < 65 wt% sugar: syrup
If Co > 65 wt% sugar: syrup + sugar.
65
Sucrose/Water Phase Diagram
Pure
Sugar
Temperature(°C)
0 20 40 60 80 100
Co =Composition (wt% sugar)
L
(liquid solution
i.e., syrup)
Solubility
Limit L
(liquid)
+
S
(solid
sugar)
20
40
60
80
100
Pure
Water
Chapter 9 - 3
• Components:
The elements or compounds which are present in the mixture (e.g., Al and Cu)
• Phases:
The physically and chemically distinct material regions that result (e.g., α and β).
•Equilibrium
No change with time – fixed composition for each component
Al-Cu Alloy
Components and Phases
α (darker phase)
Includes Al and Cu
β (lighter phase)
Includes Al and Cu
Two phases
Two Components
Chapter 9 - 4
Effect of T & Composition (Co)
• Changing T can change # of phases:
D (100°C,90)
2 phases
B (100°C,70)
1 phase
path A to B.
• Changing Co can change # of phases: path B to D.
A (20°C,70)
2 phases
70 80 1006040200
Temperature(°C)
Co =Composition (wt% sugar)
L
(liquid solution
i.e., syrup)
20
100
40
60
80
0
L
(liquid)
+
S
(solid
sugar)
water-
sugar
system
Chapter 9 - 5
Phase Diagrams
Types of phase diagrams depend on Solubility
• Isomorphous phase diagram (complete solubility)
• Eutectic phase diagram (partial solubility)
• Complex phase diagram (…….)
How to obtain phase diagrams ?
- From cooling curves for various starting solutions
(Thermal method)
• Thermodynamics: Phase Diagrams Indicate phases as function of T, Co, and P.
• For this course:
-binary systems: just 2 components.
-independent variables: T and Co (P = 1 atm is almost always used).
Phase Diagram:
A Plot of T versus C indicating various boundaries between phases
T
Time
?
Phase Change
T
composition
Uses of Phase Diagrams:
- No. of phases
- Composition of each phase
- Relative amount of each phase
+ Predict the microstructure
Chapter 9 - 6
Phase Equilibria - Solutions
Crystal
Structure
electroneg r (nm)
Ni FCC 1.9 0.1246
Cu FCC 1.8 0.1278
Both metals have
•Nearly the same atomic radius
•The same crystal structure (FCC)
•similar electronegativities
(W. Hume – Rothery rules) suggesting high mutual solubility.
Simple Solution System (e.g., Ni-Cu solution)
Remember
Ni and Cu are totally miscible (soluble) in all proportions (compositions).
ONE PHASE ALWAYS – Isomorphous !
Chapter 9 - 7
Phase Diagrams- Metals
• 2 phases:
L (liquid)
α (FCC solid solution)
• 3 phase fields:
L
L + α
α
Phase Diagram for Cu-Ni system
20 40 60 80 1000 wt% Ni
1000
1100
1200
1300
1400
1500
1600
T(°C)
L (liquid)
α
(FCC solid Soln)
L +αLiquidus line
Solidus line
Isomorphous Phase Diagram
Complete solubility - one phase field extends from 0 to 100 wt% Ni.
Chapter 9 - 8
Phase Change
• Phase boundary:
Lines between different phases e.g.
– Liquid
– solid
• one phase
• two phases …etc)
• Phase Change:
– Solidification (or melting)
– Phase Reaction: one phase gives DIRECTLY two phases
e.g.
Liquid  Solid phase 1 + Solid Phase 2 (both insoluble)
• This occurs at
– Certain (fixed) temperature: TE
– Certain (fixed) composition: CE
• Eutectic Phase Reaction:
L α + β
• There are other types of phase reactions (Later)
Chapter 9 - 9
Cooling Curves
There are various types of cooling curves:
Depending on composition (characteristics)
1. Pure Element
2. Mixture of soluble 2 elements
3. Mixture of Partially Soluble 2 elements
4. Mixtures undergoing Phase Reactions
1. At the composition for phase reaction
2. Before the composition for phase reaction
Chapter 9 - 10
Types of Cooling Curves
2) Mixture of soluble 2 elements
Time
L
L α
α
T
3) Phase Reaction at CE 3) Phase Reaction: Co > CE
Time
L
L α + β α + β
T
L α
T
Time
L
L α (A or B)
α
1) Pure Element
Tmelting
Time
L
L α + β
α + β
T
TE
Chapter 9 - 11
Constructing Phase Diagrams
Thermal Method
• Start with several different solutions
• Each solution at certain co
• Prepare the solutions in liquid form (melting)
• Cool each solution while recording T versus time
• Plot the cooling curve for each solution
• At each phase change: there are changes in the slope
– Latent Heat
– Change in the properties (specific heat)
– Phase reaction (later)
• Project cooling curves on T versus co plot.
• Connect the points from projection creating boundaries.
• Label different obtained areas and boundaries.
Chapter 9 - 12
Constructing Isomorphous Phase Diagrams
Cooling Curves at Various Initial Co Phase Diagram T verus Co
T
Composition
Time
Chapter 9 - 13
wt% Ni20 40 60 80 1000
1000
1100
1200
1300
1400
1500
1600
T(°C)
L (liquid)
α
(FCC solid
solution)
L
+ α
liquidus
solidus
Cu-Ni
phase
diagram
Using Phase Diagrams:
# and types of phases
Rule 1: If we know T and Co, then we know:
- Number and types of phases present.
• Examples:
A(1100°C, 60):
1 phase: α
B(1250°C, 35):
2 phases: L + α
B(1250°C,35) A(1100°C,60)
Chapter 9 - 14
wt% Ni
20
1200
1300
T(°C)
L (liquid)
α
(solid)L +α
liquidus
solidus
30 40 50
L +α
Cu-Ni
system
Using Phase Diagrams:
composition of phases
Rule 2: If we know T and Co, then we know:
- the composition of each phase.
• Examples:
TA
A
35
Co
32
CL
At TA = 1320°C:
Only Liquid (L)
CL = Co ( = 35 wt% Ni)
At TB = 1250°C:
Both α and L
CL = Cliquidus ( = 32 wt% Ni here)
Cα = Csolidus ( = 43 wt% Ni here)
At TD = 1190°C:
Only Solid ( α)
Cα = Co ( = 35 wt% Ni)
Co = 35 wt% Ni
B
TB
D
TD
tie line
4
Cα
3
Chapter 9 - 15
Rule 3: If we know T and Co, then we know:
--the relative amount of each phase (given in wt%).
• Examples:
At TA: Only Liquid (L)
WL = 1.0 , W =α = 0
At TD: Only Solid ( α)
WL = 0, Wα = 1.0
Co = 35 wt% Ni
Using Phase Diagrams:
weight fractions of phases
wt% Ni
20
1200
1300
T(°C)
L (liquid)
α
(solid)L +α
liquidus
solidus
30 40 50
L +α
Cu-Ni
system
TA
A
35
Co
32
CL
B
TB
D
TD
tie line
4
Cα
3
R S
At TB: Both α and L
73.0
3243
3543
=
−
−
=
= 0.27
WL
= S
R +S
Wα
= R
R +S
Chapter 9 - 16
• Tie line – connects the phases in equilibrium with
each other - essentially an isotherm
The Lever Rule
How much of each phase?
ThinkThink of it as a lever (teeter-totter)
ML
Mα
R S
RMSM L ⋅=⋅α
L
L
LL
L
L
CC
CC
SR
R
W
CC
CC
SR
S
MM
M
W
−
−
=
+
=
−
−
=
+
=
+
=
α
α
α
α
α
00
wt% Ni
20
1200
1300
T(°C)
L (liquid)
α
(solid)L +α
liquidus
solidus
30 40 50
L +α
B
TB
tie line
CoCL Cα
SR
Chapter 9 - 17
wt% Ni
20
1200
1300
30 40 50
1100
L (liquid)
α
(solid)
L +
α
L +
α
T(°C)
A
35
Co
L: 35wt%Ni
Cu-Ni
system
Observe the microstructure
while going down (cooling)
at the same composition.
• Consider
Co = 35 wt%Ni.
Microstructure - Cooling in a Cu-Ni Binary
4635
43
32
α: 43 wt% Ni
L: 32 wt% Ni
L: 24 wt% Ni
α: 36 wt% Ni
Bα: 46 wt% Ni
L: 35 wt% Ni
C
D
E
24 36
Chapter 9 - 18
• Cα changes as we solidify.
• Cu-Ni case:
• Fast rate of cooling:
Cored structure
• Slow rate of cooling:
Equilibrium structure
First α to solidify has Cα = 46 wt% Ni.
Last α to solidify has Cα = 35 wt% Ni.
Cored vs Equilibrium Phases
First α to solidify:
46 wt% Ni
Uniform Cα:
35 wt% Ni
Last α to solidify:
< 35 wt% Ni
Chapter 9 - 19
Mechanical Properties: Cu-Ni System
• Effect of solid solution strengthening on:
--Tensile strength (TS)
- Peak as a function of Co
TensileStrength(MPa)
Composition, wt% Ni
Cu Ni
0 20 40 60 80 100
200
300
400
TS for
pure Ni
TS for pure Cu
--Ductility (%EL,%AR)
- Min. as a function of Co
Elongation(%EL) Composition, wt% Ni
Cu Ni
0 20 40 60 80 100
20
30
40
50
60
%EL for
pure Ni
%EL for pure Cu
Chapter 9 - 20
Eutectic Phase Diagram
With Eutectic Phase Reaction
L(CE) α(CαE) + β(CβE)
The phase diagram is characterized with:
• 3 single phase regions (L, α and β)
• Partial Solubility – Solubility Limit of
A in B forming β
B in A forming α
Occurs at
L (liquid)
α L + α L+ββ
α + β
Wt% A: Co
1000
T
CE
TE
: Eutectic Composition• CE
• TE : Eutectic Temperature
Remember Phase Reaction at CE
Time
L
L α + β
α + β
T
TE
Chapter 9 - 21
Eutectic Phase Diagram – Cooling Curves
L
α L+α L+ββ
α+β
Wt% A: Co
1000
T(°C)
T
Time
L
L α
α
1) Pure A or B
Tmelting
2) Giving α or β
Time
L
L α
α
T
Time
L
L α + β α + β
T
L α
Time
L
L α + β
α + β
T
TE
What is the difference
in this side
Chapter 9 - 22
Maximum solubility of A in B
L
α L + α L+ββ
α + β
Wt% A: Co
1000
T(°C)
Liquidus
Solidus
Solvus
Eutectic Reaction
Eutectic Phase Diagram
Maximum solubility of B in A
Boundaries - lines:
•Liquidus
•Solidus
•Solvus
Now, apply previous rules ?
On real systems
Chapter 9 - 23
Chapter 9 - 24
Chapter 9 - 25
Example-Eutectic System
α: mostly Cu
β: mostly Ag
• TE : No liquid below TE
Ex.: Cu-Ag system
L (liquid)
α L + α
L+ββ
α + β
Co , wt% Ag
20 40 60 80 1000
200
1200
T(°C)
400
600
800
1000
CE
TE
8.0%
CE=71.9%
91.2%
TE=779°C
Given T and C Values
are characteristics
Of Cu-Ag system
Chapter 9 - 26
L+α
L+β
α + β
200
T(°C)
18.3
C, wt% Sn
20 60 80 1000
300
100
L (liquid)
α 183°C
61.9 97.8
β
• For a 40 wt% Sn-60 wt% Pb alloy at 150°C, find...
--the phases present: Pb-Sn
system
EX: Pb-Sn Eutectic System (1)
α + β
--compositionscompositions of phases:
CO = 40 wt% Sn
--the relative amountrelative amount
of each phase:
150
40
Co
11
Cα
99
Cβ
SR
Cα = 11 wt% Sn
Cβ = 99 wt% Sn
Wα=
Cβ - CO
Cβ - Cα
=
99 - 40
99 - 11
=
59
88
= 0.67
S
R+S
=
Wβ =
CO - Cα
Cβ - Cα
=
R
R+S
=
29
88
= 0.33 (or 1 – 0.67)=
40 - 11
99 - 11
Chapter 9 - 27
L+β
α + β
200
T(°C)
C, wt% Sn
20 60 80 1000
300
100
L (liquid)
α β
L+α
183°C
• For a 40 wt% Sn-60 wt% Pb alloy at 200200°°CC, find...
--the phases present: Pb-Sn
system
EX: Pb-Sn Eutectic System (2)
α + L
--compositionscompositions of phases:
CO = 40 wt% Sn
--the relative amountrelative amount
of each phase:
Wα =
CL - CO
CL - Cα
=
46 - 40
46 - 17
=
6
29
= 0.21
WL =
CO - Cα
CL - Cα
=
23
29
= 0.79
40
Co
46
CL
17
Cα
220
SR
Cα = 17 wt% Sn
CL = 46 wt% Sn
Chapter 9 - 28
• Co < 2 wt% Sn
• Result:
--at extreme ends
--polycrystal of α grains
i.e., only one solid phase.
Microstructures
in Eutectic Systems: I
0
L+ α
200
T(°C)
Co, wt% Sn
10
2
20
Co
300
100
L
α
30
α+β
400
(room T solubility limit)
TE
(Pb-Sn
System)
α
L
L: Co wt% Sn
α: Co wt% Sn
Depends on the composition
Chapter 9 - 29
• 2 wt% Sn < Co < 18.3 wt% Sn
• Result:
 Initially liquid + α
 then α alone
 finally two phases
 α polycrystal
 fine β-phase inclusions
Microstructures
in Eutectic Systems: II
Pb-Sn
system
L + α
200
T(°C)
Co , wt% Sn
10
18.3
200
Co
300
100
L
α
30
α+ β
400
(sol. limit at TE)
TE
2
(sol. limit at Troom)
L
α
L: Co wt% Sn
α
β
α: Co wt% Sn
Chapter 9 - 30
• Co = CE
• Result: Eutectic microstructure (lamellar structure)
--alternating layers (lamellae) of α and β crystals.
Microstructures
in Eutectic Systems: III
160µm
Micrograph of Pb-Sn
eutectic
microstructure
Pb-Sn
system
L+β
α + β
200
T(°C)
C, wt% Sn
20 60 80 1000
300
100
L
α β
L+α
183°C
40
TE
18.3
α: 18.3 wt%Sn
97.8
β: 97.8 wt% Sn
CE
61.9
L: Co wt% Sn
Chapter 9 - 31
Lamellar Eutectic Structure
Chapter 9 - 32
• 18.3 wt% Sn < Co < 61.9 wt% Sn
• Result: α crystals and a eutectic microstructure
Microstructures
in Eutectic Systems: IV
18.3 61.9
SR
97.8
SR
primary α
eutectic α
eutectic β
Pb-Sn
system
L+β200
T(°C)
Co, wt% Sn
20 60 80 1000
300
100
L
α β
L+α
40
α+β
TE
L: Co wt% Sn Lα
L
α
Chapter 9 - 33
• 18.3 wt% Sn < Co < 61.9 wt% Sn
• Result: α crystals and a eutectic microstructure
Microstructures
in Eutectic Systems: IV
18.3 61.9
SR
97.8
SR
primary α
eutectic α
eutectic β
WL = (1-Wα) = 0.50
Cα = 18.3 wt% Sn
CL = 61.9 wt% Sn
S
R + S
Wα‘ = = 0.50
• Just above TE :
• Just below TE :
Cα = 18.3 wt% Sn
Cβ = 97.8 wt% Sn
S
R + S
Wα= = 0.73
Wβ = 0.27
Pb-Sn
system
L+β200
T(°C)
Co, wt% Sn
20 60 80 1000
300
100
L
α β
L+α
40
α+β
TE
L: Co wt% Sn Lα
L
α
What is the fraction of
Eutectic α ?
Pro-eutectic (primary) α ?
Chapter 9 - 34
L+α
L+β
α + β
200
Co, wt% Sn20 60 80 1000
300
100
L
α β
TE
40
(Pb-Sn
System)
Hypoeutectic & Hypereutectic
160 µm
eutectic micro-constituent
hypereutectic: (illustration only)
β
β
β
β
β
β
175 µm
α
α
α
α
α
α
hypoeutectic: Co = 50 wt% Sn
T(°C)
61.9
eutectic
eutectic: Co =61.9wt% Sn
Chapter 9 - 35
Intermetallic Compounds
Note: intermetallic compound forms a line - not an area like α ?
Mg2Pb
In Previous Phase diagrams
α and β are terminal solid
solutions
Can we obtain
other intermediate phases ?
Now: Mg2Pb
• is an intermetallic compound
• with a ratio (2:1) (Mg:Pb)-Molar
• melts at a fixed temperature M
• Cooling curve ???
Because stoichiometry (i.e. composition) is exact: Calculate ?
Calculate Wt% Pb = 207 /(207+2(24.3)) X 100 = 81 %
Chapter 9 - 36
Same Story ?
• No. and type of each phase
• Composition of each phase
• Relative amount or fraction of each phase
• Distinguish between
– primary phase
– Eutectic phase
• Microstructure
• Cooling Curves
• Fill the regions with types of phases?
Chapter 9 - 37
Eutectoid & Peritectic Phase Reactions
• Eutectic - liquid in equilibrium with two solids
L α + βcool
heat
intermetallic compound
- cementite
cool
heat
• Eutectoid - solid phase in equilibrium with two solid
phases
S2 S1+S3
γ α + Fe3C (727ºC)
cool
heat
• Peritectic - liquid + solid 1  solid 2 (Fig 9.21)
S1 + L S2
δ + L γ (1493ºC)
Chapter 9 - 38
Complex Phase Diagrams
α and η are terminal solid solutions - β, β’, γ, δ and ε are intermediate solid solutions.
• new phenomena exist: ……… reaction ………. reaction
Chapter 9 - 39
Eutectoid & Peritectic
Cu-Zn Phase diagram
Eutectoid transition δ γ + ε
Peritectic transition γ + L δ
Chapter 9 - 40
Phase Diagram with Eutectoid Phase Reactions
The eutectoid (eutectic-like in Greek) reaction is similar to the eutectic
This phase diagram includes both:
Eutectic ReactionEutectoid Reaction
Our Interest In
Fe-C phase diagram
Chapter 9 - 41
Iron-Carbon (Fe-C) Phase Diagram
• 2 important points
-Eutectoid (B):
γ ⇒ α +Fe3C
-Eutectic (A):
L ⇒ γ +Fe3C
Fe3C(cementite)
1600
1400
1200
1000
800
600
400
0 1 2 3 4 5 6 6.7
L
γ
(austeniteaustenite)
γ+L
γ+Fe3C
α+Fe3C
α+γ
L+Fe3C
δ
(Fe) Co, wt% C
1148°C
T(°C)
α 727°C = Teutectoid
A
SR
4.30
Result: Pearlite =
alternating layers of
α and Fe3C phases
120 µm
γ γ
γγ
R S
0.76
CeutectoidB
Fe3C (cementite-hardhard)
α(ferriteferrite-softsoft)
Chapter 9 - 42
Development of Microstructure in Iron-Carbon alloys
PearlitePearlite Structure
By DiffusionDiffusion
Note: remember the names! Austenite, ferriteferrite, cemetitecemetite and pearlitepearlite
Chapter 9 - 43
Hypoeutectoid Steel
Fe3C(cementite)
1600
1400
1200
1000
800
600
400
0 1 2 3 4 5 6 6.7
L
γ
(austenite)
γ+L
γ + Fe3C
α+ Fe3C
L+Fe3C
δ
(Fe) Co, wt% C
1148°C
T(°C)
α
727°C
(Fe-C
System)
C0
0.76
proeutectoid ferritepearlite
100 µm HypoeutectoidHypoeutectoid
steel
R S
α
wα =S/(R+S)
wFe3C =(1-wα)
wpearlite = wγ
pearlite
r s
wα =s/(r+s)
wγ =(1- wα)
γ
γ γ
γα
α
α
γγ
γ γ
γ γ
γγ
Chapter 9 - 44
Hypereutectoid Steel
Fe3C(cementite)
1600
1400
1200
1000
800
600
400
0 1 2 3 4 5 6 6.7
L
γ
(austenite)
γ+L
γ +Fe3C
α +Fe3C
L+Fe3C
δ
(Fe) Co, wt%C
1148°C
T(°C)
α
(Fe-C
System)
0.76
Co
proeutectoid FeFe33CC
60 µmHypereutectoid
steel
pearlitepearlite
R S
wα =S/(R+S)
wFe3C =(1-wα)
wpearlite = wγ
pearlite
sr
wFe3C =r/(r+s)
wγ =(1-w Fe3C )
Fe3C
γγ
γ γ
γγ
γ γ
γγ
γ γ
Chapter 9 - 45
Phases in Fe–Fe3C Phase Diagram
α -ferrite - solid solution of C in …….. Fe
• Stable form of iron at room temperature.
• The maximum solubility of C is 0.022 wt% (interstitial solubility)
• Soft and relatively easy to deform
+ Fe-C liquid solution
γ -austenite - solid solution of C in …….. Fe
The maximum solubility of C is 2.14 wt % at 1147°C.
Interstitial lattice positions are much larger than ferrite (higher C%)
Is not stable below the eutectic temperature (727 °C) unless cooled rapidly
(Chapter 10).
δ -ferrite solid solution of C in ……. Fe
The same structure as α -ferrite
Stable only at high T, above 1394 °C
Also has low solubility for carbon (BCC)
Fe3C (iron carbide or cementite)
This intermetallic compound is metastable,
it remains as a compound indefinitely at room T,
but decomposes (very slowly, within several years) into α -Fe and C
(graphite) at 650 - 700 °C
Chapter 9 - 46
Example: Phase Equilibria
For a 99.6 wt% Fe-0.40 wt% C at a temperature
just below the eutectoid, determine the
following
a) composition of Fe3C and ferrite (α)
b) the amount of carbide (cementite) in grams
that forms per 100 g of steel
c) the amount of pearlite and proeutectoid
ferrite (α)
Chapter 9 - 47
Example – Fe-C System
g3.94
g5.7CFe
g7.5100
022.07.6
022.04.0
100x
CFe
CFe
3
CFe3
3
3
=α
=
=
−
−
=
−
−
=
α+ α
α
x
CC
CCo
b) the amount of cementite in grams
that forms per 100 g of steel
a) composition of Fe3C and ferrite (α)
CO = 0.40 wt% C
Cα = 0.022 wt% C
CFe C = 6.70 wt% C
3
FeC(cementite)
1600
1400
1200
1000
800
600
400
0 1 2 3 4 5 6 6.7
L
γ
(austenite)
γ+L
γ + Fe3C
α + Fe3C
L+Fe3C
δ
Co, wt% C
1148°C
T(°C)
727°C
CO
R S
CFe C3Cα
Chapter 9 - 48
Chapter 9 – Phase Equilibria
c. the amount of pearlite and proeutectoid ferrite (α)
note: amount of pearlitepearlite = amount of γγ just abovejust above TE
Co = 0.40 wt% C
Cα = 0.022 wt% C
Cpearlite = Cγ = 0.76 wt% C
γ
γ+α
=
Co −Cα
Cγ−Cα
x 100 =51.2 g
pearlite = 51.2 g
proeutectoid α = 48.8 g
FeC(cementite)
1600
1400
1200
1000
800
600
400
0 1 2 3 4 5 6 6.7
L
γ
(austenite)
γ+L
γ + Fe3C
α + Fe3C
L+Fe3C
δ
Co, wt% C
1148°C
T(°C)
727°C
CO
R S
CγCα
Pearlite include ?
Eutectoid Fe3CFe3C
+
Eutectoid ferriteferrite αα
Chapter 9 - 49
Alloying Steel with More Elements
• Teutectoid changes: • Ceutectoid changes:
TEutectoid(°C)
wt. % of alloying elements
Ti
Ni
Mo
Si
W
Cr
Mn
wt. % of alloying elements
Ceutectoid(wt%C)
Ni
Ti
Cr
Si
Mn
W
Mo
Chapter 9 - 50
• Phase diagrams are useful tools to determine:
--the number and types of phases,
--the wt% of each phase,
--and the composition of each phase
for a given T and composition of the system.
• Alloying to produce a solid solution usually
--increases the tensile strength (TS)
--decreases the ductility.
• Binary eutectics and binary eutectoids allow for
a range of microstructures.
Summary

Más contenido relacionado

La actualidad más candente (20)

Phase diagram and equilibrium diagram
Phase diagram and equilibrium diagramPhase diagram and equilibrium diagram
Phase diagram and equilibrium diagram
 
fe-c diagram
fe-c diagramfe-c diagram
fe-c diagram
 
Diffusion
DiffusionDiffusion
Diffusion
 
Phase transition:A brief introduction
Phase transition:A brief introductionPhase transition:A brief introduction
Phase transition:A brief introduction
 
Chapter 9 phase diagrams 1
Chapter 9 phase diagrams 1Chapter 9 phase diagrams 1
Chapter 9 phase diagrams 1
 
Crystal Structure, BCC ,FCC,HCP
Crystal Structure, BCC ,FCC,HCPCrystal Structure, BCC ,FCC,HCP
Crystal Structure, BCC ,FCC,HCP
 
Binary phase diagrams
Binary phase diagramsBinary phase diagrams
Binary phase diagrams
 
Crystal structures
Crystal structuresCrystal structures
Crystal structures
 
Synthesis of hexaammine cobalt (iii) chloride
Synthesis of hexaammine cobalt (iii) chlorideSynthesis of hexaammine cobalt (iii) chloride
Synthesis of hexaammine cobalt (iii) chloride
 
Topic 7 kft 131
Topic 7 kft 131Topic 7 kft 131
Topic 7 kft 131
 
Martensitic Transformations in steels
Martensitic Transformations in steelsMartensitic Transformations in steels
Martensitic Transformations in steels
 
Dendritic growth in pure metals
Dendritic growth in pure metalsDendritic growth in pure metals
Dendritic growth in pure metals
 
Ch09
Ch09Ch09
Ch09
 
Crystal imperfections
Crystal imperfectionsCrystal imperfections
Crystal imperfections
 
solid solutions
solid solutionssolid solutions
solid solutions
 
Phase diagrams
Phase diagramsPhase diagrams
Phase diagrams
 
PHASE DIAGRAMS
PHASE DIAGRAMSPHASE DIAGRAMS
PHASE DIAGRAMS
 
Corrosion & its control measures
Corrosion & its control measuresCorrosion & its control measures
Corrosion & its control measures
 
Gibbs phase rule and lever rule
Gibbs phase rule and lever ruleGibbs phase rule and lever rule
Gibbs phase rule and lever rule
 
Order disorder transformation( the kinetics behind)
Order disorder transformation( the kinetics behind)Order disorder transformation( the kinetics behind)
Order disorder transformation( the kinetics behind)
 

Destacado (20)

INTERMETALLICS
INTERMETALLICSINTERMETALLICS
INTERMETALLICS
 
Cooling curve
Cooling curveCooling curve
Cooling curve
 
INTERMETALLICS
INTERMETALLICS INTERMETALLICS
INTERMETALLICS
 
phase diagrams
 phase diagrams phase diagrams
phase diagrams
 
Ch10 m
Ch10 mCh10 m
Ch10 m
 
Empirical and molecula formula
Empirical and molecula formulaEmpirical and molecula formula
Empirical and molecula formula
 
Chemistry
ChemistryChemistry
Chemistry
 
Chem30 databooklet
Chem30 databookletChem30 databooklet
Chem30 databooklet
 
chemical bonding
chemical bondingchemical bonding
chemical bonding
 
Atomic Science Year 10
Atomic Science Year 10Atomic Science Year 10
Atomic Science Year 10
 
Mec281 lecture
Mec281 lectureMec281 lecture
Mec281 lecture
 
Valence Shell of the Atom
Valence Shell of the AtomValence Shell of the Atom
Valence Shell of the Atom
 
Sexual reproduction in plants part 1
Sexual reproduction in plants part 1Sexual reproduction in plants part 1
Sexual reproduction in plants part 1
 
Bonding Basics
Bonding BasicsBonding Basics
Bonding Basics
 
structure of the atom
 structure of the atom structure of the atom
structure of the atom
 
Tang 08 hybridization
Tang 08   hybridizationTang 08   hybridization
Tang 08 hybridization
 
Valence Electrons Worksheet
Valence Electrons WorksheetValence Electrons Worksheet
Valence Electrons Worksheet
 
If chemistry workbook ch099 a
If chemistry workbook ch099 aIf chemistry workbook ch099 a
If chemistry workbook ch099 a
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
An Elementary Introduction to Intermetallics in Ball Bonds
An Elementary Introduction to Intermetallics in Ball BondsAn Elementary Introduction to Intermetallics in Ball Bonds
An Elementary Introduction to Intermetallics in Ball Bonds
 

Similar a Ch09 m

CHAPTER 9.1 - PHASE DIAGRAMS FOR METALLIC SYSTEMS.pdf
CHAPTER 9.1 - PHASE DIAGRAMS FOR METALLIC SYSTEMS.pdfCHAPTER 9.1 - PHASE DIAGRAMS FOR METALLIC SYSTEMS.pdf
CHAPTER 9.1 - PHASE DIAGRAMS FOR METALLIC SYSTEMS.pdfMuhammadMirwazi
 
Phase diagram type 1 (1) (1).pdf
Phase diagram type 1 (1) (1).pdfPhase diagram type 1 (1) (1).pdf
Phase diagram type 1 (1) (1).pdfMarwanEmad12
 
10[1].Phase Diagrams.ppt
10[1].Phase Diagrams.ppt10[1].Phase Diagrams.ppt
10[1].Phase Diagrams.pptVipul Saxena
 
Ch09 phase diagm-sent-fall2016
Ch09 phase diagm-sent-fall2016Ch09 phase diagm-sent-fall2016
Ch09 phase diagm-sent-fall2016Savanna Holt
 
Phase diagram (Muda Ibrahim)
Phase diagram (Muda Ibrahim)Phase diagram (Muda Ibrahim)
Phase diagram (Muda Ibrahim)Muda Ibrahim
 
02-MEC121-Lecture 3-Iron-Carbon phase diagram .pdf
02-MEC121-Lecture 3-Iron-Carbon phase diagram .pdf02-MEC121-Lecture 3-Iron-Carbon phase diagram .pdf
02-MEC121-Lecture 3-Iron-Carbon phase diagram .pdfDalia Nabil
 
Lab 2 - The Phase Rule , binary phase -new.ppt
Lab 2 - The Phase Rule , binary phase  -new.pptLab 2 - The Phase Rule , binary phase  -new.ppt
Lab 2 - The Phase Rule , binary phase -new.pptMihirMandal7
 
iron-iron carbide Phase diagrams
iron-iron carbide Phase diagramsiron-iron carbide Phase diagrams
iron-iron carbide Phase diagramsWaheed Hassan
 
8 diagrama de fases aula
8 diagrama de fases aula8 diagrama de fases aula
8 diagrama de fases aulaRafael Thomas
 
Phase Equilibrium
Phase EquilibriumPhase Equilibrium
Phase EquilibriumSHILPA JOY
 
Lec Week 9 Phase diagrams(1).pptx
Lec Week 9 Phase diagrams(1).pptxLec Week 9 Phase diagrams(1).pptx
Lec Week 9 Phase diagrams(1).pptxMaaz884127
 
Metr3210 clausius-clapeyron
Metr3210 clausius-clapeyronMetr3210 clausius-clapeyron
Metr3210 clausius-clapeyronKỳ Lê Xuân
 
unit 2 pdf on applied physics of enginnering
unit 2 pdf on applied physics of enginneringunit 2 pdf on applied physics of enginnering
unit 2 pdf on applied physics of enginneringShivangiGupta205186
 

Similar a Ch09 m (20)

CHAPTER 9.1 - PHASE DIAGRAMS FOR METALLIC SYSTEMS.pdf
CHAPTER 9.1 - PHASE DIAGRAMS FOR METALLIC SYSTEMS.pdfCHAPTER 9.1 - PHASE DIAGRAMS FOR METALLIC SYSTEMS.pdf
CHAPTER 9.1 - PHASE DIAGRAMS FOR METALLIC SYSTEMS.pdf
 
Phase diagram type 1 (1) (1).pdf
Phase diagram type 1 (1) (1).pdfPhase diagram type 1 (1) (1).pdf
Phase diagram type 1 (1) (1).pdf
 
10[1].Phase Diagrams.ppt
10[1].Phase Diagrams.ppt10[1].Phase Diagrams.ppt
10[1].Phase Diagrams.ppt
 
Ch09 phase diagm-sent-fall2016
Ch09 phase diagm-sent-fall2016Ch09 phase diagm-sent-fall2016
Ch09 phase diagm-sent-fall2016
 
Phase diagram (Muda Ibrahim)
Phase diagram (Muda Ibrahim)Phase diagram (Muda Ibrahim)
Phase diagram (Muda Ibrahim)
 
02-MEC121-Lecture 3-Iron-Carbon phase diagram .pdf
02-MEC121-Lecture 3-Iron-Carbon phase diagram .pdf02-MEC121-Lecture 3-Iron-Carbon phase diagram .pdf
02-MEC121-Lecture 3-Iron-Carbon phase diagram .pdf
 
Lab 2 - The Phase Rule , binary phase -new.ppt
Lab 2 - The Phase Rule , binary phase  -new.pptLab 2 - The Phase Rule , binary phase  -new.ppt
Lab 2 - The Phase Rule , binary phase -new.ppt
 
iron-iron carbide Phase diagrams
iron-iron carbide Phase diagramsiron-iron carbide Phase diagrams
iron-iron carbide Phase diagrams
 
8 diagrama de fases aula
8 diagrama de fases aula8 diagrama de fases aula
8 diagrama de fases aula
 
Phase Equilibrium
Phase EquilibriumPhase Equilibrium
Phase Equilibrium
 
Lec Week 9 Phase diagrams(1).pptx
Lec Week 9 Phase diagrams(1).pptxLec Week 9 Phase diagrams(1).pptx
Lec Week 9 Phase diagrams(1).pptx
 
Phy351 ch 5
Phy351 ch 5Phy351 ch 5
Phy351 ch 5
 
Phy351 ch 5
Phy351 ch 5Phy351 ch 5
Phy351 ch 5
 
Metr3210 clausius-clapeyron
Metr3210 clausius-clapeyronMetr3210 clausius-clapeyron
Metr3210 clausius-clapeyron
 
EMM - Unit 1.pptx
EMM - Unit 1.pptxEMM - Unit 1.pptx
EMM - Unit 1.pptx
 
EM.pptx
EM.pptxEM.pptx
EM.pptx
 
Chap1,part2
Chap1,part2Chap1,part2
Chap1,part2
 
phasediagram
phasediagramphasediagram
phasediagram
 
unit 2 pdf on applied physics of enginnering
unit 2 pdf on applied physics of enginneringunit 2 pdf on applied physics of enginnering
unit 2 pdf on applied physics of enginnering
 
1.5 elimination reaction
1.5 elimination reaction1.5 elimination reaction
1.5 elimination reaction
 

Más de Ibrahim Abuawwad (7)

Ch10
Ch10Ch10
Ch10
 
Ch06 8-m-more
Ch06 8-m-moreCh06 8-m-more
Ch06 8-m-more
 
Ch05
Ch05Ch05
Ch05
 
Ch04
Ch04Ch04
Ch04
 
Ch03 m
Ch03 mCh03 m
Ch03 m
 
Ch02 m
Ch02 mCh02 m
Ch02 m
 
Ch01 m
Ch01 mCh01 m
Ch01 m
 

Ch09 m

  • 1. Chapter 9 - 1 ISSUES TO ADDRESS... • When we mix two elements... what equilibrium state do we get? • In particular, if we specify... --a composition (e.g., wt% Cu - wt% Ni), and --a temperature (T ) then... How many phases do we get? What is the composition of each phase? How much of each phase do we get (relative amount)? Chapter 9: Phase Diagrams Phase β (A and B atoms) Phase α (A and B atoms) Nickel atom Copper atom Structure Properties Processing
  • 2. Chapter 9 - 2 Phase Equilibria: Review: Solubility Limit Introduction - Solutions – solid solutions, single phase (e.g. syrup) - Mixtures – more than one phase (syrup and solid sugar) Phase: Homogeneous portion of a system that has uniform physical and chemical properties Solubility Limit: Max concentration for which only a single phase solution occurs. Q: What is the solubility limit at 20°C? Answer: 65 wt% sugar. If Co < 65 wt% sugar: syrup If Co > 65 wt% sugar: syrup + sugar. 65 Sucrose/Water Phase Diagram Pure Sugar Temperature(°C) 0 20 40 60 80 100 Co =Composition (wt% sugar) L (liquid solution i.e., syrup) Solubility Limit L (liquid) + S (solid sugar) 20 40 60 80 100 Pure Water
  • 3. Chapter 9 - 3 • Components: The elements or compounds which are present in the mixture (e.g., Al and Cu) • Phases: The physically and chemically distinct material regions that result (e.g., α and β). •Equilibrium No change with time – fixed composition for each component Al-Cu Alloy Components and Phases α (darker phase) Includes Al and Cu β (lighter phase) Includes Al and Cu Two phases Two Components
  • 4. Chapter 9 - 4 Effect of T & Composition (Co) • Changing T can change # of phases: D (100°C,90) 2 phases B (100°C,70) 1 phase path A to B. • Changing Co can change # of phases: path B to D. A (20°C,70) 2 phases 70 80 1006040200 Temperature(°C) Co =Composition (wt% sugar) L (liquid solution i.e., syrup) 20 100 40 60 80 0 L (liquid) + S (solid sugar) water- sugar system
  • 5. Chapter 9 - 5 Phase Diagrams Types of phase diagrams depend on Solubility • Isomorphous phase diagram (complete solubility) • Eutectic phase diagram (partial solubility) • Complex phase diagram (…….) How to obtain phase diagrams ? - From cooling curves for various starting solutions (Thermal method) • Thermodynamics: Phase Diagrams Indicate phases as function of T, Co, and P. • For this course: -binary systems: just 2 components. -independent variables: T and Co (P = 1 atm is almost always used). Phase Diagram: A Plot of T versus C indicating various boundaries between phases T Time ? Phase Change T composition Uses of Phase Diagrams: - No. of phases - Composition of each phase - Relative amount of each phase + Predict the microstructure
  • 6. Chapter 9 - 6 Phase Equilibria - Solutions Crystal Structure electroneg r (nm) Ni FCC 1.9 0.1246 Cu FCC 1.8 0.1278 Both metals have •Nearly the same atomic radius •The same crystal structure (FCC) •similar electronegativities (W. Hume – Rothery rules) suggesting high mutual solubility. Simple Solution System (e.g., Ni-Cu solution) Remember Ni and Cu are totally miscible (soluble) in all proportions (compositions). ONE PHASE ALWAYS – Isomorphous !
  • 7. Chapter 9 - 7 Phase Diagrams- Metals • 2 phases: L (liquid) α (FCC solid solution) • 3 phase fields: L L + α α Phase Diagram for Cu-Ni system 20 40 60 80 1000 wt% Ni 1000 1100 1200 1300 1400 1500 1600 T(°C) L (liquid) α (FCC solid Soln) L +αLiquidus line Solidus line Isomorphous Phase Diagram Complete solubility - one phase field extends from 0 to 100 wt% Ni.
  • 8. Chapter 9 - 8 Phase Change • Phase boundary: Lines between different phases e.g. – Liquid – solid • one phase • two phases …etc) • Phase Change: – Solidification (or melting) – Phase Reaction: one phase gives DIRECTLY two phases e.g. Liquid  Solid phase 1 + Solid Phase 2 (both insoluble) • This occurs at – Certain (fixed) temperature: TE – Certain (fixed) composition: CE • Eutectic Phase Reaction: L α + β • There are other types of phase reactions (Later)
  • 9. Chapter 9 - 9 Cooling Curves There are various types of cooling curves: Depending on composition (characteristics) 1. Pure Element 2. Mixture of soluble 2 elements 3. Mixture of Partially Soluble 2 elements 4. Mixtures undergoing Phase Reactions 1. At the composition for phase reaction 2. Before the composition for phase reaction
  • 10. Chapter 9 - 10 Types of Cooling Curves 2) Mixture of soluble 2 elements Time L L α α T 3) Phase Reaction at CE 3) Phase Reaction: Co > CE Time L L α + β α + β T L α T Time L L α (A or B) α 1) Pure Element Tmelting Time L L α + β α + β T TE
  • 11. Chapter 9 - 11 Constructing Phase Diagrams Thermal Method • Start with several different solutions • Each solution at certain co • Prepare the solutions in liquid form (melting) • Cool each solution while recording T versus time • Plot the cooling curve for each solution • At each phase change: there are changes in the slope – Latent Heat – Change in the properties (specific heat) – Phase reaction (later) • Project cooling curves on T versus co plot. • Connect the points from projection creating boundaries. • Label different obtained areas and boundaries.
  • 12. Chapter 9 - 12 Constructing Isomorphous Phase Diagrams Cooling Curves at Various Initial Co Phase Diagram T verus Co T Composition Time
  • 13. Chapter 9 - 13 wt% Ni20 40 60 80 1000 1000 1100 1200 1300 1400 1500 1600 T(°C) L (liquid) α (FCC solid solution) L + α liquidus solidus Cu-Ni phase diagram Using Phase Diagrams: # and types of phases Rule 1: If we know T and Co, then we know: - Number and types of phases present. • Examples: A(1100°C, 60): 1 phase: α B(1250°C, 35): 2 phases: L + α B(1250°C,35) A(1100°C,60)
  • 14. Chapter 9 - 14 wt% Ni 20 1200 1300 T(°C) L (liquid) α (solid)L +α liquidus solidus 30 40 50 L +α Cu-Ni system Using Phase Diagrams: composition of phases Rule 2: If we know T and Co, then we know: - the composition of each phase. • Examples: TA A 35 Co 32 CL At TA = 1320°C: Only Liquid (L) CL = Co ( = 35 wt% Ni) At TB = 1250°C: Both α and L CL = Cliquidus ( = 32 wt% Ni here) Cα = Csolidus ( = 43 wt% Ni here) At TD = 1190°C: Only Solid ( α) Cα = Co ( = 35 wt% Ni) Co = 35 wt% Ni B TB D TD tie line 4 Cα 3
  • 15. Chapter 9 - 15 Rule 3: If we know T and Co, then we know: --the relative amount of each phase (given in wt%). • Examples: At TA: Only Liquid (L) WL = 1.0 , W =α = 0 At TD: Only Solid ( α) WL = 0, Wα = 1.0 Co = 35 wt% Ni Using Phase Diagrams: weight fractions of phases wt% Ni 20 1200 1300 T(°C) L (liquid) α (solid)L +α liquidus solidus 30 40 50 L +α Cu-Ni system TA A 35 Co 32 CL B TB D TD tie line 4 Cα 3 R S At TB: Both α and L 73.0 3243 3543 = − − = = 0.27 WL = S R +S Wα = R R +S
  • 16. Chapter 9 - 16 • Tie line – connects the phases in equilibrium with each other - essentially an isotherm The Lever Rule How much of each phase? ThinkThink of it as a lever (teeter-totter) ML Mα R S RMSM L ⋅=⋅α L L LL L L CC CC SR R W CC CC SR S MM M W − − = + = − − = + = + = α α α α α 00 wt% Ni 20 1200 1300 T(°C) L (liquid) α (solid)L +α liquidus solidus 30 40 50 L +α B TB tie line CoCL Cα SR
  • 17. Chapter 9 - 17 wt% Ni 20 1200 1300 30 40 50 1100 L (liquid) α (solid) L + α L + α T(°C) A 35 Co L: 35wt%Ni Cu-Ni system Observe the microstructure while going down (cooling) at the same composition. • Consider Co = 35 wt%Ni. Microstructure - Cooling in a Cu-Ni Binary 4635 43 32 α: 43 wt% Ni L: 32 wt% Ni L: 24 wt% Ni α: 36 wt% Ni Bα: 46 wt% Ni L: 35 wt% Ni C D E 24 36
  • 18. Chapter 9 - 18 • Cα changes as we solidify. • Cu-Ni case: • Fast rate of cooling: Cored structure • Slow rate of cooling: Equilibrium structure First α to solidify has Cα = 46 wt% Ni. Last α to solidify has Cα = 35 wt% Ni. Cored vs Equilibrium Phases First α to solidify: 46 wt% Ni Uniform Cα: 35 wt% Ni Last α to solidify: < 35 wt% Ni
  • 19. Chapter 9 - 19 Mechanical Properties: Cu-Ni System • Effect of solid solution strengthening on: --Tensile strength (TS) - Peak as a function of Co TensileStrength(MPa) Composition, wt% Ni Cu Ni 0 20 40 60 80 100 200 300 400 TS for pure Ni TS for pure Cu --Ductility (%EL,%AR) - Min. as a function of Co Elongation(%EL) Composition, wt% Ni Cu Ni 0 20 40 60 80 100 20 30 40 50 60 %EL for pure Ni %EL for pure Cu
  • 20. Chapter 9 - 20 Eutectic Phase Diagram With Eutectic Phase Reaction L(CE) α(CαE) + β(CβE) The phase diagram is characterized with: • 3 single phase regions (L, α and β) • Partial Solubility – Solubility Limit of A in B forming β B in A forming α Occurs at L (liquid) α L + α L+ββ α + β Wt% A: Co 1000 T CE TE : Eutectic Composition• CE • TE : Eutectic Temperature Remember Phase Reaction at CE Time L L α + β α + β T TE
  • 21. Chapter 9 - 21 Eutectic Phase Diagram – Cooling Curves L α L+α L+ββ α+β Wt% A: Co 1000 T(°C) T Time L L α α 1) Pure A or B Tmelting 2) Giving α or β Time L L α α T Time L L α + β α + β T L α Time L L α + β α + β T TE What is the difference in this side
  • 22. Chapter 9 - 22 Maximum solubility of A in B L α L + α L+ββ α + β Wt% A: Co 1000 T(°C) Liquidus Solidus Solvus Eutectic Reaction Eutectic Phase Diagram Maximum solubility of B in A Boundaries - lines: •Liquidus •Solidus •Solvus Now, apply previous rules ? On real systems
  • 25. Chapter 9 - 25 Example-Eutectic System α: mostly Cu β: mostly Ag • TE : No liquid below TE Ex.: Cu-Ag system L (liquid) α L + α L+ββ α + β Co , wt% Ag 20 40 60 80 1000 200 1200 T(°C) 400 600 800 1000 CE TE 8.0% CE=71.9% 91.2% TE=779°C Given T and C Values are characteristics Of Cu-Ag system
  • 26. Chapter 9 - 26 L+α L+β α + β 200 T(°C) 18.3 C, wt% Sn 20 60 80 1000 300 100 L (liquid) α 183°C 61.9 97.8 β • For a 40 wt% Sn-60 wt% Pb alloy at 150°C, find... --the phases present: Pb-Sn system EX: Pb-Sn Eutectic System (1) α + β --compositionscompositions of phases: CO = 40 wt% Sn --the relative amountrelative amount of each phase: 150 40 Co 11 Cα 99 Cβ SR Cα = 11 wt% Sn Cβ = 99 wt% Sn Wα= Cβ - CO Cβ - Cα = 99 - 40 99 - 11 = 59 88 = 0.67 S R+S = Wβ = CO - Cα Cβ - Cα = R R+S = 29 88 = 0.33 (or 1 – 0.67)= 40 - 11 99 - 11
  • 27. Chapter 9 - 27 L+β α + β 200 T(°C) C, wt% Sn 20 60 80 1000 300 100 L (liquid) α β L+α 183°C • For a 40 wt% Sn-60 wt% Pb alloy at 200200°°CC, find... --the phases present: Pb-Sn system EX: Pb-Sn Eutectic System (2) α + L --compositionscompositions of phases: CO = 40 wt% Sn --the relative amountrelative amount of each phase: Wα = CL - CO CL - Cα = 46 - 40 46 - 17 = 6 29 = 0.21 WL = CO - Cα CL - Cα = 23 29 = 0.79 40 Co 46 CL 17 Cα 220 SR Cα = 17 wt% Sn CL = 46 wt% Sn
  • 28. Chapter 9 - 28 • Co < 2 wt% Sn • Result: --at extreme ends --polycrystal of α grains i.e., only one solid phase. Microstructures in Eutectic Systems: I 0 L+ α 200 T(°C) Co, wt% Sn 10 2 20 Co 300 100 L α 30 α+β 400 (room T solubility limit) TE (Pb-Sn System) α L L: Co wt% Sn α: Co wt% Sn Depends on the composition
  • 29. Chapter 9 - 29 • 2 wt% Sn < Co < 18.3 wt% Sn • Result:  Initially liquid + α  then α alone  finally two phases  α polycrystal  fine β-phase inclusions Microstructures in Eutectic Systems: II Pb-Sn system L + α 200 T(°C) Co , wt% Sn 10 18.3 200 Co 300 100 L α 30 α+ β 400 (sol. limit at TE) TE 2 (sol. limit at Troom) L α L: Co wt% Sn α β α: Co wt% Sn
  • 30. Chapter 9 - 30 • Co = CE • Result: Eutectic microstructure (lamellar structure) --alternating layers (lamellae) of α and β crystals. Microstructures in Eutectic Systems: III 160µm Micrograph of Pb-Sn eutectic microstructure Pb-Sn system L+β α + β 200 T(°C) C, wt% Sn 20 60 80 1000 300 100 L α β L+α 183°C 40 TE 18.3 α: 18.3 wt%Sn 97.8 β: 97.8 wt% Sn CE 61.9 L: Co wt% Sn
  • 31. Chapter 9 - 31 Lamellar Eutectic Structure
  • 32. Chapter 9 - 32 • 18.3 wt% Sn < Co < 61.9 wt% Sn • Result: α crystals and a eutectic microstructure Microstructures in Eutectic Systems: IV 18.3 61.9 SR 97.8 SR primary α eutectic α eutectic β Pb-Sn system L+β200 T(°C) Co, wt% Sn 20 60 80 1000 300 100 L α β L+α 40 α+β TE L: Co wt% Sn Lα L α
  • 33. Chapter 9 - 33 • 18.3 wt% Sn < Co < 61.9 wt% Sn • Result: α crystals and a eutectic microstructure Microstructures in Eutectic Systems: IV 18.3 61.9 SR 97.8 SR primary α eutectic α eutectic β WL = (1-Wα) = 0.50 Cα = 18.3 wt% Sn CL = 61.9 wt% Sn S R + S Wα‘ = = 0.50 • Just above TE : • Just below TE : Cα = 18.3 wt% Sn Cβ = 97.8 wt% Sn S R + S Wα= = 0.73 Wβ = 0.27 Pb-Sn system L+β200 T(°C) Co, wt% Sn 20 60 80 1000 300 100 L α β L+α 40 α+β TE L: Co wt% Sn Lα L α What is the fraction of Eutectic α ? Pro-eutectic (primary) α ?
  • 34. Chapter 9 - 34 L+α L+β α + β 200 Co, wt% Sn20 60 80 1000 300 100 L α β TE 40 (Pb-Sn System) Hypoeutectic & Hypereutectic 160 µm eutectic micro-constituent hypereutectic: (illustration only) β β β β β β 175 µm α α α α α α hypoeutectic: Co = 50 wt% Sn T(°C) 61.9 eutectic eutectic: Co =61.9wt% Sn
  • 35. Chapter 9 - 35 Intermetallic Compounds Note: intermetallic compound forms a line - not an area like α ? Mg2Pb In Previous Phase diagrams α and β are terminal solid solutions Can we obtain other intermediate phases ? Now: Mg2Pb • is an intermetallic compound • with a ratio (2:1) (Mg:Pb)-Molar • melts at a fixed temperature M • Cooling curve ??? Because stoichiometry (i.e. composition) is exact: Calculate ? Calculate Wt% Pb = 207 /(207+2(24.3)) X 100 = 81 %
  • 36. Chapter 9 - 36 Same Story ? • No. and type of each phase • Composition of each phase • Relative amount or fraction of each phase • Distinguish between – primary phase – Eutectic phase • Microstructure • Cooling Curves • Fill the regions with types of phases?
  • 37. Chapter 9 - 37 Eutectoid & Peritectic Phase Reactions • Eutectic - liquid in equilibrium with two solids L α + βcool heat intermetallic compound - cementite cool heat • Eutectoid - solid phase in equilibrium with two solid phases S2 S1+S3 γ α + Fe3C (727ºC) cool heat • Peritectic - liquid + solid 1  solid 2 (Fig 9.21) S1 + L S2 δ + L γ (1493ºC)
  • 38. Chapter 9 - 38 Complex Phase Diagrams α and η are terminal solid solutions - β, β’, γ, δ and ε are intermediate solid solutions. • new phenomena exist: ……… reaction ………. reaction
  • 39. Chapter 9 - 39 Eutectoid & Peritectic Cu-Zn Phase diagram Eutectoid transition δ γ + ε Peritectic transition γ + L δ
  • 40. Chapter 9 - 40 Phase Diagram with Eutectoid Phase Reactions The eutectoid (eutectic-like in Greek) reaction is similar to the eutectic This phase diagram includes both: Eutectic ReactionEutectoid Reaction Our Interest In Fe-C phase diagram
  • 41. Chapter 9 - 41 Iron-Carbon (Fe-C) Phase Diagram • 2 important points -Eutectoid (B): γ ⇒ α +Fe3C -Eutectic (A): L ⇒ γ +Fe3C Fe3C(cementite) 1600 1400 1200 1000 800 600 400 0 1 2 3 4 5 6 6.7 L γ (austeniteaustenite) γ+L γ+Fe3C α+Fe3C α+γ L+Fe3C δ (Fe) Co, wt% C 1148°C T(°C) α 727°C = Teutectoid A SR 4.30 Result: Pearlite = alternating layers of α and Fe3C phases 120 µm γ γ γγ R S 0.76 CeutectoidB Fe3C (cementite-hardhard) α(ferriteferrite-softsoft)
  • 42. Chapter 9 - 42 Development of Microstructure in Iron-Carbon alloys PearlitePearlite Structure By DiffusionDiffusion Note: remember the names! Austenite, ferriteferrite, cemetitecemetite and pearlitepearlite
  • 43. Chapter 9 - 43 Hypoeutectoid Steel Fe3C(cementite) 1600 1400 1200 1000 800 600 400 0 1 2 3 4 5 6 6.7 L γ (austenite) γ+L γ + Fe3C α+ Fe3C L+Fe3C δ (Fe) Co, wt% C 1148°C T(°C) α 727°C (Fe-C System) C0 0.76 proeutectoid ferritepearlite 100 µm HypoeutectoidHypoeutectoid steel R S α wα =S/(R+S) wFe3C =(1-wα) wpearlite = wγ pearlite r s wα =s/(r+s) wγ =(1- wα) γ γ γ γα α α γγ γ γ γ γ γγ
  • 44. Chapter 9 - 44 Hypereutectoid Steel Fe3C(cementite) 1600 1400 1200 1000 800 600 400 0 1 2 3 4 5 6 6.7 L γ (austenite) γ+L γ +Fe3C α +Fe3C L+Fe3C δ (Fe) Co, wt%C 1148°C T(°C) α (Fe-C System) 0.76 Co proeutectoid FeFe33CC 60 µmHypereutectoid steel pearlitepearlite R S wα =S/(R+S) wFe3C =(1-wα) wpearlite = wγ pearlite sr wFe3C =r/(r+s) wγ =(1-w Fe3C ) Fe3C γγ γ γ γγ γ γ γγ γ γ
  • 45. Chapter 9 - 45 Phases in Fe–Fe3C Phase Diagram α -ferrite - solid solution of C in …….. Fe • Stable form of iron at room temperature. • The maximum solubility of C is 0.022 wt% (interstitial solubility) • Soft and relatively easy to deform + Fe-C liquid solution γ -austenite - solid solution of C in …….. Fe The maximum solubility of C is 2.14 wt % at 1147°C. Interstitial lattice positions are much larger than ferrite (higher C%) Is not stable below the eutectic temperature (727 °C) unless cooled rapidly (Chapter 10). δ -ferrite solid solution of C in ……. Fe The same structure as α -ferrite Stable only at high T, above 1394 °C Also has low solubility for carbon (BCC) Fe3C (iron carbide or cementite) This intermetallic compound is metastable, it remains as a compound indefinitely at room T, but decomposes (very slowly, within several years) into α -Fe and C (graphite) at 650 - 700 °C
  • 46. Chapter 9 - 46 Example: Phase Equilibria For a 99.6 wt% Fe-0.40 wt% C at a temperature just below the eutectoid, determine the following a) composition of Fe3C and ferrite (α) b) the amount of carbide (cementite) in grams that forms per 100 g of steel c) the amount of pearlite and proeutectoid ferrite (α)
  • 47. Chapter 9 - 47 Example – Fe-C System g3.94 g5.7CFe g7.5100 022.07.6 022.04.0 100x CFe CFe 3 CFe3 3 3 =α = = − − = − − = α+ α α x CC CCo b) the amount of cementite in grams that forms per 100 g of steel a) composition of Fe3C and ferrite (α) CO = 0.40 wt% C Cα = 0.022 wt% C CFe C = 6.70 wt% C 3 FeC(cementite) 1600 1400 1200 1000 800 600 400 0 1 2 3 4 5 6 6.7 L γ (austenite) γ+L γ + Fe3C α + Fe3C L+Fe3C δ Co, wt% C 1148°C T(°C) 727°C CO R S CFe C3Cα
  • 48. Chapter 9 - 48 Chapter 9 – Phase Equilibria c. the amount of pearlite and proeutectoid ferrite (α) note: amount of pearlitepearlite = amount of γγ just abovejust above TE Co = 0.40 wt% C Cα = 0.022 wt% C Cpearlite = Cγ = 0.76 wt% C γ γ+α = Co −Cα Cγ−Cα x 100 =51.2 g pearlite = 51.2 g proeutectoid α = 48.8 g FeC(cementite) 1600 1400 1200 1000 800 600 400 0 1 2 3 4 5 6 6.7 L γ (austenite) γ+L γ + Fe3C α + Fe3C L+Fe3C δ Co, wt% C 1148°C T(°C) 727°C CO R S CγCα Pearlite include ? Eutectoid Fe3CFe3C + Eutectoid ferriteferrite αα
  • 49. Chapter 9 - 49 Alloying Steel with More Elements • Teutectoid changes: • Ceutectoid changes: TEutectoid(°C) wt. % of alloying elements Ti Ni Mo Si W Cr Mn wt. % of alloying elements Ceutectoid(wt%C) Ni Ti Cr Si Mn W Mo
  • 50. Chapter 9 - 50 • Phase diagrams are useful tools to determine: --the number and types of phases, --the wt% of each phase, --and the composition of each phase for a given T and composition of the system. • Alloying to produce a solid solution usually --increases the tensile strength (TS) --decreases the ductility. • Binary eutectics and binary eutectoids allow for a range of microstructures. Summary