SlideShare una empresa de Scribd logo
1 de 34
08/18/14 http://numericalmethods.eng.usf.edu 1
Bisection Method
Major: All Engineering Majors
Authors: Autar Kaw, Jai Paul
http://numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM
Undergraduates
Bisection Method
http://numericalmethods.eng.usf.edu
http://numericalmethods.eng.usf.edu3
Basis of Bisection Method
Theorem
x
f(x)
xu
x
An equation f(x)=0, where f(x) is a real continuous function,
has at least one root between xl and xu if f(xl) f(xu) < 0.
Figure 1 At least one root exists between the two points if the function is
real, continuous, and changes sign.
x
f(x)
xu
x
http://numericalmethods.eng.usf.edu4
Basis of Bisection Method
Figure 2 If function does not change sign between two
points, roots of the equation may still exist between the two
points.
( )xf
( ) 0=xf
x
f(x)
xu
x
http://numericalmethods.eng.usf.edu5
Basis of Bisection Method
Figure 3 If the function does not change sign between two
points, there may not be any roots for the equation between the
two points.
x
f(x)
xu
x
( )xf
( ) 0=xf
x
f(x)
xu
x
http://numericalmethods.eng.usf.edu6
Basis of Bisection Method
Figure 4 If the function changes sign between two points,
more than one root for the equation may exist between the two
points.
( )xf
( ) 0=xf
http://numericalmethods.eng.usf.edu7
Algorithm for Bisection
Method
http://numericalmethods.eng.usf.edu8
Step 1
Choose x
and xu
as two guesses for the root such that
f(x
) f(xu
) < 0, or in other words, f(x) changes sign
between x
and xu
. This was demonstrated in Figure 1.
x
f(x)
xu
x
Figure 1
x
f(x)
xu
x
xm
http://numericalmethods.eng.usf.edu9
Step 2
Estimate the root, xm
of the equation f (x) = 0 as the mid
point between x
and xu
as
x
x
m =
xu +
2
Figure 5 Estimate of xm
http://numericalmethods.eng.usf.edu10
Step 3
Now check the following
a) If , then the root lies between x
and xm
;
then x
= x
; xu
= xm
.
b) If , then the root lies between xm
and xu
;
then x
= xm
; xu
= xu
.
c) If ; then the root is xm.
Stop the algorithm
if this is true.
( ) ( ) 0<ml xfxf
( ) ( ) 0>ml xfxf
( ) ( ) 0=ml xfxf
http://numericalmethods.eng.usf.edu11
Step 4
x
x
m =
xu +
2
100×
−
=∈ new
m
old
m
new
a
x
xxm
rootofestimatecurrent=new
mx
rootofestimateprevious=old
mx
Find the new estimate of the root
Find the absolute relative approximate error
where
http://numericalmethods.eng.usf.edu12
Step 5
Is ?
Yes
No
Go to Step 2 using new
upper and lower
guesses.
Stop the algorithm
Compare the absolute relative approximate error with
the pre-specified error tolerance .
a∈
s∈
sa >∈∈
Note one should also check whether the number of
iterations is more than the maximum number of iterations
allowed. If so, one needs to terminate the algorithm and
notify the user about it.
http://numericalmethods.eng.usf.edu13
Example 1
You are working for ‘DOWN THE TOILET COMPANY’
that makes floats for ABC commodes. The floating ball
has a specific gravity of 0.6 and has a radius of 5.5 cm.
You are asked to find the depth to which the ball is
submerged when floating in water.
Figure 6 Diagram of the floating ball
http://numericalmethods.eng.usf.edu14
Example 1 Cont.
The equation that gives the depth x to which the ball is
submerged under water is given by
a) Use the bisection method of finding roots of equations to
find the depth x to which the ball is submerged under
water. Conduct three iterations to estimate the root of the
above equation.
b) Find the absolute relative approximate error at the end of
each iteration, and the number of significant digits at
least correct at the end of each iteration.
010993.3165.0 423
=×+− −
xx
http://numericalmethods.eng.usf.edu15
Example 1 Cont.
From the physics of the problem, the ball would be
submerged between x = 0 and x = 2R,
where R = radius of the ball,
that is
( )
11.00
055.020
20
≤≤
≤≤
≤≤
x
x
Rx
Figure 6 Diagram of the floating ball
To aid in the understanding
of how this method works to
find the root of an equation,
the graph of f(x) is shown to
the right,
where
http://numericalmethods.eng.usf.edu16
Example 1 Cont.
( ) 423
1099331650 -
.x.xxf ×+−=
Figure 7 Graph of the function f(x)
Solution
http://numericalmethods.eng.usf.edu17
Example 1 Cont.
Let us assume
11.0
00.0
=
=
ux
x
Check if the function changes sign between x
and xu .
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 4423
4423
10662.210993.311.0165.011.011.0
10993.310993.30165.000
−−
−−
×−=×+−==
×=×+−==
fxf
fxf
u
l
Hence
( ) ( ) ( ) ( ) ( )( ) 010662.210993.311.00 44
<×−×== −−
ffxfxf ul
So there is at least on root between x
and xu,
that is between 0 and 0.11
http://numericalmethods.eng.usf.edu18
Example 1 Cont.
Figure 8 Graph demonstrating sign change between initial limits
http://numericalmethods.eng.usf.edu19
Example 1 Cont.
055.0
2
11.00
2
=
+
=
+
= u
m
xx
x 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) 010655.610993.3055.00
10655.610993.3055.0165.0055.0055.0
54
5423
>××==
×=×+−==
−−
−−
ffxfxf
fxf
ml
m
Iteration 1
The estimate of the root is
Hence the root is bracketed between xm
and xu
, that is, between 0.055
and 0.11. So, the lower and upper limits of the new bracket are
At this point, the absolute relative approximate error cannot be
calculated as we do not have a previous approximation.
11.0,055.0 == ul xx
a∈
http://numericalmethods.eng.usf.edu20
Example 1 Cont.
Figure 9 Estimate of the root for Iteration 1
http://numericalmethods.eng.usf.edu21
Example 1 Cont.
0825.0
2
11.0055.0
2
=
+
=
+
= u
m
xx
x 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) 010655.610622.1)0825.0(055.0
10622.110993.30825.0165.00825.00825.0
54
4423
<××−==
×−=×+−==
−−
−−
ffxfxf
fxf
ml
m
Iteration 2
The estimate of the root is
Hence the root is bracketed between x
and xm
, that is, between 0.055
and 0.0825. So, the lower and upper limits of the new bracket are
0825.0,055.0 == ul xx
http://numericalmethods.eng.usf.edu22
Example 1 Cont.
Figure 10 Estimate of the root for Iteration 2
http://numericalmethods.eng.usf.edu23
Example 1 Cont.
The absolute relative approximate error at the end of Iteration 2 isa∈
%333.33
100
0825.0
055.00825.0
100
=
×
−
=
×
−
=∈ new
m
old
m
new
m
a
x
xx
None of the significant digits are at least correct in the estimate root of
xm = 0.0825 because the absolute relative approximate error is greater
than 5%.
http://numericalmethods.eng.usf.edu24
Example 1 Cont.
06875.0
2
0825.0055.0
2
=
+
=
+
= u
m
xx
x 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) 010563.510655.606875.0055.0
10563.510993.306875.0165.006875.006875.0
55
5423
<×−×==
×−=×+−==
−−
−−
ffxfxf
fxf
ml
m
Iteration 3
The estimate of the root is
Hence the root is bracketed between x
and xm
, that is, between 0.055
and 0.06875. So, the lower and upper limits of the new bracket are
06875.0,055.0 == ul xx
http://numericalmethods.eng.usf.edu25
Example 1 Cont.
Figure 11 Estimate of the root for Iteration 3
http://numericalmethods.eng.usf.edu26
Example 1 Cont.
The absolute relative approximate error at the end of Iteration 3 isa∈
%20
100
06875.0
0825.006875.0
100
=
×
−
=
×
−
=∈ new
m
old
m
new
m
a
x
xx
Still none of the significant digits are at least correct in the estimated
root of the equation as the absolute relative approximate error is greater
than 5%.
Seven more iterations were conducted and these iterations are shown in
Table 1.
http://numericalmethods.eng.usf.edu27
Table 1 Cont.
Table 1 Root of f(x)=0 as function of number of iterations for bisection
method.
Iteration x xu xm
% f(xm)
1
2
3
4
5
6
7
8
9
10
0.00000
0.055
0.055
0.055
0.06188
0.06188
0.06188
0.06188
0.0623
0.0623
0.11
0.11
0.0825
0.06875
0.06875
0.06531
0.06359
0.06273
0.06273
0.06252
0.055
0.0825
0.06875
0.06188
0.06531
0.06359
0.06273
0.0623
0.06252
0.06241
----------
33.33
20.00
11.11
5.263
2.702
1.370
0.6897
0.3436
0.1721
6.655×10−5
−1.622×10−4
−5.563×10−5
4.484×10−6
−2.593×10−5
−1.0804×10−5
−3.176×10−6
6.497×10−7
−1.265×10−6
−3.0768×10−7
http://numericalmethods.eng.usf.edu28
Table 1 Cont.
Hence the number of significant digits at least correct is given by the
largest value or m for which
( )
( ) 463.23442.0log2
23442.0log
103442.0
105.01721.0
105.0
2
2
2
=−≤
−≤
≤
×≤
×≤∈
−
−
−
m
m
m
m
m
a
2=m
So
The number of significant digits at least correct in the estimated root of
0.06241 at the end of the 10th
iteration is 2.
http://numericalmethods.eng.usf.edu29
Advantages
 Always convergent
 The root bracket gets halved with each
iteration - guaranteed.
http://numericalmethods.eng.usf.edu30
Drawbacks
 Slow convergence
 If one of the initial guesses is close to
the root, the convergence is slower
http://numericalmethods.eng.usf.edu31
Drawbacks (continued)
 If a function f(x) is such that it just
touches the x-axis it will be unable to find
the lower and upper guesses.
f(x)
x
( ) 2
xxf =
http://numericalmethods.eng.usf.edu32
Drawbacks (continued)
 Function changes sign but root does not
exist
f(x)
x
( )
x
xf
1
=
Additional Resources
For all resources on this topic such as digital
audiovisual lectures, primers, textbook chapters,
multiple-choice tests, worksheets in MATLAB,
MATHEMATICA, MathCad and MAPLE, blogs, related
physical problems, please visit
http://numericalmethods.eng.usf.edu/topics/bisection_metho
THE END
http://numericalmethods.eng.usf.edu

Más contenido relacionado

La actualidad más candente

Regula Falsi (False position) Method
Regula Falsi (False position) MethodRegula Falsi (False position) Method
Regula Falsi (False position) MethodIsaac Yowetu
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Asad Ali
 
Bisection & Regual falsi methods
Bisection & Regual falsi methodsBisection & Regual falsi methods
Bisection & Regual falsi methodsDivya Bhatia
 
Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcRiyandika Jastin
 
Numerical solutions of algebraic equations
Numerical solutions of algebraic equationsNumerical solutions of algebraic equations
Numerical solutions of algebraic equationsAvneet Singh Lal
 
The False-Position Method
The False-Position MethodThe False-Position Method
The False-Position MethodTayyaba Abbas
 
Presentation on application of numerical method in our life
Presentation on application of numerical method in our lifePresentation on application of numerical method in our life
Presentation on application of numerical method in our lifeManish Kumar Singh
 
Secant Iterative method
Secant Iterative methodSecant Iterative method
Secant Iterative methodIsaac Yowetu
 
Secent method
Secent methodSecent method
Secent methodritu1806
 
ROOT OF NON-LINEAR EQUATIONS
ROOT OF NON-LINEAR EQUATIONSROOT OF NON-LINEAR EQUATIONS
ROOT OF NON-LINEAR EQUATIONSfenil patel
 
Applied numerical methods lec4
Applied numerical methods lec4Applied numerical methods lec4
Applied numerical methods lec4Yasser Ahmed
 
Solution of non-linear equations
Solution of non-linear equationsSolution of non-linear equations
Solution of non-linear equationsZunAib Ali
 
Bracketing or closed methods
Bracketing or closed methodsBracketing or closed methods
Bracketing or closed methodsandrushow
 
MATLAB : Numerical Differention and Integration
MATLAB : Numerical Differention and IntegrationMATLAB : Numerical Differention and Integration
MATLAB : Numerical Differention and IntegrationAinul Islam
 
Root Equations Methods
Root Equations MethodsRoot Equations Methods
Root Equations MethodsUIS
 

La actualidad más candente (20)

Regula Falsi (False position) Method
Regula Falsi (False position) MethodRegula Falsi (False position) Method
Regula Falsi (False position) Method
 
Numerical Method 2
Numerical Method 2Numerical Method 2
Numerical Method 2
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2Numerical Analysis (Solution of Non-Linear Equations) part 2
Numerical Analysis (Solution of Non-Linear Equations) part 2
 
Numerical Method
Numerical MethodNumerical Method
Numerical Method
 
Bisection & Regual falsi methods
Bisection & Regual falsi methodsBisection & Regual falsi methods
Bisection & Regual falsi methods
 
Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etc
 
Numerical solutions of algebraic equations
Numerical solutions of algebraic equationsNumerical solutions of algebraic equations
Numerical solutions of algebraic equations
 
The False-Position Method
The False-Position MethodThe False-Position Method
The False-Position Method
 
Presentation on application of numerical method in our life
Presentation on application of numerical method in our lifePresentation on application of numerical method in our life
Presentation on application of numerical method in our life
 
Secant Iterative method
Secant Iterative methodSecant Iterative method
Secant Iterative method
 
Secent method
Secent methodSecent method
Secent method
 
Bisection
BisectionBisection
Bisection
 
ROOT OF NON-LINEAR EQUATIONS
ROOT OF NON-LINEAR EQUATIONSROOT OF NON-LINEAR EQUATIONS
ROOT OF NON-LINEAR EQUATIONS
 
Applied numerical methods lec4
Applied numerical methods lec4Applied numerical methods lec4
Applied numerical methods lec4
 
Solution of non-linear equations
Solution of non-linear equationsSolution of non-linear equations
Solution of non-linear equations
 
Bracketing or closed methods
Bracketing or closed methodsBracketing or closed methods
Bracketing or closed methods
 
Application of derivative
Application of derivativeApplication of derivative
Application of derivative
 
MATLAB : Numerical Differention and Integration
MATLAB : Numerical Differention and IntegrationMATLAB : Numerical Differention and Integration
MATLAB : Numerical Differention and Integration
 
Root Equations Methods
Root Equations MethodsRoot Equations Methods
Root Equations Methods
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 

Similar a Mws gen nle_ppt_bisection

mws_gen_nle_ppt_bisection.ppt
mws_gen_nle_ppt_bisection.pptmws_gen_nle_ppt_bisection.ppt
mws_gen_nle_ppt_bisection.pptssuser6ff4d5
 
Newton Raphson Method.ppt
Newton Raphson Method.pptNewton Raphson Method.ppt
Newton Raphson Method.pptUmarSaba1
 
Lecture_06_roots_English.pdf
Lecture_06_roots_English.pdfLecture_06_roots_English.pdf
Lecture_06_roots_English.pdfJejyBorres
 
mws_gen_nle_ppt_secant.ppt
mws_gen_nle_ppt_secant.pptmws_gen_nle_ppt_secant.ppt
mws_gen_nle_ppt_secant.pptsaadnaeem424
 
Chapter 2 solving nonlinear equations
Chapter 2 solving nonlinear equationsChapter 2 solving nonlinear equations
Chapter 2 solving nonlinear equationsssuser53ee01
 
Roots of equations
Roots of equationsRoots of equations
Roots of equationsMileacre
 
Equations root
Equations rootEquations root
Equations rootMileacre
 
Non linearequationsmatlab
Non linearequationsmatlabNon linearequationsmatlab
Non linearequationsmatlabsheetslibrary
 
Non linearequationsmatlab
Non linearequationsmatlabNon linearequationsmatlab
Non linearequationsmatlabZunAib Ali
 
fb69b412-97cb-4e8d-8a28-574c09557d35-160618025920
fb69b412-97cb-4e8d-8a28-574c09557d35-160618025920fb69b412-97cb-4e8d-8a28-574c09557d35-160618025920
fb69b412-97cb-4e8d-8a28-574c09557d35-160618025920Karl Rudeen
 
25285 mws gen_int_ppt_trapcontinuous
25285 mws gen_int_ppt_trapcontinuous25285 mws gen_int_ppt_trapcontinuous
25285 mws gen_int_ppt_trapcontinuousJyoti Parange
 

Similar a Mws gen nle_ppt_bisection (20)

mws_gen_nle_ppt_bisection.ppt
mws_gen_nle_ppt_bisection.pptmws_gen_nle_ppt_bisection.ppt
mws_gen_nle_ppt_bisection.ppt
 
Newton Raphson Method.ppt
Newton Raphson Method.pptNewton Raphson Method.ppt
Newton Raphson Method.ppt
 
Lecture_06_roots_English.pdf
Lecture_06_roots_English.pdfLecture_06_roots_English.pdf
Lecture_06_roots_English.pdf
 
mws_gen_nle_ppt_secant.ppt
mws_gen_nle_ppt_secant.pptmws_gen_nle_ppt_secant.ppt
mws_gen_nle_ppt_secant.ppt
 
false-point.pdf
false-point.pdffalse-point.pdf
false-point.pdf
 
Bisection method
Bisection method Bisection method
Bisection method
 
Nl eqn lab
Nl eqn labNl eqn lab
Nl eqn lab
 
Chapter 2 solving nonlinear equations
Chapter 2 solving nonlinear equationsChapter 2 solving nonlinear equations
Chapter 2 solving nonlinear equations
 
03 optimization
03 optimization03 optimization
03 optimization
 
Roots of equations
Roots of equationsRoots of equations
Roots of equations
 
Equations root
Equations rootEquations root
Equations root
 
Non linearequationsmatlab
Non linearequationsmatlabNon linearequationsmatlab
Non linearequationsmatlab
 
Non linearequationsmatlab
Non linearequationsmatlabNon linearequationsmatlab
Non linearequationsmatlab
 
CALCULUS 2.pptx
CALCULUS 2.pptxCALCULUS 2.pptx
CALCULUS 2.pptx
 
fb69b412-97cb-4e8d-8a28-574c09557d35-160618025920
fb69b412-97cb-4e8d-8a28-574c09557d35-160618025920fb69b412-97cb-4e8d-8a28-574c09557d35-160618025920
fb69b412-97cb-4e8d-8a28-574c09557d35-160618025920
 
Project Paper
Project PaperProject Paper
Project Paper
 
25285 mws gen_int_ppt_trapcontinuous
25285 mws gen_int_ppt_trapcontinuous25285 mws gen_int_ppt_trapcontinuous
25285 mws gen_int_ppt_trapcontinuous
 
Unit 7.3
Unit 7.3Unit 7.3
Unit 7.3
 
Fst ch3 notes
Fst ch3 notesFst ch3 notes
Fst ch3 notes
 
Lecture6
Lecture6Lecture6
Lecture6
 

Más de Alvin Setiawan

Penyelesaian pers-biseksi13
Penyelesaian pers-biseksi13Penyelesaian pers-biseksi13
Penyelesaian pers-biseksi13Alvin Setiawan
 
Penyelesaian persamaan-non-linear
Penyelesaian persamaan-non-linearPenyelesaian persamaan-non-linear
Penyelesaian persamaan-non-linearAlvin Setiawan
 
Pengembangan sistem 1 2
Pengembangan sistem 1 2Pengembangan sistem 1 2
Pengembangan sistem 1 2Alvin Setiawan
 
Modul pelatihan ly_x_untuk_jurnal-feb-2cols
Modul pelatihan ly_x_untuk_jurnal-feb-2colsModul pelatihan ly_x_untuk_jurnal-feb-2cols
Modul pelatihan ly_x_untuk_jurnal-feb-2colsAlvin Setiawan
 
Metode numerik-rinaldi-munir-libre
Metode numerik-rinaldi-munir-libreMetode numerik-rinaldi-munir-libre
Metode numerik-rinaldi-munir-libreAlvin Setiawan
 
Metode numerik-buku-ajar-unila
Metode numerik-buku-ajar-unilaMetode numerik-buku-ajar-unila
Metode numerik-buku-ajar-unilaAlvin Setiawan
 
Met num3 persnonl-inier_baru
Met num3 persnonl-inier_baruMet num3 persnonl-inier_baru
Met num3 persnonl-inier_baruAlvin Setiawan
 
Met num02 persamaan non linier
Met num02 persamaan non linierMet num02 persamaan non linier
Met num02 persamaan non linierAlvin Setiawan
 
Membuat dokumen dengan latex ver.0.3
Membuat dokumen dengan latex   ver.0.3Membuat dokumen dengan latex   ver.0.3
Membuat dokumen dengan latex ver.0.3Alvin Setiawan
 
Membangun website e-commerce_berbasis_php_dan_my_sql
Membangun website e-commerce_berbasis_php_dan_my_sqlMembangun website e-commerce_berbasis_php_dan_my_sql
Membangun website e-commerce_berbasis_php_dan_my_sqlAlvin Setiawan
 
M8 perancangan terinci
M8 perancangan terinciM8 perancangan terinci
M8 perancangan terinciAlvin Setiawan
 
Lyx tutorial-for-dummies
Lyx tutorial-for-dummiesLyx tutorial-for-dummies
Lyx tutorial-for-dummiesAlvin Setiawan
 

Más de Alvin Setiawan (20)

Penyelesaian pers-biseksi13
Penyelesaian pers-biseksi13Penyelesaian pers-biseksi13
Penyelesaian pers-biseksi13
 
Penyelesaian persamaan-non-linear
Penyelesaian persamaan-non-linearPenyelesaian persamaan-non-linear
Penyelesaian persamaan-non-linear
 
Pengembangan sistem 1 2
Pengembangan sistem 1 2Pengembangan sistem 1 2
Pengembangan sistem 1 2
 
Pedoman ta2008
Pedoman ta2008Pedoman ta2008
Pedoman ta2008
 
Pbw week 01 basics
Pbw week 01   basicsPbw week 01   basics
Pbw week 01 basics
 
Paper
PaperPaper
Paper
 
Modul6
Modul6Modul6
Modul6
 
Modul pelatihan ly_x_untuk_jurnal-feb-2cols
Modul pelatihan ly_x_untuk_jurnal-feb-2colsModul pelatihan ly_x_untuk_jurnal-feb-2cols
Modul pelatihan ly_x_untuk_jurnal-feb-2cols
 
Ml2 f304213
Ml2 f304213Ml2 f304213
Ml2 f304213
 
Micro sim template_2
Micro sim template_2Micro sim template_2
Micro sim template_2
 
Metode numerik-rinaldi-munir-libre
Metode numerik-rinaldi-munir-libreMetode numerik-rinaldi-munir-libre
Metode numerik-rinaldi-munir-libre
 
Metode numerik-buku-ajar-unila
Metode numerik-buku-ajar-unilaMetode numerik-buku-ajar-unila
Metode numerik-buku-ajar-unila
 
Metode regula falsi
Metode regula falsiMetode regula falsi
Metode regula falsi
 
Metode biseksi
Metode biseksiMetode biseksi
Metode biseksi
 
Met num3 persnonl-inier_baru
Met num3 persnonl-inier_baruMet num3 persnonl-inier_baru
Met num3 persnonl-inier_baru
 
Met num02 persamaan non linier
Met num02 persamaan non linierMet num02 persamaan non linier
Met num02 persamaan non linier
 
Membuat dokumen dengan latex ver.0.3
Membuat dokumen dengan latex   ver.0.3Membuat dokumen dengan latex   ver.0.3
Membuat dokumen dengan latex ver.0.3
 
Membangun website e-commerce_berbasis_php_dan_my_sql
Membangun website e-commerce_berbasis_php_dan_my_sqlMembangun website e-commerce_berbasis_php_dan_my_sql
Membangun website e-commerce_berbasis_php_dan_my_sql
 
M8 perancangan terinci
M8 perancangan terinciM8 perancangan terinci
M8 perancangan terinci
 
Lyx tutorial-for-dummies
Lyx tutorial-for-dummiesLyx tutorial-for-dummies
Lyx tutorial-for-dummies
 

Mws gen nle_ppt_bisection