SlideShare una empresa de Scribd logo
1 de 6
CHAPTER – 5
CONTINUITY AND DIFFERENTABILITY
1. A real valuedfunctioniscontinuousata pointa in itsdomainif LHL= RHL = f(a). A functionis
continuousif itiscontinuousonwhole domain.
2. Sum,difference,productandquotientof continuousfunctions are continuous.
3. A functionisdifferentiable atapointif LHD= RHD
4. Everydifferentiable functioniscontinuousbutconverse isnottrue.
5. Rolle’s Theorem: if f isa continuousfunctionon[a,b] anddifferentiableon(a,b) suchthatf(a)=f(b),
thenthere existsome cin(a,b) such that f’(c)=0.
6. Mean value Theorem: if f is a continuousfunctionon[a,b] anddifferentiable on(a,b),thenthere
existsome cin (a,b) suchthat f’(c)=
𝑓( 𝑏)−𝑓(𝑎)
𝑏−𝑎
4 Marks Questions
1. Examine the continuity of following functions at indicated points:
(i) f(x) = {
2𝑥 − 1, 𝑥 < 0
2𝑥 + 1, 𝑥 ≥ 0
(ii)f(x) = {
5𝑥 − 4, 𝑥 < 1
4𝑥2 − 3𝑥, 𝑥 ≥ 1
(iii) f(x) ={
𝑥3 − 3, 𝑥 ≤ 0
𝑥2 + 1, 𝑥 > 0
(iv)f(x) = {
𝑥
| 𝑥|
, 𝑥 ≠ 0
0, 𝑥 = 0
2. find all points of discontinuity of f , where f is defined by
(i)f(x) = {
2𝑥 + 3, 𝑥 ≤ 2
2𝑥 − 3, 𝑥 > 2
(ii)f(x) ={
𝑥3 − 3, 𝑥 ≤ 2
𝑥2 + 1, 𝑥 > 2
(iii) f(x) ={
𝑠𝑖𝑛 𝑥
𝑥
, 𝑥 < 0
𝑥 + 1, 𝑥 ≥ 0
(iv) f(x) = {
| 𝑥| + 3 𝑥 ≤ −3
−2𝑥 −3 < 𝑥 < 3
6𝑥 + 2 𝑥 ≥ 3
2. For what values of a and b the function defined is continuous at x = 1,
f(x) = {
3𝑎𝑥 + 𝑏 𝑖𝑓 𝑥 < 1
11 𝑖𝑓 𝑥 = 1
5𝑎𝑥 − 2𝑏 𝑖𝑓 𝑥 > 1
4. Discuss the continuity of the function f defined by f(x) = {
𝑥 + 2 𝑖𝑓 𝑥 ≤ 1
𝑥 − 2 𝑖𝑓 𝑥 > 1
5. Show that the function f(x) = {
𝑥 𝑠𝑖𝑛
1
𝑥
𝑖𝑓 𝑥 ≠ 1
0 𝑖𝑓 𝑥 = 1
is continuous at x = 0.
6. For what value of 𝛾 is the function defined by f(x) ={
𝛾(𝑥2 − 2𝑥) 𝑖𝑓 𝑥 ≤ 0
4𝑥 + 1 𝑖𝑓 𝑥 > 0
is continuous at x = 0.
7. Examine the continuity of f , where f is defined by f(x) = {
𝑠𝑖𝑛 𝑥 − 𝑐𝑜𝑠 𝑥 𝑖𝑓 𝑥 ≠ 0
−1 𝑖𝑓 𝑥 = 0
.
8. Find the values of K so that the function f is continuous at indicated points.
(i) f(x) = {
𝐾𝑥 + 1 𝑖𝑓 𝑥 ≤ 5
3𝑥 − 5 𝑖𝑓 𝑥 > 5
𝑎𝑡 𝑥 = 5 (ii) f(x) = {
𝐾𝑥 + 1 𝑖𝑓 𝑥 ≤ 𝜋
𝑐𝑜𝑠 𝑥 𝑖𝑓 𝑥 > 𝜋
𝑎𝑡 𝑥 = 𝜋
(iii) f(x) = {
𝐾 cos𝑥
𝜋 −2𝑥
𝑖𝑓 𝑥 ≠
𝜋
2
3 𝑖𝑓 𝑥 =
𝜋
2
𝑎𝑡 𝑥 =
𝜋
2
(iv) f(x) =
{
(1−𝑐𝑜𝑠4𝑥)
𝑥2 𝑖𝑓 𝑥 < 0
𝐾 𝑖𝑓 𝑥 = 0
√ 𝑥
√16+√ 𝑥− 4
𝑖𝑓 𝑥 > 0
𝑎𝑡 𝑥 = 0
9. Determine if f defined by f(x) = {
𝑥2
𝑠𝑖𝑛
1
𝑥
𝑖𝑓 𝑥 ≠ 0
0 𝑖𝑓 𝑥 = 0
is a continuous function?
10. Examine the continuity of the function f(x) = {
| 𝑠𝑖𝑛 𝑥|
𝑥
𝑖𝑓 𝑥 ≠ 0
1 𝑖𝑓 𝑥 = 0
at x = 0
.11 Find the value of k so that f(x) = {
𝑥2
+3𝑥−10
(𝑥−2)
, 𝑖𝑓 𝑥 ≠ 0
𝑘 , 𝑖𝑓 𝑥 = 0
is continuous at x = 0 .
12 Discuss the continuity of f(x) = |x – 1| +|x| + |x - 1| at – 1, 0 and 1
13. if f(x) = {
√1+𝑘𝑥 − √1−𝑘 𝑥
𝑥
− 1 ≤ 𝑥 < 0
2𝑥+1
𝑥−2
0 ≤ 𝑥 ≤ 1
is continuous at x = 0. Find the value of k
14. Find the value of a and b such that the following function f(x) is a continuous function :
f(x) = {
5; 𝑥 ≤ 2
𝑎𝑥 + 𝑏; 2 < 𝑥 < 10
21; 𝑥 ≥ 10
15.For what value of k, the following function is continuous at x = 0 :
f(x) = {
1−𝑐𝑜𝑠 4𝑥
8𝑥2 , 𝑥 ≠ 0
𝑘 , 𝑥 = 0
16. Find the value of ‘ a’ for which the function f defined as
f(x) = {
𝑎 𝑠𝑖𝑛
𝜋
2
( 𝑥 + 1) , 𝑥 ≤ 0
𝑡𝑎𝑛 𝑥−𝑠𝑖𝑛 𝑥
𝑥3 , 𝑥 > 0
, is continuous at x = 0.
17. If the function f , as defined below is continuous at x = 0, find the values of a, b and c.
f(x) =
{
𝑠𝑖𝑛( 𝑎+1) 𝑥+𝑠𝑖𝑛𝑥
𝑥
, 𝑥 < 0
𝑐 , 𝑥 = 0
√𝑥+𝑏𝑥2 − 𝑥
𝑏𝑥3/2 , 𝑥 > 0
18. Show that the function ‘f ‘ defined by f(x) = {
3𝑥 − 2 , 0 < 𝑥 ≤ 1
2𝑥2
− 𝑥 , 1 < 𝑥 ≤ 2
5𝑥 − 4 , 𝑥 > 2
is continuous at x = 2, but
not differentiable.
19. Prove that the greatest integer function defined by f(x) = [x], 0<x<3 ,
is not differentiable at x = 1 and x = 2.
20. Prove that the function f given by f(x) = | 𝑥 − 1|, 𝑥 ∈ 𝑅 is not differentiable at x = 1.
21 If log ( 𝑥2
+ 𝑦2) = 2 tan -1(
𝑦
𝑥⁄ ) , then Show that
𝑑𝑦
𝑑𝑥
=
𝑥+𝑦
𝑥−𝑦
22 Differentiate sin -1(
3𝑥+4√1−𝑥2
5
) 𝑤. 𝑟. 𝑡. 𝑥
23 Differentiate tan –1 (
√1+𝑥2
−√1−𝑥2
√1+𝑥2+√1−𝑥2 )w.r.t cos – 1 x2
24 IF x = a sec 3 , y = a tan3 𝜃,Prove that
𝑑2
𝑦
𝑑𝑥2 at 𝜃 =
𝜋
4
is 1/12a
25 IF x = tan (
1
𝑎
log 𝑦 ) 𝑡ℎ𝑒𝑛 𝑝𝑟𝑜𝑣𝑒 that (1 + 𝑥2)
𝑑2
𝑦
𝑑𝑥2 + (2x-a )
𝑑𝑦
𝑑𝑥
= 0
26 If Y = 𝑙𝑜𝑔(𝑥 + √𝑥2 + 1)2 then show that (1+𝑥2
)
𝑑2
𝑦
𝑑𝑥2 +x
𝑑𝑦
𝑑𝑥
= 2
27 If y = sin ( log x) then prove that 𝑥2 𝑑2
𝑦
𝑑𝑥2 + x
𝑑𝑦
𝑑𝑥
+ y = 0
28 Differentiate sin -1(
(2 𝑥+1
3 𝑥)
1+ (36) 𝑥 )w.r.t x
29 Differentiate the following functions w.r.t.x (chain rule)
(a) log (sin x) (b) sin (ex2) (c) sin3x
(d)
1
√𝑎2−𝑥2 (e) log √
𝑥
𝑥−1
(f) log(x+ √ 𝑎2 + 𝑥2 )
(g) sin √ 𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠 𝑥 (h) cos (x3) sin2 (x5) (i) sinmx cosnx
30. If y = (x + √ 𝑥2 + 𝑎2 )n , Prove that
𝑑𝑦
𝑑𝑥
=
𝑛𝑦
√𝑥2 +𝑎2
31. If y = (x + √ 𝑥2 − 1)m , Prove that (x2 – 1) (y1)2 = m2y2
32. If x√1 + 𝑦 + y√1 + 𝑥 = 0, find
𝑑𝑦
𝑑𝑥
33. If y =
𝑥 sin−1
𝑥
√1−𝑥2 + log √1 − 𝑥2 , Prove
𝑑𝑦
𝑑𝑥
=
sin−1
𝑥
(1−𝑥2)
3
2
34. Differentiate the following functions w.r.t.x :
(i) sin−1
(
2𝑥
1+𝑥2) (ii) tan−1
(
1−𝑐𝑜𝑠 𝑥
𝑠𝑖𝑛 𝑥
) (iii) tan−1
(
𝑐𝑜𝑠 𝑥
1+𝑠𝑖𝑛 𝑥
)
(iv) tan−1
(
5 𝑥
1−6𝑥2) (v) tan-1[
√1+𝑥2
√1+𝑥2
+√1−𝑥2
−√1−𝑥2] (vi) tan-1[
√1+𝑠𝑖𝑛 𝑥
√1+𝑠𝑖𝑛 𝑥
+√1−𝑠𝑖𝑛 𝑥
−√1−𝑠𝑖𝑛 𝑥
]
(vii) cot-1(
1−𝑥
1+𝑥
)
35. Find
𝑑𝑦
𝑑𝑥
in the following: (implicit functions)
(a) x3 +y3 = 3axy (b) tan-1 (x2 + y2) = a (c) ax2 + 2hxy + by2 = c2
(d) ex-y log (
𝑥
𝑦
) (e) x2/3 + y2/3 = a2/3
36. If √1 − 𝑥2 + √1 − 𝑦2 = a (x – y), Prove
𝑑𝑦
𝑑𝑥
= √
1−𝑦2
1−𝑥2
37. If y =√ 𝑥 + √ 𝑥 + √ 𝑥 − ∞, Prove
𝑑𝑦
𝑑𝑥
=
1
2𝑦−1
38. Differentiate the following functions w.r.t.x :
(a) xsin x (b) (sin x) logx (c) 𝑥cos−1
𝑥
(d) cos (xx)
(e)𝑥sin−1
𝑥
(f)( 𝑠𝑖𝑛 𝑥)cos−1
𝑥
(g) x logx + (log x)x (h) (sin x)cosx + x sinx
(i) x cotx +
2𝑥2
−3
𝑥2 +𝑥+2
(j) x sinx-cos x +
𝑥2
−1
𝑥2+1
(k) xx cos x + (x cos x)x
39. If xm . yn = (x + y)m+n , Prove that
𝑑𝑦
𝑑𝑥
=
𝑦
𝑥
40. If xy = e x-y , Prove that
𝑑𝑦
𝑑𝑥
=
𝑙𝑜𝑔 𝑥
(1+𝑙𝑜𝑔𝑥)2
41. If xy = y x , Prove that
𝑑𝑦
𝑑𝑥
=
𝑦(𝑥 𝑙𝑜𝑔 𝑦−𝑦)
𝑥(𝑦𝑙𝑜𝑔𝑥−𝑥)
42. If (cos x)y = (siny)x, find
𝑑𝑦
𝑑𝑥
.
43. If xy + yx = ab , find
𝑑𝑦
𝑑𝑥
.
44. If x = a ( t + sin t), y = a(1 – cos t), find (
𝑑𝑦
𝑑𝑥
)t =
𝜋
2
.
45. If x = a(cos t + t sin t), y = b(sin t – t cos t), Prove that
𝑑2
𝑦
𝑑𝑥2 =
𝑏 𝑠𝑒𝑐3
𝑡
𝑎2 𝑡
.
46. If y = ( x + √𝑥2 − 1 )m, prove that (x2 – 1) y2 + xy1 – m2 y = 0.
47. Find
𝑑𝑦
𝑑𝑥
in the following:
(i) x = a [cos t + log tan t/2], y = a sin t
(ii) x = at2 , y = 2at
(iii) x = a(𝜃 + 𝑠𝑖𝑛𝜃), 𝑦 = 𝑎(1 + 𝑐𝑜𝑠𝜃)
(iv) x = a(cos 𝜃 + 𝜃𝑠𝑖𝑛𝜃), 𝑦 = 𝑎(𝑠𝑖𝑛𝜃 − 𝜃𝑐𝑜𝑠𝜃)
(v) x = a sec3 𝜃 , 𝑦 = 𝑎 tan3 𝜃
48. If y = 3 cos(logx) + 4 sin (logx), then show that x2 𝑑2
𝑦
𝑑𝑥2 + 𝑥
𝑑𝑦
𝑑𝑥
+ 𝑦 = 0.
49. If y = 3e2x + 2e3x , Prove
𝑑2
𝑦
𝑑𝑥2 − 5
𝑑𝑦
𝑑𝑥
+ 6𝑦 = 0.
50. If y = (tan-1 x)2 , Show that (x2 + 1)2 y2 + 2x(x2 + 1)y1 = 2
51. If y =𝑒 𝑎 cos−1
𝑥
, Show (1 – x2) y2 – xy1 = a2y.
52. If x = a cos3 𝜃 , 𝑦 = 𝑎 𝑠𝑖𝑛3
𝜃, 𝑓𝑖𝑛𝑑
𝑑2
𝑦
𝑑𝑥2 .
53. If y = cosec x + cot x. Show that sin x
𝑑2
𝑦
𝑑𝑥2 = y2 .
54. If x = a(𝜃 − 𝑠𝑖𝑛 𝜃), 𝑦 = 𝑎 ( 1 − 𝑐𝑜𝑠𝜃), Find (
𝑑2
𝑦
𝑑𝑥2 )
𝜃=
𝜋
2
.
55. Differentiate sin-1(
2 𝑥+1
1+4 𝑥) w.r.t.x
56. If x = sin t, y = sin mt, Prove that (1 – x2)
𝑑2
𝑦
𝑑𝑥2 - x
𝑑𝑦
𝑑𝑥
+ 𝑚2
𝑦 = 0.
57. Find
𝑑𝑦
𝑑𝑥
, if yx + xy + xx = ab
58. If y = sin -1 x, Show y2 =
𝑥
(1−𝑥2)
3
2
.
59. Differentiate log sin x w.r.t. √ 𝑐𝑜𝑠 𝑥 .
60. Differentiate sin-1(
2𝑥
1+𝑥2) w.r.t. tan-1 x .
64. Find
𝑑𝑦
𝑑𝑥
, if y = sin -1 x + sin -1√1 − 𝑥2 .
65. If xy = ex-y , show that
𝑑𝑦
𝑑𝑥
=
𝑙𝑜𝑔 𝑥
{ 𝑙𝑜𝑔 (𝑥𝑒)}2 .
66. Prove that :
𝑑
𝑑𝑥
[
𝑥
2
√𝑎2 − 𝑥2 +
𝑎2
2
sin−1
(
𝑥
𝑎
)] = √𝑎2 − 𝑥2 .
67. Differentiate tan-1[
√1+𝑥2
−1
𝑥
] with respect to x.
68. If y = log tan (
𝜋
4
+
𝑥
2
), show that
𝑑𝑦
𝑑𝑥
- sec x = 0 .
69. If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos2t), show that (
𝑑𝑦
𝑑𝑥
)at t =
𝜋
4
=
𝑏
𝑎
.
70. If y = cos-1(
2 𝑥+1
1+4 𝑥) , find
𝑑𝑦
𝑑𝑥
.
71. Find
𝑑𝑦
𝑑𝑥
, if y = sin-1 [x √1 − 𝑥 − √ 𝑥√1 − 𝑥2] .
72. If y = log [x + √𝑥2 + 1], prove that (𝑥2
+ 1)
𝑑2
𝑦
𝑑𝑥2 + 𝑥
𝑑𝑦
𝑑𝑥
= 0 .
73. If y =
sin−1
𝑥
√1−𝑥2 , show that (1-𝑥2
)
𝑑2
𝑦
𝑑𝑥2 − 3𝑥
𝑑𝑦
𝑑𝑥
− 𝑦 = 0 .
74 if x = a cos t + b sin t , y = a sin t – b cos t , show that y2 𝑑2
𝑦
𝑑𝑥2 – x
𝑑𝑦
𝑑𝑥
+ y = 0

Más contenido relacionado

La actualidad más candente

Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
Amr Mohamed
 

La actualidad más candente (20)

Engg. math 1 question bank by mohammad imran
Engg. math  1 question bank by mohammad imran Engg. math  1 question bank by mohammad imran
Engg. math 1 question bank by mohammad imran
 
Chapter 1 (maths 3)
Chapter 1 (maths 3)Chapter 1 (maths 3)
Chapter 1 (maths 3)
 
C3 Transformations
C3 TransformationsC3 Transformations
C3 Transformations
 
Chapter 1 (math 1)
Chapter 1 (math 1)Chapter 1 (math 1)
Chapter 1 (math 1)
 
Complex analysis notes
Complex analysis notesComplex analysis notes
Complex analysis notes
 
Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex Variables
 
Andrei rusu-2013-amaa-workshop
Andrei rusu-2013-amaa-workshopAndrei rusu-2013-amaa-workshop
Andrei rusu-2013-amaa-workshop
 
Interpolation
InterpolationInterpolation
Interpolation
 
11365.integral 2
11365.integral 211365.integral 2
11365.integral 2
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
Improper integral
Improper integralImproper integral
Improper integral
 
maths
maths maths
maths
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
 
Conformal mapping
Conformal mappingConformal mapping
Conformal mapping
 
Differential Equation
Differential EquationDifferential Equation
Differential Equation
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiation
 
Chapter 9 differential equation
Chapter 9 differential equationChapter 9 differential equation
Chapter 9 differential equation
 
C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)
 
Consolidated.m2-satyabama university
Consolidated.m2-satyabama universityConsolidated.m2-satyabama university
Consolidated.m2-satyabama university
 

Similar a Chapter 5 assignment

math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
HebaEng
 
GEN-MATH-WEEK-2.pptx
GEN-MATH-WEEK-2.pptxGEN-MATH-WEEK-2.pptx
GEN-MATH-WEEK-2.pptx
KenCubero
 

Similar a Chapter 5 assignment (20)

Limits and Continuity of Functions
Limits and Continuity of Functions Limits and Continuity of Functions
Limits and Continuity of Functions
 
some important questions for practice clas 12
some important questions for practice clas 12  some important questions for practice clas 12
some important questions for practice clas 12
 
Assignment chapters 3 to 7
Assignment chapters 3 to 7Assignment chapters 3 to 7
Assignment chapters 3 to 7
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
 
Modul 3 quadratic function
Modul 3 quadratic functionModul 3 quadratic function
Modul 3 quadratic function
 
Modul 1 functions
Modul 1 functionsModul 1 functions
Modul 1 functions
 
FUNCTIONS L.1.pdf
FUNCTIONS L.1.pdfFUNCTIONS L.1.pdf
FUNCTIONS L.1.pdf
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus
 
Assignment For Matlab Report Subject Calculus 2
Assignment For Matlab Report Subject  Calculus 2Assignment For Matlab Report Subject  Calculus 2
Assignment For Matlab Report Subject Calculus 2
 
chap 2 Ex#1.1
chap 2 Ex#1.1chap 2 Ex#1.1
chap 2 Ex#1.1
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
Calculo integral - Larson
Calculo integral - LarsonCalculo integral - Larson
Calculo integral - Larson
 
Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functions
 
GEN-MATH-WEEK-2.pptx
GEN-MATH-WEEK-2.pptxGEN-MATH-WEEK-2.pptx
GEN-MATH-WEEK-2.pptx
 
Imc2016 day2-solutions
Imc2016 day2-solutionsImc2016 day2-solutions
Imc2016 day2-solutions
 
Fourier 3
Fourier 3Fourier 3
Fourier 3
 

Más de KarunaGupta1982

Más de KarunaGupta1982 (20)

Sample paper class XII MATHEMATICS
Sample paper class XII MATHEMATICSSample paper class XII MATHEMATICS
Sample paper class XII MATHEMATICS
 
Class 11 chapters 9, 10, 11
Class 11 chapters 9, 10, 11Class 11 chapters 9, 10, 11
Class 11 chapters 9, 10, 11
 
Class xi worksheet (9,10,11) two levels
Class xi worksheet (9,10,11) two levelsClass xi worksheet (9,10,11) two levels
Class xi worksheet (9,10,11) two levels
 
Class xii probability
Class xii probabilityClass xii probability
Class xii probability
 
Assignment of straight lines and conic section
Assignment of straight lines and conic sectionAssignment of straight lines and conic section
Assignment of straight lines and conic section
 
Three dimensional geometry
Three dimensional geometryThree dimensional geometry
Three dimensional geometry
 
Class xii assignment chapters (1 to 9)
Class xii    assignment chapters (1 to 9)Class xii    assignment chapters (1 to 9)
Class xii assignment chapters (1 to 9)
 
Mcq exemplar class 12
Mcq exemplar class 12Mcq exemplar class 12
Mcq exemplar class 12
 
Mcq exemplar class 12
Mcq exemplar class 12Mcq exemplar class 12
Mcq exemplar class 12
 
Application of integrals
Application of integralsApplication of integrals
Application of integrals
 
Integrals formula and short questions
Integrals  formula and short questionsIntegrals  formula and short questions
Integrals formula and short questions
 
Surface chemistry notes
Surface  chemistry  notesSurface  chemistry  notes
Surface chemistry notes
 
Assignment of solution
Assignment of solutionAssignment of solution
Assignment of solution
 
Class X1 assignment of chapters 1,3,4,5
Class X1 assignment of chapters 1,3,4,5Class X1 assignment of chapters 1,3,4,5
Class X1 assignment of chapters 1,3,4,5
 
Continuity and differentiability
Continuity and differentiabilityContinuity and differentiability
Continuity and differentiability
 
Notes of Matrices and Determinants
Notes of Matrices and DeterminantsNotes of Matrices and Determinants
Notes of Matrices and Determinants
 
Class xii worksheet (chapters 2,5,6)
Class xii worksheet (chapters 2,5,6)Class xii worksheet (chapters 2,5,6)
Class xii worksheet (chapters 2,5,6)
 
Three dimensional geometry
Three dimensional geometryThree dimensional geometry
Three dimensional geometry
 
Differential equation
Differential equationDifferential equation
Differential equation
 
Maxima and minima
Maxima and minima Maxima and minima
Maxima and minima
 

Último

Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
MateoGardella
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
SanaAli374401
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Último (20)

Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 

Chapter 5 assignment

  • 1. CHAPTER – 5 CONTINUITY AND DIFFERENTABILITY 1. A real valuedfunctioniscontinuousata pointa in itsdomainif LHL= RHL = f(a). A functionis continuousif itiscontinuousonwhole domain. 2. Sum,difference,productandquotientof continuousfunctions are continuous. 3. A functionisdifferentiable atapointif LHD= RHD 4. Everydifferentiable functioniscontinuousbutconverse isnottrue. 5. Rolle’s Theorem: if f isa continuousfunctionon[a,b] anddifferentiableon(a,b) suchthatf(a)=f(b), thenthere existsome cin(a,b) such that f’(c)=0. 6. Mean value Theorem: if f is a continuousfunctionon[a,b] anddifferentiable on(a,b),thenthere existsome cin (a,b) suchthat f’(c)= 𝑓( 𝑏)−𝑓(𝑎) 𝑏−𝑎 4 Marks Questions 1. Examine the continuity of following functions at indicated points: (i) f(x) = { 2𝑥 − 1, 𝑥 < 0 2𝑥 + 1, 𝑥 ≥ 0 (ii)f(x) = { 5𝑥 − 4, 𝑥 < 1 4𝑥2 − 3𝑥, 𝑥 ≥ 1 (iii) f(x) ={ 𝑥3 − 3, 𝑥 ≤ 0 𝑥2 + 1, 𝑥 > 0 (iv)f(x) = { 𝑥 | 𝑥| , 𝑥 ≠ 0 0, 𝑥 = 0 2. find all points of discontinuity of f , where f is defined by (i)f(x) = { 2𝑥 + 3, 𝑥 ≤ 2 2𝑥 − 3, 𝑥 > 2 (ii)f(x) ={ 𝑥3 − 3, 𝑥 ≤ 2 𝑥2 + 1, 𝑥 > 2 (iii) f(x) ={ 𝑠𝑖𝑛 𝑥 𝑥 , 𝑥 < 0 𝑥 + 1, 𝑥 ≥ 0 (iv) f(x) = { | 𝑥| + 3 𝑥 ≤ −3 −2𝑥 −3 < 𝑥 < 3 6𝑥 + 2 𝑥 ≥ 3 2. For what values of a and b the function defined is continuous at x = 1, f(x) = { 3𝑎𝑥 + 𝑏 𝑖𝑓 𝑥 < 1 11 𝑖𝑓 𝑥 = 1 5𝑎𝑥 − 2𝑏 𝑖𝑓 𝑥 > 1 4. Discuss the continuity of the function f defined by f(x) = { 𝑥 + 2 𝑖𝑓 𝑥 ≤ 1 𝑥 − 2 𝑖𝑓 𝑥 > 1 5. Show that the function f(x) = { 𝑥 𝑠𝑖𝑛 1 𝑥 𝑖𝑓 𝑥 ≠ 1 0 𝑖𝑓 𝑥 = 1 is continuous at x = 0. 6. For what value of 𝛾 is the function defined by f(x) ={ 𝛾(𝑥2 − 2𝑥) 𝑖𝑓 𝑥 ≤ 0 4𝑥 + 1 𝑖𝑓 𝑥 > 0 is continuous at x = 0. 7. Examine the continuity of f , where f is defined by f(x) = { 𝑠𝑖𝑛 𝑥 − 𝑐𝑜𝑠 𝑥 𝑖𝑓 𝑥 ≠ 0 −1 𝑖𝑓 𝑥 = 0 .
  • 2. 8. Find the values of K so that the function f is continuous at indicated points. (i) f(x) = { 𝐾𝑥 + 1 𝑖𝑓 𝑥 ≤ 5 3𝑥 − 5 𝑖𝑓 𝑥 > 5 𝑎𝑡 𝑥 = 5 (ii) f(x) = { 𝐾𝑥 + 1 𝑖𝑓 𝑥 ≤ 𝜋 𝑐𝑜𝑠 𝑥 𝑖𝑓 𝑥 > 𝜋 𝑎𝑡 𝑥 = 𝜋 (iii) f(x) = { 𝐾 cos𝑥 𝜋 −2𝑥 𝑖𝑓 𝑥 ≠ 𝜋 2 3 𝑖𝑓 𝑥 = 𝜋 2 𝑎𝑡 𝑥 = 𝜋 2 (iv) f(x) = { (1−𝑐𝑜𝑠4𝑥) 𝑥2 𝑖𝑓 𝑥 < 0 𝐾 𝑖𝑓 𝑥 = 0 √ 𝑥 √16+√ 𝑥− 4 𝑖𝑓 𝑥 > 0 𝑎𝑡 𝑥 = 0 9. Determine if f defined by f(x) = { 𝑥2 𝑠𝑖𝑛 1 𝑥 𝑖𝑓 𝑥 ≠ 0 0 𝑖𝑓 𝑥 = 0 is a continuous function? 10. Examine the continuity of the function f(x) = { | 𝑠𝑖𝑛 𝑥| 𝑥 𝑖𝑓 𝑥 ≠ 0 1 𝑖𝑓 𝑥 = 0 at x = 0 .11 Find the value of k so that f(x) = { 𝑥2 +3𝑥−10 (𝑥−2) , 𝑖𝑓 𝑥 ≠ 0 𝑘 , 𝑖𝑓 𝑥 = 0 is continuous at x = 0 . 12 Discuss the continuity of f(x) = |x – 1| +|x| + |x - 1| at – 1, 0 and 1 13. if f(x) = { √1+𝑘𝑥 − √1−𝑘 𝑥 𝑥 − 1 ≤ 𝑥 < 0 2𝑥+1 𝑥−2 0 ≤ 𝑥 ≤ 1 is continuous at x = 0. Find the value of k 14. Find the value of a and b such that the following function f(x) is a continuous function : f(x) = { 5; 𝑥 ≤ 2 𝑎𝑥 + 𝑏; 2 < 𝑥 < 10 21; 𝑥 ≥ 10 15.For what value of k, the following function is continuous at x = 0 : f(x) = { 1−𝑐𝑜𝑠 4𝑥 8𝑥2 , 𝑥 ≠ 0 𝑘 , 𝑥 = 0 16. Find the value of ‘ a’ for which the function f defined as f(x) = { 𝑎 𝑠𝑖𝑛 𝜋 2 ( 𝑥 + 1) , 𝑥 ≤ 0 𝑡𝑎𝑛 𝑥−𝑠𝑖𝑛 𝑥 𝑥3 , 𝑥 > 0 , is continuous at x = 0. 17. If the function f , as defined below is continuous at x = 0, find the values of a, b and c. f(x) = { 𝑠𝑖𝑛( 𝑎+1) 𝑥+𝑠𝑖𝑛𝑥 𝑥 , 𝑥 < 0 𝑐 , 𝑥 = 0 √𝑥+𝑏𝑥2 − 𝑥 𝑏𝑥3/2 , 𝑥 > 0
  • 3. 18. Show that the function ‘f ‘ defined by f(x) = { 3𝑥 − 2 , 0 < 𝑥 ≤ 1 2𝑥2 − 𝑥 , 1 < 𝑥 ≤ 2 5𝑥 − 4 , 𝑥 > 2 is continuous at x = 2, but not differentiable. 19. Prove that the greatest integer function defined by f(x) = [x], 0<x<3 , is not differentiable at x = 1 and x = 2. 20. Prove that the function f given by f(x) = | 𝑥 − 1|, 𝑥 ∈ 𝑅 is not differentiable at x = 1. 21 If log ( 𝑥2 + 𝑦2) = 2 tan -1( 𝑦 𝑥⁄ ) , then Show that 𝑑𝑦 𝑑𝑥 = 𝑥+𝑦 𝑥−𝑦 22 Differentiate sin -1( 3𝑥+4√1−𝑥2 5 ) 𝑤. 𝑟. 𝑡. 𝑥 23 Differentiate tan –1 ( √1+𝑥2 −√1−𝑥2 √1+𝑥2+√1−𝑥2 )w.r.t cos – 1 x2 24 IF x = a sec 3 , y = a tan3 𝜃,Prove that 𝑑2 𝑦 𝑑𝑥2 at 𝜃 = 𝜋 4 is 1/12a 25 IF x = tan ( 1 𝑎 log 𝑦 ) 𝑡ℎ𝑒𝑛 𝑝𝑟𝑜𝑣𝑒 that (1 + 𝑥2) 𝑑2 𝑦 𝑑𝑥2 + (2x-a ) 𝑑𝑦 𝑑𝑥 = 0 26 If Y = 𝑙𝑜𝑔(𝑥 + √𝑥2 + 1)2 then show that (1+𝑥2 ) 𝑑2 𝑦 𝑑𝑥2 +x 𝑑𝑦 𝑑𝑥 = 2 27 If y = sin ( log x) then prove that 𝑥2 𝑑2 𝑦 𝑑𝑥2 + x 𝑑𝑦 𝑑𝑥 + y = 0 28 Differentiate sin -1( (2 𝑥+1 3 𝑥) 1+ (36) 𝑥 )w.r.t x 29 Differentiate the following functions w.r.t.x (chain rule) (a) log (sin x) (b) sin (ex2) (c) sin3x (d) 1 √𝑎2−𝑥2 (e) log √ 𝑥 𝑥−1 (f) log(x+ √ 𝑎2 + 𝑥2 ) (g) sin √ 𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠 𝑥 (h) cos (x3) sin2 (x5) (i) sinmx cosnx 30. If y = (x + √ 𝑥2 + 𝑎2 )n , Prove that 𝑑𝑦 𝑑𝑥 = 𝑛𝑦 √𝑥2 +𝑎2 31. If y = (x + √ 𝑥2 − 1)m , Prove that (x2 – 1) (y1)2 = m2y2 32. If x√1 + 𝑦 + y√1 + 𝑥 = 0, find 𝑑𝑦 𝑑𝑥
  • 4. 33. If y = 𝑥 sin−1 𝑥 √1−𝑥2 + log √1 − 𝑥2 , Prove 𝑑𝑦 𝑑𝑥 = sin−1 𝑥 (1−𝑥2) 3 2 34. Differentiate the following functions w.r.t.x : (i) sin−1 ( 2𝑥 1+𝑥2) (ii) tan−1 ( 1−𝑐𝑜𝑠 𝑥 𝑠𝑖𝑛 𝑥 ) (iii) tan−1 ( 𝑐𝑜𝑠 𝑥 1+𝑠𝑖𝑛 𝑥 ) (iv) tan−1 ( 5 𝑥 1−6𝑥2) (v) tan-1[ √1+𝑥2 √1+𝑥2 +√1−𝑥2 −√1−𝑥2] (vi) tan-1[ √1+𝑠𝑖𝑛 𝑥 √1+𝑠𝑖𝑛 𝑥 +√1−𝑠𝑖𝑛 𝑥 −√1−𝑠𝑖𝑛 𝑥 ] (vii) cot-1( 1−𝑥 1+𝑥 ) 35. Find 𝑑𝑦 𝑑𝑥 in the following: (implicit functions) (a) x3 +y3 = 3axy (b) tan-1 (x2 + y2) = a (c) ax2 + 2hxy + by2 = c2 (d) ex-y log ( 𝑥 𝑦 ) (e) x2/3 + y2/3 = a2/3 36. If √1 − 𝑥2 + √1 − 𝑦2 = a (x – y), Prove 𝑑𝑦 𝑑𝑥 = √ 1−𝑦2 1−𝑥2 37. If y =√ 𝑥 + √ 𝑥 + √ 𝑥 − ∞, Prove 𝑑𝑦 𝑑𝑥 = 1 2𝑦−1 38. Differentiate the following functions w.r.t.x : (a) xsin x (b) (sin x) logx (c) 𝑥cos−1 𝑥 (d) cos (xx) (e)𝑥sin−1 𝑥 (f)( 𝑠𝑖𝑛 𝑥)cos−1 𝑥 (g) x logx + (log x)x (h) (sin x)cosx + x sinx (i) x cotx + 2𝑥2 −3 𝑥2 +𝑥+2 (j) x sinx-cos x + 𝑥2 −1 𝑥2+1 (k) xx cos x + (x cos x)x 39. If xm . yn = (x + y)m+n , Prove that 𝑑𝑦 𝑑𝑥 = 𝑦 𝑥 40. If xy = e x-y , Prove that 𝑑𝑦 𝑑𝑥 = 𝑙𝑜𝑔 𝑥 (1+𝑙𝑜𝑔𝑥)2 41. If xy = y x , Prove that 𝑑𝑦 𝑑𝑥 = 𝑦(𝑥 𝑙𝑜𝑔 𝑦−𝑦) 𝑥(𝑦𝑙𝑜𝑔𝑥−𝑥) 42. If (cos x)y = (siny)x, find 𝑑𝑦 𝑑𝑥 . 43. If xy + yx = ab , find 𝑑𝑦 𝑑𝑥 . 44. If x = a ( t + sin t), y = a(1 – cos t), find ( 𝑑𝑦 𝑑𝑥 )t = 𝜋 2 . 45. If x = a(cos t + t sin t), y = b(sin t – t cos t), Prove that 𝑑2 𝑦 𝑑𝑥2 = 𝑏 𝑠𝑒𝑐3 𝑡 𝑎2 𝑡 .
  • 5. 46. If y = ( x + √𝑥2 − 1 )m, prove that (x2 – 1) y2 + xy1 – m2 y = 0. 47. Find 𝑑𝑦 𝑑𝑥 in the following: (i) x = a [cos t + log tan t/2], y = a sin t (ii) x = at2 , y = 2at (iii) x = a(𝜃 + 𝑠𝑖𝑛𝜃), 𝑦 = 𝑎(1 + 𝑐𝑜𝑠𝜃) (iv) x = a(cos 𝜃 + 𝜃𝑠𝑖𝑛𝜃), 𝑦 = 𝑎(𝑠𝑖𝑛𝜃 − 𝜃𝑐𝑜𝑠𝜃) (v) x = a sec3 𝜃 , 𝑦 = 𝑎 tan3 𝜃 48. If y = 3 cos(logx) + 4 sin (logx), then show that x2 𝑑2 𝑦 𝑑𝑥2 + 𝑥 𝑑𝑦 𝑑𝑥 + 𝑦 = 0. 49. If y = 3e2x + 2e3x , Prove 𝑑2 𝑦 𝑑𝑥2 − 5 𝑑𝑦 𝑑𝑥 + 6𝑦 = 0. 50. If y = (tan-1 x)2 , Show that (x2 + 1)2 y2 + 2x(x2 + 1)y1 = 2 51. If y =𝑒 𝑎 cos−1 𝑥 , Show (1 – x2) y2 – xy1 = a2y. 52. If x = a cos3 𝜃 , 𝑦 = 𝑎 𝑠𝑖𝑛3 𝜃, 𝑓𝑖𝑛𝑑 𝑑2 𝑦 𝑑𝑥2 . 53. If y = cosec x + cot x. Show that sin x 𝑑2 𝑦 𝑑𝑥2 = y2 . 54. If x = a(𝜃 − 𝑠𝑖𝑛 𝜃), 𝑦 = 𝑎 ( 1 − 𝑐𝑜𝑠𝜃), Find ( 𝑑2 𝑦 𝑑𝑥2 ) 𝜃= 𝜋 2 . 55. Differentiate sin-1( 2 𝑥+1 1+4 𝑥) w.r.t.x 56. If x = sin t, y = sin mt, Prove that (1 – x2) 𝑑2 𝑦 𝑑𝑥2 - x 𝑑𝑦 𝑑𝑥 + 𝑚2 𝑦 = 0. 57. Find 𝑑𝑦 𝑑𝑥 , if yx + xy + xx = ab 58. If y = sin -1 x, Show y2 = 𝑥 (1−𝑥2) 3 2 . 59. Differentiate log sin x w.r.t. √ 𝑐𝑜𝑠 𝑥 . 60. Differentiate sin-1( 2𝑥 1+𝑥2) w.r.t. tan-1 x . 64. Find 𝑑𝑦 𝑑𝑥 , if y = sin -1 x + sin -1√1 − 𝑥2 . 65. If xy = ex-y , show that 𝑑𝑦 𝑑𝑥 = 𝑙𝑜𝑔 𝑥 { 𝑙𝑜𝑔 (𝑥𝑒)}2 . 66. Prove that : 𝑑 𝑑𝑥 [ 𝑥 2 √𝑎2 − 𝑥2 + 𝑎2 2 sin−1 ( 𝑥 𝑎 )] = √𝑎2 − 𝑥2 . 67. Differentiate tan-1[ √1+𝑥2 −1 𝑥 ] with respect to x. 68. If y = log tan ( 𝜋 4 + 𝑥 2 ), show that 𝑑𝑦 𝑑𝑥 - sec x = 0 .
  • 6. 69. If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos2t), show that ( 𝑑𝑦 𝑑𝑥 )at t = 𝜋 4 = 𝑏 𝑎 . 70. If y = cos-1( 2 𝑥+1 1+4 𝑥) , find 𝑑𝑦 𝑑𝑥 . 71. Find 𝑑𝑦 𝑑𝑥 , if y = sin-1 [x √1 − 𝑥 − √ 𝑥√1 − 𝑥2] . 72. If y = log [x + √𝑥2 + 1], prove that (𝑥2 + 1) 𝑑2 𝑦 𝑑𝑥2 + 𝑥 𝑑𝑦 𝑑𝑥 = 0 . 73. If y = sin−1 𝑥 √1−𝑥2 , show that (1-𝑥2 ) 𝑑2 𝑦 𝑑𝑥2 − 3𝑥 𝑑𝑦 𝑑𝑥 − 𝑦 = 0 . 74 if x = a cos t + b sin t , y = a sin t – b cos t , show that y2 𝑑2 𝑦 𝑑𝑥2 – x 𝑑𝑦 𝑑𝑥 + y = 0