SlideShare una empresa de Scribd logo
1 de 20
Descargar para leer sin conexiĆ³n
MOST IMPORTANT QUESTIONS (FOR 2018)
Relations & Functions (7 Marks)
1 Mark Questions:
1. What is the range of the function f(x)=
š‘„āˆ’1
š‘„āˆ’1
2. F: Rā†’R f(x)= (3-x3
)1/3
, find (fof)(x)
3. Let * be a binary operation defined by a * b = 2a + b ā€“ 3. Find 3 * 4.
4. If f(x) = x2
+ 2 and g(x) =
x
x+1
, find gof (5).
5. F : Rā†’R is defined by f(x)= 3x+2. Find f(f(x))
6. A= {1,2,3} and B={4,5,6,7} and f={(1,4),(2,5),(3,6)} be a function from A to B. state whether f is one one or onto.
7. Let f : R - {
āˆ’3
5
} ā†’ R be a function defined as f (x) =
2x
5x+3
, find f-1
.
8. If *is defined on integers as a * b = a + 3b2
, find 2 * 4.
9. If f(x) is an invertible function , find the inverse of f(x) =
( 3xāˆ’2)
5
10. If f(x) = 2x + 5 , g(x) = 2x ā€“ 5 , xāˆˆ R find (fog) (9).
11. If R = {(x , y) : x2
+ y2
ā‰¤ 4 ; x , yāˆˆZ } is a relation in Z , write the domain of R.
12. Let f : Rā†’ R be defined by f(x) = x2
. Find f-1
(x).
13. Let * be a binary operation defined by a * b = 3a + 4b ā€“ 2. Find 4 * 5.
14. If f(x) = x2
+ 2 and g(x) = 1 -
1
x+1
, find (fog) (3).
15. If * is a binary operator on Z defined by a*b= a+b-5, then write the identity element for * in Z.
6 Marks Questions:
1) Let N be the set of all natural Nos. & R be a relation on NxN defined by (a,b)R (c,d) such that
ad = bc. Prove that R is an equivalence relation
2) Let R be a relation on NxN defined by (a,b)R (c,d) : a+d = b+c. Prove that R is an equivalence relation.
3) Show that the relation R on Z defined by R = {(a, b) : a ā€“ b is divisible by 5} is an equivalence relation.
4) Show that the relation R in the set : A = { x : x āˆˆ Z, 0ā‰¤x ā‰¤12} given by.
R = {( a, b): a āˆ’ b is divisible by 4} is an equivalencerelation.
5) Prove that the relation R in the set A = {5, 6, 7, 8, 9} given by R = {(a, b) : š‘Ž āˆ’ š‘ is divisible by 2}, is
an equivalence relation. Find all elements related to the element 6.
6) A=R-{3}and B= R-{1}. Consider the function F: A ā†’B defined by f(x)=
š‘„āˆ’2
š‘„āˆ’3
is f is one one and onto? Justify
7) Consider f: R+
ā†’ [-5,āˆž) given by f(x)= 9x2
+6x-5. Show that f is invertible and find inverse of f.
8) F: Rā†’R, g: Rā†’R such that f(x)= 3x+1 and g(x)= 4x-2. Find fog and show that fog is one one and onto.
9) A binary operation * on Q-{-1} such that a*b= a+b+ab. Find the identity element on Q. Also find the inverse of an
element in Q-{-1}
10) Let A= NƗN and * be the binary operator on A defined by (a,b)*(c,d)=(a+c, b+d). show that * is commutative and
associative. Find the identity element for * on A if any.
11) Prove that f: Nā†’N defined by f(x)= x2
+x+1 is one- one but not onto.
12) Show that the relation R in the set Z of integers given by R = {( a, b) : 7 divides a ā€“ b} is an equivalence relation.
13) i) State whether the function is one ā€“ one, onto f : R ā†’ R : f (x) = 1 + x2
. Justify your answer.
ii) Show that f : [ -1 , 1 ] ā†’R, given by f(x) =
x
x+2
is one ā€“ one. Also find its inverse
12. Let A = R ā€“ {3} and B = R -
2
3
. If f : A ā†’ B: f(x) =
2xāˆ’4
3xāˆ’9
, then prove that f is a bijective function.
13. Let āˆ— be a binary on QxQ defined by (a,b) āˆ—(c,d) = (ac,b+ad).Determine, whether āˆ— is commutative and
associative .Find the identity element for āˆ— and the invertible elements of QxQ.
14. Show that the relation R in the set A ={xāˆˆ š‘ : 0 ā‰¤ š‘„ ā‰¤ 10}, š‘”š‘–š‘£š‘’š‘› š‘š‘¦
š‘… = {(š‘Ž, š‘): š‘Ž āˆ’ š‘ š‘–s a multiple of 3} is an equivalence relation. Write all its equivalence classes.
INVERSE TRIGONOMETRY (3 Marks)
1 Mark Questions:
1. Find the principal value of following:
(i) sināˆ’1 1
2
ā” (ii)cos āˆ’1
āˆ’1 ā” (iii)sināˆ’1
sin
2Ļ€
3
(iv) sec- 1
(2)
(v)cosāˆ’1
āˆ’
3
2
ā” (vi)sināˆ’1
sin
3Ļ€
5
ā” (vii)cosāˆ’1
cos
5Ļ€
6
(viii)cosāˆ’1
cos
7Ļ€
6
2. Evaluate the following:
(i) tanāˆ’1
2 cosā”( 2 sināˆ’1 1
2
) (ii) sin
Ļ€
3
āˆ’ sināˆ’1
āˆ’
1
2
(iii) tan sināˆ’1 3
5
+ cotāˆ’1 3
2
(iv) tan 2 tanāˆ’1 1
5
āˆ’
Ļ€
4
(v) cos-1 1
2
+ 2 sināˆ’1 1
2
(vi) cos
Ļ€
6
+ cosāˆ’1 1
2
(vii)sināˆ’1
sin
5Ļ€
6
+ cosāˆ’1
cos
Ļ€
6
(viii)tanāˆ’1
x + tanāˆ’1 1
x
(ix)sināˆ’1
sin
3Ļ€
4
+ cosāˆ’1
cos
Ļ€
3
(x)cosāˆ’1
cos
3Ļ€
6
+ sināˆ’1
sin
2Ļ€
3
3. Write the range of one branch of sin -1
x, other than principal branch.
4. Solve for x : sin -1
x ā€“ cos -1
x =
Ļ€
6
.
2 Marks Questions:
1. Show that cos -1 1āˆ’x2
1+ x2 = 2 tanāˆ’1
x .
2. Write the value of tanāˆ’1 1
5
+ tanāˆ’1 1
8
.
3. If sin sināˆ’1 1
5
+ cosāˆ’1
x = 1, find x.
4. Find the value of cos (sec-1
x + cosec -1
x).
5. Find the value of cot (tan -1
a + cot -1
a).
6. If tan-1
x + tan-1
y =
šœ‹
4
, then write the value of x + y + xy.
7. Simplify: tanāˆ’1 1+x2āˆ’1
x
8. Simplify: sināˆ’1 sin x+cos x
2
9. Prove that: tan-1
2 + tan -1
3 =
3Ļ€
4
10. Solve for x: tanāˆ’1 1 āˆ’x
1+x
=
1
2
tanāˆ’1
x
11. Solve: sin -1
(1 ā€“ x) ā€“ 2 sin -1
x =
Ļ€
2
12. Solve: tanāˆ’1
š‘„(š‘„ + 1) + sināˆ’1
š‘„2 + š‘„ + 1 =
šœ‹
2
.
13. Simplify: cosāˆ’1
2š‘„ 1 āˆ’ š‘„2 : -
1
2
ā‰¤ š‘„ ā‰¤
1
2
MATRICES AND DETERMINANTS (1+2+4+6=13 Marks)
1 MARK QUESTIONS.
1. If matrix
0 6 āˆ’ 5š‘„
š‘„2
š‘„ + 3
is symmetric find x
2.
3š‘„ āˆ’ 2š‘¦ 5
š‘„ āˆ’2
=
3 5
āˆ’3 āˆ’2
find y .
3. Find x if
š‘„ 1
3 š‘„
=
1 0
2 1
4. For what value of x, matrix
3 āˆ’ 2š‘„ š‘„ + 1
2 4
is singular?
5. ā€˜Aā€™ is a square matrix of order 4 : š“ = 1 find (i) 2š“ (ii) š‘Žš‘‘š‘— š“ (iii) āˆ’š“
6. Find cofactor of a12 in
2 āˆ’3 5
6 0 4
1 5 āˆ’7
7.
š‘„ + 1 š‘„ āˆ’ 1
š‘„ āˆ’ 3 š‘„ + 2
=
4 āˆ’1
1 3
find x.
8. A matrix A is of order 2 x 2 has determinant 4. What is the value of 2š“ ?
9. A is a square matrix of order 3 : |A|= -1, |B|=3 find |3AB|
10. If A is a skew symmetric matrix of order 3,what will be the value of det.(A).
11. Find x if
2 4
5 āˆ’1
=
2š‘„ 4
6 š‘„
.
12. If A is a square matrix such that A2
=I, then write š“āˆ’1
,
13. If A and B are square matrices of order 3 such that š“ =-1 and šµ =3 the find the value of 2š“šµ
2 MARKS QUESTIONS.
1. In the matrix eqn.
1 2
3 4
4 3
2 1
=
8 5
20 13
applyš‘…2 ā†’ š‘…2 āˆ’ š‘…1 and then applyš¶2 ā†’ š¶2 āˆ’ š¶1.
2. If A=
6 5
7 6
,compute (AdjA) and very that A(AdjA)= š“ I.
3. For the matrix A=
3 1
āˆ’1 2
,A2
-5A+7I=O,then find š“āˆ’1
.
4. Find the matrix X for which
1 āˆ’4
3 āˆ’2
X=
āˆ’16 āˆ’6
7 2
5. Prove that the diagonal elements of a skew symmetric matrix are zero.
6. A and B are symmetric matrices of same order,then show that AB is symmetric iff A and B commute.
7. A is a square matrix: A2
=A, then write the value of 7A-(I+A)3
.
8. If A=
š‘š‘œš‘ š“ š‘†š‘–š‘›š“
āˆ’š‘†š‘–š‘›š“ š¶š‘œš‘ š“
find A-1
.
9. If A is a skew symmetric matrix of order 3, then prove that |A|=0.
10. Solve:
5 4
1 1
š“ =
1 āˆ’2
1 3
4 MARKS QUESTIONS
1. Express the matrix
6 2 āˆ’5
āˆ’2 āˆ’5 3
āˆ’3 3 āˆ’1
as sum of symmetric and skew symmetric matrix.
2. Find x if [x 4 -1]
2 1 āˆ’1
1 0 0
2 2 4
š‘„
4
āˆ’1
= 0
3. Using Elementary Row operations & column operations find A-1
whose
a. A =
2 0 āˆ’1
5 1 0
0 1 3
b. A =
āˆ’1 1 2
1 2 3
3 1 1
4. Using properties of determinants, prove that
i)
š‘„ + 4 2š‘„ 2š‘„
2š‘„ š‘„ + 4 š‘„
2š‘„ 2š‘„ š‘„ + 4
= (5x + 4) (4 ā€“ x)2
ii)
š‘Ž āˆ’ š‘ āˆ’ š‘ 2š‘Ž 2š‘Ž
2š‘ š‘ āˆ’ š‘ āˆ’ š‘Ž 2š‘
2š‘ 2š‘ š‘ āˆ’ š‘Ž āˆ’ š‘
= (a + b + c )3
iii)
ļ” ļ”2
ļ¢ + ļ§
ļ¢ ļ¢2
ļ§ + ļ”
ļ§ ļ§2
ļ” + ļ¢
= ( ļ” - ļ¢) (ļ¢ - ļ§) (ļ§ - ļ”) (ļ” + ļ¢ + ļ§)
iv)
1 1 + š‘ 1 + š‘ + š‘ž
2 3 + 2š‘ 4 + 3š‘ + 2š‘ž
3 6 + 3š‘ 10 + 6š‘ + 3š‘ž
= 1
v)
š‘Ž2
š‘š‘ š‘Žš‘ + š‘2
š‘Ž2
+ š‘Žš‘ š‘2
š‘Žš‘
š‘Žš‘ š‘2
+ š‘š‘ š‘2
= 4a2
b2
c2
vi)
š‘Ž2
+ 1 š‘Žš‘ š‘Žš‘
š‘Žš‘ š‘2
+ 1 š‘š‘
š‘Žš‘ š‘š‘ š‘2
+ 1
= (1 + a2
+ b2
+ c2
)
vii)
1 š‘Ž š‘Ž3
1 š‘ š‘3
1 š‘ š‘3
= (a ā€“ b) (b ā€“ c) (c ā€“ a) (a + b + c)
viii)
3š‘Ž āˆ’š‘Ž + š‘ āˆ’š‘Ž + š‘
āˆ’š‘ + š‘Ž 3š‘ āˆ’š‘ + š‘
āˆ’š‘ + š‘Ž āˆ’š‘ + š‘ 3š‘
= 3(a + b + c) ( ab + bc + ca)
ix)
1 + š‘Ž2
āˆ’ š‘2
2š‘Žš‘ āˆ’2š‘
2š‘Žš‘ 1 āˆ’ š‘Ž2
+ š‘2
2š‘Ž
2š‘ āˆ’2š‘Ž 1 āˆ’ š‘Ž2
āˆ’ š‘2
= (1+a2
+b2
)3
.
x)
š‘Ž š‘ š‘
š‘Ž āˆ’ š‘ š‘ āˆ’ š‘ š‘ āˆ’ š‘Ž
š‘ + š‘ š‘ + š‘Ž š‘Ž + š‘
= a3
+ b3
+ c3
ā€“ 3abc .
5. Find the matrix A satisfying the matrix equation
2 1
3 2
A
āˆ’3 2
5 āˆ’3
=
1 0
0 1
.
6. Solve the equation :
š‘„ + š‘Ž š‘„ š‘„
š‘„ š‘„ + š‘Ž š‘„
š‘„ š‘„ š‘„ + š‘Ž
= 0, aā‰ 0
7. Using properties of determinant prove :-
š‘„ š‘„2
1 + š‘š‘„3
š‘¦ š‘¦2
1 + š‘š‘¦3
š‘§ š‘§2
1 + š‘š‘§3
= (1 + pxyz)(x ā€“ y) (y ā€“ z) ( z ā€“ x)
8. A trust fund has Rs. 30,000 to invest in two bonds. First pays 5% interest per year & second pays 7%. Using matrix
multiplication determine how to divide Rs. 30,000 among two types of bonds if trust find must obtain annual
interest of Rs. 2000.
9. Find A if
4
1
3
A=
āˆ’4 8 4
āˆ’1 2 1
āˆ’3 6 3
10. Find A if
2 āˆ’1
1 0
āˆ’3 4
A=
āˆ’1 āˆ’8 āˆ’10
1 āˆ’2 āˆ’5
9 22 15
11. Using elementary transformations find inverse of
2 0 āˆ’1
5 1 0
0 1 3
12. Using properties of determinants show that if
3 āˆ’2 š‘ š‘–š‘›3šœƒ
āˆ’7 8 š‘š‘œš‘ 2šœƒ
āˆ’11 14 2
=0 then sin šœƒ=0 or Ā½.
6 Marks Questions:
13. A =
1 2 āˆ’3
2 3 2
3 āˆ’3 āˆ’4
, find A-1
, solve the equation x + 2y ā€“ 3z = - 4, 2x + 3y + 2z = 2, 3x ā€“ 3y ā€“ 4z = 11.
14. Find A-1
, where A =
1 āˆ’2 0
2 1 3
0 āˆ’2 1
. Hence solve the equations x ā€“ 2y = 10, 2x + y + 3z = 8, -2y + z = 7.
15. If A =
1 āˆ’1 1
2 1 āˆ’3
1 1 1
, find A-1
and use it to solve x + 2y + z = 4, -x + y + z = 0, x ā€“ 3y + z = 2
16. If A =
1 1 1
1 2 āˆ’3
2 āˆ’1 3
, find A-1
and use it to solve x + y +2z = 0, x +2 y - z = 9, x ā€“ 3y +3z = -14.
17. If A =
āˆ’4 4 4
āˆ’7 1 3
5 āˆ’3 āˆ’1
and B =
1 āˆ’1 1
1 āˆ’2 āˆ’2
2 1 3
, find AB and use it to solve the system of equations
x ā€“ y + z = 4, x - 2y - 2z = 9, 2x + y + 3z = 1.
18. Let the two matrices A and B be given by A =
1 āˆ’1 0
2 3 4
0 1 2
and B =
2 2 āˆ’4
āˆ’4 2 āˆ’4
2 āˆ’11 5
.
Verify AB = BA = 6I and hence solve the equations x ā€“ y = 3, 2x + 3y + 4z = 17, y + 2z = 7.
19. If A =
1 1 1
1 2 āˆ’3
2 āˆ’1 3
show that A3
ā€“ 6A2
+ 5A + 11I = 0. Hence find A-1
.
CONTINUITY AND DIFFERENTIABILITY (2+4+4=10 Marks)
2 MARKS QUESTIONS.
1. Write the value of k for which š‘“ š‘„ =
š‘˜š‘„2
, š‘„ < 2
3, š‘„ ā‰„ 2
is continuous at x=2
2. Write the value of k for which š‘“ š‘„ =
3š‘ š‘–š‘›š‘„
2š‘„
+ š‘š‘œš‘ š‘„, š‘„ ā‰  0
š‘˜, š‘„ = 2
is continuous at x=0
3. Write two points at which š‘“ š‘„ =
1
š‘„āˆ’ š‘„
is not continuous.
4. Write one point where f(x) = š‘„ āˆ’ š‘„ + 1 is not differentiable
5. If y = š‘’2š‘„3
, write
š‘‘š‘¦
š‘‘š‘„
.
6. Find the value of k so that š‘“ š‘„ =
1āˆ’š‘š‘œš‘ 4š‘„
8š‘„2 , š‘„ ā‰  0
š‘˜, š‘„ = 0
is continuous at x=0.
7. If x= cosšœƒ āˆ’ š‘š‘œš‘ 2šœƒ, y = sin šœƒ- sin2 šœƒ , find
š‘‘š‘¦
š‘‘š‘„
.
8. If š‘ š‘–š‘›2
š‘¦ + cos š‘„š‘¦ = šœ‹,find
š‘‘š‘¦
š‘‘š‘„
.
9. If y = tanāˆ’1 5š‘„
1āˆ’6š‘„2 ,-
1
6
< x <
1
6
,then show that
š‘‘š‘¦
š‘‘š‘„
=
2
1+4š‘„2 +
3
1+9š‘„2 .
10. If it is given that for the function f(x)=x3
-5x2
-3x,Mean value theorem is applicable in [1,3],find all values of c.
11. f(x) =
š¾š‘„ + 1 š‘–š‘“ š‘„ ā‰¤ šœ‹
š‘š‘œš‘  š‘„ š‘–š‘“ š‘„ > šœ‹
š‘Žš‘” š‘„ = šœ‹, find k if function is continuous at Ļ€,
12. If x = š‘Žsin āˆ’1 š‘” , š‘¦ = š‘Žcos āˆ’1 š‘” , š‘ š‘•š‘œš‘¤ š‘”š‘•š‘Žš‘”
š‘‘š‘¦
š‘‘š‘„
= āˆ’
š‘¦
š‘„
.
13. If (x2
+y2
)3
=3x2
y , find
š‘‘š‘¦
š‘‘š‘„
.
4 MARKS QUESTIONS
14. Differentiate log ( xsin x
+ cot2
x) with respect to x.
15. If y = log [ x + š‘„2 + š‘Ž2 ], show that ( x2
+ a2
)
š‘‘2 š‘¦
š‘‘š‘„2 + x
š‘‘š‘¦
š‘‘š‘„
= 0.
16. . If 1 āˆ’ š‘„2 + 1 āˆ’ š‘¦2 = a (x ā€“ y), Prove
š‘‘š‘¦
š‘‘š‘„
=
1āˆ’š‘¦2
1āˆ’š‘„2
17. If x = a sin t and y = a ( cos t + log tan
š‘”
2
), find
š‘‘2 š‘¦
š‘‘š‘„2 .
18. If x = a(cos t + t sin t), y = b(sin t ā€“ t cos t), Prove that
š‘‘š‘¦ 2
š‘‘š‘„ 2 =
š‘ š‘ š‘’š‘ 3 š‘”
š‘Ž2 š‘”
.
19. Differentiate the following functions w.r.t.x :
(i) sināˆ’1 2š‘„
1+š‘„2 (ii) tanāˆ’1 1āˆ’š‘š‘œš‘  š‘„
š‘ š‘–š‘› š‘„
(iii) tanāˆ’1 š‘š‘œš‘  š‘„
1+š‘ š‘–š‘› š‘„
(iv) tanāˆ’1 5 š‘„
1āˆ’6š‘„2
(v) tan-1 1+š‘„2
1+š‘„2
+ 1āˆ’š‘„2
āˆ’ 1āˆ’š‘„2
(vi) tan-1 1+š‘ š‘–š‘› š‘„
1+š‘ š‘–š‘› š‘„
+ 1āˆ’š‘ š‘–š‘› š‘„
āˆ’ 1āˆ’š‘ š‘–š‘› š‘„
(vii) cot-1 1āˆ’š‘„
1+š‘„
20. Differentiate tan-1 1+ š‘„2āˆ’ 1āˆ’ š‘„2
1+ š‘„2+ 1āˆ’ š‘„2
with respect to cos-1
x2
.
21. Verify lagrangeā€™s Mean value theorem: (i) f(x) = x(x ā€“ 1) (x ā€“ 2) [ 0, Ā½] (ii) f(x) = x3
-5x2
ā€“ 3x [1, 3]
22. Verify Rolleā€™s theorem for the following functions :
(i) f(x) = x2
+ x ā€“ 6[-3, 2] (ii) f(x) = x (x ā€“ 1) (x ā€“ 2) [0, 2] (iii) f(x) = sin x + cos x [0,
šœ‹
2
]
23. Differentiate sin-1 2š‘„
1+š‘„2 w.r.t. tan-1
x .
24. If y =
sin āˆ’1 š‘„
1āˆ’š‘„2
, show that (1-š‘„2
)
š‘‘2 š‘¦
š‘‘š‘„2 āˆ’ 3š‘„
š‘‘š‘¦
š‘‘š‘„
āˆ’ š‘¦ = 0 .
25. Differentiate cos-1 1āˆ’ š‘„2
1+ š‘„2 with respect of tan-1 3š‘„ āˆ’ š‘„3
1āˆ’3 š‘„2 .
26. If x = a sin 2t(1 + cos 2t), y = b cos 2t( 1 ā€“ cos 2t) Show that
š‘‘š‘¦
š‘‘š‘„ š‘”=
šœ‹
4
=
š‘
š‘Ž
27. Find
š‘‘š‘¦
š‘‘š‘„
, if y = sin-1
[x 1 āˆ’ š‘„ āˆ’ š‘„ 1 āˆ’ š‘„2] .
28. If y = log [x + š‘„2 + 1], prove that (š‘„2
+ 1)
š‘‘2 š‘¦
š‘‘š‘„2 + š‘„
š‘‘š‘¦
š‘‘š‘„
= 0 .
29. If y =
sin āˆ’1 š‘„
1āˆ’š‘„2
, show that (1-š‘„2
)
š‘‘2 š‘¦
š‘‘š‘„2 āˆ’ 3š‘„
š‘‘š‘¦
š‘‘š‘„
āˆ’ š‘¦=0
APPLICATION OF DERIVATIVES (2+4+4=10 Marks)
2 Marks Questions:
1. The volume of a cube is increasing at a rate of 9 cm3
/s, how fast is the surface area increasing when length of an
edge is 10 cm.
2. Show that the function f(x)= x3
-3x2
+4x is strictly increasing on R.
3. If the radius of a sphere is measured as 9m with an error of 0.03m,find the approximate error in calculating the
surface area.
4. Show that the function f(x)= x3
+x2
+x+1 do not have maxima or minima.
5. The side of an equilateral triangle is increasing at the rate of 2cm/s. at what rate is its area increasing when the side
of triangle is 20cm?
6. Using differentials, find approximate value of 25.2
7. The volume of a spherical balloon is increasing at the rate of change of its surface area at the instant when radius is
6cm .
8. The total cost C(x) in rupees associated with the production of x units of an item is given by
C(x) = 0.007 x3
ā€“ 0.003 x2
+ 15x + 4000. Find the marginal cost when 17 units are produced.
9. The radius of a spherical diamond is measured as 7 cm with an error of 0.04 cm. Find the approximate error in
calculating its volume. If the cost of 1 cm3
diamond is Rs. 1000, what is the loss to the buyer of the diamond? What
lesson you get?
10. Using derivative, find the approximate percentage increase in the area of the circle if its radius is increased by 2%.
4 Marks Questions:
1. Separate the interval 0,
šœ‹
2
into sub ā€“ intervals in which f(x) = sin4
x + cos4
x is increasing or decreasing.
2. Show that the curves 4x = y2
and 4xy = K cut at right angles if K2
= 512 .
3. Find the intervals in which the function f given be f(x) ā€“ sinx ā€“ cosx, 0 ļ‚£ x ļ‚£ 2ļ° is strictly increasing or strictly
decreasing.
4. Find all points on the curve y = 4x3
ā€“ 2x5
at which the tangents passes through the origin.
5. Find the equation of Normal to the curve y = x3
+ 2x + 6 which are parallel to line x+14y+4=0.
6. Show that the curves y = aex
and y = be ā€“x
cut at right angles if ab = 1.
7. Find the intervals in which the function f f(x) = x3
+
1
š‘„3 , x ā‰  0 is increasing or decreasing.
8. Prove that y =
4 š‘ š‘–š‘› šœƒ
(2+š‘š‘œš‘  šœƒ)
ā€“ šœƒ is an increasing function of šœƒ in [0,
šœ‹
2
]
9. Find the area of the greatest rectangle that can be inscribed in an ellipse
š‘„2
š‘Ž2 +
š‘¦2
š‘2= 1.
10. Find the equation of tangent to the curve y =
š‘‹āˆ’7
š‘‹āˆ’2 (š‘‹āˆ’3)
at the point where it cuts x-axis. [x-20y=7]
11. A helicopter if flying along the curve y = x2
+ 2. A soldier is placed at the point (3, 2) .find the nearest distance
between the solider and the helicopter.
12. Show that the right circular cylinder of given surface and maximum volume is such that its height is equal to
diameter of base.
13. Show that the semi ā€“ vertical angle of cone of maximum volume and of given slant height is tan-1
2 .
14. The sum of perimeter of circle and square is K. Prove that the sum of their areas is least when side of square is
double the radius of circle.
15. Find the value of x for which f(x) = [x(x ā€“ 2)]2
is an increasing function. Also, find the points on the curve, where the
tangent is parallel to x- axis.
16. A tank with rectangular base and rectangular sides, open at the top is to be constructed so that its depth in 2 m and
volume is 8 m3
. If building of tank costs Rs. 70 per sq. meter for the base and
Rs. 45 per sq. Meter for sides, what is the cost of least expensive tank?
17. Show that the function f defined f(x) = tan-1
(sin x + cos x) is strictly increasing in (0,
šœ‹
4
) .
18. Find the intervals in which f(x)=
3
2
x4
-4x3
-12x2
+5 is strictly increasing or decreasing.
19. Find the intervals in which f(x)=
3
10
x4
-
4
5
x3
-3x2
+
36
5
š‘„ + 11 is strictly increasing or decreasing.
20. Find the minimum value of (ax+by), where xy=c2
.
21. Find the equations of tangents to the curve 3x2
-y2
=8, which passes through the point (4/3, 0).
22. A manufacturer can sell x items at a price of Rs. (5 -
š‘„
100
)each. The cost price of x items is Rs. (
š‘„
5
+ 500). Find the
number of items he should sell to earn maximum profit.
23. Find the point on the curve x2
=4ywhich is nearest to the point (-1,2).
INTEGRALS (2+4+6=12 Marks)
2 MARKS QUESTIONS.
1. (i) āˆ« š‘”š‘Žš‘›8
š‘„š‘ š‘’š‘4
š‘„ š‘‘š‘„ (ii)āˆ«
1
4+9š‘„2 š‘‘š‘„ (iii) āˆ«
1
š‘„2 āˆ’
1
š‘„
š‘’ š‘„
š‘‘š‘„ (iv)āˆ« š‘ š‘–š‘›7
š‘„
šœ‹
0
š‘‘š‘„
(v) āˆ«
1
š‘„2+2š‘„+2
š‘‘š‘„ (vi)āˆ«
1
š‘ š‘–š‘›2 š‘„š‘š‘œš‘ 2 š‘„
š‘‘š‘„ (vii). āˆ«
š‘š‘œš‘ 2š‘„
š‘ š‘–š‘›š‘„ +š‘š‘œš‘ š‘„ 2 š‘‘š‘„
2. (i). āˆ«
1
š‘„2āˆ’4š‘„+9
š‘‘š‘„ (ii). āˆ« 10 + 4š‘„ āˆ’ 2š‘„2 š‘‘š‘„ (iii). āˆ«
1
1+š‘š‘œš‘” 7 š‘„
šœ‹
2
0
š‘‘š‘„ (iv). āˆ«
1āˆ’š‘„
1+š‘„2
2
š‘’ š‘„
š‘‘š‘„
3. Evaluate: āˆ«
š‘š‘œš‘ 2š‘„
š‘š‘œ š‘ 2 š‘„ š‘ š‘–š‘›2 š‘„
dx
4. Evaluate: āˆ«
š‘‘š‘„
7āˆ’6š‘„āˆ’š‘„2
5. Evaluate: āˆ«
2+š‘ š‘–š‘› 2š‘„
1+š‘š‘œš‘  2š‘„
š‘’ š‘„
dx
6. Evaluate: āˆ«
š‘‘š‘„
š‘„[6 š‘™š‘œš‘” š‘„ 2+7 š‘™š‘œš‘” š‘„+2]
dx
7. Evaluate: āˆ«
š‘„
1āˆ’š‘„3
š‘‘š‘„
8. Evaluate: āˆ«
š‘ š‘–š‘› š‘„
š‘ š‘–š‘› (š‘„+š‘Ž)
š‘‘š‘„
9. Evaluate: āˆ«
(2š‘„āˆ’5)š‘’2š‘„
(2š‘„āˆ’3)3 dx
4 MARKS QUESTIONS.
10. Evaluate :-āˆ«
š‘„2+ 1
( š‘„āˆ’1)2 š‘„+3
dx.
11. Evaluate :-āˆ«
sin ( š‘„āˆ’š‘Ž)
sin ( š‘„+š‘Ž)
dx.
12. Evaluate :-āˆ«
5š‘„ 2
1+2š‘„+3š‘„2 dx.
13. Evaluate :-āˆ«( 2 sin 2š‘„ āˆ’ cos š‘„) 6 āˆ’ š‘š‘œš‘ 2 š‘„ āˆ’ 4 sin š‘„ dx.
14. Evaluate :- āˆ«
2
1āˆ’š‘„ ( 1+ š‘„2 )
dx
15. Evaluate :- āˆ«
š‘‘š‘„
š‘ š‘–š‘›š‘„ āˆ’ sin 2š‘„
dx
16. Evaluate :- āˆ«
š‘„2
š‘„2+ 3š‘„āˆ’3
š‘‘š‘„
17. Evaluate :- āˆ« š‘’ š‘„ sin 4š‘„āˆ’4
1āˆ’cos 4š‘„
dx
18. Evaluate :- āˆ«
š‘„2
š‘„āˆ’1 3 (š‘„+1)
dx
19. Evaluate :- āˆ«
1
š‘ š‘–š‘›š‘„ ( 5āˆ’4 cos š‘„)
dx
20. Evaluate: āˆ«
š‘š‘œš‘ š‘„ š‘‘š‘„
(š‘ š‘–š‘›2 š‘„+1)(š‘ š‘–š‘›2 š‘„+4)
21. Evaluate: āˆ«
š‘ š‘–š‘›4 š‘„ š‘š‘œš‘ š‘„ š‘‘š‘„
š‘ š‘–š‘›š‘„ +1 (š‘ š‘–š‘›š‘„ +4)2
22. Evaluate: āˆ« š‘ š‘–š‘›3š‘„ š‘’5š‘„
š‘‘š‘„
23. Evaluate: āˆ«
2š‘„āˆ’1
š‘„āˆ’1 š‘„+2 š‘„āˆ’3)
dx
24. Evaluate: āˆ«
1āˆ’š‘„2
š‘„(1āˆ’2š‘„)
dx
25. Evaluate: āˆ«
š‘„4
š‘„+1 (š‘„+2)4 š‘‘š‘„
26. Evaluate: āˆ«
š‘„4
š‘„āˆ’1 (š‘„2+1)
š‘‘š‘„
27. Evaluate: āˆ«
š‘„3+š‘„+1
(š‘„2āˆ’1)
dx
6 MARKS QUESTIONS.
28. Evaluate :-āˆ«
š‘„ sin š‘„ cos š‘„
š‘ š‘–š‘›4 š‘„+ š‘š‘œš‘ 4 š‘„
šœ‹
2
0
dx.
29. Show that āˆ« š‘”š‘Žš‘› š‘„ + š‘š‘œš‘” š‘„ š‘‘š‘„ = 2 šœ‹
šœ‹
2
0
30. Prove that :- āˆ« sināˆ’1 š‘„
š‘Ž+š‘„
š‘Ž
0
š‘‘š‘„ = āˆ’
š‘Ž
2
šœ‹ āˆ’ 2 .
31. Evaluate :- āˆ« š‘„3
āˆ’ š‘„
2
1
dx
32. Prove that : āˆ« š‘“(š‘„)š‘‘š‘„
š‘Ž
0
= āˆ« š‘“(š‘Ž āˆ’ š‘„)
š‘Ž
0
š‘‘š‘„ and hence Evaluate :āˆ«
š‘„ š‘‘š‘„
25 š‘ š‘–š‘›2 š‘„+16 š‘š‘œš‘ 2 š‘„
šœ‹
0
.
33. Prove that : āˆ« š‘“(š‘„)š‘‘š‘„
š‘
š‘Ž
= āˆ« š‘“(š‘Ž + š‘ āˆ’ š‘„)
š‘
š‘Ž
š‘‘š‘„ and hence Evaluate: āˆ«
10āˆ’š‘„
š‘„+ 10āˆ’š‘„
8
2
dx
34. Evaluate: āˆ«
š‘„ š‘ š‘–š‘› š‘„
1+ š‘š‘œš‘ 2 š‘„
šœ‹
2
0
š‘‘š‘„
35. Evaluate: āˆ«
š‘„ š‘‘š‘„
4āˆ’š‘š‘œš‘ 2 š‘„
šœ‹
0
36. Evaluate: āˆ«
š‘„ š‘‘š‘„
1+š‘ š‘–š‘›š‘„
šœ‹
0
37. Evaluate: āˆ« š‘„ āˆ’ 1 + š‘„ āˆ’ 2 + š‘„ āˆ’ 4
4
1
dx
38. Evaluate: āˆ«
š‘ š‘–š‘›2 š‘„
š‘ š‘–š‘› š‘„+š‘š‘œš‘  š‘„
šœ‹
2
0
dx
39. Evaluate: āˆ«
š‘’ š‘š‘œš‘  š‘„
š‘’ š‘š‘œš‘  š‘„ +š‘’āˆ’š‘š‘œš‘  š‘„
šœ‹
0
dx
40. Evaluate as the limit of sums :
(i)āˆ« 2š‘„2
āˆ’ 5 š‘‘š‘„
3
0
(ii) āˆ« š‘„2
+ 5š‘„ š‘‘š‘„
3
1
(iii) āˆ« š‘„2
+ š‘„ + 1 š‘‘š‘„
2
0
(iv) āˆ« 3š‘„2
+ 2š‘„ š‘‘š‘„
3
1
APPLICATION OF INTEGRATION (6 MARKS)
6 MARKS QUESTIONS.
1. Using integration, find the area of the region enclosed between the two circles x2
+ y2
= 4 and
(x ā€“ 2)2
+ y2
= 4.
2. Find the area of the region { (x, y) : y2
ļ‚£ 6ax and x2
+ y2
ļ‚£ 16a2
} using method of integration.
3. Prove that the area between two parabolas y2
4ax and x2
= 4ay is 16 a2
/ 3 sq units.
4. Using integration, find the area of the following region. š‘„, š‘¦ :
š‘„2
9
+
š‘¦2
4
ā‰¤ 1 ā‰¤
š‘„
3
+
š‘¦
2
.
5. Find the area of the region {(x, y) : x2
+ y2
ā‰¤ 4, š‘„ + š‘¦ ā‰„ 2}.
6. Find the area lying above x ā€“ axis and included between the circle x2
+ y2
= 8x and the parabola y2
= 4x.
7. Find the area of the region included between the curve 4y = 3x2
and line 2y = 3x + 12
8. Sketch the graph of y = š‘„ + 3 and Evaluate āˆ« š‘„ + 3
0
āˆ’6
dx .
9. Using the method of integration, find the area of the region bounded by the lines 3x ā€“ 2y + 1 = 0,
2x + 3y ā€“ 21 = 0 and x ā€“ 5y + 9 = 0.
10. Using integration , find the area of āˆ† ABC where A (2,3), B (4,7), C (6,2).
11. Using integration, find the area of the triangle formed by positive x-axis and tangent and normal to the circle
x2
+y2
=4 at (1, 3)
12. Find the area of the region included between the parabola y =
3 š‘„2
4
and the line 3x ā€“ 2y + 12 = 0.
13. Find the area bounded by the circle x2
+ y2
= 16 and the line y = x in the first Quadrant. [2šœ‹]
DIFFERENTIAL EQUATIONS (6MARKS)
2 MARKS QUESTIONS.
1. What is the degree and order of following differential equation?
(i) y
š‘‘2 š‘¦
š‘‘š‘„2 +
š‘‘š‘¦
š‘‘š‘„
3
= š‘„
š‘‘3 š‘¦
š‘‘š‘„3
2
. (ii)
š‘‘š‘¦
š‘‘š‘„
4
+ 3y
š‘‘2 š‘¦
š‘‘š‘„2 = 0. (iii)
š‘‘3 š‘¦
š‘‘š‘„3 +y2
+ š‘’
š‘‘š‘¦
š‘‘š‘„ = 0
2. Write the integrating factor of
š‘‘š‘¦
š‘‘š‘„
+ 2y tan x = sin x
3. Form the differential equation of family of straight lines passing through origin.
4. Form the differential equation of family of parabolas axis along x-axis.
5. Verify that y-cosy=x is a solution of the diff.eqn.(ysiny+cosy+x)š‘¦/
=y.
6. Form the diff. eqn. representing the family of curves y=asin(x+b).
7. Find the general solution of the differential equation:
ylogydx ā€“ xdy = 0 Or š‘’ š‘„
tany dx + (1- š‘’ š‘„
)š‘ š‘’š‘2
y dy = 0
8. Find the differential equation representing the curve y = e-x
+ax+b.
9. Form the differential equation of family of curves; (x-a)2
+2y2
=a2
.
10. Form the differential equation of family of curves; y2
=a(b-x2
)
4 MARKS QUESTIONS.
1. Show that the differential equation xdy ā€“ ydx = š‘„2 + š‘¦2 dx is homogeneous and solve it.
2. Find the particular solution of the differential equation :- cos x dy = sin x ( cos x ā€“ 2y) dx, given that
y = 0, when x =
šœ‹
3
.
3. Show that the differential equation š‘„ š‘ š‘–š‘›2 š‘¦
š‘„
āˆ’ š‘¦ dx + x dy = 0 is homogeneous. Find the particular solution of
this differential equation, given that y =
šœ‹
4
when x = 1.
4. Show that the differential equation x
š‘‘š‘¦
š‘‘š‘„
sin
š‘¦
š‘„
+ š‘„ āˆ’ š‘¦ sin
š‘¦
š‘„
= 0 is homogeneous. Find the particular solution
of this differential equation, given that x = 1 when y =
šœ‹
2
.
5. Solve the following differential equation :- (1 + y + x2
y) dx + (x + x3
)dy = 0, where y = 0 when x = 1.
6. Solve the following differential equation : 1 + š‘„2 + š‘¦2 + š‘„2 š‘¦2 + xy
š‘‘š‘¦
š‘‘š‘„
= 0 .
7. Find the particular solution of the differential equation :( xdy ā€“ ydx) y sin
š‘¦
š‘„
= š‘¦š‘‘š‘„ + š‘„š‘‘š‘¦ š‘„ cos
š‘¦
š‘„
,
given that y = ļ° when x = 3.
8. š‘†š‘œš‘™š‘£š‘’ āˆ¶ š‘„š‘’
š‘¦
š‘„ āˆ’ š‘¦ sin
š‘¦
š‘„
+ š‘„
š‘‘š‘¦
š‘‘š‘„
sin
š‘¦
š‘„
= 0 . given that y = 0 where x = 1, i.e., y(1) = 0
9. Solve the initial value problem : (x2
+ 1)
š‘‘š‘¦
š‘‘š‘„
- 2xy = ( x4
+ 2x2
+ 1) cos x, y (0) = 0.
10. Solve : (x2
+ xy) dy = (x2
+ y2
) dx.
11. Show that the differential equation : 2y ex/y
dx + (y ā€“ 2x ex/y
) dy = 0 is homogenous and find its
particular solution, given x = 0 when y = 1.
12. Solve the equation : š‘„ š‘š‘œš‘ 
š‘¦
š‘„
+ š‘¦ š‘ š‘–š‘›
š‘¦
š‘„
š‘¦ š‘‘š‘„ = š‘¦ š‘ š‘–š‘›
š‘¦
š‘„
āˆ’ š‘„ š‘š‘œš‘ 
š‘¦
š‘„
x dy.
13. Find the particular solution of the differential equation (1 + x3
)
š‘‘š‘¦
š‘‘š‘„
+ 6x2
y = (1 + x2
), given that x = y = 1.
14. Solve : 1 + š‘’
š‘„
š‘¦ š‘‘š‘„ + š‘’
š‘„
š‘¦ 1 āˆ’
š‘„
š‘¦
š‘‘š‘¦ = 0 .
15. Solve the differential equation : (tan-1
y ā€“ x) dy = (1 + y2
) dx .
16. Find the particular solution of the differential equation :
17. Solve: (1 + e2x
) dy+ (1 + y2
) ex
dx = 0, given that y = 1 when x = 0.
18. Find the general solution of (x + 2y3
)
š‘‘š‘¦
š‘‘š‘„
= y.
19. Find the equation of a curve passing through origin and satisfying the differential equation
(1 + x2
)
š‘‘š‘¦
š‘‘š‘„
+ 2xy = 4x2
.
20. Find the general solution of
š‘‘š‘¦
š‘‘š‘„
- 3y = sin 2x.
VECTORS AND THREE DIMENSIONAL GEOMETRY(1+2+4+4+6=17 MARKS)
1 MARK QUESTIONS.
1. If š‘ is a unit vector and (š‘„ āˆ’ š‘) š‘„ + š‘ = 80 , then find š‘„ .
2. Find the value of šœ† so that the vector š‘Ž = 2 š‘– + šœ†š‘— + š‘˜ and š‘ = š‘– āˆ’ 2š‘— +3 š‘˜ are perpendicular to each
other.
3. If two vectors š‘Ž š‘Žš‘›š‘‘ š‘are : š‘Ž = 2, š‘ = 3 and š‘Ž. š‘ = 4, find š‘Ž āˆ’ š‘ .
4. Find the angle between š‘– āˆ’ 2š‘— + 3š‘˜ š‘Žš‘›š‘‘ 3š‘– āˆ’ 2š‘— + š‘˜ .
5. š‘Ž= š‘– + 2š‘— āˆ’ š‘˜, š‘ = 3š‘– + š‘— āˆ’ 5š‘˜, find a unit vector in the direction š‘Ž āˆ’ š‘ .
6. Write Direction ratios of
š‘„āˆ’2
2
=
2š‘¦āˆ’5
āˆ’3
= š‘§ āˆ’ 1 .
7. Write the vectors representing the diagonals of a parallelogram whose sides are the vectors š‘Ž š‘Žš‘›š‘‘ š‘.
8. Find the angle which the vector 2š‘–+š‘— āˆ’ 2š‘˜ makes with y ā€“axis.
9. Find a unit vector in the direction of š‘Ž = 3š‘– - 2 š‘— + 6š‘˜
10. Find š‘„ ,if for a unit vector š‘ , š‘„ āˆ’ š‘ š‘„ + š‘ = 15.
11. Find the distance of the plane 3x-2y+6z-14=0 from origin.
12. Find p if the line
š‘„āˆ’1
2
=
š‘¦+2
š‘
=
š‘§
3
is parallel to the plane 5x+2y-6z+9=0.
13. Write the eqn. of plane 2x-3y+4z+6=0 in intercept form.
14. Find the distance between the planes 2x-y+2z +5=0 and 4x-2y +4z+16=0.
15. Find a vector of magnitude 7 units which is perpendicular to both š‘Ž = 2 š‘– + šœ†š‘— + š‘˜ and š‘ = š‘– āˆ’ 2š‘— +3 š‘˜
2 MARKS QUESTIONS.
16. Find the volume of the parallelopiped whose adjacent sides are represented by š‘Ž , š‘ and š‘ where
š‘Ž= 3š‘– āˆ’ 2š‘— + 5š‘˜ , š‘ = 2š‘– + 2š‘— āˆ’ š‘˜ , š‘ = -4š‘– + 3š‘— + 2š‘˜ .
17. If two vectors š‘Ž š‘Žš‘›š‘‘ š‘are : š‘Ž = 2, š‘ = 3 and š‘Ž. š‘ = 4, find š‘Ž āˆ’ š‘ .
18. Find ā€˜š›Œā€™ when the projection of š‘Ž = š›Œš‘– + š‘— + 4 š‘˜ and š‘ = 2š‘– + 6š‘— + 3 š‘˜ is 4 units.
19. Find the value of šœ† so that the vectors š‘– + š‘— + š‘˜ , 2š‘– + 3š‘— āˆ’ š‘˜ , -š‘– + šœ†š‘— + 2š‘˜ are coplanar.
20. A line makes angles 900
š‘Žš‘›š‘‘ 1350
with x-axis and y-axis respectively , find the angle which it makes with z-axis.
21. Write the vector eqn. of a line passing through the point (2,-1,3) and perpendicular to the plane 3x-5y+2z=6.
22. Find the angle between the lines:
3+š‘„
3
=
1āˆ’š‘¦
āˆ’5
=
š‘§+2
4
š‘Žš‘›š‘‘
š‘„+1
1
=
š‘¦āˆ’4
1
=
5āˆ’3š‘§
āˆ’6
23. Write the eqn. of plane on which the foot of perpendicular from origin is (5,2,1).
24. The line š‘Ÿ = 2š‘– āˆ’3š‘— + š‘š‘˜ + š‘”(š‘– āˆ’ š‘— + š‘žš‘˜) lies in the plane š‘Ÿ.(3š‘– + š‘— āˆ’ š‘˜) āˆ’ 4 = 0,then find the values of p and q.
25. Prove that: (š‘Ž Ɨ š‘)2
= |š‘Ž| |š‘|- (š‘Ž. š‘)2
.
26. If š‘Ž andš‘ are unit vectors and šœƒ is the angle between them, show that sin šœƒ/2 = Ā½ š‘Ž āˆ’ š‘ .
27. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is 3 .
28. If š‘Ž , š‘ š‘Žš‘›š‘‘ š‘ are three unit vectors such that š‘Ž = 5, š‘ = 12 and š‘ = 13 , and š‘Ž + š‘ + š‘ = 0 , find the value of
š‘Ž . š‘ + š‘ . š‘ + š‘ . š‘Ž .
29. Find the sine of the angle between the vectors š‘Ž = 3š‘– + š‘— + 2š‘˜ and š‘ = 2š‘– āˆ’ 2š‘— + 4š‘˜
30. If š‘Ž = 5š‘– āˆ’ š‘— āˆ’ 3š‘˜ and š‘ = š‘– + 3š‘— + 5š‘˜ then show that the vectors (š‘Ž + š‘) and ( š‘Ž āˆ’ š‘ ) perpendicular
31. Find the value of šœ† so that the lines
1āˆ’š‘„
3
=
7š‘¦āˆ’14
2šœ†
=
5š‘§āˆ’10
11
and
7āˆ’7š‘„
3šœ†
=
š‘¦āˆ’5
1
=
6āˆ’š‘§
5
are perpendicular to
each other.
32. Find the angle between the line
š‘„+1
2
=
3š‘¦+5
9
=
3āˆ’š‘§
āˆ’6
and the plane 10x + 2y ā€“ 11z = 3.
4 MARKS QUESTIONS.
1. Find a unit vector perpendicular to the plane of triangle ABC where the vertices are A (3, -1, 2), B ( 1, -1, -3)
and C ( 4, -3, 1).
2. Let š‘Ž = 4š‘– + 5š‘— + š‘˜, š‘ = š‘– āˆ’ 4š‘— + 5š‘˜ and š‘= 3š‘– + š‘— āˆ’ š‘˜. Find a vector š‘‘ which is perpendicular to
Both š‘Ž š‘Žš‘›š‘‘ š‘ š‘Žš‘›š‘‘ š‘‘. š‘ = 21.
3. Let š‘Ž, š‘ š‘Žš‘›š‘‘š‘ be three vectors : š‘Ž = 3, š‘ = 4, š‘ = 5 and each one of them being perpendicular to
the sum of other two, find š‘Ž + š‘ + š‘ .
4. Using vectors, find the area of the triangle ABC with vertices A (1, 2, 3), B ( 2, -1, 4) and C ( 4, 5, -1) .
5. If š‘Ž = š‘– + š‘— + š‘˜ , š‘ = 4 š‘– āˆ’ 2š‘— + 3š‘˜ š‘Žš‘›š‘‘ š‘ = š‘– āˆ’ 2š‘— + š‘˜, find a vector of magnitude 6 units which is parallel to
the vector 2 š‘Ž - š‘ + 3 š‘ .
6. The two adjacent side of a parallelogram are 2š‘– āˆ’ 4š‘— āˆ’ 5š‘˜and š‘– āˆ’ 2š‘— + 3š‘˜ . Find the unit vector
parallel to its diagonal. Also, find its area.
7. The scalar product of the vector š‘– + š‘— + š‘˜ with a unit vector along the sum of vectors 2š‘– + 4š‘— āˆ’ 5š‘˜ and
š›¾š‘– + 2š‘— + 3š‘˜is equal to one, find the value of š›¾ .
8. If š‘– + š‘— + š‘˜ , 2š‘– + 5š‘— , 3š‘– + 2š‘— āˆ’ 3š‘˜ and š‘– āˆ’ 6š‘— āˆ’ š‘˜ are the position vectors of the points A, B, C and D, find the
angle between š“šµ and š¶š· . Deduce that š“šµ and š¶š· are collinear.
9. Find the value of šœ† so that the four points A, B, C, D with position vectors 4š‘– + 5š‘— + š‘˜ , āˆ’š‘— āˆ’ š‘˜ , 3š‘– + 9š‘— + 4š‘˜ and
4(-š‘– + š‘— + š‘˜) respectively are coplanar.
10. If š‘Ž , š‘ š‘Žš‘›š‘‘ š‘ are three unit vectors such that š‘Ž . š‘ = š‘Ž š‘= 0 and angle between š‘ š‘Žš‘›š‘‘ š‘ is
šœ‹
6
, prove that
š‘Ž = ļ‚± 2( š‘ļ‚“ š‘ ) .
11. Find the equation of plane passing through the point (1, 2, 1) and perpendicular to the line joining the points
(1, 4, 2) and ( 2, 3, 5) . Also, find the perpendicular distance of the plane from the origin.
12. Find the shortest distance between the lines :
š‘Ÿ = 6š‘– + 2š‘— + 2š‘˜ + ļ¬ š‘– āˆ’ 2š‘— + 2š‘˜ š‘Žš‘›š‘‘š‘Ÿ = āˆ’4š‘– āˆ’ š‘˜ + ļ­ 3 š‘– āˆ’ 2š‘— āˆ’ 2š‘˜ .
13. If any three vectors š‘Ž , š‘ and š‘ are coplanar, prove that the vectors š‘Ž + š‘ , š‘ + š‘ and š‘ + š‘Ž are also coplanar.
14. If š‘Ž , š‘ and š‘ are mutually perpendicular vectors of equal magnitudes, show that the vector š‘Ž + š‘ + š‘ is equally
inclined to š‘Ž, š‘ š‘Žš‘›š‘‘ š‘ .
15. Find the position vector of a point R which divides the line joining two points P and Q whose position
vectors are (2š‘Ž + š‘ ) & (š‘Ž āˆ’ 3š‘) respectively, externally in the ration 1 : 2. Also, show P is the mid
point of RQ .
16. If š›¼ = 3š‘– + 4š‘— + 5š‘˜ and š›½ = 2š‘– + š‘— āˆ’ 4š‘˜ , then express š›½ in the form š›½ = š›½1 + š›½2, where š›½1 is parallel
to š›¼ and š›½2 is perpendicular to š›¼ .
17. Find whether the lines š‘Ÿ = ( š‘– āˆ’ š‘— + š‘˜) + šœ†(2š‘– + š‘—) and š‘Ÿ = (2š‘– āˆ’ š‘—) + šœ‡( š‘– + š‘— āˆ’ š‘˜) intersect or not. If
intersecting, find their point of intersection.
18. Find a vector of magnitude 5 units and perpendicular to each of the vectors (š‘Ž + š‘) and (š‘Ž āˆ’ š‘), where
š‘Ž = š‘– + š‘— + š‘˜, š‘ = š‘– + 2š‘— + 3š‘˜.
19. Show that the lines :
š‘„āˆ’1
2
=
š‘¦āˆ’2
3
=
š‘§āˆ’3
4
and
š‘„āˆ’4
5
=
š‘¦āˆ’1
2
= z intersect. Also find their point of intersection.
20. Prove that , for any three vectors š‘Ž , š‘ , š‘ : [š‘Ž āˆ’ š‘, š‘ āˆ’ š‘, š‘ āˆ’ š‘Ž] =0
6 MARKS QUESTIONS.
1. Show that the lines
š‘„+3
āˆ’3
=
š‘¦āˆ’1
1
=
š‘§āˆ’5
5
,
š‘„+1
āˆ’1
=
š‘¦āˆ’2
2
=
š‘§āˆ’5
5
are coplanar. Also find the equation of the plane
containing the lines.
2. Find the co-ordinates of the point where the line through (3, -4, -5) and (2, -3, 1) crosses the plane determined by
points A(1, 2, 3), B (2, 2, 1) and C (-1, 3, 6) .
3. Find the equation of the line passing through the point (-1, 3, -2) and perpendicular to the lines
š‘„
1
=
š‘¦
2
=
š‘§
3
and
š‘„+2
āˆ’3
=
š‘¦āˆ’1
2
=
š‘§+1
5
4. Find the equation of the plane containing the lines :
š‘Ÿ = š‘– + š‘— + ļ¬ š‘– + 2 š‘— āˆ’ š‘˜ andš‘Ÿ = š‘– + š‘— + ļ­ āˆ’ š‘– + š‘— āˆ’ 2 š‘˜
Find the distance of this plane from origin and also from the point (1, 1, 1).
5. Find the coordinates of the foot of the perpendicular drawn from the point A (1, 8, 4) to the line joining the point
B (0, -1, 3) and C ( 2, -3, -1).
6. Find the distance of the point (-1, -5, -10) from the point of intersection of the line
š‘Ÿ = 2 š‘– āˆ’ š‘— + 2 š‘˜ + ļ¬ 3 š‘– + 4 š‘— + 2 š‘˜ and the plane š‘Ÿ. š‘– āˆ’ š‘— + š‘˜ = 5.
7. Show that the lines š‘Ÿ = š‘– + š‘— āˆ’ š‘˜ + ļ¬ 3 š‘– āˆ’ š‘— and š‘Ÿ = 4š‘– āˆ’ š‘˜ + ļ­ 2 š‘– + 3 š‘˜ are coplanar. Also, find the
equation of the plane containing both these lines.
8. Find the equation of the plane passing through the line of intersection of the planes š‘Ÿ = š‘– + 3š‘— - 6 = 0
and š‘Ÿ = 3 š‘– āˆ’ š‘— āˆ’ 4 š‘˜ = 0, whose perpendicular distance from origin is unity.
9. Find the image of point (1, 6, 3) in the line
š‘„
1
=
š‘¦āˆ’1
2
=
š‘§āˆ’2
3
.
10. Find the vector equation of the line passing through the point (2, 3, 2) and parallel to the line
š‘Ÿ = āˆ’2 š‘– + 3š‘— + ļ¬ 2 š‘– āˆ’ 3 š‘— + 6 š‘˜ . Also find the distance between the lines.
11. Find whether the lines š‘Ÿ = š‘– āˆ’ š‘— āˆ’ š‘˜ + ļ¬ š‘– + š‘— and š‘Ÿ = 2š‘– āˆ’ š‘— + ļ­ š‘– + š‘— āˆ’ š‘˜ intersect or not. If
intersecting, find their point of intersection.
12. Find the equation of plane which contains two parallel lines:
š‘„āˆ’3
3
=
š‘¦+4
2
=
š‘§āˆ’1
1
and
š‘„+1
3
=
š‘¦āˆ’2
2
=
š‘§
1
.
13. Find the distance between the point P (6, 5, 9) and the plane determined by the points A(3, -1, 2), B(5, 2, 4)
and C( -1, -1, 6).
14. Find the equation of plane through the points (1, 2, 3) & (0, -1, 0) and parallel to the lineš‘Ÿ.(2 š‘– + 3š‘— + 4š‘˜) + 5 = 0 .
15. Prove that the image of the point (3, -2, 1) in the plane 3x-y+4z = 2 lie on plane x+y+z+4 = 0.
16. Find the vector equation of the plane through the points ( 2, 1, -1) and ( -1, 3, 4) and perpendicular to the
plane x ā€“ 2y + 4z = 10.
17. Find the coordinates of the point, where the line
š‘„āˆ’2
3
=
š‘¦+1
4
=
š‘§āˆ’2
2
intersects the plane x ā€“ y + z ā€“ 5 = 0. Also, find
the angle between the line and the plane.
18. Find the distance of the point (2,3,4) from the line
š‘„+3
3
=
š‘¦āˆ’2
6
=
š‘§
2
measured parallel to the line 3x+2y+2z=5
19. Find the equation of plane passing through the points (3,4,1) and (0,1,2) and parallel to the line
š‘„+3
2
=
š‘¦āˆ’3
7
=
š‘§āˆ’2
5
20. Find the coordinates of the point where the line through (3,-4,-5) and (2,-3,1) crosses the plane, passing through
the points (2,2,1), (3,0,1) and (4,-1,0)
21. Find the image of the point (1,3,4) in the plane 2x-y+z+3=0.
22. Find the vector equation of the plane passing through three points with position vectors š‘– + š‘— āˆ’ 2š‘˜,
2š‘– āˆ’ š‘— + š‘˜ and š‘– + 2š‘— + š‘˜. Also find the coordinates of the point of intersection of this plane and the
line š‘Ÿ = 3š‘– āˆ’ š‘— āˆ’ š‘˜ + š›¾(2š‘– āˆ’ 2š‘— + š‘˜) .
23. Find the vector equation of the plane which contains the line of intersection of the planes
š‘Ÿ . š‘– + 2š‘— + 3 š‘˜ āˆ’ 4 = 0 andš‘Ÿ . 2š‘– + š‘— āˆ’ š‘˜ + 5 = 0 and which is perpendicular to the plane
š‘Ÿ . 5š‘– + 3š‘— āˆ’ 6 š‘˜ + 8 = 0 .
24. Find the equation of plane which contains the line of intersection of planes x+2y+3z=4 and 2x+y-z+5=0 and whose
x- intercept is twice its z- coordinate. (7x+11y+14z+5=0)
25. Find equation of plane through (1,1,1) and containing the line š‘Ÿ = āˆ’3 š‘– + š‘— + 5š‘˜ + ļ¬ 3 š‘– āˆ’ š‘— āˆ’ 5 š‘˜ . Also show
that the plane containing the line š‘Ÿ = āˆ’ š‘– + 2š‘— + 5š‘˜ + ļ¬ š‘– āˆ’ 2 š‘— āˆ’ 5 š‘˜ {x-2y+z=0}
26. Find the distance of the point (-1, -5, -10) from the point of intersection of the line
š‘Ÿ = 2š‘– āˆ’ š‘— + 2š‘˜ + ļ¬( 3š‘– + 4š‘— + 2š‘˜ ) and the plane š‘Ÿ .(š‘– āˆ’ š‘— + š‘˜ ) = 5
PROBABILITY(2+4+4=10MARKS)
2 marks questions:
1. Mother , father and son line up at random for a family picture.If E: son on one end F: father in the middle,
determine P(E/F).
2. Given that the two numbers appearing on throwing two dice are different, find the probability of the event `the
sum of numbers on the dice is 4`.
3. P(A)= 6/11, P(B) = 5/11 and P(š“ āˆŖ šµ) = 7/11 š‘“š‘–š‘›š‘‘ š‘ƒ(šµ/š“)
4. An unbiased die is thrown twice.Let the event A be `odd number on the first throw` and B the event ` odd
number on the second throw`. Check the independence of the events A and B.
5. If A and B are two independent events, then show that the probability of occurrence of atleast one of A and B is
given by 1-P š“/
š‘ƒ šµ/
.
6. A committee of 4 students is selected at random from a group consisting 8 boys and 4 girls. Given that there is
atleast one girl on the committee, calculate the probability that there are exactly 2 girls on the committee.
7. If A and B are independent events,P(A)=p and P(B)=2p and P(exactly one of A,B)=
5
9
, then find p.
8. If P(A)= 6/11 , P(B)=5/11 , P(AāˆŖB)=7/12, find P(A/B)
9. For 6 trials of an experiment, let X be a binomial variate: 9P(X=4) = P(X=2), find the probability of success.
10. Two dice are rolled once. Find the probability that the number on two dice is atleast 4.
11. If E and F are independent events , prove that Eā€™ and Fā€™ are also independent.
12. The probability of simultaneous occurrence of at least one of two events A and B is p. If the probability that
exactly one of A, B occurs is q, then prove that P(Aļ‚¢) + P(Bļ‚¢) = 2 ā€“ 2p + q.
13. A speaks truth in 60% of the cases and B in 90% of the cases. In what percentage of cases are they likely to
contradict each other in stating the same fact ?
14. A and B are two events such that P(A) = Ā½, P(B) =
1
3
and P(A āˆ© B) =
1
4
. find
P(A I B) (ii) P(B I A) (iii) P(Aļ‚¢ I B) (iv) P(Aļ‚¢ I Bļ‚¢)
4 MARKS QUESTIONS.
1. Probability of solving specific problem by X & Y are
1
2
and
1
3
. If both try to solve the problem, find the probability
that: (i) Problem is solved. (ii) Exactly one of them solves the problem.
2. Three balls are drawn without replacement from a bag containing 5 white and 4 green balls. Find the probability
distribution of number of green balls.
3. A die is thrown again and again until three sixes are obtained. Find the probability of obtaining 3rd
six in 6th
throw of
die.
4. Find the mean number of heads in three tosses of a fair coin.
5. Bag I contains 3 red and 4 black balls and Bags II contains 4 red and 5 black balls. One ball is transferred from
Bag I to bag II and then two balls are drawn at random ( without replacement) from Bag II. The balls so
drawn are found to be both red in colour. Find the probability that the transferred ball is red.
6. In a hockey match, both team A and B scored same number of goals up to the end of the game, so to decide the
winner, the referee asked both the captains to throw a die alternately and decided that the team, whose captain
gets a six first, will be declared the winner. If the captain of team A was asked to start, find their respectively
probabilities of winning the match and state whether the decision of the referee was fair or not.
7. In answering a question on a MCQ test with 4 choices per question, a student knows the answer, guesses or copies
the answer. Let Ā½ be the probability that he knows the answer, Ā¼ be the probability that he guesses and Ā¼ that he
copies it. Assuming that a student, who copies the answer, will be correct with the probability Ā¾ , what is the
probability that the student knows the answer, given that he answered it correctly?
8. The probability that a student entering a university will graduate is 0.4. find the probability that out of 3 students
of the university :
a)None will graduate, b)Only one will graduate, c) All will graduate.
9. How many times must a man toss a fair coin, so that the probability of having at least one head is more than 80% ?
10. On a multiple choice examination with three possible answer (out of which only one is correct) for each of the five
questions, what is the probability that a candidate would get four or more correct answer just by guessing?
11. A family has 2 children. Find the probability that both are boys, if it is known that
(i) At least one of the children is a boy (ii) the elder child is a boy.
12. An experiment succeed twice often as it fails. Find the probability that in the next six trails there will be at least 4
successes.
13. From a lot of 10 bulbs, which include 3 defectives, a sample of 2 bulbs is drawn at random. Find the probability
distribution of the number of defective bulbs.
14. Find the probability distribution of number of doublets in three throws of a pair of dice. Also find mean & variance.
15. A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at
random ( without replacement) and are found to be all spades. Find the probability of the lost card being spade.
16. Assume that the chances of a patient having a heart attack is 40%. Assuming that a meditation and yoga course
reduces the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a
patient can choose any one of the two options with equal probabilities. It is given that after going through one of
the two options, the patient selected at random suffers a heart attack. Find the probability that the patient
followed a course of meditation and yoga. Interpret the result and state which of the above stated methods is more
beneficial for the patient.
17. An insurance company insured 2000 cyclist, 4000 scooter drivers and 6000 motorbike drivers. The probability of an
accident involving a cyclist, scooter driver and a motorbike driver are 0.01, 0.03 and 0.15 respectively. One of the
insured persons meets with an accident. What is the probability that he is a scooter driver? Which mode of
transport would you suggest to a student and why?
18. Two bags A and B contain 4 white and 3 black balls and 2 white and 2 black balls respectively. From bag A, two balls
are drawn at random and then transferred to bag B. A ball is then drawn from bag B and is found to be a black ball.
What is the probability that the transferred balls were 1 white and 1 black?
19. A letter is known to have come either from TATA NAGAR or from CALCUTTA. On the envelope, just two consecutive
letter TA are visible. What is the probability that the letter came from TATANAGAR.
20. There are three coins. One is two headed coin (having head on both faces), another is a biased coin that comes up tail
25% of the times and third is an unbiased coin. One of the three coins is chosen at random and tossed, it shows heads,
what is the probability that it was the two headed coin?
21. Three bags contain balls as shown in the table below :
Bag Number of White Balls Number of Black
balls
Number of Red
balls
I 1 2 3
II 2 1 1
III 4 3 2
A bag is chosen at random and two balls are drawn from it. They happen to be white and red.
What is the probability that they come from the III Bag?
22. A and B throw alternatively a pair of dice, A wins if he throws 6 before B throws 7 & B wins if he throws 7 beforeA
throw 6. Find their respective chances of winning , if A begins. [30/61, 31/61]
23. A girl throws a die. If she gets a 5 or 6, she tosses a coin three times and notes the number of heads. If she gets 1, 2,
3 or 4, she tosses a coin two times and notes the number of heads obtained. If she obtained exactly two heads,
What is the probability that she threw 1, 2, 3 or 4 with the die?
24. From a lot of 10 bulbs, which includes 3 defectives, a sample of 2 bulbs is drawn at random. Find
the Probability distribution of the number of defective bulbs.
25. A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the variance of number of success.
26. A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at
random (without replacement) and are found to be all spades. Find the probability of the lost card being a spade
LINEAR PROGRAMMING (6MARKS)
6 MARKS QUESTIONS.
1. If a young man rides his motorcycle at 25 km/h, he has to spend Rs. 2/km on petrol. If he rides at a faster speed
of 40 km/h, the petrol cost increase at Rs. 5/km. He has Rs. 100 to spend on petrol and wishes to find what is the
maximum distance he can travel within one hour? Solve graphically.
2. Two tailors A and B earn Rs. 15 and Rs. 20 per day resp. A can stitch 6 shirts and 4 pants while B can stitch 10
shirts and 4 pants per day. How many days shall each work if it is desired to produce at least 60 shirts and 32
pants at minimum labour cost?
3. A dealer wishes to purchase a no. Of fans and sewing machines. He has only Rs. 5760 to invest and has space
for at most 20 items. A fan cost him Rs. 360 and a sewing machine Rs. 240. He expects to sell a fan at a profit of
Rs. 22 and a sewing machine for a profit of Rs. 18. Assuming that he can sell all the items that he buys, how
should he invest his money to maximize his Profit?
4. A shopkeeper sells only tables and chairs. He has only Rs. 6000 invest and has space for at most 20 items. A
table cost him Rs. 400 and achair Rs. 250. He can sell a table at a profit of Rs. 40 and chain at Rs. 25. Solve it
graphically for maximum profit.
5. An aeroplane can carry a maximum of 200 passengers. A profit of Rs. 1000 is made on each executives class
ticket and profit of Rs. 600 is made on each economy class ticket. The airlines reserves at least 20 seats for
executive class. However, at least 4 times as many passengers prefer to travel by economy class than by
executive class. Determine how many of each type of tickets must be sold in order to maximize the profit for
airline. What is the maximum profit?
6. Anil wants to invest at most Rs. 12000 in bonds A and B. According to the rules, he has to invest at least Rs.
2000 in Bond A and at least Rs. 4000 in bond B.If the rate of interest on bond A is 8% p.a. and on bond B is 10%
p.a., how should he invest his money for maximum interest? Solve the problem graphically.
7. A small firm manufactures necklace and bracelets. The combined no. Of necklace and bracelets that it can
handle for day is at most 24. The bracelets takes one hour to make and necklace takes half an hour. The
maximum no. Of hours available per day is 16. If the profit on bracelet is Rs. 2 and on necklace is Re. 1, how
many each product should be produced daily to maximize profit?
8. A manufacture produces nuts and bolts. It takes 1 hour of work on machine A and 3 hours on machine B to
produce a package of nuts. It takes 3 hours on machine A and 1 hour on machine B to produce a package of
bolts. He earns a profit of Rs. 17.50 per package on nuts and Rs. 7 per package on bolts. How many packages of
each should be produced each day so as to maximize his profits if he operates his machines for at the most 12
hours a day? Form the linear programming problem and solve it graphically.
9. A factory makes tennis rackets and crickets bats. A tennis racket takes 1.5 hours of machine time and 3 hours of
craftmanā€™s time in its making while a cricket bat takes 3 hours of machine time and 1 hour of craftmanā€™s time.
In a day, the factory has the availability of not more than 42 hours of machine time and 24 hours of craftmanā€™s
time. If the profit on a racket and on a bat is Rs. 20 and Rs. 10 respectively, find the number of tennis rackets
and crickets bats that the factory must manufacture to earn the maximum profit. Make it as an L.P.P. and solve
graphically.
10. A manufacturer produces pizza and cakes. It takes 1 hour of work on machine. A and 3 hours on machine B to
produce a packet of pizza. It takes 3 hours on machine A and 1 hour on machine B to produce a packet of cakes.
He earns a profit of Rs. 17.50 per packet on pizza and Rs. 7 per packet of cake. How many packets of each
should be produced each day so as to maximize his profits if he operates his machines for at the most 12 hours
a day? Solve graphically.

MƔs contenido relacionado

La actualidad mƔs candente

Maths chapter wise Important questions
Maths chapter wise Important questionsMaths chapter wise Important questions
Maths chapter wise Important questionsSrikanth KS
Ā 
Form 4 add maths note
Form 4 add maths noteForm 4 add maths note
Form 4 add maths noteSazlin A Ghani
Ā 
Chapter 3 quadratc functions
Chapter 3  quadratc functionsChapter 3  quadratc functions
Chapter 3 quadratc functionsatiqah ayie
Ā 
Add Maths Module
Add Maths ModuleAdd Maths Module
Add Maths Modulebspm
Ā 
Modul bimbingan add maths
Modul bimbingan add mathsModul bimbingan add maths
Modul bimbingan add mathsSasi Villa
Ā 
Spm add math 2009 paper 1extra222
Spm add math 2009 paper 1extra222Spm add math 2009 paper 1extra222
Spm add math 2009 paper 1extra222Saripah Ahmad Mozac
Ā 
Chapter 5 indices & logarithms
Chapter 5  indices & logarithmsChapter 5  indices & logarithms
Chapter 5 indices & logarithmsatiqah ayie
Ā 
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...Bagalkot
Ā 
modul 2 add maths
modul 2 add mathsmodul 2 add maths
modul 2 add mathsSasi Villa
Ā 
Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)KarunaGupta1982
Ā 
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_schemeChanged pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_schemePratima Nayak ,Kendriya Vidyalaya Sangathan
Ā 
MODULE 4- Quadratic Expression and Equations
MODULE 4- Quadratic Expression and EquationsMODULE 4- Quadratic Expression and Equations
MODULE 4- Quadratic Expression and Equationsguestcc333c
Ā 
Complex numbers
Complex numbersComplex numbers
Complex numbersindu psthakur
Ā 
Add Maths 2
Add Maths 2Add Maths 2
Add Maths 2morabisma
Ā 
3.3 the fundamental theorem of algebra t
3.3 the fundamental theorem of algebra t3.3 the fundamental theorem of algebra t
3.3 the fundamental theorem of algebra tmath260
Ā 

La actualidad mƔs candente (19)

Maths chapter wise Important questions
Maths chapter wise Important questionsMaths chapter wise Important questions
Maths chapter wise Important questions
Ā 
Form 4 add maths note
Form 4 add maths noteForm 4 add maths note
Form 4 add maths note
Ā 
Chapter 3 quadratc functions
Chapter 3  quadratc functionsChapter 3  quadratc functions
Chapter 3 quadratc functions
Ā 
Add Maths Module
Add Maths ModuleAdd Maths Module
Add Maths Module
Ā 
Modul bimbingan add maths
Modul bimbingan add mathsModul bimbingan add maths
Modul bimbingan add maths
Ā 
Spm add math 2009 paper 1extra222
Spm add math 2009 paper 1extra222Spm add math 2009 paper 1extra222
Spm add math 2009 paper 1extra222
Ā 
Chapter 5 indices & logarithms
Chapter 5  indices & logarithmsChapter 5  indices & logarithms
Chapter 5 indices & logarithms
Ā 
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
Ā 
CBSE Mathematics sample question paper with marking scheme
CBSE Mathematics sample question paper with marking schemeCBSE Mathematics sample question paper with marking scheme
CBSE Mathematics sample question paper with marking scheme
Ā 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
Ā 
modul 2 add maths
modul 2 add mathsmodul 2 add maths
modul 2 add maths
Ā 
KV Pre Boardmathspaper
KV Pre BoardmathspaperKV Pre Boardmathspaper
KV Pre Boardmathspaper
Ā 
Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)
Ā 
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_schemeChanged pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Changed pattern of CBSE Class XII Mathematics -2016-17-with_marking_scheme
Ā 
Chepter 1 function 2013
Chepter 1   function 2013Chepter 1   function 2013
Chepter 1 function 2013
Ā 
MODULE 4- Quadratic Expression and Equations
MODULE 4- Quadratic Expression and EquationsMODULE 4- Quadratic Expression and Equations
MODULE 4- Quadratic Expression and Equations
Ā 
Complex numbers
Complex numbersComplex numbers
Complex numbers
Ā 
Add Maths 2
Add Maths 2Add Maths 2
Add Maths 2
Ā 
3.3 the fundamental theorem of algebra t
3.3 the fundamental theorem of algebra t3.3 the fundamental theorem of algebra t
3.3 the fundamental theorem of algebra t
Ā 

Similar a Maths important questions for 2018

some important questions for practice clas 12
some important questions for practice clas 12  some important questions for practice clas 12
some important questions for practice clas 12 nitishguptamaps
Ā 
Module 2 exponential functions
Module 2   exponential functionsModule 2   exponential functions
Module 2 exponential functionsdionesioable
Ā 
Form 4 Add Maths Note
Form 4 Add Maths NoteForm 4 Add Maths Note
Form 4 Add Maths NoteChek Wei Tan
Ā 
Form 4-add-maths-note
Form 4-add-maths-noteForm 4-add-maths-note
Form 4-add-maths-notejacey tan
Ā 
A Solutions To Exercises On Complex Numbers
A Solutions To Exercises On Complex NumbersA Solutions To Exercises On Complex Numbers
A Solutions To Exercises On Complex NumbersScott Bou
Ā 
math1Ł…Ų±Ų­Ł„Ų© Ų§ŁˆŁ„Ł‰ -compressed.pdf
math1Ł…Ų±Ų­Ł„Ų© Ų§ŁˆŁ„Ł‰ -compressed.pdfmath1Ł…Ų±Ų­Ł„Ų© Ų§ŁˆŁ„Ł‰ -compressed.pdf
math1Ł…Ų±Ų­Ł„Ų© Ų§ŁˆŁ„Ł‰ -compressed.pdfHebaEng
Ā 
Core 1 revision booklet edexcel
Core 1 revision booklet edexcelCore 1 revision booklet edexcel
Core 1 revision booklet edexcelclaire meadows-smith
Ā 
Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)nitishguptamaps
Ā 
Class XII Mathematics long assignment
Class XII Mathematics long assignmentClass XII Mathematics long assignment
Class XII Mathematics long assignmentnitishguptamaps
Ā 
Question bank -xi (hots)
Question bank -xi (hots)Question bank -xi (hots)
Question bank -xi (hots)indu psthakur
Ā 
Cbse Class 12 Maths Sample Paper 2012
Cbse Class 12 Maths Sample Paper 2012Cbse Class 12 Maths Sample Paper 2012
Cbse Class 12 Maths Sample Paper 2012Sunaina Rawat
Ā 
Nbhm m. a. and m.sc. scholarship test 2007
Nbhm m. a. and m.sc. scholarship test 2007 Nbhm m. a. and m.sc. scholarship test 2007
Nbhm m. a. and m.sc. scholarship test 2007 MD Kutubuddin Sardar
Ā 
Consolidated.m2-satyabama university
Consolidated.m2-satyabama universityConsolidated.m2-satyabama university
Consolidated.m2-satyabama universitySelvaraj John
Ā 
Appendex
AppendexAppendex
Appendexswavicky
Ā 

Similar a Maths important questions for 2018 (20)

some important questions for practice clas 12
some important questions for practice clas 12  some important questions for practice clas 12
some important questions for practice clas 12
Ā 
Module 2 exponential functions
Module 2   exponential functionsModule 2   exponential functions
Module 2 exponential functions
Ā 
Form 4 Add Maths Note
Form 4 Add Maths NoteForm 4 Add Maths Note
Form 4 Add Maths Note
Ā 
Form 4-add-maths-note
Form 4-add-maths-noteForm 4-add-maths-note
Form 4-add-maths-note
Ā 
FUNCTIONS .pdf
FUNCTIONS .pdfFUNCTIONS .pdf
FUNCTIONS .pdf
Ā 
Math cbse samplepaper
Math cbse samplepaperMath cbse samplepaper
Math cbse samplepaper
Ā 
A Solutions To Exercises On Complex Numbers
A Solutions To Exercises On Complex NumbersA Solutions To Exercises On Complex Numbers
A Solutions To Exercises On Complex Numbers
Ā 
math1Ł…Ų±Ų­Ł„Ų© Ų§ŁˆŁ„Ł‰ -compressed.pdf
math1Ł…Ų±Ų­Ł„Ų© Ų§ŁˆŁ„Ł‰ -compressed.pdfmath1Ł…Ų±Ų­Ł„Ų© Ų§ŁˆŁ„Ł‰ -compressed.pdf
math1Ł…Ų±Ų­Ł„Ų© Ų§ŁˆŁ„Ł‰ -compressed.pdf
Ā 
Core 1 revision booklet edexcel
Core 1 revision booklet edexcelCore 1 revision booklet edexcel
Core 1 revision booklet edexcel
Ā 
Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)Mathsclass xii (exampler problems)
Mathsclass xii (exampler problems)
Ā 
Class XII Mathematics long assignment
Class XII Mathematics long assignmentClass XII Mathematics long assignment
Class XII Mathematics long assignment
Ā 
Question bank -xi (hots)
Question bank -xi (hots)Question bank -xi (hots)
Question bank -xi (hots)
Ā 
Algebra
AlgebraAlgebra
Algebra
Ā 
Cbse Class 12 Maths Sample Paper 2012
Cbse Class 12 Maths Sample Paper 2012Cbse Class 12 Maths Sample Paper 2012
Cbse Class 12 Maths Sample Paper 2012
Ā 
V2.0
V2.0V2.0
V2.0
Ā 
Nbhm m. a. and m.sc. scholarship test 2007
Nbhm m. a. and m.sc. scholarship test 2007 Nbhm m. a. and m.sc. scholarship test 2007
Nbhm m. a. and m.sc. scholarship test 2007
Ā 
Consolidated.m2-satyabama university
Consolidated.m2-satyabama universityConsolidated.m2-satyabama university
Consolidated.m2-satyabama university
Ā 
Appendex
AppendexAppendex
Appendex
Ā 
3rd.prep first term .math
3rd.prep first term .math3rd.prep first term .math
3rd.prep first term .math
Ā 
Mathematics
MathematicsMathematics
Mathematics
Ā 

MƔs de KarunaGupta1982

Sample paper class XII MATHEMATICS
Sample paper class XII MATHEMATICSSample paper class XII MATHEMATICS
Sample paper class XII MATHEMATICSKarunaGupta1982
Ā 
Class 11 chapters 9, 10, 11
Class 11 chapters 9, 10, 11Class 11 chapters 9, 10, 11
Class 11 chapters 9, 10, 11KarunaGupta1982
Ā 
Class xi worksheet (9,10,11) two levels
Class xi worksheet (9,10,11) two levelsClass xi worksheet (9,10,11) two levels
Class xi worksheet (9,10,11) two levelsKarunaGupta1982
Ā 
Class xii probability
Class xii probabilityClass xii probability
Class xii probabilityKarunaGupta1982
Ā 
Assignment of straight lines and conic section
Assignment of straight lines and conic sectionAssignment of straight lines and conic section
Assignment of straight lines and conic sectionKarunaGupta1982
Ā 
Three dimensional geometry
Three dimensional geometryThree dimensional geometry
Three dimensional geometryKarunaGupta1982
Ā 
Class xii assignment chapters (1 to 9)
Class xii    assignment chapters (1 to 9)Class xii    assignment chapters (1 to 9)
Class xii assignment chapters (1 to 9)KarunaGupta1982
Ā 
Mcq exemplar class 12
Mcq exemplar class 12Mcq exemplar class 12
Mcq exemplar class 12KarunaGupta1982
Ā 
Mcq exemplar class 12
Mcq exemplar class 12Mcq exemplar class 12
Mcq exemplar class 12KarunaGupta1982
Ā 
Application of integrals
Application of integralsApplication of integrals
Application of integralsKarunaGupta1982
Ā 
Integrals formula and short questions
Integrals  formula and short questionsIntegrals  formula and short questions
Integrals formula and short questionsKarunaGupta1982
Ā 
Surface chemistry notes
Surface  chemistry  notesSurface  chemistry  notes
Surface chemistry notesKarunaGupta1982
Ā 
Assignment of solution
Assignment of solutionAssignment of solution
Assignment of solutionKarunaGupta1982
Ā 
Class X1 assignment of chapters 1,3,4,5
Class X1 assignment of chapters 1,3,4,5Class X1 assignment of chapters 1,3,4,5
Class X1 assignment of chapters 1,3,4,5KarunaGupta1982
Ā 
Continuity and differentiability
Continuity and differentiabilityContinuity and differentiability
Continuity and differentiabilityKarunaGupta1982
Ā 
Notes of Matrices and Determinants
Notes of Matrices and DeterminantsNotes of Matrices and Determinants
Notes of Matrices and DeterminantsKarunaGupta1982
Ā 
Class xii worksheet (chapters 2,5,6)
Class xii worksheet (chapters 2,5,6)Class xii worksheet (chapters 2,5,6)
Class xii worksheet (chapters 2,5,6)KarunaGupta1982
Ā 
Three dimensional geometry
Three dimensional geometryThree dimensional geometry
Three dimensional geometryKarunaGupta1982
Ā 
Differential equation
Differential equationDifferential equation
Differential equationKarunaGupta1982
Ā 
Maxima and minima
Maxima and minima Maxima and minima
Maxima and minima KarunaGupta1982
Ā 

MƔs de KarunaGupta1982 (20)

Sample paper class XII MATHEMATICS
Sample paper class XII MATHEMATICSSample paper class XII MATHEMATICS
Sample paper class XII MATHEMATICS
Ā 
Class 11 chapters 9, 10, 11
Class 11 chapters 9, 10, 11Class 11 chapters 9, 10, 11
Class 11 chapters 9, 10, 11
Ā 
Class xi worksheet (9,10,11) two levels
Class xi worksheet (9,10,11) two levelsClass xi worksheet (9,10,11) two levels
Class xi worksheet (9,10,11) two levels
Ā 
Class xii probability
Class xii probabilityClass xii probability
Class xii probability
Ā 
Assignment of straight lines and conic section
Assignment of straight lines and conic sectionAssignment of straight lines and conic section
Assignment of straight lines and conic section
Ā 
Three dimensional geometry
Three dimensional geometryThree dimensional geometry
Three dimensional geometry
Ā 
Class xii assignment chapters (1 to 9)
Class xii    assignment chapters (1 to 9)Class xii    assignment chapters (1 to 9)
Class xii assignment chapters (1 to 9)
Ā 
Mcq exemplar class 12
Mcq exemplar class 12Mcq exemplar class 12
Mcq exemplar class 12
Ā 
Mcq exemplar class 12
Mcq exemplar class 12Mcq exemplar class 12
Mcq exemplar class 12
Ā 
Application of integrals
Application of integralsApplication of integrals
Application of integrals
Ā 
Integrals formula and short questions
Integrals  formula and short questionsIntegrals  formula and short questions
Integrals formula and short questions
Ā 
Surface chemistry notes
Surface  chemistry  notesSurface  chemistry  notes
Surface chemistry notes
Ā 
Assignment of solution
Assignment of solutionAssignment of solution
Assignment of solution
Ā 
Class X1 assignment of chapters 1,3,4,5
Class X1 assignment of chapters 1,3,4,5Class X1 assignment of chapters 1,3,4,5
Class X1 assignment of chapters 1,3,4,5
Ā 
Continuity and differentiability
Continuity and differentiabilityContinuity and differentiability
Continuity and differentiability
Ā 
Notes of Matrices and Determinants
Notes of Matrices and DeterminantsNotes of Matrices and Determinants
Notes of Matrices and Determinants
Ā 
Class xii worksheet (chapters 2,5,6)
Class xii worksheet (chapters 2,5,6)Class xii worksheet (chapters 2,5,6)
Class xii worksheet (chapters 2,5,6)
Ā 
Three dimensional geometry
Three dimensional geometryThree dimensional geometry
Three dimensional geometry
Ā 
Differential equation
Differential equationDifferential equation
Differential equation
Ā 
Maxima and minima
Maxima and minima Maxima and minima
Maxima and minima
Ā 

ƚltimo

Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxDavid Douglas School District
Ā 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
Ā 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
Ā 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
Ā 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
Ā 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
Ā 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
Ā 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
Ā 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
Ā 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
Ā 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
Ā 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
Ā 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
Ā 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
Ā 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
Ā 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
Ā 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
Ā 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
Ā 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
Ā 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
Ā 

ƚltimo (20)

Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
Ā 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
Ā 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
Ā 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
Ā 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Ā 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
Ā 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
Ā 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
Ā 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
Ā 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
Ā 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Ā 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
Ā 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Ā 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
Ā 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
Ā 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
Ā 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
Ā 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Ā 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
Ā 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
Ā 

Maths important questions for 2018

  • 1. MOST IMPORTANT QUESTIONS (FOR 2018) Relations & Functions (7 Marks) 1 Mark Questions: 1. What is the range of the function f(x)= š‘„āˆ’1 š‘„āˆ’1 2. F: Rā†’R f(x)= (3-x3 )1/3 , find (fof)(x) 3. Let * be a binary operation defined by a * b = 2a + b ā€“ 3. Find 3 * 4. 4. If f(x) = x2 + 2 and g(x) = x x+1 , find gof (5). 5. F : Rā†’R is defined by f(x)= 3x+2. Find f(f(x)) 6. A= {1,2,3} and B={4,5,6,7} and f={(1,4),(2,5),(3,6)} be a function from A to B. state whether f is one one or onto. 7. Let f : R - { āˆ’3 5 } ā†’ R be a function defined as f (x) = 2x 5x+3 , find f-1 . 8. If *is defined on integers as a * b = a + 3b2 , find 2 * 4. 9. If f(x) is an invertible function , find the inverse of f(x) = ( 3xāˆ’2) 5 10. If f(x) = 2x + 5 , g(x) = 2x ā€“ 5 , xāˆˆ R find (fog) (9). 11. If R = {(x , y) : x2 + y2 ā‰¤ 4 ; x , yāˆˆZ } is a relation in Z , write the domain of R. 12. Let f : Rā†’ R be defined by f(x) = x2 . Find f-1 (x). 13. Let * be a binary operation defined by a * b = 3a + 4b ā€“ 2. Find 4 * 5. 14. If f(x) = x2 + 2 and g(x) = 1 - 1 x+1 , find (fog) (3). 15. If * is a binary operator on Z defined by a*b= a+b-5, then write the identity element for * in Z. 6 Marks Questions: 1) Let N be the set of all natural Nos. & R be a relation on NxN defined by (a,b)R (c,d) such that ad = bc. Prove that R is an equivalence relation 2) Let R be a relation on NxN defined by (a,b)R (c,d) : a+d = b+c. Prove that R is an equivalence relation. 3) Show that the relation R on Z defined by R = {(a, b) : a ā€“ b is divisible by 5} is an equivalence relation. 4) Show that the relation R in the set : A = { x : x āˆˆ Z, 0ā‰¤x ā‰¤12} given by. R = {( a, b): a āˆ’ b is divisible by 4} is an equivalencerelation. 5) Prove that the relation R in the set A = {5, 6, 7, 8, 9} given by R = {(a, b) : š‘Ž āˆ’ š‘ is divisible by 2}, is an equivalence relation. Find all elements related to the element 6. 6) A=R-{3}and B= R-{1}. Consider the function F: A ā†’B defined by f(x)= š‘„āˆ’2 š‘„āˆ’3 is f is one one and onto? Justify 7) Consider f: R+ ā†’ [-5,āˆž) given by f(x)= 9x2 +6x-5. Show that f is invertible and find inverse of f. 8) F: Rā†’R, g: Rā†’R such that f(x)= 3x+1 and g(x)= 4x-2. Find fog and show that fog is one one and onto.
  • 2. 9) A binary operation * on Q-{-1} such that a*b= a+b+ab. Find the identity element on Q. Also find the inverse of an element in Q-{-1} 10) Let A= NƗN and * be the binary operator on A defined by (a,b)*(c,d)=(a+c, b+d). show that * is commutative and associative. Find the identity element for * on A if any. 11) Prove that f: Nā†’N defined by f(x)= x2 +x+1 is one- one but not onto. 12) Show that the relation R in the set Z of integers given by R = {( a, b) : 7 divides a ā€“ b} is an equivalence relation. 13) i) State whether the function is one ā€“ one, onto f : R ā†’ R : f (x) = 1 + x2 . Justify your answer. ii) Show that f : [ -1 , 1 ] ā†’R, given by f(x) = x x+2 is one ā€“ one. Also find its inverse 12. Let A = R ā€“ {3} and B = R - 2 3 . If f : A ā†’ B: f(x) = 2xāˆ’4 3xāˆ’9 , then prove that f is a bijective function. 13. Let āˆ— be a binary on QxQ defined by (a,b) āˆ—(c,d) = (ac,b+ad).Determine, whether āˆ— is commutative and associative .Find the identity element for āˆ— and the invertible elements of QxQ. 14. Show that the relation R in the set A ={xāˆˆ š‘ : 0 ā‰¤ š‘„ ā‰¤ 10}, š‘”š‘–š‘£š‘’š‘› š‘š‘¦ š‘… = {(š‘Ž, š‘): š‘Ž āˆ’ š‘ š‘–s a multiple of 3} is an equivalence relation. Write all its equivalence classes. INVERSE TRIGONOMETRY (3 Marks) 1 Mark Questions: 1. Find the principal value of following: (i) sināˆ’1 1 2 ā” (ii)cos āˆ’1 āˆ’1 ā” (iii)sināˆ’1 sin 2Ļ€ 3 (iv) sec- 1 (2) (v)cosāˆ’1 āˆ’ 3 2 ā” (vi)sināˆ’1 sin 3Ļ€ 5 ā” (vii)cosāˆ’1 cos 5Ļ€ 6 (viii)cosāˆ’1 cos 7Ļ€ 6 2. Evaluate the following: (i) tanāˆ’1 2 cosā”( 2 sināˆ’1 1 2 ) (ii) sin Ļ€ 3 āˆ’ sināˆ’1 āˆ’ 1 2 (iii) tan sināˆ’1 3 5 + cotāˆ’1 3 2 (iv) tan 2 tanāˆ’1 1 5 āˆ’ Ļ€ 4 (v) cos-1 1 2 + 2 sināˆ’1 1 2 (vi) cos Ļ€ 6 + cosāˆ’1 1 2 (vii)sināˆ’1 sin 5Ļ€ 6 + cosāˆ’1 cos Ļ€ 6 (viii)tanāˆ’1 x + tanāˆ’1 1 x (ix)sināˆ’1 sin 3Ļ€ 4 + cosāˆ’1 cos Ļ€ 3 (x)cosāˆ’1 cos 3Ļ€ 6 + sināˆ’1 sin 2Ļ€ 3 3. Write the range of one branch of sin -1 x, other than principal branch. 4. Solve for x : sin -1 x ā€“ cos -1 x = Ļ€ 6 . 2 Marks Questions: 1. Show that cos -1 1āˆ’x2 1+ x2 = 2 tanāˆ’1 x . 2. Write the value of tanāˆ’1 1 5 + tanāˆ’1 1 8 .
  • 3. 3. If sin sināˆ’1 1 5 + cosāˆ’1 x = 1, find x. 4. Find the value of cos (sec-1 x + cosec -1 x). 5. Find the value of cot (tan -1 a + cot -1 a). 6. If tan-1 x + tan-1 y = šœ‹ 4 , then write the value of x + y + xy. 7. Simplify: tanāˆ’1 1+x2āˆ’1 x 8. Simplify: sināˆ’1 sin x+cos x 2 9. Prove that: tan-1 2 + tan -1 3 = 3Ļ€ 4 10. Solve for x: tanāˆ’1 1 āˆ’x 1+x = 1 2 tanāˆ’1 x 11. Solve: sin -1 (1 ā€“ x) ā€“ 2 sin -1 x = Ļ€ 2 12. Solve: tanāˆ’1 š‘„(š‘„ + 1) + sināˆ’1 š‘„2 + š‘„ + 1 = šœ‹ 2 . 13. Simplify: cosāˆ’1 2š‘„ 1 āˆ’ š‘„2 : - 1 2 ā‰¤ š‘„ ā‰¤ 1 2 MATRICES AND DETERMINANTS (1+2+4+6=13 Marks) 1 MARK QUESTIONS. 1. If matrix 0 6 āˆ’ 5š‘„ š‘„2 š‘„ + 3 is symmetric find x 2. 3š‘„ āˆ’ 2š‘¦ 5 š‘„ āˆ’2 = 3 5 āˆ’3 āˆ’2 find y . 3. Find x if š‘„ 1 3 š‘„ = 1 0 2 1 4. For what value of x, matrix 3 āˆ’ 2š‘„ š‘„ + 1 2 4 is singular? 5. ā€˜Aā€™ is a square matrix of order 4 : š“ = 1 find (i) 2š“ (ii) š‘Žš‘‘š‘— š“ (iii) āˆ’š“ 6. Find cofactor of a12 in 2 āˆ’3 5 6 0 4 1 5 āˆ’7 7. š‘„ + 1 š‘„ āˆ’ 1 š‘„ āˆ’ 3 š‘„ + 2 = 4 āˆ’1 1 3 find x. 8. A matrix A is of order 2 x 2 has determinant 4. What is the value of 2š“ ? 9. A is a square matrix of order 3 : |A|= -1, |B|=3 find |3AB| 10. If A is a skew symmetric matrix of order 3,what will be the value of det.(A). 11. Find x if 2 4 5 āˆ’1 = 2š‘„ 4 6 š‘„ . 12. If A is a square matrix such that A2 =I, then write š“āˆ’1 , 13. If A and B are square matrices of order 3 such that š“ =-1 and šµ =3 the find the value of 2š“šµ
  • 4. 2 MARKS QUESTIONS. 1. In the matrix eqn. 1 2 3 4 4 3 2 1 = 8 5 20 13 applyš‘…2 ā†’ š‘…2 āˆ’ š‘…1 and then applyš¶2 ā†’ š¶2 āˆ’ š¶1. 2. If A= 6 5 7 6 ,compute (AdjA) and very that A(AdjA)= š“ I. 3. For the matrix A= 3 1 āˆ’1 2 ,A2 -5A+7I=O,then find š“āˆ’1 . 4. Find the matrix X for which 1 āˆ’4 3 āˆ’2 X= āˆ’16 āˆ’6 7 2 5. Prove that the diagonal elements of a skew symmetric matrix are zero. 6. A and B are symmetric matrices of same order,then show that AB is symmetric iff A and B commute. 7. A is a square matrix: A2 =A, then write the value of 7A-(I+A)3 . 8. If A= š‘š‘œš‘ š“ š‘†š‘–š‘›š“ āˆ’š‘†š‘–š‘›š“ š¶š‘œš‘ š“ find A-1 . 9. If A is a skew symmetric matrix of order 3, then prove that |A|=0. 10. Solve: 5 4 1 1 š“ = 1 āˆ’2 1 3 4 MARKS QUESTIONS 1. Express the matrix 6 2 āˆ’5 āˆ’2 āˆ’5 3 āˆ’3 3 āˆ’1 as sum of symmetric and skew symmetric matrix. 2. Find x if [x 4 -1] 2 1 āˆ’1 1 0 0 2 2 4 š‘„ 4 āˆ’1 = 0 3. Using Elementary Row operations & column operations find A-1 whose a. A = 2 0 āˆ’1 5 1 0 0 1 3 b. A = āˆ’1 1 2 1 2 3 3 1 1 4. Using properties of determinants, prove that i) š‘„ + 4 2š‘„ 2š‘„ 2š‘„ š‘„ + 4 š‘„ 2š‘„ 2š‘„ š‘„ + 4 = (5x + 4) (4 ā€“ x)2 ii) š‘Ž āˆ’ š‘ āˆ’ š‘ 2š‘Ž 2š‘Ž 2š‘ š‘ āˆ’ š‘ āˆ’ š‘Ž 2š‘ 2š‘ 2š‘ š‘ āˆ’ š‘Ž āˆ’ š‘ = (a + b + c )3 iii) ļ” ļ”2 ļ¢ + ļ§ ļ¢ ļ¢2 ļ§ + ļ” ļ§ ļ§2 ļ” + ļ¢ = ( ļ” - ļ¢) (ļ¢ - ļ§) (ļ§ - ļ”) (ļ” + ļ¢ + ļ§) iv) 1 1 + š‘ 1 + š‘ + š‘ž 2 3 + 2š‘ 4 + 3š‘ + 2š‘ž 3 6 + 3š‘ 10 + 6š‘ + 3š‘ž = 1
  • 5. v) š‘Ž2 š‘š‘ š‘Žš‘ + š‘2 š‘Ž2 + š‘Žš‘ š‘2 š‘Žš‘ š‘Žš‘ š‘2 + š‘š‘ š‘2 = 4a2 b2 c2 vi) š‘Ž2 + 1 š‘Žš‘ š‘Žš‘ š‘Žš‘ š‘2 + 1 š‘š‘ š‘Žš‘ š‘š‘ š‘2 + 1 = (1 + a2 + b2 + c2 ) vii) 1 š‘Ž š‘Ž3 1 š‘ š‘3 1 š‘ š‘3 = (a ā€“ b) (b ā€“ c) (c ā€“ a) (a + b + c) viii) 3š‘Ž āˆ’š‘Ž + š‘ āˆ’š‘Ž + š‘ āˆ’š‘ + š‘Ž 3š‘ āˆ’š‘ + š‘ āˆ’š‘ + š‘Ž āˆ’š‘ + š‘ 3š‘ = 3(a + b + c) ( ab + bc + ca) ix) 1 + š‘Ž2 āˆ’ š‘2 2š‘Žš‘ āˆ’2š‘ 2š‘Žš‘ 1 āˆ’ š‘Ž2 + š‘2 2š‘Ž 2š‘ āˆ’2š‘Ž 1 āˆ’ š‘Ž2 āˆ’ š‘2 = (1+a2 +b2 )3 . x) š‘Ž š‘ š‘ š‘Ž āˆ’ š‘ š‘ āˆ’ š‘ š‘ āˆ’ š‘Ž š‘ + š‘ š‘ + š‘Ž š‘Ž + š‘ = a3 + b3 + c3 ā€“ 3abc . 5. Find the matrix A satisfying the matrix equation 2 1 3 2 A āˆ’3 2 5 āˆ’3 = 1 0 0 1 . 6. Solve the equation : š‘„ + š‘Ž š‘„ š‘„ š‘„ š‘„ + š‘Ž š‘„ š‘„ š‘„ š‘„ + š‘Ž = 0, aā‰ 0 7. Using properties of determinant prove :- š‘„ š‘„2 1 + š‘š‘„3 š‘¦ š‘¦2 1 + š‘š‘¦3 š‘§ š‘§2 1 + š‘š‘§3 = (1 + pxyz)(x ā€“ y) (y ā€“ z) ( z ā€“ x) 8. A trust fund has Rs. 30,000 to invest in two bonds. First pays 5% interest per year & second pays 7%. Using matrix multiplication determine how to divide Rs. 30,000 among two types of bonds if trust find must obtain annual interest of Rs. 2000. 9. Find A if 4 1 3 A= āˆ’4 8 4 āˆ’1 2 1 āˆ’3 6 3 10. Find A if 2 āˆ’1 1 0 āˆ’3 4 A= āˆ’1 āˆ’8 āˆ’10 1 āˆ’2 āˆ’5 9 22 15 11. Using elementary transformations find inverse of 2 0 āˆ’1 5 1 0 0 1 3 12. Using properties of determinants show that if 3 āˆ’2 š‘ š‘–š‘›3šœƒ āˆ’7 8 š‘š‘œš‘ 2šœƒ āˆ’11 14 2 =0 then sin šœƒ=0 or Ā½. 6 Marks Questions: 13. A = 1 2 āˆ’3 2 3 2 3 āˆ’3 āˆ’4 , find A-1 , solve the equation x + 2y ā€“ 3z = - 4, 2x + 3y + 2z = 2, 3x ā€“ 3y ā€“ 4z = 11.
  • 6. 14. Find A-1 , where A = 1 āˆ’2 0 2 1 3 0 āˆ’2 1 . Hence solve the equations x ā€“ 2y = 10, 2x + y + 3z = 8, -2y + z = 7. 15. If A = 1 āˆ’1 1 2 1 āˆ’3 1 1 1 , find A-1 and use it to solve x + 2y + z = 4, -x + y + z = 0, x ā€“ 3y + z = 2 16. If A = 1 1 1 1 2 āˆ’3 2 āˆ’1 3 , find A-1 and use it to solve x + y +2z = 0, x +2 y - z = 9, x ā€“ 3y +3z = -14. 17. If A = āˆ’4 4 4 āˆ’7 1 3 5 āˆ’3 āˆ’1 and B = 1 āˆ’1 1 1 āˆ’2 āˆ’2 2 1 3 , find AB and use it to solve the system of equations x ā€“ y + z = 4, x - 2y - 2z = 9, 2x + y + 3z = 1. 18. Let the two matrices A and B be given by A = 1 āˆ’1 0 2 3 4 0 1 2 and B = 2 2 āˆ’4 āˆ’4 2 āˆ’4 2 āˆ’11 5 . Verify AB = BA = 6I and hence solve the equations x ā€“ y = 3, 2x + 3y + 4z = 17, y + 2z = 7. 19. If A = 1 1 1 1 2 āˆ’3 2 āˆ’1 3 show that A3 ā€“ 6A2 + 5A + 11I = 0. Hence find A-1 . CONTINUITY AND DIFFERENTIABILITY (2+4+4=10 Marks) 2 MARKS QUESTIONS. 1. Write the value of k for which š‘“ š‘„ = š‘˜š‘„2 , š‘„ < 2 3, š‘„ ā‰„ 2 is continuous at x=2 2. Write the value of k for which š‘“ š‘„ = 3š‘ š‘–š‘›š‘„ 2š‘„ + š‘š‘œš‘ š‘„, š‘„ ā‰  0 š‘˜, š‘„ = 2 is continuous at x=0 3. Write two points at which š‘“ š‘„ = 1 š‘„āˆ’ š‘„ is not continuous. 4. Write one point where f(x) = š‘„ āˆ’ š‘„ + 1 is not differentiable 5. If y = š‘’2š‘„3 , write š‘‘š‘¦ š‘‘š‘„ . 6. Find the value of k so that š‘“ š‘„ = 1āˆ’š‘š‘œš‘ 4š‘„ 8š‘„2 , š‘„ ā‰  0 š‘˜, š‘„ = 0 is continuous at x=0. 7. If x= cosšœƒ āˆ’ š‘š‘œš‘ 2šœƒ, y = sin šœƒ- sin2 šœƒ , find š‘‘š‘¦ š‘‘š‘„ . 8. If š‘ š‘–š‘›2 š‘¦ + cos š‘„š‘¦ = šœ‹,find š‘‘š‘¦ š‘‘š‘„ . 9. If y = tanāˆ’1 5š‘„ 1āˆ’6š‘„2 ,- 1 6 < x < 1 6 ,then show that š‘‘š‘¦ š‘‘š‘„ = 2 1+4š‘„2 + 3 1+9š‘„2 . 10. If it is given that for the function f(x)=x3 -5x2 -3x,Mean value theorem is applicable in [1,3],find all values of c. 11. f(x) = š¾š‘„ + 1 š‘–š‘“ š‘„ ā‰¤ šœ‹ š‘š‘œš‘  š‘„ š‘–š‘“ š‘„ > šœ‹ š‘Žš‘” š‘„ = šœ‹, find k if function is continuous at Ļ€, 12. If x = š‘Žsin āˆ’1 š‘” , š‘¦ = š‘Žcos āˆ’1 š‘” , š‘ š‘•š‘œš‘¤ š‘”š‘•š‘Žš‘” š‘‘š‘¦ š‘‘š‘„ = āˆ’ š‘¦ š‘„ . 13. If (x2 +y2 )3 =3x2 y , find š‘‘š‘¦ š‘‘š‘„ . 4 MARKS QUESTIONS
  • 7. 14. Differentiate log ( xsin x + cot2 x) with respect to x. 15. If y = log [ x + š‘„2 + š‘Ž2 ], show that ( x2 + a2 ) š‘‘2 š‘¦ š‘‘š‘„2 + x š‘‘š‘¦ š‘‘š‘„ = 0. 16. . If 1 āˆ’ š‘„2 + 1 āˆ’ š‘¦2 = a (x ā€“ y), Prove š‘‘š‘¦ š‘‘š‘„ = 1āˆ’š‘¦2 1āˆ’š‘„2 17. If x = a sin t and y = a ( cos t + log tan š‘” 2 ), find š‘‘2 š‘¦ š‘‘š‘„2 . 18. If x = a(cos t + t sin t), y = b(sin t ā€“ t cos t), Prove that š‘‘š‘¦ 2 š‘‘š‘„ 2 = š‘ š‘ š‘’š‘ 3 š‘” š‘Ž2 š‘” . 19. Differentiate the following functions w.r.t.x : (i) sināˆ’1 2š‘„ 1+š‘„2 (ii) tanāˆ’1 1āˆ’š‘š‘œš‘  š‘„ š‘ š‘–š‘› š‘„ (iii) tanāˆ’1 š‘š‘œš‘  š‘„ 1+š‘ š‘–š‘› š‘„ (iv) tanāˆ’1 5 š‘„ 1āˆ’6š‘„2 (v) tan-1 1+š‘„2 1+š‘„2 + 1āˆ’š‘„2 āˆ’ 1āˆ’š‘„2 (vi) tan-1 1+š‘ š‘–š‘› š‘„ 1+š‘ š‘–š‘› š‘„ + 1āˆ’š‘ š‘–š‘› š‘„ āˆ’ 1āˆ’š‘ š‘–š‘› š‘„ (vii) cot-1 1āˆ’š‘„ 1+š‘„ 20. Differentiate tan-1 1+ š‘„2āˆ’ 1āˆ’ š‘„2 1+ š‘„2+ 1āˆ’ š‘„2 with respect to cos-1 x2 . 21. Verify lagrangeā€™s Mean value theorem: (i) f(x) = x(x ā€“ 1) (x ā€“ 2) [ 0, Ā½] (ii) f(x) = x3 -5x2 ā€“ 3x [1, 3] 22. Verify Rolleā€™s theorem for the following functions : (i) f(x) = x2 + x ā€“ 6[-3, 2] (ii) f(x) = x (x ā€“ 1) (x ā€“ 2) [0, 2] (iii) f(x) = sin x + cos x [0, šœ‹ 2 ] 23. Differentiate sin-1 2š‘„ 1+š‘„2 w.r.t. tan-1 x . 24. If y = sin āˆ’1 š‘„ 1āˆ’š‘„2 , show that (1-š‘„2 ) š‘‘2 š‘¦ š‘‘š‘„2 āˆ’ 3š‘„ š‘‘š‘¦ š‘‘š‘„ āˆ’ š‘¦ = 0 . 25. Differentiate cos-1 1āˆ’ š‘„2 1+ š‘„2 with respect of tan-1 3š‘„ āˆ’ š‘„3 1āˆ’3 š‘„2 . 26. If x = a sin 2t(1 + cos 2t), y = b cos 2t( 1 ā€“ cos 2t) Show that š‘‘š‘¦ š‘‘š‘„ š‘”= šœ‹ 4 = š‘ š‘Ž 27. Find š‘‘š‘¦ š‘‘š‘„ , if y = sin-1 [x 1 āˆ’ š‘„ āˆ’ š‘„ 1 āˆ’ š‘„2] . 28. If y = log [x + š‘„2 + 1], prove that (š‘„2 + 1) š‘‘2 š‘¦ š‘‘š‘„2 + š‘„ š‘‘š‘¦ š‘‘š‘„ = 0 . 29. If y = sin āˆ’1 š‘„ 1āˆ’š‘„2 , show that (1-š‘„2 ) š‘‘2 š‘¦ š‘‘š‘„2 āˆ’ 3š‘„ š‘‘š‘¦ š‘‘š‘„ āˆ’ š‘¦=0 APPLICATION OF DERIVATIVES (2+4+4=10 Marks) 2 Marks Questions: 1. The volume of a cube is increasing at a rate of 9 cm3 /s, how fast is the surface area increasing when length of an edge is 10 cm. 2. Show that the function f(x)= x3 -3x2 +4x is strictly increasing on R. 3. If the radius of a sphere is measured as 9m with an error of 0.03m,find the approximate error in calculating the surface area. 4. Show that the function f(x)= x3 +x2 +x+1 do not have maxima or minima. 5. The side of an equilateral triangle is increasing at the rate of 2cm/s. at what rate is its area increasing when the side of triangle is 20cm? 6. Using differentials, find approximate value of 25.2
  • 8. 7. The volume of a spherical balloon is increasing at the rate of change of its surface area at the instant when radius is 6cm . 8. The total cost C(x) in rupees associated with the production of x units of an item is given by C(x) = 0.007 x3 ā€“ 0.003 x2 + 15x + 4000. Find the marginal cost when 17 units are produced. 9. The radius of a spherical diamond is measured as 7 cm with an error of 0.04 cm. Find the approximate error in calculating its volume. If the cost of 1 cm3 diamond is Rs. 1000, what is the loss to the buyer of the diamond? What lesson you get? 10. Using derivative, find the approximate percentage increase in the area of the circle if its radius is increased by 2%. 4 Marks Questions: 1. Separate the interval 0, šœ‹ 2 into sub ā€“ intervals in which f(x) = sin4 x + cos4 x is increasing or decreasing. 2. Show that the curves 4x = y2 and 4xy = K cut at right angles if K2 = 512 . 3. Find the intervals in which the function f given be f(x) ā€“ sinx ā€“ cosx, 0 ļ‚£ x ļ‚£ 2ļ° is strictly increasing or strictly decreasing. 4. Find all points on the curve y = 4x3 ā€“ 2x5 at which the tangents passes through the origin. 5. Find the equation of Normal to the curve y = x3 + 2x + 6 which are parallel to line x+14y+4=0. 6. Show that the curves y = aex and y = be ā€“x cut at right angles if ab = 1. 7. Find the intervals in which the function f f(x) = x3 + 1 š‘„3 , x ā‰  0 is increasing or decreasing. 8. Prove that y = 4 š‘ š‘–š‘› šœƒ (2+š‘š‘œš‘  šœƒ) ā€“ šœƒ is an increasing function of šœƒ in [0, šœ‹ 2 ] 9. Find the area of the greatest rectangle that can be inscribed in an ellipse š‘„2 š‘Ž2 + š‘¦2 š‘2= 1. 10. Find the equation of tangent to the curve y = š‘‹āˆ’7 š‘‹āˆ’2 (š‘‹āˆ’3) at the point where it cuts x-axis. [x-20y=7] 11. A helicopter if flying along the curve y = x2 + 2. A soldier is placed at the point (3, 2) .find the nearest distance between the solider and the helicopter. 12. Show that the right circular cylinder of given surface and maximum volume is such that its height is equal to diameter of base. 13. Show that the semi ā€“ vertical angle of cone of maximum volume and of given slant height is tan-1 2 . 14. The sum of perimeter of circle and square is K. Prove that the sum of their areas is least when side of square is double the radius of circle. 15. Find the value of x for which f(x) = [x(x ā€“ 2)]2 is an increasing function. Also, find the points on the curve, where the tangent is parallel to x- axis. 16. A tank with rectangular base and rectangular sides, open at the top is to be constructed so that its depth in 2 m and volume is 8 m3 . If building of tank costs Rs. 70 per sq. meter for the base and Rs. 45 per sq. Meter for sides, what is the cost of least expensive tank?
  • 9. 17. Show that the function f defined f(x) = tan-1 (sin x + cos x) is strictly increasing in (0, šœ‹ 4 ) . 18. Find the intervals in which f(x)= 3 2 x4 -4x3 -12x2 +5 is strictly increasing or decreasing. 19. Find the intervals in which f(x)= 3 10 x4 - 4 5 x3 -3x2 + 36 5 š‘„ + 11 is strictly increasing or decreasing. 20. Find the minimum value of (ax+by), where xy=c2 . 21. Find the equations of tangents to the curve 3x2 -y2 =8, which passes through the point (4/3, 0). 22. A manufacturer can sell x items at a price of Rs. (5 - š‘„ 100 )each. The cost price of x items is Rs. ( š‘„ 5 + 500). Find the number of items he should sell to earn maximum profit. 23. Find the point on the curve x2 =4ywhich is nearest to the point (-1,2). INTEGRALS (2+4+6=12 Marks) 2 MARKS QUESTIONS. 1. (i) āˆ« š‘”š‘Žš‘›8 š‘„š‘ š‘’š‘4 š‘„ š‘‘š‘„ (ii)āˆ« 1 4+9š‘„2 š‘‘š‘„ (iii) āˆ« 1 š‘„2 āˆ’ 1 š‘„ š‘’ š‘„ š‘‘š‘„ (iv)āˆ« š‘ š‘–š‘›7 š‘„ šœ‹ 0 š‘‘š‘„ (v) āˆ« 1 š‘„2+2š‘„+2 š‘‘š‘„ (vi)āˆ« 1 š‘ š‘–š‘›2 š‘„š‘š‘œš‘ 2 š‘„ š‘‘š‘„ (vii). āˆ« š‘š‘œš‘ 2š‘„ š‘ š‘–š‘›š‘„ +š‘š‘œš‘ š‘„ 2 š‘‘š‘„ 2. (i). āˆ« 1 š‘„2āˆ’4š‘„+9 š‘‘š‘„ (ii). āˆ« 10 + 4š‘„ āˆ’ 2š‘„2 š‘‘š‘„ (iii). āˆ« 1 1+š‘š‘œš‘” 7 š‘„ šœ‹ 2 0 š‘‘š‘„ (iv). āˆ« 1āˆ’š‘„ 1+š‘„2 2 š‘’ š‘„ š‘‘š‘„ 3. Evaluate: āˆ« š‘š‘œš‘ 2š‘„ š‘š‘œ š‘ 2 š‘„ š‘ š‘–š‘›2 š‘„ dx 4. Evaluate: āˆ« š‘‘š‘„ 7āˆ’6š‘„āˆ’š‘„2 5. Evaluate: āˆ« 2+š‘ š‘–š‘› 2š‘„ 1+š‘š‘œš‘  2š‘„ š‘’ š‘„ dx 6. Evaluate: āˆ« š‘‘š‘„ š‘„[6 š‘™š‘œš‘” š‘„ 2+7 š‘™š‘œš‘” š‘„+2] dx 7. Evaluate: āˆ« š‘„ 1āˆ’š‘„3 š‘‘š‘„ 8. Evaluate: āˆ« š‘ š‘–š‘› š‘„ š‘ š‘–š‘› (š‘„+š‘Ž) š‘‘š‘„ 9. Evaluate: āˆ« (2š‘„āˆ’5)š‘’2š‘„ (2š‘„āˆ’3)3 dx 4 MARKS QUESTIONS. 10. Evaluate :-āˆ« š‘„2+ 1 ( š‘„āˆ’1)2 š‘„+3 dx. 11. Evaluate :-āˆ« sin ( š‘„āˆ’š‘Ž) sin ( š‘„+š‘Ž) dx. 12. Evaluate :-āˆ« 5š‘„ 2 1+2š‘„+3š‘„2 dx. 13. Evaluate :-āˆ«( 2 sin 2š‘„ āˆ’ cos š‘„) 6 āˆ’ š‘š‘œš‘ 2 š‘„ āˆ’ 4 sin š‘„ dx. 14. Evaluate :- āˆ« 2 1āˆ’š‘„ ( 1+ š‘„2 ) dx 15. Evaluate :- āˆ« š‘‘š‘„ š‘ š‘–š‘›š‘„ āˆ’ sin 2š‘„ dx
  • 10. 16. Evaluate :- āˆ« š‘„2 š‘„2+ 3š‘„āˆ’3 š‘‘š‘„ 17. Evaluate :- āˆ« š‘’ š‘„ sin 4š‘„āˆ’4 1āˆ’cos 4š‘„ dx 18. Evaluate :- āˆ« š‘„2 š‘„āˆ’1 3 (š‘„+1) dx 19. Evaluate :- āˆ« 1 š‘ š‘–š‘›š‘„ ( 5āˆ’4 cos š‘„) dx 20. Evaluate: āˆ« š‘š‘œš‘ š‘„ š‘‘š‘„ (š‘ š‘–š‘›2 š‘„+1)(š‘ š‘–š‘›2 š‘„+4) 21. Evaluate: āˆ« š‘ š‘–š‘›4 š‘„ š‘š‘œš‘ š‘„ š‘‘š‘„ š‘ š‘–š‘›š‘„ +1 (š‘ š‘–š‘›š‘„ +4)2 22. Evaluate: āˆ« š‘ š‘–š‘›3š‘„ š‘’5š‘„ š‘‘š‘„ 23. Evaluate: āˆ« 2š‘„āˆ’1 š‘„āˆ’1 š‘„+2 š‘„āˆ’3) dx 24. Evaluate: āˆ« 1āˆ’š‘„2 š‘„(1āˆ’2š‘„) dx 25. Evaluate: āˆ« š‘„4 š‘„+1 (š‘„+2)4 š‘‘š‘„ 26. Evaluate: āˆ« š‘„4 š‘„āˆ’1 (š‘„2+1) š‘‘š‘„ 27. Evaluate: āˆ« š‘„3+š‘„+1 (š‘„2āˆ’1) dx 6 MARKS QUESTIONS. 28. Evaluate :-āˆ« š‘„ sin š‘„ cos š‘„ š‘ š‘–š‘›4 š‘„+ š‘š‘œš‘ 4 š‘„ šœ‹ 2 0 dx. 29. Show that āˆ« š‘”š‘Žš‘› š‘„ + š‘š‘œš‘” š‘„ š‘‘š‘„ = 2 šœ‹ šœ‹ 2 0 30. Prove that :- āˆ« sināˆ’1 š‘„ š‘Ž+š‘„ š‘Ž 0 š‘‘š‘„ = āˆ’ š‘Ž 2 šœ‹ āˆ’ 2 . 31. Evaluate :- āˆ« š‘„3 āˆ’ š‘„ 2 1 dx 32. Prove that : āˆ« š‘“(š‘„)š‘‘š‘„ š‘Ž 0 = āˆ« š‘“(š‘Ž āˆ’ š‘„) š‘Ž 0 š‘‘š‘„ and hence Evaluate :āˆ« š‘„ š‘‘š‘„ 25 š‘ š‘–š‘›2 š‘„+16 š‘š‘œš‘ 2 š‘„ šœ‹ 0 . 33. Prove that : āˆ« š‘“(š‘„)š‘‘š‘„ š‘ š‘Ž = āˆ« š‘“(š‘Ž + š‘ āˆ’ š‘„) š‘ š‘Ž š‘‘š‘„ and hence Evaluate: āˆ« 10āˆ’š‘„ š‘„+ 10āˆ’š‘„ 8 2 dx 34. Evaluate: āˆ« š‘„ š‘ š‘–š‘› š‘„ 1+ š‘š‘œš‘ 2 š‘„ šœ‹ 2 0 š‘‘š‘„ 35. Evaluate: āˆ« š‘„ š‘‘š‘„ 4āˆ’š‘š‘œš‘ 2 š‘„ šœ‹ 0 36. Evaluate: āˆ« š‘„ š‘‘š‘„ 1+š‘ š‘–š‘›š‘„ šœ‹ 0 37. Evaluate: āˆ« š‘„ āˆ’ 1 + š‘„ āˆ’ 2 + š‘„ āˆ’ 4 4 1 dx 38. Evaluate: āˆ« š‘ š‘–š‘›2 š‘„ š‘ š‘–š‘› š‘„+š‘š‘œš‘  š‘„ šœ‹ 2 0 dx 39. Evaluate: āˆ« š‘’ š‘š‘œš‘  š‘„ š‘’ š‘š‘œš‘  š‘„ +š‘’āˆ’š‘š‘œš‘  š‘„ šœ‹ 0 dx 40. Evaluate as the limit of sums :
  • 11. (i)āˆ« 2š‘„2 āˆ’ 5 š‘‘š‘„ 3 0 (ii) āˆ« š‘„2 + 5š‘„ š‘‘š‘„ 3 1 (iii) āˆ« š‘„2 + š‘„ + 1 š‘‘š‘„ 2 0 (iv) āˆ« 3š‘„2 + 2š‘„ š‘‘š‘„ 3 1 APPLICATION OF INTEGRATION (6 MARKS) 6 MARKS QUESTIONS. 1. Using integration, find the area of the region enclosed between the two circles x2 + y2 = 4 and (x ā€“ 2)2 + y2 = 4. 2. Find the area of the region { (x, y) : y2 ļ‚£ 6ax and x2 + y2 ļ‚£ 16a2 } using method of integration. 3. Prove that the area between two parabolas y2 4ax and x2 = 4ay is 16 a2 / 3 sq units. 4. Using integration, find the area of the following region. š‘„, š‘¦ : š‘„2 9 + š‘¦2 4 ā‰¤ 1 ā‰¤ š‘„ 3 + š‘¦ 2 . 5. Find the area of the region {(x, y) : x2 + y2 ā‰¤ 4, š‘„ + š‘¦ ā‰„ 2}. 6. Find the area lying above x ā€“ axis and included between the circle x2 + y2 = 8x and the parabola y2 = 4x. 7. Find the area of the region included between the curve 4y = 3x2 and line 2y = 3x + 12 8. Sketch the graph of y = š‘„ + 3 and Evaluate āˆ« š‘„ + 3 0 āˆ’6 dx . 9. Using the method of integration, find the area of the region bounded by the lines 3x ā€“ 2y + 1 = 0, 2x + 3y ā€“ 21 = 0 and x ā€“ 5y + 9 = 0. 10. Using integration , find the area of āˆ† ABC where A (2,3), B (4,7), C (6,2). 11. Using integration, find the area of the triangle formed by positive x-axis and tangent and normal to the circle x2 +y2 =4 at (1, 3) 12. Find the area of the region included between the parabola y = 3 š‘„2 4 and the line 3x ā€“ 2y + 12 = 0. 13. Find the area bounded by the circle x2 + y2 = 16 and the line y = x in the first Quadrant. [2šœ‹] DIFFERENTIAL EQUATIONS (6MARKS) 2 MARKS QUESTIONS. 1. What is the degree and order of following differential equation? (i) y š‘‘2 š‘¦ š‘‘š‘„2 + š‘‘š‘¦ š‘‘š‘„ 3 = š‘„ š‘‘3 š‘¦ š‘‘š‘„3 2 . (ii) š‘‘š‘¦ š‘‘š‘„ 4 + 3y š‘‘2 š‘¦ š‘‘š‘„2 = 0. (iii) š‘‘3 š‘¦ š‘‘š‘„3 +y2 + š‘’ š‘‘š‘¦ š‘‘š‘„ = 0 2. Write the integrating factor of š‘‘š‘¦ š‘‘š‘„ + 2y tan x = sin x 3. Form the differential equation of family of straight lines passing through origin. 4. Form the differential equation of family of parabolas axis along x-axis. 5. Verify that y-cosy=x is a solution of the diff.eqn.(ysiny+cosy+x)š‘¦/ =y. 6. Form the diff. eqn. representing the family of curves y=asin(x+b). 7. Find the general solution of the differential equation: ylogydx ā€“ xdy = 0 Or š‘’ š‘„ tany dx + (1- š‘’ š‘„ )š‘ š‘’š‘2 y dy = 0
  • 12. 8. Find the differential equation representing the curve y = e-x +ax+b. 9. Form the differential equation of family of curves; (x-a)2 +2y2 =a2 . 10. Form the differential equation of family of curves; y2 =a(b-x2 ) 4 MARKS QUESTIONS. 1. Show that the differential equation xdy ā€“ ydx = š‘„2 + š‘¦2 dx is homogeneous and solve it. 2. Find the particular solution of the differential equation :- cos x dy = sin x ( cos x ā€“ 2y) dx, given that y = 0, when x = šœ‹ 3 . 3. Show that the differential equation š‘„ š‘ š‘–š‘›2 š‘¦ š‘„ āˆ’ š‘¦ dx + x dy = 0 is homogeneous. Find the particular solution of this differential equation, given that y = šœ‹ 4 when x = 1. 4. Show that the differential equation x š‘‘š‘¦ š‘‘š‘„ sin š‘¦ š‘„ + š‘„ āˆ’ š‘¦ sin š‘¦ š‘„ = 0 is homogeneous. Find the particular solution of this differential equation, given that x = 1 when y = šœ‹ 2 . 5. Solve the following differential equation :- (1 + y + x2 y) dx + (x + x3 )dy = 0, where y = 0 when x = 1. 6. Solve the following differential equation : 1 + š‘„2 + š‘¦2 + š‘„2 š‘¦2 + xy š‘‘š‘¦ š‘‘š‘„ = 0 . 7. Find the particular solution of the differential equation :( xdy ā€“ ydx) y sin š‘¦ š‘„ = š‘¦š‘‘š‘„ + š‘„š‘‘š‘¦ š‘„ cos š‘¦ š‘„ , given that y = ļ° when x = 3. 8. š‘†š‘œš‘™š‘£š‘’ āˆ¶ š‘„š‘’ š‘¦ š‘„ āˆ’ š‘¦ sin š‘¦ š‘„ + š‘„ š‘‘š‘¦ š‘‘š‘„ sin š‘¦ š‘„ = 0 . given that y = 0 where x = 1, i.e., y(1) = 0 9. Solve the initial value problem : (x2 + 1) š‘‘š‘¦ š‘‘š‘„ - 2xy = ( x4 + 2x2 + 1) cos x, y (0) = 0. 10. Solve : (x2 + xy) dy = (x2 + y2 ) dx. 11. Show that the differential equation : 2y ex/y dx + (y ā€“ 2x ex/y ) dy = 0 is homogenous and find its particular solution, given x = 0 when y = 1. 12. Solve the equation : š‘„ š‘š‘œš‘  š‘¦ š‘„ + š‘¦ š‘ š‘–š‘› š‘¦ š‘„ š‘¦ š‘‘š‘„ = š‘¦ š‘ š‘–š‘› š‘¦ š‘„ āˆ’ š‘„ š‘š‘œš‘  š‘¦ š‘„ x dy. 13. Find the particular solution of the differential equation (1 + x3 ) š‘‘š‘¦ š‘‘š‘„ + 6x2 y = (1 + x2 ), given that x = y = 1. 14. Solve : 1 + š‘’ š‘„ š‘¦ š‘‘š‘„ + š‘’ š‘„ š‘¦ 1 āˆ’ š‘„ š‘¦ š‘‘š‘¦ = 0 . 15. Solve the differential equation : (tan-1 y ā€“ x) dy = (1 + y2 ) dx . 16. Find the particular solution of the differential equation : 17. Solve: (1 + e2x ) dy+ (1 + y2 ) ex dx = 0, given that y = 1 when x = 0. 18. Find the general solution of (x + 2y3 ) š‘‘š‘¦ š‘‘š‘„ = y. 19. Find the equation of a curve passing through origin and satisfying the differential equation (1 + x2 ) š‘‘š‘¦ š‘‘š‘„ + 2xy = 4x2 . 20. Find the general solution of š‘‘š‘¦ š‘‘š‘„ - 3y = sin 2x.
  • 13. VECTORS AND THREE DIMENSIONAL GEOMETRY(1+2+4+4+6=17 MARKS) 1 MARK QUESTIONS. 1. If š‘ is a unit vector and (š‘„ āˆ’ š‘) š‘„ + š‘ = 80 , then find š‘„ . 2. Find the value of šœ† so that the vector š‘Ž = 2 š‘– + šœ†š‘— + š‘˜ and š‘ = š‘– āˆ’ 2š‘— +3 š‘˜ are perpendicular to each other. 3. If two vectors š‘Ž š‘Žš‘›š‘‘ š‘are : š‘Ž = 2, š‘ = 3 and š‘Ž. š‘ = 4, find š‘Ž āˆ’ š‘ . 4. Find the angle between š‘– āˆ’ 2š‘— + 3š‘˜ š‘Žš‘›š‘‘ 3š‘– āˆ’ 2š‘— + š‘˜ . 5. š‘Ž= š‘– + 2š‘— āˆ’ š‘˜, š‘ = 3š‘– + š‘— āˆ’ 5š‘˜, find a unit vector in the direction š‘Ž āˆ’ š‘ . 6. Write Direction ratios of š‘„āˆ’2 2 = 2š‘¦āˆ’5 āˆ’3 = š‘§ āˆ’ 1 . 7. Write the vectors representing the diagonals of a parallelogram whose sides are the vectors š‘Ž š‘Žš‘›š‘‘ š‘. 8. Find the angle which the vector 2š‘–+š‘— āˆ’ 2š‘˜ makes with y ā€“axis. 9. Find a unit vector in the direction of š‘Ž = 3š‘– - 2 š‘— + 6š‘˜ 10. Find š‘„ ,if for a unit vector š‘ , š‘„ āˆ’ š‘ š‘„ + š‘ = 15. 11. Find the distance of the plane 3x-2y+6z-14=0 from origin. 12. Find p if the line š‘„āˆ’1 2 = š‘¦+2 š‘ = š‘§ 3 is parallel to the plane 5x+2y-6z+9=0. 13. Write the eqn. of plane 2x-3y+4z+6=0 in intercept form. 14. Find the distance between the planes 2x-y+2z +5=0 and 4x-2y +4z+16=0. 15. Find a vector of magnitude 7 units which is perpendicular to both š‘Ž = 2 š‘– + šœ†š‘— + š‘˜ and š‘ = š‘– āˆ’ 2š‘— +3 š‘˜ 2 MARKS QUESTIONS. 16. Find the volume of the parallelopiped whose adjacent sides are represented by š‘Ž , š‘ and š‘ where š‘Ž= 3š‘– āˆ’ 2š‘— + 5š‘˜ , š‘ = 2š‘– + 2š‘— āˆ’ š‘˜ , š‘ = -4š‘– + 3š‘— + 2š‘˜ . 17. If two vectors š‘Ž š‘Žš‘›š‘‘ š‘are : š‘Ž = 2, š‘ = 3 and š‘Ž. š‘ = 4, find š‘Ž āˆ’ š‘ . 18. Find ā€˜š›Œā€™ when the projection of š‘Ž = š›Œš‘– + š‘— + 4 š‘˜ and š‘ = 2š‘– + 6š‘— + 3 š‘˜ is 4 units. 19. Find the value of šœ† so that the vectors š‘– + š‘— + š‘˜ , 2š‘– + 3š‘— āˆ’ š‘˜ , -š‘– + šœ†š‘— + 2š‘˜ are coplanar. 20. A line makes angles 900 š‘Žš‘›š‘‘ 1350 with x-axis and y-axis respectively , find the angle which it makes with z-axis. 21. Write the vector eqn. of a line passing through the point (2,-1,3) and perpendicular to the plane 3x-5y+2z=6. 22. Find the angle between the lines: 3+š‘„ 3 = 1āˆ’š‘¦ āˆ’5 = š‘§+2 4 š‘Žš‘›š‘‘ š‘„+1 1 = š‘¦āˆ’4 1 = 5āˆ’3š‘§ āˆ’6 23. Write the eqn. of plane on which the foot of perpendicular from origin is (5,2,1). 24. The line š‘Ÿ = 2š‘– āˆ’3š‘— + š‘š‘˜ + š‘”(š‘– āˆ’ š‘— + š‘žš‘˜) lies in the plane š‘Ÿ.(3š‘– + š‘— āˆ’ š‘˜) āˆ’ 4 = 0,then find the values of p and q. 25. Prove that: (š‘Ž Ɨ š‘)2 = |š‘Ž| |š‘|- (š‘Ž. š‘)2 . 26. If š‘Ž andš‘ are unit vectors and šœƒ is the angle between them, show that sin šœƒ/2 = Ā½ š‘Ž āˆ’ š‘ . 27. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is 3 .
  • 14. 28. If š‘Ž , š‘ š‘Žš‘›š‘‘ š‘ are three unit vectors such that š‘Ž = 5, š‘ = 12 and š‘ = 13 , and š‘Ž + š‘ + š‘ = 0 , find the value of š‘Ž . š‘ + š‘ . š‘ + š‘ . š‘Ž . 29. Find the sine of the angle between the vectors š‘Ž = 3š‘– + š‘— + 2š‘˜ and š‘ = 2š‘– āˆ’ 2š‘— + 4š‘˜ 30. If š‘Ž = 5š‘– āˆ’ š‘— āˆ’ 3š‘˜ and š‘ = š‘– + 3š‘— + 5š‘˜ then show that the vectors (š‘Ž + š‘) and ( š‘Ž āˆ’ š‘ ) perpendicular 31. Find the value of šœ† so that the lines 1āˆ’š‘„ 3 = 7š‘¦āˆ’14 2šœ† = 5š‘§āˆ’10 11 and 7āˆ’7š‘„ 3šœ† = š‘¦āˆ’5 1 = 6āˆ’š‘§ 5 are perpendicular to each other. 32. Find the angle between the line š‘„+1 2 = 3š‘¦+5 9 = 3āˆ’š‘§ āˆ’6 and the plane 10x + 2y ā€“ 11z = 3. 4 MARKS QUESTIONS. 1. Find a unit vector perpendicular to the plane of triangle ABC where the vertices are A (3, -1, 2), B ( 1, -1, -3) and C ( 4, -3, 1). 2. Let š‘Ž = 4š‘– + 5š‘— + š‘˜, š‘ = š‘– āˆ’ 4š‘— + 5š‘˜ and š‘= 3š‘– + š‘— āˆ’ š‘˜. Find a vector š‘‘ which is perpendicular to Both š‘Ž š‘Žš‘›š‘‘ š‘ š‘Žš‘›š‘‘ š‘‘. š‘ = 21. 3. Let š‘Ž, š‘ š‘Žš‘›š‘‘š‘ be three vectors : š‘Ž = 3, š‘ = 4, š‘ = 5 and each one of them being perpendicular to the sum of other two, find š‘Ž + š‘ + š‘ . 4. Using vectors, find the area of the triangle ABC with vertices A (1, 2, 3), B ( 2, -1, 4) and C ( 4, 5, -1) . 5. If š‘Ž = š‘– + š‘— + š‘˜ , š‘ = 4 š‘– āˆ’ 2š‘— + 3š‘˜ š‘Žš‘›š‘‘ š‘ = š‘– āˆ’ 2š‘— + š‘˜, find a vector of magnitude 6 units which is parallel to the vector 2 š‘Ž - š‘ + 3 š‘ . 6. The two adjacent side of a parallelogram are 2š‘– āˆ’ 4š‘— āˆ’ 5š‘˜and š‘– āˆ’ 2š‘— + 3š‘˜ . Find the unit vector parallel to its diagonal. Also, find its area. 7. The scalar product of the vector š‘– + š‘— + š‘˜ with a unit vector along the sum of vectors 2š‘– + 4š‘— āˆ’ 5š‘˜ and š›¾š‘– + 2š‘— + 3š‘˜is equal to one, find the value of š›¾ . 8. If š‘– + š‘— + š‘˜ , 2š‘– + 5š‘— , 3š‘– + 2š‘— āˆ’ 3š‘˜ and š‘– āˆ’ 6š‘— āˆ’ š‘˜ are the position vectors of the points A, B, C and D, find the angle between š“šµ and š¶š· . Deduce that š“šµ and š¶š· are collinear. 9. Find the value of šœ† so that the four points A, B, C, D with position vectors 4š‘– + 5š‘— + š‘˜ , āˆ’š‘— āˆ’ š‘˜ , 3š‘– + 9š‘— + 4š‘˜ and 4(-š‘– + š‘— + š‘˜) respectively are coplanar. 10. If š‘Ž , š‘ š‘Žš‘›š‘‘ š‘ are three unit vectors such that š‘Ž . š‘ = š‘Ž š‘= 0 and angle between š‘ š‘Žš‘›š‘‘ š‘ is šœ‹ 6 , prove that š‘Ž = ļ‚± 2( š‘ļ‚“ š‘ ) . 11. Find the equation of plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and ( 2, 3, 5) . Also, find the perpendicular distance of the plane from the origin. 12. Find the shortest distance between the lines : š‘Ÿ = 6š‘– + 2š‘— + 2š‘˜ + ļ¬ š‘– āˆ’ 2š‘— + 2š‘˜ š‘Žš‘›š‘‘š‘Ÿ = āˆ’4š‘– āˆ’ š‘˜ + ļ­ 3 š‘– āˆ’ 2š‘— āˆ’ 2š‘˜ . 13. If any three vectors š‘Ž , š‘ and š‘ are coplanar, prove that the vectors š‘Ž + š‘ , š‘ + š‘ and š‘ + š‘Ž are also coplanar.
  • 15. 14. If š‘Ž , š‘ and š‘ are mutually perpendicular vectors of equal magnitudes, show that the vector š‘Ž + š‘ + š‘ is equally inclined to š‘Ž, š‘ š‘Žš‘›š‘‘ š‘ . 15. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are (2š‘Ž + š‘ ) & (š‘Ž āˆ’ 3š‘) respectively, externally in the ration 1 : 2. Also, show P is the mid point of RQ . 16. If š›¼ = 3š‘– + 4š‘— + 5š‘˜ and š›½ = 2š‘– + š‘— āˆ’ 4š‘˜ , then express š›½ in the form š›½ = š›½1 + š›½2, where š›½1 is parallel to š›¼ and š›½2 is perpendicular to š›¼ . 17. Find whether the lines š‘Ÿ = ( š‘– āˆ’ š‘— + š‘˜) + šœ†(2š‘– + š‘—) and š‘Ÿ = (2š‘– āˆ’ š‘—) + šœ‡( š‘– + š‘— āˆ’ š‘˜) intersect or not. If intersecting, find their point of intersection. 18. Find a vector of magnitude 5 units and perpendicular to each of the vectors (š‘Ž + š‘) and (š‘Ž āˆ’ š‘), where š‘Ž = š‘– + š‘— + š‘˜, š‘ = š‘– + 2š‘— + 3š‘˜. 19. Show that the lines : š‘„āˆ’1 2 = š‘¦āˆ’2 3 = š‘§āˆ’3 4 and š‘„āˆ’4 5 = š‘¦āˆ’1 2 = z intersect. Also find their point of intersection. 20. Prove that , for any three vectors š‘Ž , š‘ , š‘ : [š‘Ž āˆ’ š‘, š‘ āˆ’ š‘, š‘ āˆ’ š‘Ž] =0 6 MARKS QUESTIONS. 1. Show that the lines š‘„+3 āˆ’3 = š‘¦āˆ’1 1 = š‘§āˆ’5 5 , š‘„+1 āˆ’1 = š‘¦āˆ’2 2 = š‘§āˆ’5 5 are coplanar. Also find the equation of the plane containing the lines. 2. Find the co-ordinates of the point where the line through (3, -4, -5) and (2, -3, 1) crosses the plane determined by points A(1, 2, 3), B (2, 2, 1) and C (-1, 3, 6) . 3. Find the equation of the line passing through the point (-1, 3, -2) and perpendicular to the lines š‘„ 1 = š‘¦ 2 = š‘§ 3 and š‘„+2 āˆ’3 = š‘¦āˆ’1 2 = š‘§+1 5 4. Find the equation of the plane containing the lines : š‘Ÿ = š‘– + š‘— + ļ¬ š‘– + 2 š‘— āˆ’ š‘˜ andš‘Ÿ = š‘– + š‘— + ļ­ āˆ’ š‘– + š‘— āˆ’ 2 š‘˜ Find the distance of this plane from origin and also from the point (1, 1, 1). 5. Find the coordinates of the foot of the perpendicular drawn from the point A (1, 8, 4) to the line joining the point B (0, -1, 3) and C ( 2, -3, -1). 6. Find the distance of the point (-1, -5, -10) from the point of intersection of the line š‘Ÿ = 2 š‘– āˆ’ š‘— + 2 š‘˜ + ļ¬ 3 š‘– + 4 š‘— + 2 š‘˜ and the plane š‘Ÿ. š‘– āˆ’ š‘— + š‘˜ = 5. 7. Show that the lines š‘Ÿ = š‘– + š‘— āˆ’ š‘˜ + ļ¬ 3 š‘– āˆ’ š‘— and š‘Ÿ = 4š‘– āˆ’ š‘˜ + ļ­ 2 š‘– + 3 š‘˜ are coplanar. Also, find the equation of the plane containing both these lines. 8. Find the equation of the plane passing through the line of intersection of the planes š‘Ÿ = š‘– + 3š‘— - 6 = 0 and š‘Ÿ = 3 š‘– āˆ’ š‘— āˆ’ 4 š‘˜ = 0, whose perpendicular distance from origin is unity. 9. Find the image of point (1, 6, 3) in the line š‘„ 1 = š‘¦āˆ’1 2 = š‘§āˆ’2 3 . 10. Find the vector equation of the line passing through the point (2, 3, 2) and parallel to the line š‘Ÿ = āˆ’2 š‘– + 3š‘— + ļ¬ 2 š‘– āˆ’ 3 š‘— + 6 š‘˜ . Also find the distance between the lines. 11. Find whether the lines š‘Ÿ = š‘– āˆ’ š‘— āˆ’ š‘˜ + ļ¬ š‘– + š‘— and š‘Ÿ = 2š‘– āˆ’ š‘— + ļ­ š‘– + š‘— āˆ’ š‘˜ intersect or not. If intersecting, find their point of intersection.
  • 16. 12. Find the equation of plane which contains two parallel lines: š‘„āˆ’3 3 = š‘¦+4 2 = š‘§āˆ’1 1 and š‘„+1 3 = š‘¦āˆ’2 2 = š‘§ 1 . 13. Find the distance between the point P (6, 5, 9) and the plane determined by the points A(3, -1, 2), B(5, 2, 4) and C( -1, -1, 6). 14. Find the equation of plane through the points (1, 2, 3) & (0, -1, 0) and parallel to the lineš‘Ÿ.(2 š‘– + 3š‘— + 4š‘˜) + 5 = 0 . 15. Prove that the image of the point (3, -2, 1) in the plane 3x-y+4z = 2 lie on plane x+y+z+4 = 0. 16. Find the vector equation of the plane through the points ( 2, 1, -1) and ( -1, 3, 4) and perpendicular to the plane x ā€“ 2y + 4z = 10. 17. Find the coordinates of the point, where the line š‘„āˆ’2 3 = š‘¦+1 4 = š‘§āˆ’2 2 intersects the plane x ā€“ y + z ā€“ 5 = 0. Also, find the angle between the line and the plane. 18. Find the distance of the point (2,3,4) from the line š‘„+3 3 = š‘¦āˆ’2 6 = š‘§ 2 measured parallel to the line 3x+2y+2z=5 19. Find the equation of plane passing through the points (3,4,1) and (0,1,2) and parallel to the line š‘„+3 2 = š‘¦āˆ’3 7 = š‘§āˆ’2 5 20. Find the coordinates of the point where the line through (3,-4,-5) and (2,-3,1) crosses the plane, passing through the points (2,2,1), (3,0,1) and (4,-1,0) 21. Find the image of the point (1,3,4) in the plane 2x-y+z+3=0. 22. Find the vector equation of the plane passing through three points with position vectors š‘– + š‘— āˆ’ 2š‘˜, 2š‘– āˆ’ š‘— + š‘˜ and š‘– + 2š‘— + š‘˜. Also find the coordinates of the point of intersection of this plane and the line š‘Ÿ = 3š‘– āˆ’ š‘— āˆ’ š‘˜ + š›¾(2š‘– āˆ’ 2š‘— + š‘˜) . 23. Find the vector equation of the plane which contains the line of intersection of the planes š‘Ÿ . š‘– + 2š‘— + 3 š‘˜ āˆ’ 4 = 0 andš‘Ÿ . 2š‘– + š‘— āˆ’ š‘˜ + 5 = 0 and which is perpendicular to the plane š‘Ÿ . 5š‘– + 3š‘— āˆ’ 6 š‘˜ + 8 = 0 . 24. Find the equation of plane which contains the line of intersection of planes x+2y+3z=4 and 2x+y-z+5=0 and whose x- intercept is twice its z- coordinate. (7x+11y+14z+5=0) 25. Find equation of plane through (1,1,1) and containing the line š‘Ÿ = āˆ’3 š‘– + š‘— + 5š‘˜ + ļ¬ 3 š‘– āˆ’ š‘— āˆ’ 5 š‘˜ . Also show that the plane containing the line š‘Ÿ = āˆ’ š‘– + 2š‘— + 5š‘˜ + ļ¬ š‘– āˆ’ 2 š‘— āˆ’ 5 š‘˜ {x-2y+z=0} 26. Find the distance of the point (-1, -5, -10) from the point of intersection of the line š‘Ÿ = 2š‘– āˆ’ š‘— + 2š‘˜ + ļ¬( 3š‘– + 4š‘— + 2š‘˜ ) and the plane š‘Ÿ .(š‘– āˆ’ š‘— + š‘˜ ) = 5 PROBABILITY(2+4+4=10MARKS) 2 marks questions: 1. Mother , father and son line up at random for a family picture.If E: son on one end F: father in the middle, determine P(E/F). 2. Given that the two numbers appearing on throwing two dice are different, find the probability of the event `the sum of numbers on the dice is 4`.
  • 17. 3. P(A)= 6/11, P(B) = 5/11 and P(š“ āˆŖ šµ) = 7/11 š‘“š‘–š‘›š‘‘ š‘ƒ(šµ/š“) 4. An unbiased die is thrown twice.Let the event A be `odd number on the first throw` and B the event ` odd number on the second throw`. Check the independence of the events A and B. 5. If A and B are two independent events, then show that the probability of occurrence of atleast one of A and B is given by 1-P š“/ š‘ƒ šµ/ . 6. A committee of 4 students is selected at random from a group consisting 8 boys and 4 girls. Given that there is atleast one girl on the committee, calculate the probability that there are exactly 2 girls on the committee. 7. If A and B are independent events,P(A)=p and P(B)=2p and P(exactly one of A,B)= 5 9 , then find p. 8. If P(A)= 6/11 , P(B)=5/11 , P(AāˆŖB)=7/12, find P(A/B) 9. For 6 trials of an experiment, let X be a binomial variate: 9P(X=4) = P(X=2), find the probability of success. 10. Two dice are rolled once. Find the probability that the number on two dice is atleast 4. 11. If E and F are independent events , prove that Eā€™ and Fā€™ are also independent. 12. The probability of simultaneous occurrence of at least one of two events A and B is p. If the probability that exactly one of A, B occurs is q, then prove that P(Aļ‚¢) + P(Bļ‚¢) = 2 ā€“ 2p + q. 13. A speaks truth in 60% of the cases and B in 90% of the cases. In what percentage of cases are they likely to contradict each other in stating the same fact ? 14. A and B are two events such that P(A) = Ā½, P(B) = 1 3 and P(A āˆ© B) = 1 4 . find P(A I B) (ii) P(B I A) (iii) P(Aļ‚¢ I B) (iv) P(Aļ‚¢ I Bļ‚¢) 4 MARKS QUESTIONS. 1. Probability of solving specific problem by X & Y are 1 2 and 1 3 . If both try to solve the problem, find the probability that: (i) Problem is solved. (ii) Exactly one of them solves the problem. 2. Three balls are drawn without replacement from a bag containing 5 white and 4 green balls. Find the probability distribution of number of green balls. 3. A die is thrown again and again until three sixes are obtained. Find the probability of obtaining 3rd six in 6th throw of die. 4. Find the mean number of heads in three tosses of a fair coin. 5. Bag I contains 3 red and 4 black balls and Bags II contains 4 red and 5 black balls. One ball is transferred from Bag I to bag II and then two balls are drawn at random ( without replacement) from Bag II. The balls so drawn are found to be both red in colour. Find the probability that the transferred ball is red. 6. In a hockey match, both team A and B scored same number of goals up to the end of the game, so to decide the winner, the referee asked both the captains to throw a die alternately and decided that the team, whose captain gets a six first, will be declared the winner. If the captain of team A was asked to start, find their respectively probabilities of winning the match and state whether the decision of the referee was fair or not.
  • 18. 7. In answering a question on a MCQ test with 4 choices per question, a student knows the answer, guesses or copies the answer. Let Ā½ be the probability that he knows the answer, Ā¼ be the probability that he guesses and Ā¼ that he copies it. Assuming that a student, who copies the answer, will be correct with the probability Ā¾ , what is the probability that the student knows the answer, given that he answered it correctly? 8. The probability that a student entering a university will graduate is 0.4. find the probability that out of 3 students of the university : a)None will graduate, b)Only one will graduate, c) All will graduate. 9. How many times must a man toss a fair coin, so that the probability of having at least one head is more than 80% ? 10. On a multiple choice examination with three possible answer (out of which only one is correct) for each of the five questions, what is the probability that a candidate would get four or more correct answer just by guessing? 11. A family has 2 children. Find the probability that both are boys, if it is known that (i) At least one of the children is a boy (ii) the elder child is a boy. 12. An experiment succeed twice often as it fails. Find the probability that in the next six trails there will be at least 4 successes. 13. From a lot of 10 bulbs, which include 3 defectives, a sample of 2 bulbs is drawn at random. Find the probability distribution of the number of defective bulbs. 14. Find the probability distribution of number of doublets in three throws of a pair of dice. Also find mean & variance. 15. A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at random ( without replacement) and are found to be all spades. Find the probability of the lost card being spade. 16. Assume that the chances of a patient having a heart attack is 40%. Assuming that a meditation and yoga course reduces the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options, the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga. Interpret the result and state which of the above stated methods is more beneficial for the patient. 17. An insurance company insured 2000 cyclist, 4000 scooter drivers and 6000 motorbike drivers. The probability of an accident involving a cyclist, scooter driver and a motorbike driver are 0.01, 0.03 and 0.15 respectively. One of the insured persons meets with an accident. What is the probability that he is a scooter driver? Which mode of transport would you suggest to a student and why? 18. Two bags A and B contain 4 white and 3 black balls and 2 white and 2 black balls respectively. From bag A, two balls are drawn at random and then transferred to bag B. A ball is then drawn from bag B and is found to be a black ball. What is the probability that the transferred balls were 1 white and 1 black? 19. A letter is known to have come either from TATA NAGAR or from CALCUTTA. On the envelope, just two consecutive letter TA are visible. What is the probability that the letter came from TATANAGAR.
  • 19. 20. There are three coins. One is two headed coin (having head on both faces), another is a biased coin that comes up tail 25% of the times and third is an unbiased coin. One of the three coins is chosen at random and tossed, it shows heads, what is the probability that it was the two headed coin? 21. Three bags contain balls as shown in the table below : Bag Number of White Balls Number of Black balls Number of Red balls I 1 2 3 II 2 1 1 III 4 3 2 A bag is chosen at random and two balls are drawn from it. They happen to be white and red. What is the probability that they come from the III Bag? 22. A and B throw alternatively a pair of dice, A wins if he throws 6 before B throws 7 & B wins if he throws 7 beforeA throw 6. Find their respective chances of winning , if A begins. [30/61, 31/61] 23. A girl throws a die. If she gets a 5 or 6, she tosses a coin three times and notes the number of heads. If she gets 1, 2, 3 or 4, she tosses a coin two times and notes the number of heads obtained. If she obtained exactly two heads, What is the probability that she threw 1, 2, 3 or 4 with the die? 24. From a lot of 10 bulbs, which includes 3 defectives, a sample of 2 bulbs is drawn at random. Find the Probability distribution of the number of defective bulbs. 25. A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the variance of number of success. 26. A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at random (without replacement) and are found to be all spades. Find the probability of the lost card being a spade LINEAR PROGRAMMING (6MARKS) 6 MARKS QUESTIONS. 1. If a young man rides his motorcycle at 25 km/h, he has to spend Rs. 2/km on petrol. If he rides at a faster speed of 40 km/h, the petrol cost increase at Rs. 5/km. He has Rs. 100 to spend on petrol and wishes to find what is the maximum distance he can travel within one hour? Solve graphically. 2. Two tailors A and B earn Rs. 15 and Rs. 20 per day resp. A can stitch 6 shirts and 4 pants while B can stitch 10 shirts and 4 pants per day. How many days shall each work if it is desired to produce at least 60 shirts and 32 pants at minimum labour cost? 3. A dealer wishes to purchase a no. Of fans and sewing machines. He has only Rs. 5760 to invest and has space for at most 20 items. A fan cost him Rs. 360 and a sewing machine Rs. 240. He expects to sell a fan at a profit of Rs. 22 and a sewing machine for a profit of Rs. 18. Assuming that he can sell all the items that he buys, how should he invest his money to maximize his Profit?
  • 20. 4. A shopkeeper sells only tables and chairs. He has only Rs. 6000 invest and has space for at most 20 items. A table cost him Rs. 400 and achair Rs. 250. He can sell a table at a profit of Rs. 40 and chain at Rs. 25. Solve it graphically for maximum profit. 5. An aeroplane can carry a maximum of 200 passengers. A profit of Rs. 1000 is made on each executives class ticket and profit of Rs. 600 is made on each economy class ticket. The airlines reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to travel by economy class than by executive class. Determine how many of each type of tickets must be sold in order to maximize the profit for airline. What is the maximum profit? 6. Anil wants to invest at most Rs. 12000 in bonds A and B. According to the rules, he has to invest at least Rs. 2000 in Bond A and at least Rs. 4000 in bond B.If the rate of interest on bond A is 8% p.a. and on bond B is 10% p.a., how should he invest his money for maximum interest? Solve the problem graphically. 7. A small firm manufactures necklace and bracelets. The combined no. Of necklace and bracelets that it can handle for day is at most 24. The bracelets takes one hour to make and necklace takes half an hour. The maximum no. Of hours available per day is 16. If the profit on bracelet is Rs. 2 and on necklace is Re. 1, how many each product should be produced daily to maximize profit? 8. A manufacture produces nuts and bolts. It takes 1 hour of work on machine A and 3 hours on machine B to produce a package of nuts. It takes 3 hours on machine A and 1 hour on machine B to produce a package of bolts. He earns a profit of Rs. 17.50 per package on nuts and Rs. 7 per package on bolts. How many packages of each should be produced each day so as to maximize his profits if he operates his machines for at the most 12 hours a day? Form the linear programming problem and solve it graphically. 9. A factory makes tennis rackets and crickets bats. A tennis racket takes 1.5 hours of machine time and 3 hours of craftmanā€™s time in its making while a cricket bat takes 3 hours of machine time and 1 hour of craftmanā€™s time. In a day, the factory has the availability of not more than 42 hours of machine time and 24 hours of craftmanā€™s time. If the profit on a racket and on a bat is Rs. 20 and Rs. 10 respectively, find the number of tennis rackets and crickets bats that the factory must manufacture to earn the maximum profit. Make it as an L.P.P. and solve graphically. 10. A manufacturer produces pizza and cakes. It takes 1 hour of work on machine. A and 3 hours on machine B to produce a packet of pizza. It takes 3 hours on machine A and 1 hour on machine B to produce a packet of cakes. He earns a profit of Rs. 17.50 per packet on pizza and Rs. 7 per packet of cake. How many packets of each should be produced each day so as to maximize his profits if he operates his machines for at the most 12 hours a day? Solve graphically.