SlideShare una empresa de Scribd logo
1 de 36
Descargar para leer sin conexión
Overview of
Machine Learning for Molecules and
Materials Workshop @ NIPS 2017
NIPS2017 @PFN
Jan. 21st 2018
Preferred Networks, Inc.
Kenta Oono oono@preferred.jp
Kenta Oono (@delta2323_)
• Preferred Networks (PFN), Engineer
• MSc. in mathematics
• 2014.10 - Present: PFN
• Role
– Biology project
– Chainer developer
– Chainer Chemistry developer
Workshop overview
• 15 invited talks, 22 posters, 3 sponsors
• Session titles
– Introduction to Machine Learning and Chemistry
– Machine Learning Applications in Chemistry
– Kernel Learning with Structured Data
– Deep Learning Approaches
• Areas of interest
– ML + (Quantum) Chemistry / ML + Quantum Physics / Material Informatics
– DL : Vinyals (DeepMind), Duvenaud (Google), Smola (Amazon)
Why materials and molecules?
• Material informatics
– Material genome initiative
– MI2I project (NIMS)
• Drug discovery
– Big pharmas’ investment
– IPAB drug discovery contest
https://medium.com/the-ai-lab/artificial-intelligence-in-drug-discovery-is-
overhyped-examples-from-astrazeneca-harvard-315d69a7f863
Chemical prediction - Two approaches
• Quantum simulation
– Theory-based approach
– e.g. DFT (Density Functional Theory)
J Precision is guaranteed
L High calculation cost
• Machine learning
– Data-based approach
– e.g. Graph convolution
J Low cost, high speed calculation
L Hard to guarantee precision
“Neural message passing for quantum chemistry”Justin et al
Hardness of learning with molecules
• How to represent molecules?
– Discrete and structured nature of molecules
– 2D and 3D information
• Vast search space (~10**60)
Topics
• Molecule generation with VAE
• Graph convolution
MOLECULE
GENERATION WITH VAE
Molecule generation
Prediction Generation
Solvable Solvable
SMILES
A format of encoding molecules in text.
Simple solution: Treat a molecule as a sequential data and apply NLP techniques.
OC[C@@H](O1)[C@@H](O)[C@H]
(O)[C@@H](O)[C@@H](O)1
Variational AutoEncoder (VAE) [Kingma+13][Rezende+14]
Kingma, D. P., & Welling, M. (2013). Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.
Rezende, D. J., Mohamed, S., & Wierstra, D.
(2014). Stochastic backpropagation and
approximate inference in deep generative
models. arXiv preprint arXiv:1401.4082.
• Variational inference
• Use NN as an inference model.
• Train in end-to-end manner with backpropagation.
• Extension to RNN encoder/decoder [Fabius+15]
https://www.slideshare.net/KentaOono/vaetype-
deep-generative-models
z
x
z
x
approximate
Inference model
qφ(z | x)
Generative model
pθ (z | x)
Molecule generation with VAE (CVAE) [Gómez-Bombarelli+16]
• Encode and decode molecules represented
as SMILE with VAE.
• Latent representation can be used for semi-
supervised learning.
• We can use learned models to find
molecule with desired property by
optimizing representation in latent space
and decode it.
L generated molecules are not guaranteed to be
valid syntactically.
Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., Sheberla, D., ... & Aspuru-
Guzik, A. (2016). Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Science.
Grammar VAE (GVAE) [Kusner+17]
Kusner, M. J., Paige, B., & Hernández-Lobato, J. M. (2017). Grammar Variational
Autoencoder. arXiv preprint arXiv:1703.01925.
• Generate sequence of production
rules of syntax of SMILES
• Generated molecules are
guaranteed to be valid
syntactically.
Encode
Decode
• Represent SMILES syntax as CFG
• Convert a molecule to a parse tree
to get a sequence of production
rules.
• Feed the sequence to RNN-VAE.
L generated molecules are not guaranteed
to be valid semantically.
Syntax-Directed VAE (SDVAE) Best paper award
• Use attribute grammar to guarantee
that generated molecules are both
syntactically and semantically valid.
• Generate attributes stochastically
(stochastic lazy attributes) for on-the-
fly semantic check.
← Simplified schematic view
(Note: Bottom up semantic check for
explanation)
http://www.quantum-
machine.org/workshops/nips2017/assets/pdf/sd
vae_workshop_camera_ready.pdf
https://openreview.net/forum?id=SyqShMZRb
Discussion
• Is SMILES appropriate as an input representation?
– Input representation is not unique (e.g. CC#C and C#CC represent same molecule).
– Molecule representation is not guaranteed to be invariant to relabeling (i.e. permutation of
indexes) of molecules.
– SMILES is not natural language. Can we justify to apply NLP techniques?
• Synthesizability is not considered.
Related papers
• Extension of VAE
– Semi-supervised Continuous Representation of Molecules
– Learning Hard Quantum Distributions With Variational Autoencoders
• Seq2seq models
– “Found in translation”: Predicting Outcomes of Complex Organic Chemistry Reactions Using
Neural Sequence-to-sequence Models
• Molecule generation
– Learning a Generative Model for Validity in Complex Discrete Structure
– ChemTS: de novo molecular generation with MCTS and RNN (for rollout)
GRAPH CONVOLUTION
ALGORITHMS
Extended Connectivity Fingerprint (ECFP)
Convert molecule into fixed length bit representation
J Pros
• Calculation is fast
• Show presence of particular substructures
L Cons
• Bit collision
– Two (or more) different substructure features
could be represented by the same bit position
• Task-independent featurizer
https://chembioinfo.com/2011/10/30/revisiting-
molecular-hashed-fingerprints/
https://docs.chemaxon.com/display/docs/Extended
+Connectivity+Fingerprint+ECFP
How graph convolution works
Graph convolution
Convolution kernel depends on Graph structure
Image
class label
Chemical
property
CNN on image
Unified view of graph convolution
Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for quantum chemistry. arXiv preprint arXiv:1704.01212.
Update Readout
v
w
hw
evw
hv
mv
mv
mv
mv
hv
y
Many message-passing algorithms (NFP, GGNN, Weave) are formulated as the
iterative application of Update function and Readout function [Gilmer et al. 17].
Aggregates neighborhood information and
updates node representations.
Aggregates all node representations
and updates the final output.
Neural Fingerprint (NFP) [Duvenaud+15]
Atom feature embedding
Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T.,
Aspuru-Guzik, A.,&Adams, R. P. (2015). Convolutional networks on graphs
for learning molecular fingerprints. In Advances in neural information
processing systems (pp. 2224-2232).
HCNOS
Neural Fingerprint (NFP)
Update
hnew
3= σ ( W2(h3+h2+h4) )
hnew
7= σ ( W3(h7+h6+h8+h9) )
Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T.,
Aspuru-Guzik, A.,&Adams, R. P. (2015). Convolutional networks on graphs
for learning molecular fingerprints. In Advances in neural information
processing systems (pp. 2224-2232).
Neural Fingerprint (NFP)
Readout
h7
h8
R = ∑i softmax (Whi)
h6
h1
h2
h3
h4
h5
h9 h10
ECFP and NFP
[Duvenaud+15] Fig.2
Comparison between graph convolution networks
NFP GGNN Weave SchNet
How to extract
atom features
Man-made or
Embed
Man-made or
Embed
Man-made or
Embed
Man-made or
Embed
Graph convolution
strategy
Adjacent
atoms only
Adjacent
atoms only
All atom-atom
pairs
All atom-atom
pairs
How to represent
connection
information
Degree Bond type
Man-made
pair features
(bond type,distance etc.)
Distance
End-to-end Learning of Graph Neural Networks
for Molecular Representation [Tsubaki+17]
1. Embed r-radius subgraphs
2. Update node and vertex representations
3. Use LSTM to capture long-term dependency in vertices and edges
4. Readout the final output with self-attention mechanism
Best paper award
https://www.dropbox.com/s/ujzuj2kd2nyz348/tsubaki_nips2017.pdf
Extension to semi-supervised learning [Hai+17]
Compute representations of subgraphs inductively with
neural message passing (→)
Optimize the representation in unsupervised manner in
the same way as Paragraph vector (↓)
Nguyen, H., Maeda, S. I.,&Oono, K. (2017).
Semi-supervised learning of hierarchical
representations of molecules using neural
message passing.arXiv preprint
arXiv:1711.10168.
Workshop paper
Chainer Chemistry (http://chainer-chemistry.readthedocs.io/)
Chainer extension library for Biology and Chemistry
FileParser (SDF, CSV) Loader (QM 9, Tox 21)
Graph convolution NN
(NFP, GGNN, SchNet, Weave)
Preprocessing
Example
Multitask
learning with
QM9 / Tox21
Model
Layer
Dataset
Pretrained
Model
Feature extractor
(TBD)
GraphLinear, EmbedAtomID
Basic information
Release:12/14/2017, Version: v0.1.0, License: MIT, Language: Python
Discussion
• Is message passing neural network general enough to formulate many
graph convolution algorithms?
• How can we incorporate 3D information to graph convolution algorithms (e.g.
Chirality).
Other topics (DNN models)
• CNN models
– ChemNet: A Transferable and Generalizable Deep Neural Network for
Small-molecule Property Prediction
– Ligand Pose Optimization With Atomic Grid-based Convolutional Neural
Networks
• Other DNN models
– Deep Learning for Prediction of Synergistic Effects of Anti-cancer Drugs
– Deep Learning Yields Virtual Assays
– Neural Network for Learning Universal Atomic Forces
Other topics
• Chemical synthesis
– Automatically Extracting Action Graphs From Materials Science
Synthesis Procedures
– Marwin Segler’s talk: Planning Chemical Syntheses with Neural
Networks and Monte Carlo Tree Search
• Bayesian optimization
– Bayesian Protein Optimization
– Constrained Bayesian Optimization for Automatic Chemical Design
Segler, M. H., Preuss, M.,&Waller, M. P. (2017). Learning to Plan Chemical
Syntheses. arXiv preprint arXiv:1708.04202.
Summary
• Data-driven approach for understanding molecules are being paid attention
in material informatics, quantum chemistry, and quantum physics fields.
• Recent advances of :
– Molecule generation with VAE
– Learning graph-structured data with graph convolution algorithms.
BACKUP
Chainer Chemistry (http://chainer-chemistry.readthedocs.io/)
Chainer extension library for Biology and Chemistry
Basic information
release:12/14/2017, version: v0.1.0, license: MIT, language: Python
Features
• State-of-the-art deep learning neural network models (especially graph
convolutions) for chemical molecules (NFP, GGNN, Weave, SchNet etc.)
• Preprocessors of molecules tailored for these models
• Parsers for several standard file formats (CSV, SDF etc.)
• Loaders for several well-known datasets (QM9, Tox21 etc.)
Example: HOMO prediction with QM9 dataset
# Dataset preprocessing (for NFP Network)
preprocessor = preprocess_method_dict['nfp']()
dataset = D.get_qm9(preprocessor, labels='homo’)
# Cache dataset for second use
NumpyTupleDataset.save('input/nfp_homo/data.npz', dataset)
train, val = split_dataset_random(dataset, first_size=10000)
# Build model and use as an ordinary Chain
model = GraphConvPredictor(NFP(16, 16, 4), MLP(16, 1))
Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017

Más contenido relacionado

La actualidad más candente

BIOS 203 Lecture 3: Classical molecular dynamics
BIOS 203 Lecture 3: Classical molecular dynamicsBIOS 203 Lecture 3: Classical molecular dynamics
BIOS 203 Lecture 3: Classical molecular dynamicsbios203
 
El text.tokuron a(2019).yoshii190704
El text.tokuron a(2019).yoshii190704El text.tokuron a(2019).yoshii190704
El text.tokuron a(2019).yoshii190704RCCSRENKEI
 
TMS workshop on machine learning in materials science: Intro to deep learning...
TMS workshop on machine learning in materials science: Intro to deep learning...TMS workshop on machine learning in materials science: Intro to deep learning...
TMS workshop on machine learning in materials science: Intro to deep learning...BrianDeCost
 
Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...Anubhav Jain
 
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?Ichigaku Takigawa
 
汎用ニューラルネットワークポテンシャル「PFP」による材料探索_MRS-J2021招待講演_2021/12/15
汎用ニューラルネットワークポテンシャル「PFP」による材料探索_MRS-J2021招待講演_2021/12/15汎用ニューラルネットワークポテンシャル「PFP」による材料探索_MRS-J2021招待講演_2021/12/15
汎用ニューラルネットワークポテンシャル「PFP」による材料探索_MRS-J2021招待講演_2021/12/15Matlantis
 
グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)
グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)
グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
Quantum transport in semiconductor nanostructures
Quantum transport in semiconductor nanostructuresQuantum transport in semiconductor nanostructures
Quantum transport in semiconductor nanostructuressamrat saurabh
 
Conducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials ProjectConducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials ProjectAnubhav Jain
 
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナー
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナーPFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナー
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナーMatlantis
 
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...Preferred Networks
 
第3回 配信講義 計算科学技術特論B(2022)
第3回 配信講義 計算科学技術特論B(2022)第3回 配信講義 計算科学技術特論B(2022)
第3回 配信講義 計算科学技術特論B(2022)RCCSRENKEI
 
Introduction to carbon nanotubes and their applications
Introduction to carbon nanotubes and their applicationsIntroduction to carbon nanotubes and their applications
Introduction to carbon nanotubes and their applicationsAnkit Kumar Singh
 
Computational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methodsComputational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methodsAnubhav Jain
 
PFP:材料探索のための汎用Neural Network Potential - 2021/10/4 QCMSR + DLAP共催
PFP:材料探索のための汎用Neural Network Potential - 2021/10/4 QCMSR + DLAP共催PFP:材料探索のための汎用Neural Network Potential - 2021/10/4 QCMSR + DLAP共催
PFP:材料探索のための汎用Neural Network Potential - 2021/10/4 QCMSR + DLAP共催Preferred Networks
 
A machine-learning view on heterogeneous catalyst design and discovery
A machine-learning view on heterogeneous catalyst design and discoveryA machine-learning view on heterogeneous catalyst design and discovery
A machine-learning view on heterogeneous catalyst design and discoveryIchigaku Takigawa
 
Band structure
Band structureBand structure
Band structurenirupam12
 
Graph Neural Network - Introduction
Graph Neural Network - IntroductionGraph Neural Network - Introduction
Graph Neural Network - IntroductionJungwon Kim
 

La actualidad más candente (20)

BIOS 203 Lecture 3: Classical molecular dynamics
BIOS 203 Lecture 3: Classical molecular dynamicsBIOS 203 Lecture 3: Classical molecular dynamics
BIOS 203 Lecture 3: Classical molecular dynamics
 
NANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFTNANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFT
 
El text.tokuron a(2019).yoshii190704
El text.tokuron a(2019).yoshii190704El text.tokuron a(2019).yoshii190704
El text.tokuron a(2019).yoshii190704
 
TMS workshop on machine learning in materials science: Intro to deep learning...
TMS workshop on machine learning in materials science: Intro to deep learning...TMS workshop on machine learning in materials science: Intro to deep learning...
TMS workshop on machine learning in materials science: Intro to deep learning...
 
Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...Density functional theory calculations and data mining for new thermoelectric...
Density functional theory calculations and data mining for new thermoelectric...
 
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
 
汎用ニューラルネットワークポテンシャル「PFP」による材料探索_MRS-J2021招待講演_2021/12/15
汎用ニューラルネットワークポテンシャル「PFP」による材料探索_MRS-J2021招待講演_2021/12/15汎用ニューラルネットワークポテンシャル「PFP」による材料探索_MRS-J2021招待講演_2021/12/15
汎用ニューラルネットワークポテンシャル「PFP」による材料探索_MRS-J2021招待講演_2021/12/15
 
グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)
グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)
グラフ構造データに対する深層学習〜創薬・材料科学への応用とその問題点〜 (第26回ステアラボ人工知能セミナー)
 
Quantum transport in semiconductor nanostructures
Quantum transport in semiconductor nanostructuresQuantum transport in semiconductor nanostructures
Quantum transport in semiconductor nanostructures
 
Conducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials ProjectConducting and Enabling Data-Driven Research Through the Materials Project
Conducting and Enabling Data-Driven Research Through the Materials Project
 
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナー
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナーPFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナー
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナー
 
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
 
第3回 配信講義 計算科学技術特論B(2022)
第3回 配信講義 計算科学技術特論B(2022)第3回 配信講義 計算科学技術特論B(2022)
第3回 配信講義 計算科学技術特論B(2022)
 
Introduction to carbon nanotubes and their applications
Introduction to carbon nanotubes and their applicationsIntroduction to carbon nanotubes and their applications
Introduction to carbon nanotubes and their applications
 
Computational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methodsComputational materials design with high-throughput and machine learning methods
Computational materials design with high-throughput and machine learning methods
 
PFP:材料探索のための汎用Neural Network Potential - 2021/10/4 QCMSR + DLAP共催
PFP:材料探索のための汎用Neural Network Potential - 2021/10/4 QCMSR + DLAP共催PFP:材料探索のための汎用Neural Network Potential - 2021/10/4 QCMSR + DLAP共催
PFP:材料探索のための汎用Neural Network Potential - 2021/10/4 QCMSR + DLAP共催
 
A machine-learning view on heterogeneous catalyst design and discovery
A machine-learning view on heterogeneous catalyst design and discoveryA machine-learning view on heterogeneous catalyst design and discovery
A machine-learning view on heterogeneous catalyst design and discovery
 
Band structure
Band structureBand structure
Band structure
 
Graph Neural Network - Introduction
Graph Neural Network - IntroductionGraph Neural Network - Introduction
Graph Neural Network - Introduction
 
Intro to DFT+U
Intro to DFT+U Intro to DFT+U
Intro to DFT+U
 

Similar a Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017

A semantic framework and software design to enable the transparent integratio...
A semantic framework and software design to enable the transparent integratio...A semantic framework and software design to enable the transparent integratio...
A semantic framework and software design to enable the transparent integratio...Patricia Tavares Boralli
 
deeplearningpresentation-180625071236.pptx
deeplearningpresentation-180625071236.pptxdeeplearningpresentation-180625071236.pptx
deeplearningpresentation-180625071236.pptxJeetDesai14
 
MADICES Mungall 2022.pptx
MADICES Mungall 2022.pptxMADICES Mungall 2022.pptx
MADICES Mungall 2022.pptxChris Mungall
 
Natural language processing and transformer models
Natural language processing and transformer modelsNatural language processing and transformer models
Natural language processing and transformer modelsDing Li
 
012517 ResumeJH Amex DS-ML
012517 ResumeJH Amex DS-ML012517 ResumeJH Amex DS-ML
012517 ResumeJH Amex DS-MLJeremy Hadidjojo
 
Machine Learning and Reasoning for Drug Discovery
Machine Learning and Reasoning for Drug DiscoveryMachine Learning and Reasoning for Drug Discovery
Machine Learning and Reasoning for Drug DiscoveryDeakin University
 
Towards reproducibility and maximally-open data
Towards reproducibility and maximally-open dataTowards reproducibility and maximally-open data
Towards reproducibility and maximally-open dataPablo Bernabeu
 
AI for automated materials discovery via learning to represent, predict, gene...
AI for automated materials discovery via learning to represent, predict, gene...AI for automated materials discovery via learning to represent, predict, gene...
AI for automated materials discovery via learning to represent, predict, gene...Deakin University
 
20090219 The case for another systems biology modelling environment
20090219 The case for another systems biology modelling environment20090219 The case for another systems biology modelling environment
20090219 The case for another systems biology modelling environmentJonathan Blakes
 
Mpp Rsv 2008 Public
Mpp Rsv 2008 PublicMpp Rsv 2008 Public
Mpp Rsv 2008 Publiclab13unisa
 
NS-CUK Seminar: H.B.Kim, Review on "metapath2vec: Scalable representation le...
NS-CUK Seminar: H.B.Kim,  Review on "metapath2vec: Scalable representation le...NS-CUK Seminar: H.B.Kim,  Review on "metapath2vec: Scalable representation le...
NS-CUK Seminar: H.B.Kim, Review on "metapath2vec: Scalable representation le...ssuser4b1f48
 
Continuous modeling - automating model building on high-performance e-Infrast...
Continuous modeling - automating model building on high-performance e-Infrast...Continuous modeling - automating model building on high-performance e-Infrast...
Continuous modeling - automating model building on high-performance e-Infrast...Ola Spjuth
 
Advanced machine learning for metabolite identification
Advanced machine learning for metabolite identificationAdvanced machine learning for metabolite identification
Advanced machine learning for metabolite identificationDai-Hai Nguyen
 
Interactive Analysis of Large-Scale Sequencing Genomics Data Sets using a Rea...
Interactive Analysis of Large-Scale Sequencing Genomics Data Sets using a Rea...Interactive Analysis of Large-Scale Sequencing Genomics Data Sets using a Rea...
Interactive Analysis of Large-Scale Sequencing Genomics Data Sets using a Rea...Dominic Suciu
 
00 Automatic Mental Health Classification in Online Settings and Language Emb...
00 Automatic Mental Health Classification in Online Settings and Language Emb...00 Automatic Mental Health Classification in Online Settings and Language Emb...
00 Automatic Mental Health Classification in Online Settings and Language Emb...Duke Network Analysis Center
 

Similar a Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017 (20)

A semantic framework and software design to enable the transparent integratio...
A semantic framework and software design to enable the transparent integratio...A semantic framework and software design to enable the transparent integratio...
A semantic framework and software design to enable the transparent integratio...
 
mlss
mlssmlss
mlss
 
deeplearningpresentation-180625071236.pptx
deeplearningpresentation-180625071236.pptxdeeplearningpresentation-180625071236.pptx
deeplearningpresentation-180625071236.pptx
 
MADICES Mungall 2022.pptx
MADICES Mungall 2022.pptxMADICES Mungall 2022.pptx
MADICES Mungall 2022.pptx
 
Natural language processing and transformer models
Natural language processing and transformer modelsNatural language processing and transformer models
Natural language processing and transformer models
 
012517 ResumeJH Amex DS-ML
012517 ResumeJH Amex DS-ML012517 ResumeJH Amex DS-ML
012517 ResumeJH Amex DS-ML
 
Machine Learning and Reasoning for Drug Discovery
Machine Learning and Reasoning for Drug DiscoveryMachine Learning and Reasoning for Drug Discovery
Machine Learning and Reasoning for Drug Discovery
 
Deep learning presentation
Deep learning presentationDeep learning presentation
Deep learning presentation
 
Towards reproducibility and maximally-open data
Towards reproducibility and maximally-open dataTowards reproducibility and maximally-open data
Towards reproducibility and maximally-open data
 
BioNLPSADI
BioNLPSADIBioNLPSADI
BioNLPSADI
 
AI for automated materials discovery via learning to represent, predict, gene...
AI for automated materials discovery via learning to represent, predict, gene...AI for automated materials discovery via learning to represent, predict, gene...
AI for automated materials discovery via learning to represent, predict, gene...
 
20090219 The case for another systems biology modelling environment
20090219 The case for another systems biology modelling environment20090219 The case for another systems biology modelling environment
20090219 The case for another systems biology modelling environment
 
Mpp Rsv 2008 Public
Mpp Rsv 2008 PublicMpp Rsv 2008 Public
Mpp Rsv 2008 Public
 
NS-CUK Seminar: H.B.Kim, Review on "metapath2vec: Scalable representation le...
NS-CUK Seminar: H.B.Kim,  Review on "metapath2vec: Scalable representation le...NS-CUK Seminar: H.B.Kim,  Review on "metapath2vec: Scalable representation le...
NS-CUK Seminar: H.B.Kim, Review on "metapath2vec: Scalable representation le...
 
CV_10/17
CV_10/17CV_10/17
CV_10/17
 
Cv long
Cv longCv long
Cv long
 
Continuous modeling - automating model building on high-performance e-Infrast...
Continuous modeling - automating model building on high-performance e-Infrast...Continuous modeling - automating model building on high-performance e-Infrast...
Continuous modeling - automating model building on high-performance e-Infrast...
 
Advanced machine learning for metabolite identification
Advanced machine learning for metabolite identificationAdvanced machine learning for metabolite identification
Advanced machine learning for metabolite identification
 
Interactive Analysis of Large-Scale Sequencing Genomics Data Sets using a Rea...
Interactive Analysis of Large-Scale Sequencing Genomics Data Sets using a Rea...Interactive Analysis of Large-Scale Sequencing Genomics Data Sets using a Rea...
Interactive Analysis of Large-Scale Sequencing Genomics Data Sets using a Rea...
 
00 Automatic Mental Health Classification in Online Settings and Language Emb...
00 Automatic Mental Health Classification in Online Settings and Language Emb...00 Automatic Mental Health Classification in Online Settings and Language Emb...
00 Automatic Mental Health Classification in Online Settings and Language Emb...
 

Más de Kenta Oono

Minimax statistical learning with Wasserstein distances (NeurIPS2018 Reading ...
Minimax statistical learning with Wasserstein distances (NeurIPS2018 Reading ...Minimax statistical learning with Wasserstein distances (NeurIPS2018 Reading ...
Minimax statistical learning with Wasserstein distances (NeurIPS2018 Reading ...Kenta Oono
 
Comparison of deep learning frameworks from a viewpoint of double backpropaga...
Comparison of deep learning frameworks from a viewpoint of double backpropaga...Comparison of deep learning frameworks from a viewpoint of double backpropaga...
Comparison of deep learning frameworks from a viewpoint of double backpropaga...Kenta Oono
 
深層学習フレームワーク概要とChainerの事例紹介
深層学習フレームワーク概要とChainerの事例紹介深層学習フレームワーク概要とChainerの事例紹介
深層学習フレームワーク概要とChainerの事例紹介Kenta Oono
 
20170422 数学カフェ Part2
20170422 数学カフェ Part220170422 数学カフェ Part2
20170422 数学カフェ Part2Kenta Oono
 
20170422 数学カフェ Part1
20170422 数学カフェ Part120170422 数学カフェ Part1
20170422 数学カフェ Part1Kenta Oono
 
情報幾何学の基礎、第7章発表ノート
情報幾何学の基礎、第7章発表ノート情報幾何学の基礎、第7章発表ノート
情報幾何学の基礎、第7章発表ノートKenta Oono
 
GTC Japan 2016 Chainer feature introduction
GTC Japan 2016 Chainer feature introductionGTC Japan 2016 Chainer feature introduction
GTC Japan 2016 Chainer feature introductionKenta Oono
 
On the benchmark of Chainer
On the benchmark of ChainerOn the benchmark of Chainer
On the benchmark of ChainerKenta Oono
 
Tokyo Webmining Talk1
Tokyo Webmining Talk1Tokyo Webmining Talk1
Tokyo Webmining Talk1Kenta Oono
 
VAE-type Deep Generative Models
VAE-type Deep Generative ModelsVAE-type Deep Generative Models
VAE-type Deep Generative ModelsKenta Oono
 
Common Design of Deep Learning Frameworks
Common Design of Deep Learning FrameworksCommon Design of Deep Learning Frameworks
Common Design of Deep Learning FrameworksKenta Oono
 
Introduction to Chainer and CuPy
Introduction to Chainer and CuPyIntroduction to Chainer and CuPy
Introduction to Chainer and CuPyKenta Oono
 
Stochastic Gradient MCMC
Stochastic Gradient MCMCStochastic Gradient MCMC
Stochastic Gradient MCMCKenta Oono
 
Chainer Contribution Guide
Chainer Contribution GuideChainer Contribution Guide
Chainer Contribution GuideKenta Oono
 
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用 2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用 Kenta Oono
 
Introduction to Chainer (LL Ring Recursive)
Introduction to Chainer (LL Ring Recursive)Introduction to Chainer (LL Ring Recursive)
Introduction to Chainer (LL Ring Recursive)Kenta Oono
 
日本神経回路学会セミナー「DeepLearningを使ってみよう!」資料
日本神経回路学会セミナー「DeepLearningを使ってみよう!」資料日本神経回路学会セミナー「DeepLearningを使ってみよう!」資料
日本神経回路学会セミナー「DeepLearningを使ってみよう!」資料Kenta Oono
 
提供AMIについて
提供AMIについて提供AMIについて
提供AMIについてKenta Oono
 
Chainerインストール
ChainerインストールChainerインストール
ChainerインストールKenta Oono
 
Caffeインストール
CaffeインストールCaffeインストール
CaffeインストールKenta Oono
 

Más de Kenta Oono (20)

Minimax statistical learning with Wasserstein distances (NeurIPS2018 Reading ...
Minimax statistical learning with Wasserstein distances (NeurIPS2018 Reading ...Minimax statistical learning with Wasserstein distances (NeurIPS2018 Reading ...
Minimax statistical learning with Wasserstein distances (NeurIPS2018 Reading ...
 
Comparison of deep learning frameworks from a viewpoint of double backpropaga...
Comparison of deep learning frameworks from a viewpoint of double backpropaga...Comparison of deep learning frameworks from a viewpoint of double backpropaga...
Comparison of deep learning frameworks from a viewpoint of double backpropaga...
 
深層学習フレームワーク概要とChainerの事例紹介
深層学習フレームワーク概要とChainerの事例紹介深層学習フレームワーク概要とChainerの事例紹介
深層学習フレームワーク概要とChainerの事例紹介
 
20170422 数学カフェ Part2
20170422 数学カフェ Part220170422 数学カフェ Part2
20170422 数学カフェ Part2
 
20170422 数学カフェ Part1
20170422 数学カフェ Part120170422 数学カフェ Part1
20170422 数学カフェ Part1
 
情報幾何学の基礎、第7章発表ノート
情報幾何学の基礎、第7章発表ノート情報幾何学の基礎、第7章発表ノート
情報幾何学の基礎、第7章発表ノート
 
GTC Japan 2016 Chainer feature introduction
GTC Japan 2016 Chainer feature introductionGTC Japan 2016 Chainer feature introduction
GTC Japan 2016 Chainer feature introduction
 
On the benchmark of Chainer
On the benchmark of ChainerOn the benchmark of Chainer
On the benchmark of Chainer
 
Tokyo Webmining Talk1
Tokyo Webmining Talk1Tokyo Webmining Talk1
Tokyo Webmining Talk1
 
VAE-type Deep Generative Models
VAE-type Deep Generative ModelsVAE-type Deep Generative Models
VAE-type Deep Generative Models
 
Common Design of Deep Learning Frameworks
Common Design of Deep Learning FrameworksCommon Design of Deep Learning Frameworks
Common Design of Deep Learning Frameworks
 
Introduction to Chainer and CuPy
Introduction to Chainer and CuPyIntroduction to Chainer and CuPy
Introduction to Chainer and CuPy
 
Stochastic Gradient MCMC
Stochastic Gradient MCMCStochastic Gradient MCMC
Stochastic Gradient MCMC
 
Chainer Contribution Guide
Chainer Contribution GuideChainer Contribution Guide
Chainer Contribution Guide
 
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用 2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
 
Introduction to Chainer (LL Ring Recursive)
Introduction to Chainer (LL Ring Recursive)Introduction to Chainer (LL Ring Recursive)
Introduction to Chainer (LL Ring Recursive)
 
日本神経回路学会セミナー「DeepLearningを使ってみよう!」資料
日本神経回路学会セミナー「DeepLearningを使ってみよう!」資料日本神経回路学会セミナー「DeepLearningを使ってみよう!」資料
日本神経回路学会セミナー「DeepLearningを使ってみよう!」資料
 
提供AMIについて
提供AMIについて提供AMIについて
提供AMIについて
 
Chainerインストール
ChainerインストールChainerインストール
Chainerインストール
 
Caffeインストール
CaffeインストールCaffeインストール
Caffeインストール
 

Último

Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostZilliz
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 

Último (20)

Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 

Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017

  • 1. Overview of Machine Learning for Molecules and Materials Workshop @ NIPS 2017 NIPS2017 @PFN Jan. 21st 2018 Preferred Networks, Inc. Kenta Oono oono@preferred.jp
  • 2. Kenta Oono (@delta2323_) • Preferred Networks (PFN), Engineer • MSc. in mathematics • 2014.10 - Present: PFN • Role – Biology project – Chainer developer – Chainer Chemistry developer
  • 3. Workshop overview • 15 invited talks, 22 posters, 3 sponsors • Session titles – Introduction to Machine Learning and Chemistry – Machine Learning Applications in Chemistry – Kernel Learning with Structured Data – Deep Learning Approaches • Areas of interest – ML + (Quantum) Chemistry / ML + Quantum Physics / Material Informatics – DL : Vinyals (DeepMind), Duvenaud (Google), Smola (Amazon)
  • 4. Why materials and molecules? • Material informatics – Material genome initiative – MI2I project (NIMS) • Drug discovery – Big pharmas’ investment – IPAB drug discovery contest https://medium.com/the-ai-lab/artificial-intelligence-in-drug-discovery-is- overhyped-examples-from-astrazeneca-harvard-315d69a7f863
  • 5. Chemical prediction - Two approaches • Quantum simulation – Theory-based approach – e.g. DFT (Density Functional Theory) J Precision is guaranteed L High calculation cost • Machine learning – Data-based approach – e.g. Graph convolution J Low cost, high speed calculation L Hard to guarantee precision “Neural message passing for quantum chemistry”Justin et al
  • 6. Hardness of learning with molecules • How to represent molecules? – Discrete and structured nature of molecules – 2D and 3D information • Vast search space (~10**60)
  • 7. Topics • Molecule generation with VAE • Graph convolution
  • 10. SMILES A format of encoding molecules in text. Simple solution: Treat a molecule as a sequential data and apply NLP techniques. OC[C@@H](O1)[C@@H](O)[C@H] (O)[C@@H](O)[C@@H](O)1
  • 11. Variational AutoEncoder (VAE) [Kingma+13][Rezende+14] Kingma, D. P., & Welling, M. (2013). Auto- encoding variational bayes. arXiv preprint arXiv:1312.6114. Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082. • Variational inference • Use NN as an inference model. • Train in end-to-end manner with backpropagation. • Extension to RNN encoder/decoder [Fabius+15] https://www.slideshare.net/KentaOono/vaetype- deep-generative-models z x z x approximate Inference model qφ(z | x) Generative model pθ (z | x)
  • 12. Molecule generation with VAE (CVAE) [Gómez-Bombarelli+16] • Encode and decode molecules represented as SMILE with VAE. • Latent representation can be used for semi- supervised learning. • We can use learned models to find molecule with desired property by optimizing representation in latent space and decode it. L generated molecules are not guaranteed to be valid syntactically. Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., Sheberla, D., ... & Aspuru- Guzik, A. (2016). Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Science.
  • 13. Grammar VAE (GVAE) [Kusner+17] Kusner, M. J., Paige, B., & Hernández-Lobato, J. M. (2017). Grammar Variational Autoencoder. arXiv preprint arXiv:1703.01925. • Generate sequence of production rules of syntax of SMILES • Generated molecules are guaranteed to be valid syntactically. Encode Decode • Represent SMILES syntax as CFG • Convert a molecule to a parse tree to get a sequence of production rules. • Feed the sequence to RNN-VAE. L generated molecules are not guaranteed to be valid semantically.
  • 14. Syntax-Directed VAE (SDVAE) Best paper award • Use attribute grammar to guarantee that generated molecules are both syntactically and semantically valid. • Generate attributes stochastically (stochastic lazy attributes) for on-the- fly semantic check. ← Simplified schematic view (Note: Bottom up semantic check for explanation) http://www.quantum- machine.org/workshops/nips2017/assets/pdf/sd vae_workshop_camera_ready.pdf https://openreview.net/forum?id=SyqShMZRb
  • 15. Discussion • Is SMILES appropriate as an input representation? – Input representation is not unique (e.g. CC#C and C#CC represent same molecule). – Molecule representation is not guaranteed to be invariant to relabeling (i.e. permutation of indexes) of molecules. – SMILES is not natural language. Can we justify to apply NLP techniques? • Synthesizability is not considered.
  • 16. Related papers • Extension of VAE – Semi-supervised Continuous Representation of Molecules – Learning Hard Quantum Distributions With Variational Autoencoders • Seq2seq models – “Found in translation”: Predicting Outcomes of Complex Organic Chemistry Reactions Using Neural Sequence-to-sequence Models • Molecule generation – Learning a Generative Model for Validity in Complex Discrete Structure – ChemTS: de novo molecular generation with MCTS and RNN (for rollout)
  • 18. Extended Connectivity Fingerprint (ECFP) Convert molecule into fixed length bit representation J Pros • Calculation is fast • Show presence of particular substructures L Cons • Bit collision – Two (or more) different substructure features could be represented by the same bit position • Task-independent featurizer https://chembioinfo.com/2011/10/30/revisiting- molecular-hashed-fingerprints/ https://docs.chemaxon.com/display/docs/Extended +Connectivity+Fingerprint+ECFP
  • 19. How graph convolution works Graph convolution Convolution kernel depends on Graph structure Image class label Chemical property CNN on image
  • 20. Unified view of graph convolution Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for quantum chemistry. arXiv preprint arXiv:1704.01212. Update Readout v w hw evw hv mv mv mv mv hv y Many message-passing algorithms (NFP, GGNN, Weave) are formulated as the iterative application of Update function and Readout function [Gilmer et al. 17]. Aggregates neighborhood information and updates node representations. Aggregates all node representations and updates the final output.
  • 21. Neural Fingerprint (NFP) [Duvenaud+15] Atom feature embedding Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A.,&Adams, R. P. (2015). Convolutional networks on graphs for learning molecular fingerprints. In Advances in neural information processing systems (pp. 2224-2232). HCNOS
  • 22. Neural Fingerprint (NFP) Update hnew 3= σ ( W2(h3+h2+h4) ) hnew 7= σ ( W3(h7+h6+h8+h9) ) Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A.,&Adams, R. P. (2015). Convolutional networks on graphs for learning molecular fingerprints. In Advances in neural information processing systems (pp. 2224-2232).
  • 23. Neural Fingerprint (NFP) Readout h7 h8 R = ∑i softmax (Whi) h6 h1 h2 h3 h4 h5 h9 h10
  • 25. Comparison between graph convolution networks NFP GGNN Weave SchNet How to extract atom features Man-made or Embed Man-made or Embed Man-made or Embed Man-made or Embed Graph convolution strategy Adjacent atoms only Adjacent atoms only All atom-atom pairs All atom-atom pairs How to represent connection information Degree Bond type Man-made pair features (bond type,distance etc.) Distance
  • 26. End-to-end Learning of Graph Neural Networks for Molecular Representation [Tsubaki+17] 1. Embed r-radius subgraphs 2. Update node and vertex representations 3. Use LSTM to capture long-term dependency in vertices and edges 4. Readout the final output with self-attention mechanism Best paper award https://www.dropbox.com/s/ujzuj2kd2nyz348/tsubaki_nips2017.pdf
  • 27. Extension to semi-supervised learning [Hai+17] Compute representations of subgraphs inductively with neural message passing (→) Optimize the representation in unsupervised manner in the same way as Paragraph vector (↓) Nguyen, H., Maeda, S. I.,&Oono, K. (2017). Semi-supervised learning of hierarchical representations of molecules using neural message passing.arXiv preprint arXiv:1711.10168. Workshop paper
  • 28. Chainer Chemistry (http://chainer-chemistry.readthedocs.io/) Chainer extension library for Biology and Chemistry FileParser (SDF, CSV) Loader (QM 9, Tox 21) Graph convolution NN (NFP, GGNN, SchNet, Weave) Preprocessing Example Multitask learning with QM9 / Tox21 Model Layer Dataset Pretrained Model Feature extractor (TBD) GraphLinear, EmbedAtomID Basic information Release:12/14/2017, Version: v0.1.0, License: MIT, Language: Python
  • 29. Discussion • Is message passing neural network general enough to formulate many graph convolution algorithms? • How can we incorporate 3D information to graph convolution algorithms (e.g. Chirality).
  • 30. Other topics (DNN models) • CNN models – ChemNet: A Transferable and Generalizable Deep Neural Network for Small-molecule Property Prediction – Ligand Pose Optimization With Atomic Grid-based Convolutional Neural Networks • Other DNN models – Deep Learning for Prediction of Synergistic Effects of Anti-cancer Drugs – Deep Learning Yields Virtual Assays – Neural Network for Learning Universal Atomic Forces
  • 31. Other topics • Chemical synthesis – Automatically Extracting Action Graphs From Materials Science Synthesis Procedures – Marwin Segler’s talk: Planning Chemical Syntheses with Neural Networks and Monte Carlo Tree Search • Bayesian optimization – Bayesian Protein Optimization – Constrained Bayesian Optimization for Automatic Chemical Design Segler, M. H., Preuss, M.,&Waller, M. P. (2017). Learning to Plan Chemical Syntheses. arXiv preprint arXiv:1708.04202.
  • 32. Summary • Data-driven approach for understanding molecules are being paid attention in material informatics, quantum chemistry, and quantum physics fields. • Recent advances of : – Molecule generation with VAE – Learning graph-structured data with graph convolution algorithms.
  • 34. Chainer Chemistry (http://chainer-chemistry.readthedocs.io/) Chainer extension library for Biology and Chemistry Basic information release:12/14/2017, version: v0.1.0, license: MIT, language: Python Features • State-of-the-art deep learning neural network models (especially graph convolutions) for chemical molecules (NFP, GGNN, Weave, SchNet etc.) • Preprocessors of molecules tailored for these models • Parsers for several standard file formats (CSV, SDF etc.) • Loaders for several well-known datasets (QM9, Tox21 etc.)
  • 35. Example: HOMO prediction with QM9 dataset # Dataset preprocessing (for NFP Network) preprocessor = preprocess_method_dict['nfp']() dataset = D.get_qm9(preprocessor, labels='homo’) # Cache dataset for second use NumpyTupleDataset.save('input/nfp_homo/data.npz', dataset) train, val = split_dataset_random(dataset, first_size=10000) # Build model and use as an ordinary Chain model = GraphConvPredictor(NFP(16, 16, 4), MLP(16, 1))