Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.

Periodic Table E Config

828 visualizaciones

Publicado el

  • Inicia sesión para ver los comentarios

  • Sé el primero en recomendar esto

Periodic Table E Config

  1. 1. ORGANIZATION OF THE PERIODIC TABLE November 2 nd , 3 rd & 4th, 2009
  2. 2. How is the periodic table arranged? <ul><li>Periodic table is arranged by increasing atomic number </li></ul><ul><ul><li>How did they decide when to add a new row? </li></ul></ul><ul><li>A new row is needed so that elements are arranged with repeating properties in each column </li></ul><ul><ul><li>The properties of the elements repeat periodically </li></ul></ul><ul><ul><ul><li>Hence… the periodic table! </li></ul></ul></ul><ul><li>There are many different ways to organize the elements… </li></ul>
  3. 3. Circular
  4. 4. Long Form
  5. 5. Spiral
  6. 6. Pyramid
  7. 7. Layers
  8. 8. Which one do you like the best?
  9. 9. Why so many versions? <ul><li>Everybody sees their own pattern in the elements </li></ul><ul><li>What patterns did we see? </li></ul><ul><ul><li>Shells </li></ul></ul><ul><ul><li>Outer Electrons </li></ul></ul>
  10. 10. Groups and Families <ul><li>The columns in the periodic table are called groups, or families. </li></ul><ul><li>Each group has the same number of outer shell electrons </li></ul>Group 1: Alkali Metals Group 2: Alkaline Earth Metals Group 7: Halogens Group 8: Noble Gases
  11. 11. Valence Electrons <ul><li>All elements in a group have the same number of outer shell, or valence electrons </li></ul><ul><li>Valence electrons determine how an element will behave and what it bonds with </li></ul>How many valence electrons does each group have?
  12. 12. Typical Charge (Ion Formed) <ul><li>You should remember that 8 is great! </li></ul><ul><ul><li>Elements will either gain or lose electrons to try to have 8 </li></ul></ul><ul><ul><ul><li>Elements with 3 or less electrons will LOSE electrons </li></ul></ul></ul><ul><ul><ul><ul><li>Becoming _____________ </li></ul></ul></ul></ul><ul><ul><ul><li>Elements with 4 or more will GAIN electrons </li></ul></ul></ul><ul><ul><ul><ul><li>Becoming _____________ </li></ul></ul></ul></ul><ul><li>For Hydrogen and Helium, 2 is good too! </li></ul><ul><ul><li>They can’t possibly hold 8 electrons, so they are full at 2 </li></ul></ul>
  13. 13. Practice <ul><li>Label: </li></ul><ul><ul><li>Group name or number </li></ul></ul><ul><ul><li># of valence electrons </li></ul></ul><ul><ul><li>Typical Charge </li></ul></ul>
  14. 14. Where are the electrons? -The Bohr Atom <ul><li>Problems with Bohr Model </li></ul><ul><ul><li>Only worked for Hydrogen </li></ul></ul><ul><ul><li>Couldn’t explain where the electrons were in atoms that had more than one electron </li></ul></ul><ul><li>What Bohr got right </li></ul><ul><ul><li>Energy Levels </li></ul></ul>
  15. 15. The difference between continuous and quantized energy levels How do we think energy levels work?
  16. 16. Quantum Mechanical Model <ul><li>Electrons do not follow definite paths like the planets </li></ul><ul><li>Electrons have a probability of being found in a cloud of negative charge around the nucleus. These clouds have specific shapes. </li></ul><ul><li>There are areas around the nucleus that correspond with certain energy levels (like the Bohr Model) </li></ul><ul><li>The areas around the nucleus where the electron probably is (energy levels) are called orbitals </li></ul>
  17. 17. Orbitals <ul><li>Do not have sharp edges </li></ul><ul><li>We can never map exactly where an electron is at any given moment </li></ul><ul><ul><li>All we know is the probability of an electron being in a certain place </li></ul></ul><ul><ul><ul><li>You know I’m probably in this room all day, you just don’t know if I’m at my desk or in the storeroom or walking around </li></ul></ul></ul>
  18. 18. The s Orbital
  19. 19. The p orbitals (three of them) The d orbitals (five of them)
  20. 20. Relative size of the 1s, 2s, 3s orbitals
  21. 21. Electron Filling <ul><li>Electrons like to be close to the nucleus because that requires the least amount of energy </li></ul><ul><li>Electrons will fill the orbitals in this order: </li></ul><ul><li>1s orbital, then 2s, 2p, 3s, 3p, 4s, 3d, and so on. </li></ul><ul><ul><li>This order can be seen just by looking at the periodic table </li></ul></ul><ul><ul><li>Larger numbers mean larger orbitals, which means the electrons is farther away from the nucleus </li></ul></ul><ul><ul><li>The farther away an electron is, the more energy it has </li></ul></ul><ul><ul><ul><li>Think about where the office of a CEO is… </li></ul></ul></ul>
  22. 22. <ul><li>Color in or outline the sections on your blank periodic table to match this diagram </li></ul>
  23. 23. Electron Configuration <ul><li>When we write out the location of all electrons in an atom, we are writing its electron configuration </li></ul><ul><ul><li>Think of it like a map </li></ul></ul><ul><li>Fill in the missing information on your map </li></ul><ul><ul><li>Now locate the element with this electron configuration </li></ul></ul><ul><ul><ul><li>1s 1 </li></ul></ul></ul><ul><ul><ul><li>1s 2 2s 1 </li></ul></ul></ul><ul><ul><ul><li>1s 2 2s 2 2p 4 </li></ul></ul></ul><ul><ul><li>Write the electron configuration for Boron </li></ul></ul>