SlideShare una empresa de Scribd logo
1 de 23
Descargar para leer sin conexión
ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) 
ΠΕΡΙΕΧΟΜΕΝΑ 
•Μέτρα θέσης και διασποράς (Εισαγωγή) 
•Μέση τιμή 
•Διάμεσος 
•Σταθμικός μέσος 
•Επικρατούσα τιμή 
•Εύρος 
•Διακύμανση –Τυπική απόκλιση 
•Συντελεστής μεταβολής 
Κοζαλάκης Ευστάθιος ΠΕ03
ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ 
Εκτός από τους στατιστικούς πίνακες και τα διαγράμματα υπάρχουν και αριθμητικά μέτρα με τα οποία μπορούμε να περιγράψουμε με συντομία μια κατανομή συχνοτήτων. Η γνώση των μέτρων αυτών διευκολύνει και την παραπέρα στατιστική επεξεργασία των δεδομένων. Έστω, για παράδειγμα, ένας καθηγητής ο οποίος, για να συγκρίνει δύο διαφορετικά τμήματα Α και Β της ίδιας τάξης ως προς την επίδοσή τους σε ένα μάθημα, πήρε τυχαία 10 μαθητές από κάθε τμήμα. Η βαθμολογία τους στο μάθημα αυτό ήταν: 
Τμήμα Α: 13 13 14 15 15 15 15 16 16 18 Τμήμα Β: 10 13 14 14 15 15 15 16 18 20. 
Τα διαγράμματα σχετικών συχνοτήτων δίνονται στα σχήματα 11(α), (β).
Τα πιο συνηθισμένα μέτρα που χρησιμοποιούνται για την περιγραφή της θέσης ενός συνόλου δεδομένων πάνω στον οριζόντιο άξονα ox, εκφράζοντας την “κατά μέσο όρο” απόστασή τους από την αρχή των αξόνων, είναι ο αριθμητικός μέσος ή μέση τιμή (arithmetic mean or average), η διάμεσος (median) και η κορυφή ή επικρατούσα τιμή (mode). 
Μέτρα Θέσης
ΜΈΣΗ ΤΙΜΉ
ΔΑΜΕΣΟΣ (Δ) 
Οι χρόνοι (σε λεπτά) που χρειάστηκαν 9 μαθητές, για να λύσουν ένα πρόβλημα είναι: 3, 5, 5, 36, 6, 7, 4, 7, 8 με μέση τιμή Παρατηρούμε όμως ότι οι οκτώ από τις εννέα παρατηρήσεις είναι μικρότερες του 9 και μία (ακραία τιμή), η οποία επηρεάζει και τη μέση τιμή είναι, αρκετά μεγαλύτερη του 9. Αυτό σημαίνει ότι η μέση τιμή δεν ενδείκνυται ως μέτρο θέσης (“κέντρο”) των παρατηρήσεων αυτών. Αντίθετα, ένα άλλο μέτρο θέσης που δεν επηρεάζεται από ακραίες παρατηρήσεις είναι η διάμεσος (median), η οποία ορίζεται ως εξής:
Διάμεσος (δ) ενός δείγματος ν παρατηρήσεων οι οποίες έχουν διαταχθεί σε αύξουσα σειρά ορίζεται ως η μεσαία παρατήρηση, όταν το ν είναι περιττός αριθμός, ή ο μέσος όρος (ημιάθροισμα) των δύο μεσαίων παρατηρήσεων όταν το ν είναι άρτιος αριθμός.
ΠΑΡΑΔΕΙΓΜΑ 1 
Για παράδειγμα, για να βρούμε τη διάμεσο των δεδομένων: α) 3, 4, 0, 6, 5, 8, 1, 1, 6, 1, 2, 8, 9 β) 3, 4, 0, 6, 5, 8, 1, 1, 6, 1, 2, 8, 9, 9 εργαζόμαστε ως εξής:α) Έχουμε ν = 13 παρατηρήσεις, οι οποίες σε αύξουσα σειρά είναι:0 1 1 1 2 3 4 5 6 6 8 8 9.Άρα, η διάμεσος είναι η μεσαία παρατήρηση (έβδομη στη σειρά), δ = 4.
ΠΑΡΑΔΕΙΓΜΑ 2 
β) Έχουμε ν = 14 παρατηρήσεις οι οποίες σε αύξουσα σειρά είναι:0 1 1 1 2 3 4 5 6 6 8 8 9 9. 
Άρα, η διάμεσος είναι το ημιάθροισμα των δύο μεσαίων παρατηρήσεων (της έβδομης και όγδοης στη σειρά), δηλαδή
ΔΙΑΜΕΣΟΣ ΣΕ ΟΜΑΔΟΠΟΙΗΜΈΝΑ ΔΕΔΟΜΈΝΑ 
Θεωρούμε τα δεδομένα του ύψους των μαθητών στον πίνακα 9 και το αντίστοιχο ιστόγραμμα αθροιστικών σχετικών συχνοτήτων με την πολυγωνική γραμμή, σχήμα 13. Η διάμεσος, όπως ορίστηκε, αντιστοιχεί στην τιμήx = δ της μεταβλητής Χ (στον οριζόντιο άξονα), έτσι ώστε το 50% των παρατηρήσεων να είναι μικρότερες ή ίσες του δ. Δηλαδή, η διάμεσος θα έχει αθροιστική σχετική συχνότητα Fi = 50% . Εφόσον στον κάθετο άξονα έχουμετις αθροιστικές σχετικές συχνότητες, από το σημείο Α (50% των παρατηρήσεων) φέρουμε την και στη συνέχεια τη Τότε, στο σημείο Γ αντιστοιχεί η διάμεσος δ των παρατηρήσεων. Δηλαδή, δ ≈ 173.
ΑΣΚΗΣΕΙΣ 
1.Έξι διαδοχικοί άρτιοι αριθμοί έχουν μέση τιμή 15. Να βρείτε τους αριθμούς και τη διάμεσό τους. 
2.Έχουμε ένα δείγμα ν = 10 παρατηρήσεων, όπου κάθε παρατήρηση μπορεί να είναι 1, 2 ή 3. Είναι δυνατό η μέση τιμή να είναι α) 1 β) 4 γ) 1,8;
ΣΤΑΘΜΙΚΟΣ ΜΕΣΟΣ 
Στις περιπτώσεις που δίνεται διαφορετική βαρύτητα (έμφαση) στις τιμές x1, x2 ,..., xν ενός συνόλου δεδομένων, τότε αντί του αριθμητικού μέσου χρησιμοποιούμε τον σταθμισμένο αριθμητικό μέσο ή σταθμικό μέσο(weighted mean).
ΠΑΡΑΔΕΙΓΜΑ 
Mε το σύστημα, για την εισαγωγή ενός μαθητή στην τριτοβάθμια εκπαίδευση συνυπολογίζονται π.χ ο βαθμός x1 του απολυτηρίου του Ενιαίου Λυκείου με συντελεστή (βάρος) w1 = 7 ,5, ο βαθμός x2 στο τεστ δεξιοτήτων με συντελεστή w2 = 1, ο βαθμός x3 στο 1ο βασικό μάθημα με συντελεστή w3 = 1 και ο βαθμός x4 στο 2ο βασικό μάθημα με συντελεστή w4 = 0,5. Εάν ένας μαθητής πάρει τους βαθμούς x1 = 16,5, x2 = 18, x3 = 17 και x4 = 16,6, τότε ο σταθμικός μέσος της επίδοσης του θα είναι:
ΕΠΙΚΡΑΤΟΥΣΑ ΤΙΜΗ 
Στην περίπτωση μη ομαδοποιημένων δεδομένων επικρατούσα τιμή ή κορυφή (mode) M0 ορίζεται ως η παρατήρηση με τη μεγαλύτερη συχνότητα. Είναι προφανές ότι η επικρατούσα τιμή μπορεί να οριστεί και στην περίπτωση ποιοτικών δεδομένων, ενώ τα άλλα μέτρα που είδαμε ορίζονται μόνο για ποσοτικά δεδομένα. Για παράδειγμα: α) Η επικρατούσα τιμή (επικρατούσα απασχόληση) για την απασχόληση των μαθητών του πίνακα 5 στον ελεύθερο χρόνο τους είναι M0 "Μουσική". β) Η επικρατούσα τιμή του αριθμού των αδελφών των μαθητών στον πίνακα 6 είναι M0 = 1, δηλαδή οι περισσότερες οικογένειες (55%) έχουν δύο παιδιά.
ΠΑΡΑΔΕΙΓΜΑ 
Για να βρούμε την επικρατούσα τιμή των παρατηρήσεων 0 1 1 2 2 2 3 4 4 4 5 5 7 8, κατασκευάζουμε πίνακα συχνοτήτων. Οι τιμές 2 και 4 είναι και οι δύο επικρατούσες τιμές, γιατί καθεμιά έχει συχνότητα 3. Βλέπουμε εδώ ότι η επικρατούσα τιμή μπορεί να μην είναι μοναδική. Όταν έχουμε δύο κορυφές, η αντίστοιχη κατανομή συχνοτήτων λέγεται δικόρυφη(bimodal), ενώ όταν έχουμε πολλές κορυφές λέγεται πολυκόρυφη (multimodal). δ) Όταν όλες οι παρατηρήσεις είναι διαφορετικές, τότε λέμε ότι δεν υπάρχει επικρατούσα τιμή. Έτσι, για τις παρατηρήσεις 0, 1, 2, 7, 8, 9 δεν έχουμε επικρατούσα τιμή.
ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ 
Παράλληλα λοιπόν με τα μέτρα θέσης κρίνεται απαραίτητη και η εξέταση κάποιων μέτρων διασποράς ή μεταβλητότητας, δηλαδή μέτρων που εκφράζουν τις αποκλίσεις των τιμών μιας μεταβλητής γύρω από τα μέτρα κεντρικής τάσης. Τέτοια μέτρα λέγονται μέτρα διασποράς (measures of variation, dispersion measures). Τα σπουδαιότερα μέτρα διασποράς είναι το εύρος, η ενδοτεταρτημοριακή απόκλιση, η διακύμανση και η τυπική απόκλιση.
ΕΥΡΟΣ (R) 
Εύρος R = Μεγαλύτερη παρατήρηση-Μικρότερη παρατήρηση
ΠΑΡΑΔΕΙΓΜΑ 
Για τη βαθμολογία του τμήματος Α το εύρος είναι RA = 18 - 13 = 5, ενώ για το τμήμα Β, RB = 20 - 10 = 10, τιμές που επιβεβαιώνουν ότι πράγματι στο τμήμα Β έχουμε μεγαλύτερη διασπορά βαθμολογίαςπαρά στο τμήμα Α. Όταν έχουμε ομαδοποιημένα δεδομένα, το εύρος δίνεται από τη διαφορά του κατώτερου ορίου της πρώτης κλάσης από το ανώτερο όριο της τελευταίας κλάσης. Το εύρος των υψών των μαθητών του δείγματος στον πίνακα 9 είναι R = 192 - 156 = 36. Προφανώς, το εύρος σε ομαδοποιημένα δεδομένα μπορεί να διαφέρει ελαφρώς από τα αντίστοιχα δεδομένα πριν αυτά ομαδοποιηθούν. Για παράδειγμα, το εύρος των υψών στον πίνακα 8, πριν αυτά ομαδοποιηθούν, βρήκαμε ότι είναι R =191 - 156 = 35. Το εύρος είναι ένα αρκετά απλό μέτρο, που υπολογίζεται εύκολα δε θεωρείται όμως αξιόπιστο μέτρο διασποράς, γιατί βασίζεται μόνο στις δυο ακραίες παρατηρήσεις.
Ένας άλλος τρόπος για να υπολογίσουμε τη διασπορά των παρατηρήσεων 
t1,t2,...,tv μιας μεταβλητής Χ θα ήταν να αφαιρέσουμε τη μέση τιμή 
από κάθε παρατήρηση και να βρούμε τον αριθμητικό 
μέσο των διαφορών αυτών, δηλαδή τον αριθμό: 
ΔΙΑΚΥΜΑΝΣΗ
Τυπική Απόκλιση (s) 
Η διακύμανση είναι μια αξιόπιστη παράμετρος διασποράς, αλλά έχει ένα μειονέκτημα. Δεν εκφράζεται με τις μονάδες με τις οποίες εκφράζονται οι παρατηρήσεις. Για παράδειγμα, αν οι παρατηρήσεις εκφράζονται σε cm, η διακύμανση εκφράζεται σε cm2. Αν όμως πάρουμε τη θετική τετραγωνική ρίζα της διακύμανσης, θα έχουμε ένα μέτρο διασποράς που θα εκφράζεται με την ίδια μονάδα μέτρησης του χαρακτηριστικού, όπως ακριβώς είναι και όλα τα άλλα μέτρα θέσης, που εξετάσαμε έως τώρα. Η ποσότητα αυτή λέγεται τυπική απόκλιση (standard deviation), συμβολίζεται με s και δίνεται από τη σχέση:
Συντελεστής Mεταβολής (CV) 
Γενικά δεχόμαστε ότι ένα δείγμα τιμών μιας μεταβλητής θα είναι ομοιογενές, εάν ο συντελεστής μεταβολής δεν ξεπερνά το 10%.
ΑΣΚΗΣΗ
Διάλειμμα

Más contenido relacionado

La actualidad más candente

Κοινοτητες πρακτικης και μαθησης
Κοινοτητες πρακτικης και μαθησηςΚοινοτητες πρακτικης και μαθησης
Κοινοτητες πρακτικης και μαθησης
Xristina Fotopoulou
 
Θέματα Φυσικής γ' Γυμνασιου
Θέματα Φυσικής γ' ΓυμνασιουΘέματα Φυσικής γ' Γυμνασιου
Θέματα Φυσικής γ' Γυμνασιου
Christos Gotzaridis
 
απόδειξη ταλάντωσης σε κατακορυφο επίπεδο
απόδειξη ταλάντωσης σε κατακορυφο επίπεδοαπόδειξη ταλάντωσης σε κατακορυφο επίπεδο
απόδειξη ταλάντωσης σε κατακορυφο επίπεδο
Panagiotis Liagkridonis
 
Ρήματα για στοχοθεσία
Ρήματα για στοχοθεσίαΡήματα για στοχοθεσία
Ρήματα για στοχοθεσία
Eva Krokidi
 
Διδακτικοί στόχοι & διδασκαλία
Διδακτικοί στόχοι & διδασκαλίαΔιδακτικοί στόχοι & διδασκαλία
Διδακτικοί στόχοι & διδασκαλία
Nikos Papastamatiou
 
Διαγώνισμα Μαθηματικά Κατεύθυνσης Β Λυκείου (Ευθεία - Κύκλος)
Διαγώνισμα Μαθηματικά Κατεύθυνσης Β Λυκείου (Ευθεία - Κύκλος)Διαγώνισμα Μαθηματικά Κατεύθυνσης Β Λυκείου (Ευθεία - Κύκλος)
Διαγώνισμα Μαθηματικά Κατεύθυνσης Β Λυκείου (Ευθεία - Κύκλος)
Michael Magkos
 

La actualidad más candente (20)

Κοινοτητες πρακτικης και μαθησης
Κοινοτητες πρακτικης και μαθησηςΚοινοτητες πρακτικης και μαθησης
Κοινοτητες πρακτικης και μαθησης
 
Ανισώσεις
ΑνισώσειςΑνισώσεις
Ανισώσεις
 
Σημειώσεις μαθηματικών θετικής Κατεύθυνσης Β΄ Λυκείου
Σημειώσεις μαθηματικών θετικής Κατεύθυνσης Β΄ ΛυκείουΣημειώσεις μαθηματικών θετικής Κατεύθυνσης Β΄ Λυκείου
Σημειώσεις μαθηματικών θετικής Κατεύθυνσης Β΄ Λυκείου
 
Διαφοροποιημένη διδασκαλία – Τεχνικές - Προτάσεις
Διαφοροποιημένη διδασκαλία – Τεχνικές - ΠροτάσειςΔιαφοροποιημένη διδασκαλία – Τεχνικές - Προτάσεις
Διαφοροποιημένη διδασκαλία – Τεχνικές - Προτάσεις
 
υπερβολη (θεωρια)
υπερβολη (θεωρια)υπερβολη (θεωρια)
υπερβολη (θεωρια)
 
Θέματα Φυσικής γ' Γυμνασιου
Θέματα Φυσικής γ' ΓυμνασιουΘέματα Φυσικής γ' Γυμνασιου
Θέματα Φυσικής γ' Γυμνασιου
 
απόδειξη ταλάντωσης σε κατακορυφο επίπεδο
απόδειξη ταλάντωσης σε κατακορυφο επίπεδοαπόδειξη ταλάντωσης σε κατακορυφο επίπεδο
απόδειξη ταλάντωσης σε κατακορυφο επίπεδο
 
Ρήματα για στοχοθεσία
Ρήματα για στοχοθεσίαΡήματα για στοχοθεσία
Ρήματα για στοχοθεσία
 
Πέντε ασκήσεις χαρακτηριστικές στο σχήμα Horner
Πέντε ασκήσεις χαρακτηριστικές στο σχήμα HornerΠέντε ασκήσεις χαρακτηριστικές στο σχήμα Horner
Πέντε ασκήσεις χαρακτηριστικές στο σχήμα Horner
 
Διδακτικοί στόχοι & διδασκαλία
Διδακτικοί στόχοι & διδασκαλίαΔιδακτικοί στόχοι & διδασκαλία
Διδακτικοί στόχοι & διδασκαλία
 
Μη γραμμικά συστήματα - Άλγεβρα Β Λυκείου
Μη γραμμικά συστήματα - Άλγεβρα Β ΛυκείουΜη γραμμικά συστήματα - Άλγεβρα Β Λυκείου
Μη γραμμικά συστήματα - Άλγεβρα Β Λυκείου
 
σενάριο_ηλεκτρομαγνητισμός
σενάριο_ηλεκτρομαγνητισμόςσενάριο_ηλεκτρομαγνητισμός
σενάριο_ηλεκτρομαγνητισμός
 
Διαγωνίσματα Στατιστικής Γ' Λυκείου ΕΠΑΛ
Διαγωνίσματα Στατιστικής Γ' Λυκείου ΕΠΑΛΔιαγωνίσματα Στατιστικής Γ' Λυκείου ΕΠΑΛ
Διαγωνίσματα Στατιστικής Γ' Λυκείου ΕΠΑΛ
 
βιβλίο β γυμνασίου 2015 2016 - askisiologio.gr
βιβλίο β γυμνασίου 2015 2016 - askisiologio.grβιβλίο β γυμνασίου 2015 2016 - askisiologio.gr
βιβλίο β γυμνασίου 2015 2016 - askisiologio.gr
 
Διαγώνισμα Μαθηματικά Κατεύθυνσης Β Λυκείου (Ευθεία - Κύκλος)
Διαγώνισμα Μαθηματικά Κατεύθυνσης Β Λυκείου (Ευθεία - Κύκλος)Διαγώνισμα Μαθηματικά Κατεύθυνσης Β Λυκείου (Ευθεία - Κύκλος)
Διαγώνισμα Μαθηματικά Κατεύθυνσης Β Λυκείου (Ευθεία - Κύκλος)
 
Β Γυμνασίου διαγώνισμα β τριμήνου 2015 16 - συναρτήσεις
Β Γυμνασίου διαγώνισμα β τριμήνου 2015 16 - συναρτήσειςΒ Γυμνασίου διαγώνισμα β τριμήνου 2015 16 - συναρτήσεις
Β Γυμνασίου διαγώνισμα β τριμήνου 2015 16 - συναρτήσεις
 
Ευκλείδεια διαίρεση
Ευκλείδεια διαίρεσηΕυκλείδεια διαίρεση
Ευκλείδεια διαίρεση
 
Θεωρία Μαθηματικών Β' Γυμνασίου
Θεωρία Μαθηματικών Β' ΓυμνασίουΘεωρία Μαθηματικών Β' Γυμνασίου
Θεωρία Μαθηματικών Β' Γυμνασίου
 
Πιθανότητες και Συνδυαστική 2020-2021
Πιθανότητες και Συνδυαστική 2020-2021Πιθανότητες και Συνδυαστική 2020-2021
Πιθανότητες και Συνδυαστική 2020-2021
 
ΠΑΔ ΝΟΣΗΛΕΥΤΙΚΟ ΔΙΑΓΡΑΜΜΑ
ΠΑΔ ΝΟΣΗΛΕΥΤΙΚΟ ΔΙΑΓΡΑΜΜΑΠΑΔ ΝΟΣΗΛΕΥΤΙΚΟ ΔΙΑΓΡΑΜΜΑ
ΠΑΔ ΝΟΣΗΛΕΥΤΙΚΟ ΔΙΑΓΡΑΜΜΑ
 

Similar a στατιστική μέτρα θέσης 2

Στατιστική
ΣτατιστικήΣτατιστική
Στατιστική
Eyurt
 
ΜΑΘΗΜΑ2 ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ (14).ppt
ΜΑΘΗΜΑ2 ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ (14).pptΜΑΘΗΜΑ2 ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ (14).ppt
ΜΑΘΗΜΑ2 ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ (14).ppt
EfthimisDimakis1
 
Μέθοδοι Κοινωνικής Έρευνας methods of social search
Μέθοδοι Κοινωνικής Έρευνας methods of social searchΜέθοδοι Κοινωνικής Έρευνας methods of social search
Μέθοδοι Κοινωνικής Έρευνας methods of social search
echrysisapps
 

Similar a στατιστική μέτρα θέσης 2 (20)

Στατιστική - Διαφάνειες - Μάθημα 3ο
Στατιστική - Διαφάνειες - Μάθημα 3οΣτατιστική - Διαφάνειες - Μάθημα 3ο
Στατιστική - Διαφάνειες - Μάθημα 3ο
 
Στατιστική - Διαφάνειες - Μάθημα 4ο
Στατιστική - Διαφάνειες - Μάθημα 4οΣτατιστική - Διαφάνειες - Μάθημα 4ο
Στατιστική - Διαφάνειες - Μάθημα 4ο
 
Μαθηματικά Γενικής Παιδείας Γ Λυκείου
Μαθηματικά Γενικής Παιδείας Γ ΛυκείουΜαθηματικά Γενικής Παιδείας Γ Λυκείου
Μαθηματικά Γενικής Παιδείας Γ Λυκείου
 
Διαγωνίσματα Στατιστικής Γ' Λυκείου ΕΠΑΛ Απαντήσεις-Υποδείξεις
Διαγωνίσματα Στατιστικής Γ' Λυκείου ΕΠΑΛ Απαντήσεις-ΥποδείξειςΔιαγωνίσματα Στατιστικής Γ' Λυκείου ΕΠΑΛ Απαντήσεις-Υποδείξεις
Διαγωνίσματα Στατιστικής Γ' Λυκείου ΕΠΑΛ Απαντήσεις-Υποδείξεις
 
H prwth gnwrimia_me_thn_ennoia_ths_synarthshs
H prwth gnwrimia_me_thn_ennoia_ths_synarthshsH prwth gnwrimia_me_thn_ennoia_ths_synarthshs
H prwth gnwrimia_me_thn_ennoia_ths_synarthshs
 
Στατιστική
ΣτατιστικήΣτατιστική
Στατιστική
 
Απλά Στατιστικά Εργαλεία Η/Υ
Απλά Στατιστικά Εργαλεία Η/ΥΑπλά Στατιστικά Εργαλεία Η/Υ
Απλά Στατιστικά Εργαλεία Η/Υ
 
ΜΑΘΗΜΑ2 ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ (14).ppt
ΜΑΘΗΜΑ2 ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ (14).pptΜΑΘΗΜΑ2 ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ (14).ppt
ΜΑΘΗΜΑ2 ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ (14).ppt
 
Στατιστικές Κατανομές και Πιθανότητες. Θεωρία και παραδείγματα.
Στατιστικές Κατανομές και Πιθανότητες. Θεωρία και παραδείγματα.Στατιστικές Κατανομές και Πιθανότητες. Θεωρία και παραδείγματα.
Στατιστικές Κατανομές και Πιθανότητες. Θεωρία και παραδείγματα.
 
194441315 στατιστικη
194441315 στατιστικη194441315 στατιστικη
194441315 στατιστικη
 
Σημειώσεις Στατιστική Μαθηματικά Γενικής Παιδείας
Σημειώσεις Στατιστική Μαθηματικά Γενικής Παιδείας Σημειώσεις Στατιστική Μαθηματικά Γενικής Παιδείας
Σημειώσεις Στατιστική Μαθηματικά Γενικής Παιδείας
 
Mathimatika thetikou pros_b_meros
Mathimatika thetikou pros_b_merosMathimatika thetikou pros_b_meros
Mathimatika thetikou pros_b_meros
 
Πολλαπλή γραμμική παλινδρόμηση με χρήση excel 2003. Θεωρία και παραδείγματα.
Πολλαπλή γραμμική παλινδρόμηση με χρήση excel 2003. Θεωρία και παραδείγματα.Πολλαπλή γραμμική παλινδρόμηση με χρήση excel 2003. Θεωρία και παραδείγματα.
Πολλαπλή γραμμική παλινδρόμηση με χρήση excel 2003. Θεωρία και παραδείγματα.
 
Important Probability distributions (in Greek)
Important Probability distributions (in Greek)Important Probability distributions (in Greek)
Important Probability distributions (in Greek)
 
α γ μαθ 2015 16
α γ μαθ 2015 16α γ μαθ 2015 16
α γ μαθ 2015 16
 
104 ερωτήσεις θεωρίας
104 ερωτήσεις θεωρίας104 ερωτήσεις θεωρίας
104 ερωτήσεις θεωρίας
 
Στατιστική - Διαφάνειες - Μάθημα 1ο
Στατιστική - Διαφάνειες - Μάθημα 1οΣτατιστική - Διαφάνειες - Μάθημα 1ο
Στατιστική - Διαφάνειες - Μάθημα 1ο
 
Fysiki_a_gimnasio_ola_teliko(secure2).pdf
Fysiki_a_gimnasio_ola_teliko(secure2).pdfFysiki_a_gimnasio_ola_teliko(secure2).pdf
Fysiki_a_gimnasio_ola_teliko(secure2).pdf
 
2_Δείκτες κεντρικής θέσης.pdf
2_Δείκτες κεντρικής θέσης.pdf2_Δείκτες κεντρικής θέσης.pdf
2_Δείκτες κεντρικής θέσης.pdf
 
Μέθοδοι Κοινωνικής Έρευνας methods of social search
Μέθοδοι Κοινωνικής Έρευνας methods of social searchΜέθοδοι Κοινωνικής Έρευνας methods of social search
Μέθοδοι Κοινωνικής Έρευνας methods of social search
 

Más de Kozalakis

μαθητές στα πλαίσια του Project
μαθητές στα πλαίσια του Projectμαθητές στα πλαίσια του Project
μαθητές στα πλαίσια του Project
Kozalakis
 
φύλλο εργασίας De l hospital
φύλλο εργασίας De l hospitalφύλλο εργασίας De l hospital
φύλλο εργασίας De l hospital
Kozalakis
 
φύλλο εργασίας γεωμετρική πρόοδος
φύλλο εργασίας γεωμετρική πρόοδοςφύλλο εργασίας γεωμετρική πρόοδος
φύλλο εργασίας γεωμετρική πρόοδος
Kozalakis
 
φύλλο εργασίας αριθμητική πρόοδος
φύλλο εργασίας αριθμητική πρόοδοςφύλλο εργασίας αριθμητική πρόοδος
φύλλο εργασίας αριθμητική πρόοδος
Kozalakis
 
φύλλο εργασίας ακολουθίας
φύλλο εργασίας ακολουθίαςφύλλο εργασίας ακολουθίας
φύλλο εργασίας ακολουθίας
Kozalakis
 
φυλλο εργασιας ακρότατα 1
φυλλο εργασιας ακρότατα 1φυλλο εργασιας ακρότατα 1
φυλλο εργασιας ακρότατα 1
Kozalakis
 
φυλλο εργασιας μονοτονία συνάρτησης 1
φυλλο εργασιας μονοτονία συνάρτησης 1φυλλο εργασιας μονοτονία συνάρτησης 1
φυλλο εργασιας μονοτονία συνάρτησης 1
Kozalakis
 

Más de Kozalakis (20)

δημιουργικές εργασίες
δημιουργικές εργασίεςδημιουργικές εργασίες
δημιουργικές εργασίες
 
All you need is
All you need isAll you need is
All you need is
 
παρουσίαση1 αχ αυτή η παιδεία
παρουσίαση1 αχ αυτή η παιδείαπαρουσίαση1 αχ αυτή η παιδεία
παρουσίαση1 αχ αυτή η παιδεία
 
ο Αρχιμήδης
ο Αρχιμήδηςο Αρχιμήδης
ο Αρχιμήδης
 
προβληματα αναλογα ποσα
προβληματα αναλογα ποσαπροβληματα αναλογα ποσα
προβληματα αναλογα ποσα
 
ανάλογα ποσά γραφική παράσταση
ανάλογα ποσά γραφική παράστασηανάλογα ποσά γραφική παράσταση
ανάλογα ποσά γραφική παράσταση
 
επικεντρες εγγεγραμμενες γωνιες
επικεντρες εγγεγραμμενες γωνιεςεπικεντρες εγγεγραμμενες γωνιες
επικεντρες εγγεγραμμενες γωνιες
 
λόγος δύο αριθμών
λόγος δύο αριθμώνλόγος δύο αριθμών
λόγος δύο αριθμών
 
παράσταση σημείων στο επίπεδο
παράσταση σημείων στο επίπεδοπαράσταση σημείων στο επίπεδο
παράσταση σημείων στο επίπεδο
 
φυλλο εργασιας εξισωσεις δευτερου βαθμου
φυλλο εργασιας    εξισωσεις δευτερου βαθμουφυλλο εργασιας    εξισωσεις δευτερου βαθμου
φυλλο εργασιας εξισωσεις δευτερου βαθμου
 
μαθηματικα και λογοτεχνια
μαθηματικα και λογοτεχνιαμαθηματικα και λογοτεχνια
μαθηματικα και λογοτεχνια
 
χορεύεις μαθηματικά;
χορεύεις μαθηματικά;χορεύεις μαθηματικά;
χορεύεις μαθηματικά;
 
μαθητές στα πλαίσια του Project
μαθητές στα πλαίσια του Projectμαθητές στα πλαίσια του Project
μαθητές στα πλαίσια του Project
 
Thalis 2015 16 solutions_final
Thalis 2015 16 solutions_finalThalis 2015 16 solutions_final
Thalis 2015 16 solutions_final
 
φύλλο εργασίας De l hospital
φύλλο εργασίας De l hospitalφύλλο εργασίας De l hospital
φύλλο εργασίας De l hospital
 
φύλλο εργασίας γεωμετρική πρόοδος
φύλλο εργασίας γεωμετρική πρόοδοςφύλλο εργασίας γεωμετρική πρόοδος
φύλλο εργασίας γεωμετρική πρόοδος
 
φύλλο εργασίας αριθμητική πρόοδος
φύλλο εργασίας αριθμητική πρόοδοςφύλλο εργασίας αριθμητική πρόοδος
φύλλο εργασίας αριθμητική πρόοδος
 
φύλλο εργασίας ακολουθίας
φύλλο εργασίας ακολουθίαςφύλλο εργασίας ακολουθίας
φύλλο εργασίας ακολουθίας
 
φυλλο εργασιας ακρότατα 1
φυλλο εργασιας ακρότατα 1φυλλο εργασιας ακρότατα 1
φυλλο εργασιας ακρότατα 1
 
φυλλο εργασιας μονοτονία συνάρτησης 1
φυλλο εργασιας μονοτονία συνάρτησης 1φυλλο εργασιας μονοτονία συνάρτησης 1
φυλλο εργασιας μονοτονία συνάρτησης 1
 

Último

εργασία εφημερίδας για την διατροφή.pptx
εργασία εφημερίδας για την διατροφή.pptxεργασία εφημερίδας για την διατροφή.pptx
εργασία εφημερίδας για την διατροφή.pptx
Effie Lampropoulou
 

Último (14)

Σεβασμός .
Σεβασμός                                   .Σεβασμός                                   .
Σεβασμός .
 
Ο ΧΡΙΣΤΟΦΟΡΟΣ ΚΟΛΟΜΒΟΣ ΚΑΙ Η ΑΝΑΚΑΛΥΨΗ ΤΗΣ ΑΜΕΡΙΚΗΣ,ΕΙΡΗΝΗ ΝΤΟΥΣΚΑ-ΠΕΝΥ ΖΑΓΓΟ...
Ο ΧΡΙΣΤΟΦΟΡΟΣ ΚΟΛΟΜΒΟΣ ΚΑΙ Η ΑΝΑΚΑΛΥΨΗ ΤΗΣ ΑΜΕΡΙΚΗΣ,ΕΙΡΗΝΗ ΝΤΟΥΣΚΑ-ΠΕΝΥ ΖΑΓΓΟ...Ο ΧΡΙΣΤΟΦΟΡΟΣ ΚΟΛΟΜΒΟΣ ΚΑΙ Η ΑΝΑΚΑΛΥΨΗ ΤΗΣ ΑΜΕΡΙΚΗΣ,ΕΙΡΗΝΗ ΝΤΟΥΣΚΑ-ΠΕΝΥ ΖΑΓΓΟ...
Ο ΧΡΙΣΤΟΦΟΡΟΣ ΚΟΛΟΜΒΟΣ ΚΑΙ Η ΑΝΑΚΑΛΥΨΗ ΤΗΣ ΑΜΕΡΙΚΗΣ,ΕΙΡΗΝΗ ΝΤΟΥΣΚΑ-ΠΕΝΥ ΖΑΓΓΟ...
 
Η ΒΙΟΜΗΧΑΝΙΚΗ ΕΠΑΝΑΣΤΑΣΗ,ΜΠΟΗΣ ΧΡΗΣΤΟΣ - ΜΑΓΟΥΛΑΣ ΘΩΜΑΣ
Η ΒΙΟΜΗΧΑΝΙΚΗ ΕΠΑΝΑΣΤΑΣΗ,ΜΠΟΗΣ ΧΡΗΣΤΟΣ - ΜΑΓΟΥΛΑΣ ΘΩΜΑΣΗ ΒΙΟΜΗΧΑΝΙΚΗ ΕΠΑΝΑΣΤΑΣΗ,ΜΠΟΗΣ ΧΡΗΣΤΟΣ - ΜΑΓΟΥΛΑΣ ΘΩΜΑΣ
Η ΒΙΟΜΗΧΑΝΙΚΗ ΕΠΑΝΑΣΤΑΣΗ,ΜΠΟΗΣ ΧΡΗΣΤΟΣ - ΜΑΓΟΥΛΑΣ ΘΩΜΑΣ
 
Η ΚΩΝΣΤΑΝΤΙΝΟΥΠΟΛΗ, ΣΤΑΥΡΟΥΛΑ ΜΠΕΚΙΑΡΗ
Η ΚΩΝΣΤΑΝΤΙΝΟΥΠΟΛΗ,  ΣΤΑΥΡΟΥΛΑ  ΜΠΕΚΙΑΡΗΗ ΚΩΝΣΤΑΝΤΙΝΟΥΠΟΛΗ,  ΣΤΑΥΡΟΥΛΑ  ΜΠΕΚΙΑΡΗ
Η ΚΩΝΣΤΑΝΤΙΝΟΥΠΟΛΗ, ΣΤΑΥΡΟΥΛΑ ΜΠΕΚΙΑΡΗ
 
εργασία εφημερίδας για την διατροφή.pptx
εργασία εφημερίδας για την διατροφή.pptxεργασία εφημερίδας για την διατροφή.pptx
εργασία εφημερίδας για την διατροφή.pptx
 
Ο εκχριστιανισμός των Σλάβων, Άγγελος Δόσης
Ο εκχριστιανισμός των Σλάβων, Άγγελος ΔόσηςΟ εκχριστιανισμός των Σλάβων, Άγγελος Δόσης
Ο εκχριστιανισμός των Σλάβων, Άγγελος Δόσης
 
-Διψήφιοι αριθμοί-δεκαδες μονάδες-θέση ψηφίου Α- Β τάξη
-Διψήφιοι  αριθμοί-δεκαδες μονάδες-θέση ψηφίου Α- Β τάξη-Διψήφιοι  αριθμοί-δεκαδες μονάδες-θέση ψηφίου Α- Β τάξη
-Διψήφιοι αριθμοί-δεκαδες μονάδες-θέση ψηφίου Α- Β τάξη
 
Σχέσεις στην εφηβεία_έρωτας
Σχέσεις                     στην εφηβεία_έρωταςΣχέσεις                     στην εφηβεία_έρωτας
Σχέσεις στην εφηβεία_έρωτας
 
Μαθητικά συμβούλια .
Μαθητικά συμβούλια                                  .Μαθητικά συμβούλια                                  .
Μαθητικά συμβούλια .
 
ΧΑΝΟΣ ΚΡΟΥΜΟΣ-ΒΑΣΙΛΙΑΣ ΝΙΚΗΦΟΡΟΣ,ΚΡΙΣΤΙΝΑ ΚΡΑΣΤΕΒΑ
ΧΑΝΟΣ ΚΡΟΥΜΟΣ-ΒΑΣΙΛΙΑΣ ΝΙΚΗΦΟΡΟΣ,ΚΡΙΣΤΙΝΑ ΚΡΑΣΤΕΒΑΧΑΝΟΣ ΚΡΟΥΜΟΣ-ΒΑΣΙΛΙΑΣ ΝΙΚΗΦΟΡΟΣ,ΚΡΙΣΤΙΝΑ ΚΡΑΣΤΕΒΑ
ΧΑΝΟΣ ΚΡΟΥΜΟΣ-ΒΑΣΙΛΙΑΣ ΝΙΚΗΦΟΡΟΣ,ΚΡΙΣΤΙΝΑ ΚΡΑΣΤΕΒΑ
 
Η ΑΔΙΚΕΙΑ ΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΑΣΕΠ 2008 ΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥΣ
Η ΑΔΙΚΕΙΑ ΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΑΣΕΠ 2008 ΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥΣΗ ΑΔΙΚΕΙΑ ΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΑΣΕΠ 2008 ΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥΣ
Η ΑΔΙΚΕΙΑ ΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΑΣΕΠ 2008 ΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥΣ
 
Παρουσίαση δράσεων στην Τεχνόπολη. 2023-2024
Παρουσίαση δράσεων στην Τεχνόπολη. 2023-2024Παρουσίαση δράσεων στην Τεχνόπολη. 2023-2024
Παρουσίαση δράσεων στην Τεχνόπολη. 2023-2024
 
ΘΕΣΣΑΛΟΝΙΚΗ Η ΔΕΥΤΕΡΗ ΠΟΛΗ ΤΗΣ ΒΥΖΑΝΤΙΝΗΣ ΑΥΤΟΚΡΑΤΟΡΙΑΣ, ΔΑΝΑΗ ΠΑΝΟΥ
ΘΕΣΣΑΛΟΝΙΚΗ Η ΔΕΥΤΕΡΗ ΠΟΛΗ ΤΗΣ ΒΥΖΑΝΤΙΝΗΣ ΑΥΤΟΚΡΑΤΟΡΙΑΣ, ΔΑΝΑΗ ΠΑΝΟΥΘΕΣΣΑΛΟΝΙΚΗ Η ΔΕΥΤΕΡΗ ΠΟΛΗ ΤΗΣ ΒΥΖΑΝΤΙΝΗΣ ΑΥΤΟΚΡΑΤΟΡΙΑΣ, ΔΑΝΑΗ ΠΑΝΟΥ
ΘΕΣΣΑΛΟΝΙΚΗ Η ΔΕΥΤΕΡΗ ΠΟΛΗ ΤΗΣ ΒΥΖΑΝΤΙΝΗΣ ΑΥΤΟΚΡΑΤΟΡΙΑΣ, ΔΑΝΑΗ ΠΑΝΟΥ
 
Σουρεαλιστικά ταξίδια μέσα από την τέχνη
Σουρεαλιστικά ταξίδια μέσα από την τέχνηΣουρεαλιστικά ταξίδια μέσα από την τέχνη
Σουρεαλιστικά ταξίδια μέσα από την τέχνη
 

στατιστική μέτρα θέσης 2

  • 1. ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ •Μέτρα θέσης και διασποράς (Εισαγωγή) •Μέση τιμή •Διάμεσος •Σταθμικός μέσος •Επικρατούσα τιμή •Εύρος •Διακύμανση –Τυπική απόκλιση •Συντελεστής μεταβολής Κοζαλάκης Ευστάθιος ΠΕ03
  • 2. ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ Εκτός από τους στατιστικούς πίνακες και τα διαγράμματα υπάρχουν και αριθμητικά μέτρα με τα οποία μπορούμε να περιγράψουμε με συντομία μια κατανομή συχνοτήτων. Η γνώση των μέτρων αυτών διευκολύνει και την παραπέρα στατιστική επεξεργασία των δεδομένων. Έστω, για παράδειγμα, ένας καθηγητής ο οποίος, για να συγκρίνει δύο διαφορετικά τμήματα Α και Β της ίδιας τάξης ως προς την επίδοσή τους σε ένα μάθημα, πήρε τυχαία 10 μαθητές από κάθε τμήμα. Η βαθμολογία τους στο μάθημα αυτό ήταν: Τμήμα Α: 13 13 14 15 15 15 15 16 16 18 Τμήμα Β: 10 13 14 14 15 15 15 16 18 20. Τα διαγράμματα σχετικών συχνοτήτων δίνονται στα σχήματα 11(α), (β).
  • 3.
  • 4. Τα πιο συνηθισμένα μέτρα που χρησιμοποιούνται για την περιγραφή της θέσης ενός συνόλου δεδομένων πάνω στον οριζόντιο άξονα ox, εκφράζοντας την “κατά μέσο όρο” απόστασή τους από την αρχή των αξόνων, είναι ο αριθμητικός μέσος ή μέση τιμή (arithmetic mean or average), η διάμεσος (median) και η κορυφή ή επικρατούσα τιμή (mode). Μέτρα Θέσης
  • 6. ΔΑΜΕΣΟΣ (Δ) Οι χρόνοι (σε λεπτά) που χρειάστηκαν 9 μαθητές, για να λύσουν ένα πρόβλημα είναι: 3, 5, 5, 36, 6, 7, 4, 7, 8 με μέση τιμή Παρατηρούμε όμως ότι οι οκτώ από τις εννέα παρατηρήσεις είναι μικρότερες του 9 και μία (ακραία τιμή), η οποία επηρεάζει και τη μέση τιμή είναι, αρκετά μεγαλύτερη του 9. Αυτό σημαίνει ότι η μέση τιμή δεν ενδείκνυται ως μέτρο θέσης (“κέντρο”) των παρατηρήσεων αυτών. Αντίθετα, ένα άλλο μέτρο θέσης που δεν επηρεάζεται από ακραίες παρατηρήσεις είναι η διάμεσος (median), η οποία ορίζεται ως εξής:
  • 7. Διάμεσος (δ) ενός δείγματος ν παρατηρήσεων οι οποίες έχουν διαταχθεί σε αύξουσα σειρά ορίζεται ως η μεσαία παρατήρηση, όταν το ν είναι περιττός αριθμός, ή ο μέσος όρος (ημιάθροισμα) των δύο μεσαίων παρατηρήσεων όταν το ν είναι άρτιος αριθμός.
  • 8. ΠΑΡΑΔΕΙΓΜΑ 1 Για παράδειγμα, για να βρούμε τη διάμεσο των δεδομένων: α) 3, 4, 0, 6, 5, 8, 1, 1, 6, 1, 2, 8, 9 β) 3, 4, 0, 6, 5, 8, 1, 1, 6, 1, 2, 8, 9, 9 εργαζόμαστε ως εξής:α) Έχουμε ν = 13 παρατηρήσεις, οι οποίες σε αύξουσα σειρά είναι:0 1 1 1 2 3 4 5 6 6 8 8 9.Άρα, η διάμεσος είναι η μεσαία παρατήρηση (έβδομη στη σειρά), δ = 4.
  • 9. ΠΑΡΑΔΕΙΓΜΑ 2 β) Έχουμε ν = 14 παρατηρήσεις οι οποίες σε αύξουσα σειρά είναι:0 1 1 1 2 3 4 5 6 6 8 8 9 9. Άρα, η διάμεσος είναι το ημιάθροισμα των δύο μεσαίων παρατηρήσεων (της έβδομης και όγδοης στη σειρά), δηλαδή
  • 10. ΔΙΑΜΕΣΟΣ ΣΕ ΟΜΑΔΟΠΟΙΗΜΈΝΑ ΔΕΔΟΜΈΝΑ Θεωρούμε τα δεδομένα του ύψους των μαθητών στον πίνακα 9 και το αντίστοιχο ιστόγραμμα αθροιστικών σχετικών συχνοτήτων με την πολυγωνική γραμμή, σχήμα 13. Η διάμεσος, όπως ορίστηκε, αντιστοιχεί στην τιμήx = δ της μεταβλητής Χ (στον οριζόντιο άξονα), έτσι ώστε το 50% των παρατηρήσεων να είναι μικρότερες ή ίσες του δ. Δηλαδή, η διάμεσος θα έχει αθροιστική σχετική συχνότητα Fi = 50% . Εφόσον στον κάθετο άξονα έχουμετις αθροιστικές σχετικές συχνότητες, από το σημείο Α (50% των παρατηρήσεων) φέρουμε την και στη συνέχεια τη Τότε, στο σημείο Γ αντιστοιχεί η διάμεσος δ των παρατηρήσεων. Δηλαδή, δ ≈ 173.
  • 11. ΑΣΚΗΣΕΙΣ 1.Έξι διαδοχικοί άρτιοι αριθμοί έχουν μέση τιμή 15. Να βρείτε τους αριθμούς και τη διάμεσό τους. 2.Έχουμε ένα δείγμα ν = 10 παρατηρήσεων, όπου κάθε παρατήρηση μπορεί να είναι 1, 2 ή 3. Είναι δυνατό η μέση τιμή να είναι α) 1 β) 4 γ) 1,8;
  • 12. ΣΤΑΘΜΙΚΟΣ ΜΕΣΟΣ Στις περιπτώσεις που δίνεται διαφορετική βαρύτητα (έμφαση) στις τιμές x1, x2 ,..., xν ενός συνόλου δεδομένων, τότε αντί του αριθμητικού μέσου χρησιμοποιούμε τον σταθμισμένο αριθμητικό μέσο ή σταθμικό μέσο(weighted mean).
  • 13. ΠΑΡΑΔΕΙΓΜΑ Mε το σύστημα, για την εισαγωγή ενός μαθητή στην τριτοβάθμια εκπαίδευση συνυπολογίζονται π.χ ο βαθμός x1 του απολυτηρίου του Ενιαίου Λυκείου με συντελεστή (βάρος) w1 = 7 ,5, ο βαθμός x2 στο τεστ δεξιοτήτων με συντελεστή w2 = 1, ο βαθμός x3 στο 1ο βασικό μάθημα με συντελεστή w3 = 1 και ο βαθμός x4 στο 2ο βασικό μάθημα με συντελεστή w4 = 0,5. Εάν ένας μαθητής πάρει τους βαθμούς x1 = 16,5, x2 = 18, x3 = 17 και x4 = 16,6, τότε ο σταθμικός μέσος της επίδοσης του θα είναι:
  • 14. ΕΠΙΚΡΑΤΟΥΣΑ ΤΙΜΗ Στην περίπτωση μη ομαδοποιημένων δεδομένων επικρατούσα τιμή ή κορυφή (mode) M0 ορίζεται ως η παρατήρηση με τη μεγαλύτερη συχνότητα. Είναι προφανές ότι η επικρατούσα τιμή μπορεί να οριστεί και στην περίπτωση ποιοτικών δεδομένων, ενώ τα άλλα μέτρα που είδαμε ορίζονται μόνο για ποσοτικά δεδομένα. Για παράδειγμα: α) Η επικρατούσα τιμή (επικρατούσα απασχόληση) για την απασχόληση των μαθητών του πίνακα 5 στον ελεύθερο χρόνο τους είναι M0 "Μουσική". β) Η επικρατούσα τιμή του αριθμού των αδελφών των μαθητών στον πίνακα 6 είναι M0 = 1, δηλαδή οι περισσότερες οικογένειες (55%) έχουν δύο παιδιά.
  • 15. ΠΑΡΑΔΕΙΓΜΑ Για να βρούμε την επικρατούσα τιμή των παρατηρήσεων 0 1 1 2 2 2 3 4 4 4 5 5 7 8, κατασκευάζουμε πίνακα συχνοτήτων. Οι τιμές 2 και 4 είναι και οι δύο επικρατούσες τιμές, γιατί καθεμιά έχει συχνότητα 3. Βλέπουμε εδώ ότι η επικρατούσα τιμή μπορεί να μην είναι μοναδική. Όταν έχουμε δύο κορυφές, η αντίστοιχη κατανομή συχνοτήτων λέγεται δικόρυφη(bimodal), ενώ όταν έχουμε πολλές κορυφές λέγεται πολυκόρυφη (multimodal). δ) Όταν όλες οι παρατηρήσεις είναι διαφορετικές, τότε λέμε ότι δεν υπάρχει επικρατούσα τιμή. Έτσι, για τις παρατηρήσεις 0, 1, 2, 7, 8, 9 δεν έχουμε επικρατούσα τιμή.
  • 16. ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ Παράλληλα λοιπόν με τα μέτρα θέσης κρίνεται απαραίτητη και η εξέταση κάποιων μέτρων διασποράς ή μεταβλητότητας, δηλαδή μέτρων που εκφράζουν τις αποκλίσεις των τιμών μιας μεταβλητής γύρω από τα μέτρα κεντρικής τάσης. Τέτοια μέτρα λέγονται μέτρα διασποράς (measures of variation, dispersion measures). Τα σπουδαιότερα μέτρα διασποράς είναι το εύρος, η ενδοτεταρτημοριακή απόκλιση, η διακύμανση και η τυπική απόκλιση.
  • 17. ΕΥΡΟΣ (R) Εύρος R = Μεγαλύτερη παρατήρηση-Μικρότερη παρατήρηση
  • 18. ΠΑΡΑΔΕΙΓΜΑ Για τη βαθμολογία του τμήματος Α το εύρος είναι RA = 18 - 13 = 5, ενώ για το τμήμα Β, RB = 20 - 10 = 10, τιμές που επιβεβαιώνουν ότι πράγματι στο τμήμα Β έχουμε μεγαλύτερη διασπορά βαθμολογίαςπαρά στο τμήμα Α. Όταν έχουμε ομαδοποιημένα δεδομένα, το εύρος δίνεται από τη διαφορά του κατώτερου ορίου της πρώτης κλάσης από το ανώτερο όριο της τελευταίας κλάσης. Το εύρος των υψών των μαθητών του δείγματος στον πίνακα 9 είναι R = 192 - 156 = 36. Προφανώς, το εύρος σε ομαδοποιημένα δεδομένα μπορεί να διαφέρει ελαφρώς από τα αντίστοιχα δεδομένα πριν αυτά ομαδοποιηθούν. Για παράδειγμα, το εύρος των υψών στον πίνακα 8, πριν αυτά ομαδοποιηθούν, βρήκαμε ότι είναι R =191 - 156 = 35. Το εύρος είναι ένα αρκετά απλό μέτρο, που υπολογίζεται εύκολα δε θεωρείται όμως αξιόπιστο μέτρο διασποράς, γιατί βασίζεται μόνο στις δυο ακραίες παρατηρήσεις.
  • 19. Ένας άλλος τρόπος για να υπολογίσουμε τη διασπορά των παρατηρήσεων t1,t2,...,tv μιας μεταβλητής Χ θα ήταν να αφαιρέσουμε τη μέση τιμή από κάθε παρατήρηση και να βρούμε τον αριθμητικό μέσο των διαφορών αυτών, δηλαδή τον αριθμό: ΔΙΑΚΥΜΑΝΣΗ
  • 20. Τυπική Απόκλιση (s) Η διακύμανση είναι μια αξιόπιστη παράμετρος διασποράς, αλλά έχει ένα μειονέκτημα. Δεν εκφράζεται με τις μονάδες με τις οποίες εκφράζονται οι παρατηρήσεις. Για παράδειγμα, αν οι παρατηρήσεις εκφράζονται σε cm, η διακύμανση εκφράζεται σε cm2. Αν όμως πάρουμε τη θετική τετραγωνική ρίζα της διακύμανσης, θα έχουμε ένα μέτρο διασποράς που θα εκφράζεται με την ίδια μονάδα μέτρησης του χαρακτηριστικού, όπως ακριβώς είναι και όλα τα άλλα μέτρα θέσης, που εξετάσαμε έως τώρα. Η ποσότητα αυτή λέγεται τυπική απόκλιση (standard deviation), συμβολίζεται με s και δίνεται από τη σχέση:
  • 21. Συντελεστής Mεταβολής (CV) Γενικά δεχόμαστε ότι ένα δείγμα τιμών μιας μεταβλητής θα είναι ομοιογενές, εάν ο συντελεστής μεταβολής δεν ξεπερνά το 10%.