SlideShare una empresa de Scribd logo
1 de 31
Descargar para leer sin conexión
Symposium in honour of Gianpietro Del Piero


                    Sperlonga

        September 30th and October 1st 2011.



The static theorem of limit analysis for masonry
                    panels


         M. Lucchesi, M. Šilhavý, N. Zani
Constitutive equations

In order to characterize a masonry-like material we assume

that the stress must be negative semidefinite and that the

strain is the sum of two parts: the former depends linearly

on the stress, the letter is orthogonal to the stress and

positive semidefinite,

                          X − Sym

                         I œ I/  I0

                          I 0 − Sym

                          X œ ‚ÒI / Ó

                          I0 † X œ !


where
                     I (?) œ " Ðf?  f?T Ñ
                             #

is the infinitesimal strain and ‚ is symmetric and positive

definite, i.e.,




                              2
E" † ‚ÒE# Ó œ E# † ‚ÒE" Óß


          E † ‚ÒEÓ  ! for each E − Symß E Á !


Proposition

For each I − Sym there exists a unique triplet

ÐX ß I / ß I 0 Ñ that satisfies the constitutive equation.

Moreover, a masonry-like material is hyperelastic.

We write

                     AÐI Ñ œ " X ÐI Ñ † I
                             #

for the stored energy.




                               3
Notations

H   reference configuration of the body

     ` H œ W  fß         such that W  f œ g

?   displacement field, such that ul W œ !

= À f Ä ‘$        surface traction

, À H Ä ‘$        body force

X À H Ä Sym       stress tensor




                                     s

                                          S
                              b
    Ω


                             D



                      4
Limit analysis

The limit analysis deals with a family of loads _Ð-Ñ that

depend linearly on a scalar parameter - − ‘,

           _ Ð - Ñ œ Ð , - ß =- Ñ œ Ð , !  - , " ß = !  - = " Ñ

     , ! , =!     permanent part of the load

     , " ß ="     variable part of the load

     -            loading multiplier

,! and ," are supposed to be square integrable functions on

H, =! and =" are supposed to be square integrable functions

on f .




                                   5
Let

        Z œ Ö@ − [ "ß# ÐHß ‘$ Ñ À @ œ ! a.e. on W×

be the Sobolev space of all ‘$ valued maps such that @ and

the distributional derivative f@ of @ are square integrable

on H.

For each Ð-ß @Ñ − ‘ ‚ Z we define the potential energy

of the body

  MÐ-ß @Ñ œ ( AÐI Ð@Ñ.Z  ( @ † , - .Z  ( @ † =- .E
              H                         H       f


where

                       ( AÐI Ð@Ñ.Z
                            H


is the strain energy and

         _Ð-Ñß @  œ ( @ † , - .Z  ( @ † =- .E
                                H           f


is the work of the loads.




                                    6
Moreover, we define the infimum energy

                  M! Ð-Ñ œ inf ÖMÐ-ß @Ñ À @ − Z ×Þ


Proposition

(i) The functional M! À ‘ Ä ‘  Ö  _× is concave,

        M! Ð+-  Ð"  +Ñ.Ñ   +M! Ð-Ñ  Ð"  +ÑM! Ð.Ñ

for every -, . − ‘ and + − Ò!ß "Ó.

Therefore, the set

                  A À œ Ö- − ‘ À M! Ð-Ñ   _×

is an interval.




                                7
(ii) The functional M! is upper semicontinuous,

                  M! Ð-Ñ   lim supM! Ð-5 Ñ
                           5Ä_


for every - − ‘ and every sequence -5 Ä -.


We interpret the elements of A as loading multipliers for

which the loads _Ð-Ñ are safe, i.e. the body does not

collapse.




                            8
Each finite endpoint -- of the interval A is called a

collapse multiplier with the interpretation that for - œ --

or at least for - arbitrarily close to -- outside A the body

collapses.

We say that a stress field X is admissible if

                     X − P# ÐHß Sym Ñ

and that X equilibrates the loads _Ð-Ñ œ Ð, - ß =- Ñ if



       ( X † I Ð@Ñ.Z œ ( @ † , .Z  ( @ † = .E
                              -            -
         H                   H              f




for every @ − Z .

We say that the loads _Ð-Ñ are compatible if there exists a

stress field X that is admissible and equilibrates _Ð-ÑÞ




                             9
Proposition (Static theorem of the limit analysis)

The loads _Ð-Ñ are compatible if and only if

                        M! Ð - Ñ   _ .

That is the loads _Ð-Ñ are safe (i.e. - − A) if and only if

there exist a stress field X which

(i)   is square integrable,

(ii) takes its values in Sym ,

(iii) equilibrates the loads _Ð-Ñ.




                              10
Rectangular panels

In the study of the static of masonry panels we verify that

the problem of finding negative semidefinite stress fields

that equilibrate the loads is considerably simplified if

instead of stress fields represented by square integrable

functions we allow the presence of curves of concentrated

stress.




                                                      p
                                                  o
                                          x
                                              y


                   λ
                 Ω+
                               γλ                          h

                                      λ
                                     Ω−



                                                      λq

                           b




                                11
Example

In the following example, firstly, we will obtain a stress

field which is a measure, whose divergence is a measure,

that equilibrate the loads in a weak sense. Then we will see

a procedure that, starting from this singular stress field,

allow us to determine a stress field which is admissible and

equilibrates the loads in the classical sense.




                             12
p
                                     x   O


                                             y




                               γλ




                                                     λ


               H œ Ð!ß ,Ñ ‚ Ð!ß 2Ñ § ‘# ß

                  W œ Ð!ß FÑ ‚ Ö2×ß

                     f œ ` H ÏW ß

                        , - œ !ß
                    Ú :4, on Ð!ß ,Ñ ‚ Ö!×
           =- Ð<Ñ œ Û -3ß on Ö!× ‚ Ð!ß 2Ñ
                    Ü ! elsewhere


where :  !ß -  ! and < œ ÐBß CÑ.




                          13
p
                                           x   O


                                                   y




                        Ωλ
                         +        γλ
                                       a
                                       Ωλ
                                        −


                                                           λ



The singularity curve # - can be obtained by imposing the

equilibrium of the shaded rectangular region with the

respect to the rotation about its left lower corner. We

obtain

              # œ ÖÐBß CÑ − H À C œ Ê B×
               -                     :
                                     -




                             14
which divides H into the two regions H- ,
                                      „


             H- œ ÖÐBß CÑ − H À C  Ê
                                     :
              +                        B×,
                                     -
             H- œ ÖÐBß CÑ − H À C  Ê B×Þ
                                     :
              
                                     -

The singularity curve # - has to be wholly contained into

the region H and this implies

                        !  -  --

with

                            :, #
                        -- œ # Þ
                            2




                            15
For the regular part of the stress field X<- (defined outside

# - ) we take

                      œœ
                                          -
                          :4 Œ 4 if < − H+
            X<- Ð<Ñ
                          -3 Œ 3 if < − H- Þ
                                          


The stress field defined on # - can be obtained by imposing

the equilibrium of the shaded rectangular region with the

respect to the translation. We obtain

                   X=- Ð<Ñ œ  È:-
                                         <Œ<
                                          k<k
                                              Þ

                 <
                k<k
We note that        is the unit tangent vector to # - .




                               16
The stress field

                        T- œ X<-  X=-


has to be interpreted as a tensor valued measure. That is,

a function defined on the system of all Borel subsets of H

which takes its values in Sym and is countably additive,

                   T Œ  E3  œ ! T- ÐE3 Ñ
                        _          _
                    -
                        3œ"        3œ"


for each sequence of pairwise disjoint (borelian) sets.

T- is the sum of an absolutely continuous part (with

respect to the area measure) with density X<- and a

singular, part concentrated on # - , with density X=- . Both

the densities X<- and X=- are regular functions.




                              17
We can prove that the stress measure T- weakly

equilibrates the loads Ð, - ß =- Ñ, that is

          ( I Ð@Ñ. T œ ( @ † , .Z  ( @ † = .Eß
                              -            -
           H                H                 f


for any @ − Z .




                                18
Integration of measures

By the static theorem of limit analysis, in order to assert

that the loads _Ð-Ñ are compatible we need an equilibrated

stress field that is a square integrable function and then

equilibrated stress measures are not enough.

Now we describe a procedure that in certain cases allows

us to use the stress measure T- to determine a square

integrable stress field X - . Crucial to this procedure is the

fact that both the loads Ð=- ß , - Ñ and the admissible

equilibrating stress measure T- depend on a parameter -.




                              19
p
                                     x     o


                                            y




                      γ μ+ε
                          γμ       γ μ−ε

                                                    μ


The idea is to take the average of the stress measure over

any set Ð.  %ß .  %Ñ, where %  ! is sufficiently small.

Averaging gives the measure

                    Tœ (
                      " .% -
                             T . -Þ
                      #% .%




                              20
It may happen that this measure, in contrast to T. , is

absolutely continuous with respect to the area measure with

a square integrable density.

For the previous example we obtain the following result.


If !  -  -- , then the loads _Ð.Ñ are compatible. In fact

if Ð.  %ß .  %Ñ § Ð!ß -- Ñ then the measure

                     Tœ (
                       " .% -
                              T .-
                       #% .%

is absolutely continuous with respect to the area

(Lebesgue) measure with density X .

X is a bounded admissible stress field on H that

equilibrates the loads _Ð.Ñ. We have

                       X œ X<  X = Þ




                               21
The densities X< and X= can be explicitly calculated. In

fact, we have

                X< Ð < Ñ œ (
                          " .% -
                                X Ð<Ñ. - œ
                          #% .% <

    Ú  :4 Œ 4                               if < − H- ÏE
    Û  .3 Œ 3
                                                     +


    Ü Ð#%Ñ" Ð!Ð<Ñ3 Œ 3  " Ð<Ñ4 Œ 4 Ñ
                                             if < − H- ÏE
                                                     
                                             if < − E

where

        E œ ÖÐBß CÑ − H À .  %  :B# ÎC #  .  %×

is the shaded area in the figure, and

                         " # % %
                !Ð<Ñ œ     Ð: B ÎC  Ð.  %Ñ# Ñß
                         #

                 " Ð<Ñ œ :Ð.  %  :# B% ÎC % ÑÞ




                              22
Moreover,
                     Ú  : # B#
            X= Ð<Ñ œ Û
                                <Œ<            if < − E
                     Ü!
                        %C%
                                               otherwise


It is easily to verify that the stress field

                          X œ X<  X =

is admissible, i.e. X a square integrable function which

takes its values in Sym , and that it equilibrates the loads

_Ð.Ñ,


             X 8 œ =. on f , div X œ ! in H.




                               23
Panels with opening




                                        a

 p
               c
                                                       x   o
                                   F1
                                                           y
                                        γ2
h2        Ω1                                      γ1
                              Ω3                                   e

                                                  Ω2
               B
                                              γ3
h1                                                 d




     C                              A                          q
         b2             b1                   b2




                             24
p
                                          a

                                  c
h2                                                      e




h1




                                                            qc
          b2            b1                    b2




     h2                                                     e



                    B


     h1



                                      A
      C
               b2            b1                    b2




                        25
p
                                                        qc
                                          a



h2




h1




          b2                b1                b2




                                               a




         h2



                        B
               Ι

         h1




          C                           A
                   b2            b1                b2




                            26
Panel under gravity




                                            x   O            λ
                                                    y


                    b




                           γ




The panel is subjected to a side loads and its own gravity

                         on ˜!× ‚ Ð!ß LÑ,
     =- Ð < Ñ œ œ
                    -3
                    !    elsewhere.




                               27
The singularity curve is

      # - œ šÐBß CÑ − H À C œ -,B# Î-›, - œ "Î#  È$Î'Þ

and

      -- œ -,F # ÎLÞ


          Ú  ,C 4 Œ 4                         in H- ß
X<- Ð<Ñ œ Û
                                                   

          Ü  -3 Œ 3  ,B3  4  - 4 Œ 4
                                , # B#             -
                                               in H ß



with 3  4 œ 3 Œ 4  4 Œ 3Þ




                              28
X=- œ 5 - >- Œ >- ß


with

                                  È$
                  -
                5 Ð< Ñ œ              ,BÈB#  %C #
                                   '

and


                                  ÈB#  %C #
                                   ÐBß #CÑ
                      >- Ð< Ñ œ


the unit tangent vector to # - .




                                  29
By integration we obtain


        Ú  ,C 4 Œ 4                                     -

X Ð<Ñ œ Û  .3 Œ 3  ,B3  4  , # B# Î-4 Œ 4
                                                     in H ÏE ß

        Ü W Ð< Ñ
                                                     in H- ÏEß
                                                          
                                                     in Eß


where

       E œ Ö< œ ÐBß CÑ À ,-B# ÎC − Ð.  &ß .  &Ñ×


and



   W Ð<Ñ œ  Ð#&Ñ š’          Ð .  % Ñ # “3 Œ 3 
                       , # B%
                      "       "
                       "#C#    #

                 ’         ,BÐ.  &Ñ“3  4 
                    , # B$
                     $C

       È$
  ’Š                           ‹, B  ,CÐ.  %Ñ“4 Œ 4 ›Þ
                &      CÐ.  &Ñ # #
                  68
        #       '        ,-B#




                             30
References

[1] G. Del Piero Limit analysis and no-tension materials
    Int. J. Plasticity 14, 259-271 (1998)
[2] M. Lucchesi, N. Zani Some explicit solutions to
    equilibrium problem for masonry-like bodies Struc.
    Eng. Mech. 16, 295-316, (2003)
[3] M. Lucchesi, M. Silhavy, N. Zani A new class of
    equilibrated stress fields for no-tension bodies J.
    Mech. Mat. Struct. 1, 503-539, (2006)
[4] M. Lucchesi, M. Silhavy, N. Zani Integration of
    measures and admissible stress fields for masonry
    bodies J. Mech. Mat. Struct. 3, 675-696, (2008)
[5] M. Lucchesi, C. Padovani, M. Silhavy An energetic
    view of limit analysis for normal bodies Quart. Appl.
    Math 68, 713-746 (2010)
[6] M. Lucchesi, M. Silhavy, N. Zani Integration of
    parametric measures and the statics of masonry
    panels Ann. Solid Struct Mech. 2, 33-44, (2011)




                           31

Más contenido relacionado

Destacado

My classroom
My classroomMy classroom
My classroom
Emaneia
 
民法概要考古題201209
民法概要考古題201209民法概要考古題201209
民法概要考古題201209
Ted Kuo
 
Napoli2014
Napoli2014Napoli2014
Napoli2014
MMSLAB
 
Girardimaratea
GirardimarateaGirardimaratea
Girardimaratea
MMSLAB
 
Nosa 2011
Nosa 2011Nosa 2011
Nosa 2011
MMSLAB
 
Creta 2011 slides
Creta 2011 slidesCreta 2011 slides
Creta 2011 slides
MMSLAB
 
Zanimaratea
ZanimarateaZanimaratea
Zanimaratea
MMSLAB
 
St john.wondermasonry
St john.wondermasonrySt john.wondermasonry
St john.wondermasonry
MMSLAB
 
Mms lab 2011
Mms lab 2011Mms lab 2011
Mms lab 2011
MMSLAB
 

Destacado (10)

My classroom
My classroomMy classroom
My classroom
 
民法概要考古題201209
民法概要考古題201209民法概要考古題201209
民法概要考古題201209
 
Bab 2 06601244204
Bab 2   06601244204Bab 2   06601244204
Bab 2 06601244204
 
Napoli2014
Napoli2014Napoli2014
Napoli2014
 
Girardimaratea
GirardimarateaGirardimaratea
Girardimaratea
 
Nosa 2011
Nosa 2011Nosa 2011
Nosa 2011
 
Creta 2011 slides
Creta 2011 slidesCreta 2011 slides
Creta 2011 slides
 
Zanimaratea
ZanimarateaZanimaratea
Zanimaratea
 
St john.wondermasonry
St john.wondermasonrySt john.wondermasonry
St john.wondermasonry
 
Mms lab 2011
Mms lab 2011Mms lab 2011
Mms lab 2011
 

Más de MMSLAB

Safe monuments2
Safe monuments2Safe monuments2
Safe monuments2
MMSLAB
 
Safe monument
Safe monumentSafe monument
Safe monument
MMSLAB
 
Maratea zani et_al
Maratea zani et_alMaratea zani et_al
Maratea zani et_al
MMSLAB
 
Girardi maratea
Girardi marateaGirardi maratea
Girardi maratea
MMSLAB
 
Pellegrini presentation
Pellegrini presentationPellegrini presentation
Pellegrini presentation
MMSLAB
 
Girardi presentation
Girardi presentationGirardi presentation
Girardi presentation
MMSLAB
 
SaloneRestauro2012
SaloneRestauro2012SaloneRestauro2012
SaloneRestauro2012
MMSLAB
 
Wonder masonry zani
Wonder masonry zaniWonder masonry zani
Wonder masonry zani
MMSLAB
 
Poster itaca
Poster itacaPoster itaca
Poster itaca
MMSLAB
 
Istanbul 2011
Istanbul 2011Istanbul 2011
Istanbul 2011
MMSLAB
 

Más de MMSLAB (11)

Praga2015
Praga2015Praga2015
Praga2015
 
Safe monuments2
Safe monuments2Safe monuments2
Safe monuments2
 
Safe monument
Safe monumentSafe monument
Safe monument
 
Maratea zani et_al
Maratea zani et_alMaratea zani et_al
Maratea zani et_al
 
Girardi maratea
Girardi marateaGirardi maratea
Girardi maratea
 
Pellegrini presentation
Pellegrini presentationPellegrini presentation
Pellegrini presentation
 
Girardi presentation
Girardi presentationGirardi presentation
Girardi presentation
 
SaloneRestauro2012
SaloneRestauro2012SaloneRestauro2012
SaloneRestauro2012
 
Wonder masonry zani
Wonder masonry zaniWonder masonry zani
Wonder masonry zani
 
Poster itaca
Poster itacaPoster itaca
Poster itaca
 
Istanbul 2011
Istanbul 2011Istanbul 2011
Istanbul 2011
 

Último

Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
mahaiklolahd
 
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
adilkhan87451
 

Último (20)

Call Girls Service Jaipur {8445551418} ❤️VVIP BHAWNA Call Girl in Jaipur Raja...
Call Girls Service Jaipur {8445551418} ❤️VVIP BHAWNA Call Girl in Jaipur Raja...Call Girls Service Jaipur {8445551418} ❤️VVIP BHAWNA Call Girl in Jaipur Raja...
Call Girls Service Jaipur {8445551418} ❤️VVIP BHAWNA Call Girl in Jaipur Raja...
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
 
Trichy Call Girls Book Now 9630942363 Top Class Trichy Escort Service Available
Trichy Call Girls Book Now 9630942363 Top Class Trichy Escort Service AvailableTrichy Call Girls Book Now 9630942363 Top Class Trichy Escort Service Available
Trichy Call Girls Book Now 9630942363 Top Class Trichy Escort Service Available
 
Call Girls Hosur Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Hosur Just Call 9630942363 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Hosur Just Call 9630942363 Top Class Call Girl Service Available
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 9332606886 𖠋 Will You Mis...
 
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls  * UPA...
Call Girl in Indore 8827247818 {LowPrice} ❤️ (ahana) Indore Call Girls * UPA...
 
Model Call Girls In Chennai WhatsApp Booking 7427069034 call girl service 24 ...
Model Call Girls In Chennai WhatsApp Booking 7427069034 call girl service 24 ...Model Call Girls In Chennai WhatsApp Booking 7427069034 call girl service 24 ...
Model Call Girls In Chennai WhatsApp Booking 7427069034 call girl service 24 ...
 
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
8980367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
 
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
Russian Call Girls Lucknow Just Call 👉👉7877925207 Top Class Call Girl Service...
 
💕SONAM KUMAR💕Premium Call Girls Jaipur ↘️9257276172 ↙️One Night Stand With Lo...
💕SONAM KUMAR💕Premium Call Girls Jaipur ↘️9257276172 ↙️One Night Stand With Lo...💕SONAM KUMAR💕Premium Call Girls Jaipur ↘️9257276172 ↙️One Night Stand With Lo...
💕SONAM KUMAR💕Premium Call Girls Jaipur ↘️9257276172 ↙️One Night Stand With Lo...
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
 
Most Beautiful Call Girl in Bangalore Contact on Whatsapp
Most Beautiful Call Girl in Bangalore Contact on WhatsappMost Beautiful Call Girl in Bangalore Contact on Whatsapp
Most Beautiful Call Girl in Bangalore Contact on Whatsapp
 
Call Girls Kolkata Kalikapur 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
Call Girls Kolkata Kalikapur 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...Call Girls Kolkata Kalikapur 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
Call Girls Kolkata Kalikapur 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Girl Se...
 
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
Call Girls in Delhi Triveni Complex Escort Service(🔝))/WhatsApp 97111⇛47426
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
 
Coimbatore Call Girls in Thudiyalur : 7427069034 High Profile Model Escorts |...
Coimbatore Call Girls in Thudiyalur : 7427069034 High Profile Model Escorts |...Coimbatore Call Girls in Thudiyalur : 7427069034 High Profile Model Escorts |...
Coimbatore Call Girls in Thudiyalur : 7427069034 High Profile Model Escorts |...
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
 
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
 
Call Girls Madurai Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Madurai Just Call 9630942363 Top Class Call Girl Service AvailableCall Girls Madurai Just Call 9630942363 Top Class Call Girl Service Available
Call Girls Madurai Just Call 9630942363 Top Class Call Girl Service Available
 
9630942363 Genuine Call Girls In Ahmedabad Gujarat Call Girls Service
9630942363 Genuine Call Girls In Ahmedabad Gujarat Call Girls Service9630942363 Genuine Call Girls In Ahmedabad Gujarat Call Girls Service
9630942363 Genuine Call Girls In Ahmedabad Gujarat Call Girls Service
 

Sperlonga 2011

  • 1. Symposium in honour of Gianpietro Del Piero Sperlonga September 30th and October 1st 2011. The static theorem of limit analysis for masonry panels M. Lucchesi, M. Šilhavý, N. Zani
  • 2. Constitutive equations In order to characterize a masonry-like material we assume that the stress must be negative semidefinite and that the strain is the sum of two parts: the former depends linearly on the stress, the letter is orthogonal to the stress and positive semidefinite, X − Sym I œ I/  I0 I 0 − Sym X œ ‚ÒI / Ó I0 † X œ ! where I (?) œ " Ðf?  f?T Ñ # is the infinitesimal strain and ‚ is symmetric and positive definite, i.e., 2
  • 3. E" † ‚ÒE# Ó œ E# † ‚ÒE" Óß E † ‚ÒEÓ  ! for each E − Symß E Á ! Proposition For each I − Sym there exists a unique triplet ÐX ß I / ß I 0 Ñ that satisfies the constitutive equation. Moreover, a masonry-like material is hyperelastic. We write AÐI Ñ œ " X ÐI Ñ † I # for the stored energy. 3
  • 4. Notations H reference configuration of the body ` H œ W  fß such that W  f œ g ? displacement field, such that ul W œ ! = À f Ä ‘$ surface traction , À H Ä ‘$ body force X À H Ä Sym stress tensor s S b Ω D 4
  • 5. Limit analysis The limit analysis deals with a family of loads _Ð-Ñ that depend linearly on a scalar parameter - − ‘, _ Ð - Ñ œ Ð , - ß =- Ñ œ Ð , !  - , " ß = !  - = " Ñ , ! , =! permanent part of the load , " ß =" variable part of the load - loading multiplier ,! and ," are supposed to be square integrable functions on H, =! and =" are supposed to be square integrable functions on f . 5
  • 6. Let Z œ Ö@ − [ "ß# ÐHß ‘$ Ñ À @ œ ! a.e. on W× be the Sobolev space of all ‘$ valued maps such that @ and the distributional derivative f@ of @ are square integrable on H. For each Ð-ß @Ñ − ‘ ‚ Z we define the potential energy of the body MÐ-ß @Ñ œ ( AÐI Ð@Ñ.Z  ( @ † , - .Z  ( @ † =- .E H H f where ( AÐI Ð@Ñ.Z H is the strain energy and  _Ð-Ñß @  œ ( @ † , - .Z  ( @ † =- .E H f is the work of the loads. 6
  • 7. Moreover, we define the infimum energy M! Ð-Ñ œ inf ÖMÐ-ß @Ñ À @ − Z ×Þ Proposition (i) The functional M! À ‘ Ä ‘  Ö  _× is concave, M! Ð+-  Ð"  +Ñ.Ñ   +M! Ð-Ñ  Ð"  +ÑM! Ð.Ñ for every -, . − ‘ and + − Ò!ß "Ó. Therefore, the set A À œ Ö- − ‘ À M! Ð-Ñ   _× is an interval. 7
  • 8. (ii) The functional M! is upper semicontinuous, M! Ð-Ñ   lim supM! Ð-5 Ñ 5Ä_ for every - − ‘ and every sequence -5 Ä -. We interpret the elements of A as loading multipliers for which the loads _Ð-Ñ are safe, i.e. the body does not collapse. 8
  • 9. Each finite endpoint -- of the interval A is called a collapse multiplier with the interpretation that for - œ -- or at least for - arbitrarily close to -- outside A the body collapses. We say that a stress field X is admissible if X − P# ÐHß Sym Ñ and that X equilibrates the loads _Ð-Ñ œ Ð, - ß =- Ñ if ( X † I Ð@Ñ.Z œ ( @ † , .Z  ( @ † = .E - - H H f for every @ − Z . We say that the loads _Ð-Ñ are compatible if there exists a stress field X that is admissible and equilibrates _Ð-ÑÞ 9
  • 10. Proposition (Static theorem of the limit analysis) The loads _Ð-Ñ are compatible if and only if M! Ð - Ñ   _ . That is the loads _Ð-Ñ are safe (i.e. - − A) if and only if there exist a stress field X which (i) is square integrable, (ii) takes its values in Sym , (iii) equilibrates the loads _Ð-Ñ. 10
  • 11. Rectangular panels In the study of the static of masonry panels we verify that the problem of finding negative semidefinite stress fields that equilibrate the loads is considerably simplified if instead of stress fields represented by square integrable functions we allow the presence of curves of concentrated stress. p o x y λ Ω+ γλ h λ Ω− λq b 11
  • 12. Example In the following example, firstly, we will obtain a stress field which is a measure, whose divergence is a measure, that equilibrate the loads in a weak sense. Then we will see a procedure that, starting from this singular stress field, allow us to determine a stress field which is admissible and equilibrates the loads in the classical sense. 12
  • 13. p x O y γλ λ H œ Ð!ß ,Ñ ‚ Ð!ß 2Ñ § ‘# ß W œ Ð!ß FÑ ‚ Ö2×ß f œ ` H ÏW ß , - œ !ß Ú :4, on Ð!ß ,Ñ ‚ Ö!× =- Ð<Ñ œ Û -3ß on Ö!× ‚ Ð!ß 2Ñ Ü ! elsewhere where :  !ß -  ! and < œ ÐBß CÑ. 13
  • 14. p x O y Ωλ + γλ a Ωλ − λ The singularity curve # - can be obtained by imposing the equilibrium of the shaded rectangular region with the respect to the rotation about its left lower corner. We obtain # œ ÖÐBß CÑ − H À C œ Ê B× - : - 14
  • 15. which divides H into the two regions H- , „ H- œ ÖÐBß CÑ − H À C  Ê : + B×, - H- œ ÖÐBß CÑ − H À C  Ê B×Þ :  - The singularity curve # - has to be wholly contained into the region H and this implies !  -  -- with :, # -- œ # Þ 2 15
  • 16. For the regular part of the stress field X<- (defined outside # - ) we take œœ -  :4 Œ 4 if < − H+ X<- Ð<Ñ  -3 Œ 3 if < − H- Þ  The stress field defined on # - can be obtained by imposing the equilibrium of the shaded rectangular region with the respect to the translation. We obtain X=- Ð<Ñ œ  È:- <Œ< k<k Þ < k<k We note that is the unit tangent vector to # - . 16
  • 17. The stress field T- œ X<-  X=- has to be interpreted as a tensor valued measure. That is, a function defined on the system of all Borel subsets of H which takes its values in Sym and is countably additive, T Œ  E3  œ ! T- ÐE3 Ñ _ _ - 3œ" 3œ" for each sequence of pairwise disjoint (borelian) sets. T- is the sum of an absolutely continuous part (with respect to the area measure) with density X<- and a singular, part concentrated on # - , with density X=- . Both the densities X<- and X=- are regular functions. 17
  • 18. We can prove that the stress measure T- weakly equilibrates the loads Ð, - ß =- Ñ, that is ( I Ð@Ñ. T œ ( @ † , .Z  ( @ † = .Eß - - H H f for any @ − Z . 18
  • 19. Integration of measures By the static theorem of limit analysis, in order to assert that the loads _Ð-Ñ are compatible we need an equilibrated stress field that is a square integrable function and then equilibrated stress measures are not enough. Now we describe a procedure that in certain cases allows us to use the stress measure T- to determine a square integrable stress field X - . Crucial to this procedure is the fact that both the loads Ð=- ß , - Ñ and the admissible equilibrating stress measure T- depend on a parameter -. 19
  • 20. p x o y γ μ+ε γμ γ μ−ε μ The idea is to take the average of the stress measure over any set Ð.  %ß .  %Ñ, where %  ! is sufficiently small. Averaging gives the measure Tœ ( " .% - T . -Þ #% .% 20
  • 21. It may happen that this measure, in contrast to T. , is absolutely continuous with respect to the area measure with a square integrable density. For the previous example we obtain the following result. If !  -  -- , then the loads _Ð.Ñ are compatible. In fact if Ð.  %ß .  %Ñ § Ð!ß -- Ñ then the measure Tœ ( " .% - T .- #% .% is absolutely continuous with respect to the area (Lebesgue) measure with density X . X is a bounded admissible stress field on H that equilibrates the loads _Ð.Ñ. We have X œ X<  X = Þ 21
  • 22. The densities X< and X= can be explicitly calculated. In fact, we have X< Ð < Ñ œ ( " .% - X Ð<Ñ. - œ #% .% < Ú  :4 Œ 4 if < − H- ÏE Û  .3 Œ 3 + Ü Ð#%Ñ" Ð!Ð<Ñ3 Œ 3  " Ð<Ñ4 Œ 4 Ñ if < − H- ÏE  if < − E where E œ ÖÐBß CÑ − H À .  %  :B# ÎC #  .  %× is the shaded area in the figure, and " # % % !Ð<Ñ œ Ð: B ÎC  Ð.  %Ñ# Ñß # " Ð<Ñ œ :Ð.  %  :# B% ÎC % ÑÞ 22
  • 23. Moreover, Ú  : # B# X= Ð<Ñ œ Û <Œ< if < − E Ü! %C% otherwise It is easily to verify that the stress field X œ X<  X = is admissible, i.e. X a square integrable function which takes its values in Sym , and that it equilibrates the loads _Ð.Ñ, X 8 œ =. on f , div X œ ! in H. 23
  • 24. Panels with opening a p c x o F1 y γ2 h2 Ω1 γ1 Ω3 e Ω2 B γ3 h1 d C A q b2 b1 b2 24
  • 25. p a c h2 e h1 qc b2 b1 b2 h2 e B h1 A C b2 b1 b2 25
  • 26. p qc a h2 h1 b2 b1 b2 a h2 B Ι h1 C A b2 b1 b2 26
  • 27. Panel under gravity x O λ y b γ The panel is subjected to a side loads and its own gravity on ˜!× ‚ Ð!ß LÑ, =- Ð < Ñ œ œ -3 ! elsewhere. 27
  • 28. The singularity curve is # - œ šÐBß CÑ − H À C œ -,B# Î-›, - œ "Î#  È$Î'Þ and -- œ -,F # ÎLÞ Ú  ,C 4 Œ 4 in H- ß X<- Ð<Ñ œ Û  Ü  -3 Œ 3  ,B3  4  - 4 Œ 4 , # B# - in H ß with 3  4 œ 3 Œ 4  4 Œ 3Þ 28
  • 29. X=- œ 5 - >- Œ >- ß with È$ - 5 Ð< Ñ œ  ,BÈB#  %C # ' and ÈB#  %C # ÐBß #CÑ >- Ð< Ñ œ the unit tangent vector to # - . 29
  • 30. By integration we obtain Ú  ,C 4 Œ 4 - X Ð<Ñ œ Û  .3 Œ 3  ,B3  4  , # B# Î-4 Œ 4 in H ÏE ß Ü W Ð< Ñ in H- ÏEß  in Eß where E œ Ö< œ ÐBß CÑ À ,-B# ÎC − Ð.  &ß .  &Ñ× and W Ð<Ñ œ  Ð#&Ñ š’   Ð .  % Ñ # “3 Œ 3  , # B% " " "#C# # ’  ,BÐ.  &Ñ“3  4  , # B$ $C È$ ’Š ‹, B  ,CÐ.  %Ñ“4 Œ 4 ›Þ & CÐ.  &Ñ # #   68 # ' ,-B# 30
  • 31. References [1] G. Del Piero Limit analysis and no-tension materials Int. J. Plasticity 14, 259-271 (1998) [2] M. Lucchesi, N. Zani Some explicit solutions to equilibrium problem for masonry-like bodies Struc. Eng. Mech. 16, 295-316, (2003) [3] M. Lucchesi, M. Silhavy, N. Zani A new class of equilibrated stress fields for no-tension bodies J. Mech. Mat. Struct. 1, 503-539, (2006) [4] M. Lucchesi, M. Silhavy, N. Zani Integration of measures and admissible stress fields for masonry bodies J. Mech. Mat. Struct. 3, 675-696, (2008) [5] M. Lucchesi, C. Padovani, M. Silhavy An energetic view of limit analysis for normal bodies Quart. Appl. Math 68, 713-746 (2010) [6] M. Lucchesi, M. Silhavy, N. Zani Integration of parametric measures and the statics of masonry panels Ann. Solid Struct Mech. 2, 33-44, (2011) 31