SlideShare una empresa de Scribd logo
1 de 6
Descargar para leer sin conexión
Acromag, Incorporated
30765 S Wixom Rd, Wixom, MI 48393 USA
Tel: 248-295-0880 • Fax: 248-624-9234 • www.acromag.com
Copyright © Acromag, Inc. June 2014 8501-021
White Paper: Electrical Ground Rules
Best Practices for Grounding Your Electrical Equipment
Examining the role of ground as a voltage stabilizer and transient limiter,
along with tips on improving safety and signal integrity (Part 3 of 3)
Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com
2
This paper is part three of a three part series that takes a look at grounding and its role in protecting
personnel, protecting equipment, and ensuring the integrity of electrical signals. In this part, we will
examine ground and its role as a voltage stabilizer and transient limiter, as well as offer some tips on
what you can do to improve your connection to ground to realize benefits to safety and signal integrity.
In part one of this series (8500-993) we looked at the concept of grounding, the AC power system and its
use of ground, and gave three main reasons why we ground electrical equipment: for safety, to stabilize
electrical signals, and to limit transient voltages and current.
In part two of this series (8501-020) we examined the use of ground as a means of protection from
ground faults. We also looked at how ground fault circuit interrupter (GFCI) devices operate to protect
us from severe shock.
GROUND AS A VOLTAGE STABILIZER
Think of voltage as a force that causes current to flow in any conductor—a greater voltage results in
greater force that drives higher levels of current. High levels of current can drive errant circuit behavior,
possibly damage equipment, and may even lead to personal injury. We want to ground signals to
stabilize them and keep them from floating, and we do this to limit voltage magnitude and variation.
In practice, connecting to ground helps stabilize signals during normal
operation, acting like an anchor that limits the magnitude and variation
of voltage. On the other hand, like a boat without an anchor, an
ungrounded signal will “float”. Floating a signal will generally make it
more susceptible to common-mode noise interference. A common-
mode signal is a signal that appears “common” to a set of floating points.
Common-mode noise signals can be inductive or capacitive coupled from
external sources, or they may be driven by the circuits themselves. All
electronic circuits are limited in their ability to filter or reject common-
mode noise, especially if the potential of a measurement point is allowed
to float outside the limits of the circuitry. The end result is that common-
mode noise can drive spurious measurements or spurious output
behavior. One example of the importance of grounding is with respect to
differential mode measurements, such as that used for some types of
instruments, like thermocouple amplifiers. If you do not earth ground one lead and anchor it from
floating, you will likely note that the measurement appears noisier and more widely variant, and that is
assuming that a point of signal measurement doesn’t float outside of the common mode range of the
amplifier, at which point it cannot be measured or processed by the circuit properly. This is why you will
note that many connection diagrams for differential input pairs will show one lead (usually the minus
lead) making a connection to earth ground.
Most electrical equipment and industrial instruments utilize differential filters and transient suppression
devices at their wired connections to shunt potentially destructive energy from one lead to another and
to steer this energy to ground. This same energy ultimately seeks a path to earth ground where it
originated and can typically be dissipated more safely. Failure to apply ground to the circuit at the
designated connection will leave the circuit vulnerable to damage, as the circuitry must then absorb and
dissipate this transient energy in the absence of a clear path to ground. This connection to ground is
very important and will help to extend the life of your equipment—always be sure to identify these
Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com
3
connections to earth ground and make sure that you provide a low impedance path to ground at these
points to protect your equipment from damage.
For electrical equipment, all connections to power are usually grounded at some point. The device may
be optionally DC powered, but a conversion from AC to DC still occurs and a path back to earth ground
usually exists. Isolated power sources usually ground their DC output power minus terminals. Inside
electrical equipment, the power connection is often isolated from other parts of the circuit, such as its
inputs, its outputs, its network connection, etc. Noise exists in each of these isolated circuits and takes
many forms. In many applications, the DC power supply to the circuit itself will provide a path to earth
ground at its DC minus terminal. Many instrument manufacturers recognize this and will often employ
isolation capacitors connected inside their own circuits between the various isolated reference planes
and the DC minus connection to the device, which is often indirectly earth grounded via the power
supply. These capacitors significantly reduce radiated emissions from the device by providing a path to
earth ground where transient energy on each of the isolated planes can be shunted through the
capacitor on its way to ground. In this way with these devices, the earth ground connection at the
power supply often serves as a kind of default path to ground for harmful energy, even if the other parts
of the circuit have not been properly grounded. Still, do not be tempted to float isolated portions of
your device and rely only on these isolation capacitors to provide protection, as they can never compete
with a direct, hard-wired connection to earth ground. It’s always best to refer to your connection
diagrams and wire ground connections as recommended.
GROUND AS A TRANSIENT LIMITER
Modern powered circuits are awash in transient energy from
many sources, coupled via many paths, as illustrated at left.
Thus, the potential for encountering unintended voltage rise in
electronic equipment is ever present via its connection to
power, its exposure to ESD, and even its proximity to other
electronic devices (by conductive, inductive, capacitive, or
radiated noise coupling). Our connection to ground acts to
make our circuits safe and will help to stabilize our signals. This
ground connection also limits the potential voltage rise induced
on our circuit, typically via lightning, line surges, and even
during unintentional contact with higher-voltage.
To help filter the effects of unintended voltage signals, most
electronic equipment will utilize differential filters, capacitors,
and other transient suppression devices at their wired
connections. The purpose of these devices is to shunt
potentially destructive energy from one lead to another, usually in an attempt to squelch the imposed
voltage and steer the resultant destructive current or charge to earth ground where it can be dissipated
more safely. If you fail to connect ground to a designated wired terminal, you leave this energy with no
place to go except through your circuit where harmful voltage levels and high transient current levels
can wreak havoc and drive damage. So you should think of your connection to ground as an integral
part of your circuit’s transient protection. Without it, you leave your equipment unprotected and
exposed to potential destruction.
Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com
4
For example, lightning occurs when atmospheric charge finds a path to earth. Any circuitry in this path,
or in the presence of this path to earth, can be easily destroyed by the high voltages that are developed.
Providing a low impedance path to earth for powered equipment will help to minimize the potential
destruction of a lightning strike by keeping the resultant voltage increase above earth to a lower
potential. Without a connection to ground, the energy will continue to develop its high voltage across a
circuit, possibly resulting in damaging levels of current that may ultimately destroy the circuit. A low
impedance connection to ground will instead help carry this energy into the earth before it destroys the
circuit it is otherwise distributed across in its transfer along a path to earth ground.
Earlier I mentioned that a side benefit of a connection to ground is that it offers EMC benefits by
lowering system noise and radiated emissions. It does this the same way that it works to squelch the
effects of unintended voltage signals sourced by lightning and other sources—by stabilizing voltages and
limiting voltage variations, and by providing a low impedance path to earth ground where transient
energy can be safely dissipated. Without a clear path to earth ground, this energy will be forced through
the circuit and drive signal error, erratic behavior, and potentially damage the circuit.
IMPROVING YOUR CONNECTION TO GROUND
At this point, you should recognize the importance of providing a good connection to ground—for
personal safety and protection from electrical shock, to stabilize signals and minimize fluctuations, and
to limit the magnitude of induced voltages and peak currents. As an engineer for a manufacturer of
industrial instruments, I am often called to task for lowering a product’s emissions or raising its EMC
immunity with respect to ESD, EFT, and other interference. I can honestly say that most of the time, the
solution to these problems lies in the correct application of earth ground. So how do you improve your
connection to ground to help realize these benefits in your applications?
To go about improving your connection to ground, you can start by calibrating the way you think about
ground. Specifically, you need to think of your connection to ground as a drain that you flush all the
unwanted energy in your electrical system down (ground faults, electromagnetic interference, ESD
strikes, fluctuations caused by nearby lightning, power line surges, transient noise, etc.). You want this
drain to quickly accept unwanted electrical charge from your circuit. Now you wouldn’t connect the
drain of your home through a straw, or unwanted waste would back up and contaminate your home.
Instead, you would want a wide-open pipe leading to your waste-water drain, and you would avoid
angles and changes in direction, keeping this pipe as short and straight as possible to help prevent
backup. It’s the same way with ground—you want a wide-open, short and direct drain to earth that
doesn’t back “charge” up into your circuit. And just like the drain from your home, you can improve
your connection to ground by making it short as possible and by increasing its diameter. Chiefly, with
your connection to ground, your goal should be to reduce its resistance and its inductance by using a
larger diameter or “thicker” conductor, and by keeping its path as short as possible. Because inductance
and resistance both restrict the flow of current (as current through inductance cannot change
instantaneously), you want to minimize both the resistance and inductance in your connection to
ground so that it can more quickly drain transient energy from your circuit and dissipate it into the
earth.
All conductors have resistance and voltage across the conductor acts as a force to drive current through
the conductor. When you push current through a conductor, you establish different potentials at
different points along that conductor related to the IR voltage drop through the conductor. Ideally, you
want your ground to deliver nearly the same potential across it (ideally an equipotential voltage of 0V),
such that any tie to ground will see the same ground potential. If you fail in this regard, you give rise to
Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com
5
unwanted ground currents (ground loops) with possible negative side effects of increased noise and
interference in your system. In practice of course, an ideal ground is impossible to attain, but there are
still some things that you can do to approximate the ideal. Specifically, you need to pay close attention
to how you are making your connection to ground. For example, you can avoid having your circuit
grounds connect at different potentials by using a “star” grounding technique.
Star grounding is a concept where each ground connection (represented by each leg of a star) connects
outward from the same point (the center of the star). When you wire ground to your circuit, perhaps to
each isolated part of your circuit (like input, output, power, etc.), you strive to bring these connections
together via separate ground returns to one point (this is the center of your star ground), using short
and thick cables to minimize path resistance and inductance effects. The center of your star is usually
chosen as the ground return of the power supply to the circuit. It is sometimes chosen as the common
chassis connection where a conductive chassis makes its single connection to earth ground.
SOME BASIC GROUND RULES FOR WIRED EQUIPMENT
Consideration of ground can be very complex and application specific. But in many of these
applications, when we make wired connections to ground and to electrical equipment, there are a few
rules of thumb that are helpful:
 For isolated power applications where a connection to earth ground is not apparent, ground
should be chosen as the common return path from power supply (DC minus). It may be
necessary to hard-wire earth ground to this point if an earth ground connection is not already
made by the power supply.
 Do not ground a signal at more than one point. Typically a signal is grounded at its source
(including its shield).
 In general, as stated above, we try to never ground a cable at both ends. But one possible
exception to this rule is when we are grounding cable shields in small signal applications. For
most applications where only small differences in potential exist between grounds at each end
of the cable, our equipment will work better when its shield is grounded at each end of the
cable (at a minimum, ground it at the end closest to the noise source). Another exception is
where your equipment connects to power, as DC powered equipment will often connect earth
ground at the power supply minus terminal, but you should additionally include a connection to
ground local to the instrument. This is done not only to stabilize applied voltages, but also
because internal suppression devices in the instrument need a local, low resistance, low
inductance path to shunt potentially destructive energy.
 For EMC purposes, a wired signal between devices should have earth ground applied at the end
of the cable nearest the noise source of the signal, or nearest the noisiest device. Failure to
provide a path to ground at the “origin” of the noise may result in the cable and/or its shield
becoming an antenna for this noise, increasing its power and spread into other areas of the
circuit, as well as potentially increasing system emissions.
 Do not use the chassis of the device as the ground conductor (i.e. make only one ground
connection to the chassis). Note that many devices are required by code to have a safety
ground connection to their metallic chassis or enclosure, but the chassis should never be used as
a return path for load current to the device (for “safety” ground, it is sometimes used only as a
return path for fault current). Note that the chassis connection to earth ground is sometimes
used as the center of a star grounding scheme for the enclosed circuit.
Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com
6
 Many instruments are housed in plastic enclosures and may not make a connection to earth
ground via their chassis. These instruments usually rely on direct-wired connections to earth
ground at their terminals, as directed in their connection diagrams. In general, signal
connections to these devices should be earth grounded at the end of the I/O cable nearest the
instrument. This is because the instrument needs a low-impedance/low-inductance path to
earth ground locally, to allow its various filters, capacitors, and transient suppression devices to
shunt potentially destructive energy to earth ground without being impeded by high levels of
inductance and resistance in the path to earth.
 Do not bundle noisy or high-energy signals or power with low level signals. Route all AC power
wires away from sensitive signals and signal paths.
 Do not duplicate ground connections to the main power line at different points—try to connect
all AC powered devices to the same power outlet when possible and safe. Similarly, use a star-
grounding concept when making ground connections to your circuit.
 Do not combine or bundle isolated signals in the same shield or conduit.
 Do not allow conductive material to float unattached to any ground (it should connect to ground
at one point).
 Do not leave unused shielded conductors in a bundled cable disconnected from ground. Ground
unused conductors of a bundle at the load. In general, ground the cable shield at the signal
source (or at both ends).
 Minimize the length and loop area of the wires that break-out from a bundled or shielded cable,
just before the wires make their connection to the equipment.
CONCLUSION
By now, you should have a heightened awareness of the importance of ground to the safety of
personnel and the operation of your equipment. Never float signals or neglect to make ground
connections as shown in the connection diagrams for your device, or you increase your risk of electrical
shock and may even damage your equipment. Grounding signals will help to stabilize them and help
limit induced transient voltages and current. Many electrical problems can trace their generation to a
poor, improper, or a missing connection to earth ground. Don’t neglect this important connection to
realize benefits of increased safety and signal integrity for your wired equipment.
ABOUT ACROMAG
Acromag has designed and manufactured measurement and control products for more than 50 years.
They are an AS9100 and ISO 9001-certified international corporation with a world headquarters near
Detroit, Michigan and a global network of sales representatives and distributors. Acromag offers a
complete line of industrial I/O products including a variety of process instruments, signal conditioners,
and distributed fieldbus I/O modules that are available with a 2-year warranty. Industries served include
chemical processing, manufacturing, defense, energy, and water services.
For more information about Acromag products, call the Inside Sales Department at (248) 295-0880, FAX
(248) 624-9234. E-mail sales@acromag.com or write Acromag at 30765 South Wixom Road, Wixom, MI
48393 USA. The web site is www.acromag.com.
Electrical Grounding Rules Part 1 and Part 2 is available for download:
www.acromag.com/page/white-paper-electrical-ground-rules

Más contenido relacionado

Último

Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01KreezheaRecto
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756dollysharma2066
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesPrabhanshu Chaturvedi
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Christo Ananth
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spaintimesproduction05
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 

Último (20)

Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spain
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 

Destacado

Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Applitools
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at WorkGetSmarter
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...DevGAMM Conference
 
Barbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationErica Santiago
 
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellGood Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellSaba Software
 

Destacado (20)

Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 
ChatGPT webinar slides
ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slides
 
More than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike RoutesMore than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike Routes
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
 
Barbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy Presentation
 
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them wellGood Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
Good Stuff Happens in 1:1 Meetings: Why you need them and how to do them well
 

Electrical Grounding Practices - Part 3 of 3

  • 1. Acromag, Incorporated 30765 S Wixom Rd, Wixom, MI 48393 USA Tel: 248-295-0880 • Fax: 248-624-9234 • www.acromag.com Copyright © Acromag, Inc. June 2014 8501-021 White Paper: Electrical Ground Rules Best Practices for Grounding Your Electrical Equipment Examining the role of ground as a voltage stabilizer and transient limiter, along with tips on improving safety and signal integrity (Part 3 of 3)
  • 2. Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com 2 This paper is part three of a three part series that takes a look at grounding and its role in protecting personnel, protecting equipment, and ensuring the integrity of electrical signals. In this part, we will examine ground and its role as a voltage stabilizer and transient limiter, as well as offer some tips on what you can do to improve your connection to ground to realize benefits to safety and signal integrity. In part one of this series (8500-993) we looked at the concept of grounding, the AC power system and its use of ground, and gave three main reasons why we ground electrical equipment: for safety, to stabilize electrical signals, and to limit transient voltages and current. In part two of this series (8501-020) we examined the use of ground as a means of protection from ground faults. We also looked at how ground fault circuit interrupter (GFCI) devices operate to protect us from severe shock. GROUND AS A VOLTAGE STABILIZER Think of voltage as a force that causes current to flow in any conductor—a greater voltage results in greater force that drives higher levels of current. High levels of current can drive errant circuit behavior, possibly damage equipment, and may even lead to personal injury. We want to ground signals to stabilize them and keep them from floating, and we do this to limit voltage magnitude and variation. In practice, connecting to ground helps stabilize signals during normal operation, acting like an anchor that limits the magnitude and variation of voltage. On the other hand, like a boat without an anchor, an ungrounded signal will “float”. Floating a signal will generally make it more susceptible to common-mode noise interference. A common- mode signal is a signal that appears “common” to a set of floating points. Common-mode noise signals can be inductive or capacitive coupled from external sources, or they may be driven by the circuits themselves. All electronic circuits are limited in their ability to filter or reject common- mode noise, especially if the potential of a measurement point is allowed to float outside the limits of the circuitry. The end result is that common- mode noise can drive spurious measurements or spurious output behavior. One example of the importance of grounding is with respect to differential mode measurements, such as that used for some types of instruments, like thermocouple amplifiers. If you do not earth ground one lead and anchor it from floating, you will likely note that the measurement appears noisier and more widely variant, and that is assuming that a point of signal measurement doesn’t float outside of the common mode range of the amplifier, at which point it cannot be measured or processed by the circuit properly. This is why you will note that many connection diagrams for differential input pairs will show one lead (usually the minus lead) making a connection to earth ground. Most electrical equipment and industrial instruments utilize differential filters and transient suppression devices at their wired connections to shunt potentially destructive energy from one lead to another and to steer this energy to ground. This same energy ultimately seeks a path to earth ground where it originated and can typically be dissipated more safely. Failure to apply ground to the circuit at the designated connection will leave the circuit vulnerable to damage, as the circuitry must then absorb and dissipate this transient energy in the absence of a clear path to ground. This connection to ground is very important and will help to extend the life of your equipment—always be sure to identify these
  • 3. Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com 3 connections to earth ground and make sure that you provide a low impedance path to ground at these points to protect your equipment from damage. For electrical equipment, all connections to power are usually grounded at some point. The device may be optionally DC powered, but a conversion from AC to DC still occurs and a path back to earth ground usually exists. Isolated power sources usually ground their DC output power minus terminals. Inside electrical equipment, the power connection is often isolated from other parts of the circuit, such as its inputs, its outputs, its network connection, etc. Noise exists in each of these isolated circuits and takes many forms. In many applications, the DC power supply to the circuit itself will provide a path to earth ground at its DC minus terminal. Many instrument manufacturers recognize this and will often employ isolation capacitors connected inside their own circuits between the various isolated reference planes and the DC minus connection to the device, which is often indirectly earth grounded via the power supply. These capacitors significantly reduce radiated emissions from the device by providing a path to earth ground where transient energy on each of the isolated planes can be shunted through the capacitor on its way to ground. In this way with these devices, the earth ground connection at the power supply often serves as a kind of default path to ground for harmful energy, even if the other parts of the circuit have not been properly grounded. Still, do not be tempted to float isolated portions of your device and rely only on these isolation capacitors to provide protection, as they can never compete with a direct, hard-wired connection to earth ground. It’s always best to refer to your connection diagrams and wire ground connections as recommended. GROUND AS A TRANSIENT LIMITER Modern powered circuits are awash in transient energy from many sources, coupled via many paths, as illustrated at left. Thus, the potential for encountering unintended voltage rise in electronic equipment is ever present via its connection to power, its exposure to ESD, and even its proximity to other electronic devices (by conductive, inductive, capacitive, or radiated noise coupling). Our connection to ground acts to make our circuits safe and will help to stabilize our signals. This ground connection also limits the potential voltage rise induced on our circuit, typically via lightning, line surges, and even during unintentional contact with higher-voltage. To help filter the effects of unintended voltage signals, most electronic equipment will utilize differential filters, capacitors, and other transient suppression devices at their wired connections. The purpose of these devices is to shunt potentially destructive energy from one lead to another, usually in an attempt to squelch the imposed voltage and steer the resultant destructive current or charge to earth ground where it can be dissipated more safely. If you fail to connect ground to a designated wired terminal, you leave this energy with no place to go except through your circuit where harmful voltage levels and high transient current levels can wreak havoc and drive damage. So you should think of your connection to ground as an integral part of your circuit’s transient protection. Without it, you leave your equipment unprotected and exposed to potential destruction.
  • 4. Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com 4 For example, lightning occurs when atmospheric charge finds a path to earth. Any circuitry in this path, or in the presence of this path to earth, can be easily destroyed by the high voltages that are developed. Providing a low impedance path to earth for powered equipment will help to minimize the potential destruction of a lightning strike by keeping the resultant voltage increase above earth to a lower potential. Without a connection to ground, the energy will continue to develop its high voltage across a circuit, possibly resulting in damaging levels of current that may ultimately destroy the circuit. A low impedance connection to ground will instead help carry this energy into the earth before it destroys the circuit it is otherwise distributed across in its transfer along a path to earth ground. Earlier I mentioned that a side benefit of a connection to ground is that it offers EMC benefits by lowering system noise and radiated emissions. It does this the same way that it works to squelch the effects of unintended voltage signals sourced by lightning and other sources—by stabilizing voltages and limiting voltage variations, and by providing a low impedance path to earth ground where transient energy can be safely dissipated. Without a clear path to earth ground, this energy will be forced through the circuit and drive signal error, erratic behavior, and potentially damage the circuit. IMPROVING YOUR CONNECTION TO GROUND At this point, you should recognize the importance of providing a good connection to ground—for personal safety and protection from electrical shock, to stabilize signals and minimize fluctuations, and to limit the magnitude of induced voltages and peak currents. As an engineer for a manufacturer of industrial instruments, I am often called to task for lowering a product’s emissions or raising its EMC immunity with respect to ESD, EFT, and other interference. I can honestly say that most of the time, the solution to these problems lies in the correct application of earth ground. So how do you improve your connection to ground to help realize these benefits in your applications? To go about improving your connection to ground, you can start by calibrating the way you think about ground. Specifically, you need to think of your connection to ground as a drain that you flush all the unwanted energy in your electrical system down (ground faults, electromagnetic interference, ESD strikes, fluctuations caused by nearby lightning, power line surges, transient noise, etc.). You want this drain to quickly accept unwanted electrical charge from your circuit. Now you wouldn’t connect the drain of your home through a straw, or unwanted waste would back up and contaminate your home. Instead, you would want a wide-open pipe leading to your waste-water drain, and you would avoid angles and changes in direction, keeping this pipe as short and straight as possible to help prevent backup. It’s the same way with ground—you want a wide-open, short and direct drain to earth that doesn’t back “charge” up into your circuit. And just like the drain from your home, you can improve your connection to ground by making it short as possible and by increasing its diameter. Chiefly, with your connection to ground, your goal should be to reduce its resistance and its inductance by using a larger diameter or “thicker” conductor, and by keeping its path as short as possible. Because inductance and resistance both restrict the flow of current (as current through inductance cannot change instantaneously), you want to minimize both the resistance and inductance in your connection to ground so that it can more quickly drain transient energy from your circuit and dissipate it into the earth. All conductors have resistance and voltage across the conductor acts as a force to drive current through the conductor. When you push current through a conductor, you establish different potentials at different points along that conductor related to the IR voltage drop through the conductor. Ideally, you want your ground to deliver nearly the same potential across it (ideally an equipotential voltage of 0V), such that any tie to ground will see the same ground potential. If you fail in this regard, you give rise to
  • 5. Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com 5 unwanted ground currents (ground loops) with possible negative side effects of increased noise and interference in your system. In practice of course, an ideal ground is impossible to attain, but there are still some things that you can do to approximate the ideal. Specifically, you need to pay close attention to how you are making your connection to ground. For example, you can avoid having your circuit grounds connect at different potentials by using a “star” grounding technique. Star grounding is a concept where each ground connection (represented by each leg of a star) connects outward from the same point (the center of the star). When you wire ground to your circuit, perhaps to each isolated part of your circuit (like input, output, power, etc.), you strive to bring these connections together via separate ground returns to one point (this is the center of your star ground), using short and thick cables to minimize path resistance and inductance effects. The center of your star is usually chosen as the ground return of the power supply to the circuit. It is sometimes chosen as the common chassis connection where a conductive chassis makes its single connection to earth ground. SOME BASIC GROUND RULES FOR WIRED EQUIPMENT Consideration of ground can be very complex and application specific. But in many of these applications, when we make wired connections to ground and to electrical equipment, there are a few rules of thumb that are helpful:  For isolated power applications where a connection to earth ground is not apparent, ground should be chosen as the common return path from power supply (DC minus). It may be necessary to hard-wire earth ground to this point if an earth ground connection is not already made by the power supply.  Do not ground a signal at more than one point. Typically a signal is grounded at its source (including its shield).  In general, as stated above, we try to never ground a cable at both ends. But one possible exception to this rule is when we are grounding cable shields in small signal applications. For most applications where only small differences in potential exist between grounds at each end of the cable, our equipment will work better when its shield is grounded at each end of the cable (at a minimum, ground it at the end closest to the noise source). Another exception is where your equipment connects to power, as DC powered equipment will often connect earth ground at the power supply minus terminal, but you should additionally include a connection to ground local to the instrument. This is done not only to stabilize applied voltages, but also because internal suppression devices in the instrument need a local, low resistance, low inductance path to shunt potentially destructive energy.  For EMC purposes, a wired signal between devices should have earth ground applied at the end of the cable nearest the noise source of the signal, or nearest the noisiest device. Failure to provide a path to ground at the “origin” of the noise may result in the cable and/or its shield becoming an antenna for this noise, increasing its power and spread into other areas of the circuit, as well as potentially increasing system emissions.  Do not use the chassis of the device as the ground conductor (i.e. make only one ground connection to the chassis). Note that many devices are required by code to have a safety ground connection to their metallic chassis or enclosure, but the chassis should never be used as a return path for load current to the device (for “safety” ground, it is sometimes used only as a return path for fault current). Note that the chassis connection to earth ground is sometimes used as the center of a star grounding scheme for the enclosed circuit.
  • 6. Tel: 248-295-0880  Fax: 248-624-1541  sales@acromag.com  www.acromag.com 6  Many instruments are housed in plastic enclosures and may not make a connection to earth ground via their chassis. These instruments usually rely on direct-wired connections to earth ground at their terminals, as directed in their connection diagrams. In general, signal connections to these devices should be earth grounded at the end of the I/O cable nearest the instrument. This is because the instrument needs a low-impedance/low-inductance path to earth ground locally, to allow its various filters, capacitors, and transient suppression devices to shunt potentially destructive energy to earth ground without being impeded by high levels of inductance and resistance in the path to earth.  Do not bundle noisy or high-energy signals or power with low level signals. Route all AC power wires away from sensitive signals and signal paths.  Do not duplicate ground connections to the main power line at different points—try to connect all AC powered devices to the same power outlet when possible and safe. Similarly, use a star- grounding concept when making ground connections to your circuit.  Do not combine or bundle isolated signals in the same shield or conduit.  Do not allow conductive material to float unattached to any ground (it should connect to ground at one point).  Do not leave unused shielded conductors in a bundled cable disconnected from ground. Ground unused conductors of a bundle at the load. In general, ground the cable shield at the signal source (or at both ends).  Minimize the length and loop area of the wires that break-out from a bundled or shielded cable, just before the wires make their connection to the equipment. CONCLUSION By now, you should have a heightened awareness of the importance of ground to the safety of personnel and the operation of your equipment. Never float signals or neglect to make ground connections as shown in the connection diagrams for your device, or you increase your risk of electrical shock and may even damage your equipment. Grounding signals will help to stabilize them and help limit induced transient voltages and current. Many electrical problems can trace their generation to a poor, improper, or a missing connection to earth ground. Don’t neglect this important connection to realize benefits of increased safety and signal integrity for your wired equipment. ABOUT ACROMAG Acromag has designed and manufactured measurement and control products for more than 50 years. They are an AS9100 and ISO 9001-certified international corporation with a world headquarters near Detroit, Michigan and a global network of sales representatives and distributors. Acromag offers a complete line of industrial I/O products including a variety of process instruments, signal conditioners, and distributed fieldbus I/O modules that are available with a 2-year warranty. Industries served include chemical processing, manufacturing, defense, energy, and water services. For more information about Acromag products, call the Inside Sales Department at (248) 295-0880, FAX (248) 624-9234. E-mail sales@acromag.com or write Acromag at 30765 South Wixom Road, Wixom, MI 48393 USA. The web site is www.acromag.com. Electrical Grounding Rules Part 1 and Part 2 is available for download: www.acromag.com/page/white-paper-electrical-ground-rules