SlideShare una empresa de Scribd logo
1 de 38
Descargar para leer sin conexión
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
1
MINISTERSTWO EDUKACJI NARODOWEJ
Grzegorz Lis
Eksploatowanie systemów radiokomunikacyjnych
312[02].Z2.02
Poradnik dla ucznia
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
2
Wydawca
Instytut Technologii Eksploatacji – Państwowy Instytut Badawczy Radom
2007
Recenzenci: prof. PŁ dr hab. inż.
Krzysztof Pacholski dr inż. Marian Jerzy
Korczyński
Opracowanie redakcyjne: mgr
inż. Ryszard Zankowski
Konsultacja:
mgr Małgorzata Sienna
Poradnik stanowi obudowę dydaktyczną programu jednostki modułowej 312[02].Z2.02,
„Eksploatowanie systemów radiokomunikacyjnych”, zawartego w modułowym programie
nauczania dla zawodu technik teleinformatyk.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
3
Wydawca
Instytut Technologii Eksploatacji – Państwowy Instytut Badawczy, Radom 2007
SPIS TREŚCI
1. Wprowadzenie 3
2. Wymagania wstępne 5
3. Cele kształcenia 6
4. Materiał nauczania 7
4.1. Radiowe sieci dostępowe 7
4.1.1. Materiał nauczania 7
4.1.2. Pytania sprawdzające 9
4.1.3. Ćwiczenia 10
4.1.4. Sprawdzian postępów 10
4.2. CB-Radio 11
4.2.1. Materiał nauczania 11
4.2.2. Pytania sprawdzające 15
4.2.3. Ćwiczenia 15
4.2.4. Sprawdzian postępów 16
4.3. System radiokomunikacji cyfrowej TETRA 17
4.3.1. Materiał nauczania 17
4.3.2. Pytania sprawdzające 24
4.3.3. Ćwiczenia 25
4.3.4. Sprawdzian postępów 26
4.4. System radiokomunikacji DECT 27
4.4.1. Materiał nauczania 27
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
4
4.4.2. Pytania sprawdzające 29
4.4.3. Ćwiczenia 30
4.4.4. Sprawdzian postępów 31
5. Sprawdzian osiągnięć 32
6. Literatura 37
1. WPROWADZENIE
Poradnik będzie Ci pomocny w przyswajaniu wiedzy o budowie, działaniu i usługach
systemów radiokomunikacyjnych oraz ich eksploatowania i zarządzania. W poradniku
znajdziesz:
– wymagania wstępne – wykaz umiejętności, jakie powinieneś mieć już ukształtowane, abyś
bez problemów mógł korzystać z poradnika,
– cele kształcenia – wykaz umiejętności, jakie ukształtujesz podczas pracy z poradnikiem,
– materiał nauczania – wiadomości teoretyczne niezbędne do opanowania treści jednostki
modułowej,
– zestaw pytań, abyś mógł sprawdzić, czy już opanowałeś określone treści,
– ćwiczenia, które pomogą Ci zweryfikować wiadomości teoretyczne oraz ukształtować
umiejętności praktyczne,
– sprawdzian postępów,
– sprawdzian osiągnięć, przykładowy zestaw zadań. Zaliczenie testu potwierdzi opanowanie
materiału całej jednostki modułowej, – literaturę uzupełniającą.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
5
Schemat układu jednostek modułowych
2. WYMAGANIA WSTĘPNE
Przystępując do realizacji programu jednostki modułowej powinieneś umieć: −
interpretować podstawowe pojęcia z zakresu elektroniki,
− czytać schematy ideowe i montażowe układów i podzespołów elektronicznych,
− wyjaśniać zjawiska związane z przesyłaniem sygnałów analogowych i cyfrowych,
− wyjaśniać zasady przetwarzania analogowo-cyfrowego sygnałów,
− posługiwać się pojęciami z zakresu radiofonii i telewizji,
312[02].Z2
Urządzenia i systemy telekomunikacyjne
312[02].Z2.02
Eksploatowanie systemów
radiokomunikacyjnych
312[02].Z2.01
Badanie urządzeń radiowo-telewizyjnych
312[02].Z2.03
Eksploatowanie sieci telefonii
komórkowych
312[02].Z2.04
Eksploatowanie telekomunikacyjnych
systemów przewodowych
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
6
− obliczać wielkości elektryczne związane z radiofonią i telewizją,
− wyjaśniać zasady tworzenia i przetwarzania sygnałów analogowych w urządzeniach
radiowo-telewizyjnych,
− posługiwać się dokumentacją techniczną urządzeń radiowo-telewizyjnych,
− charakteryzować poszczególne bloki funkcjonalne nadajników i odbiorników radiowych oraz
telewizyjnych,
− wykonywać montaż elementów i podzespołów urządzeń i sieci telekomunikacyjnych,
− użytkować systemy telekomunikacyjne oraz dokonywać ich przeglądów i napraw,
− stosować przepisy bezpieczeństwa i higieny pracy, ochrony przeciwpożarowej oraz ochrony
środowiska.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
7
3. CELE KSZTAŁCENIA
W wyniku realizacji programu jednostki modułowej powinieneś umieć:
– posłużyć się pojęciami z zakresu systemów telefonii komórkowej,
– posłużyć się pojęciami z zakresu radiokomunikacji,
– wyjaśnić budowę i działanie systemów radiokomunikacyjnych,
– odczytać schematy blokowe i ideowe sprzętu radiokomunikacyjnego,
– wyjaśnić zasadę działania radiokomunikacji publicznej CB,
– wyjaśnić zasadę działania radiokomunikacji służb ratunkowych,
– wyjaśnić zasadę działania radiokomunikacji trankingowej,
– rozróżnić systemy oraz sieci łączności radiokomunikacji cyfrowej,
– zastosować przyrządy pomiarowe stosowane w radiokomunikacji,
– wyjaśnić zastosowanie radiokomunikacji w sieciach teleinformatycznych,
– zintegrować urządzenia radiokomunikacyjne ze sprzętem teleinformatycznym,
– zastosować zasady bezpieczeństwa i higieny pracy podczas użytkowania i konserwacji
sprzętu radiokomunikacyjnego,
– posłużyć się językiem angielskim zawodowym w zakresie zagadnień radiokomunikacji,
– udzielić pierwszej pomocy osobom poszkodowanym podczas obsługi sprzętu
radiokomunikacyjnego,
– posłużyć się sprzętem ratunkowym i ratowniczym.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
8
4. MATERIAŁ NAUCZANIA
4.1. Radiowe sieci dostępowe
4.1.1. Materiał nauczania
Radiowe sieci dostępowe, nazywane także bezprzewodowymi pętlami abonenckimi,
stanowią przykład systemu łączności leżącego na pograniczu sieci stałych i systemów
radiokomunikacji ruchomej. Ich popularność wyraźnie rośnie w ostatnich latach, do czego
zdecydowanie przyczyniło się upowszechnienie systemów radiokomunikacji ruchomej, a
szczególnie opracowanie nowych standardów systemów telefonii komórkowej i telefonu
bezprzewodowej, miniaturyzacja podzespołów i obniżka ich kosztów.
W architekturze klasycznych publicznych sieci telekomunikacyjnych, łącze lokalne
odgrywa bardzo istotną rolę. Poprzez takie łącze realizuje się dostęp abonentów do sieci, a
poprzez nie do usług oferowanych w sieci. Pojęcie pętli abonenckiej obejmuje wszystkie
elementy publicznej sieci telekomunikacyjnej pomiędzy centralą a końcowym abonentem
usługo telekomunikacyjnej (rys. 1).
Rys. 1. Części składowe pętli abonenckiej oraz wykorzystywane w niej sposoby transmisji [1, s. 177]
Pętla abonencka składa się z części transmisyjnej, łączącej centralę z koncentratorem oraz
z części dostępowej, pomiędzy koncentratorem a abonentem końcowym. Obie części pętli
abonenckiej (transmisyjna i dostępowa) mogą fizycznie wykorzystywać różne typy łączy
telekomunikacyjnych (kablowe, światłowodowe, satelitarne, radiowe naziemne).
W chwili obecnej, łącza abonenckie w publicznej stałej sieci telefonicznej realizuje się z
reguły przy wykorzystaniu symetrycznych kabli miedzianych. Rozwiązanie to ma szereg wad.
Instalacja tradycyjnego okablowania w pętlach abonenckich jest czasochłonna i droga, a dalsze
utrzymanie istniejącego okablowania wymaga znacznych nakładów. Dlatego też operatorzy
telekomunikacyjni poszukują nowych, bardziej opłacalnych rozwiązań umożliwiających
podłączenie abonenta końcowego do infrastruktury sieci.
Organizacja łączności w bezprzewodowym łączu lokalnym przypomina w pewnym stopniu
sytuację w pojedynczej komórce systemu telefonii komórkowej. W obu przypadkach mamy do
czynienia ze stacją nadawczo-odbiorczą połączoną łączem stałym z pozostałymi węzłami
klasycznej sieci telekomunikacyjnej. Wokół stacji znajduje się obszar łączności, którego
kształt, mówiąc w dużym uproszczeniu, przypomina koło. Promień koła wynika z zasięgu
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
9
łączności. Na obszarze łączności znajduje się pewna liczba terminali, które są zdolne poprzez
łącze radiowe realizować łączność pomiędzy sobą, z abonentami sieci stałej, a także za jej
pośrednictwem z abonentami innych systemów telekomunikacyjnych.
Pomiędzy systemami telefonii komórkowej a radiowymi sieciami dostępowymi istnieje
także kilka istotnych różnic. Przede wszystkim, w radiowej sieci dostępowej zbiór terminali
działających w obszarze odpowiadającym pojedynczej stacji bazowej jest stały, tj. terminale
muszą być zarejestrowane u operatora danej sieci dostępowej i posiadają przypisaną danemu
terminalowi wyłącznie jedną radiową stację bazową. W przeciwieństwie do tego, w systemie
komórkowym liczba i rodzaj terminali w danej komórce podlegają bezustannym zmianom. W
efekcie, radiowe systemy dostępowe są znacznie uboższe w warstwie sterującej, m.in.
pozbawione są funkcji śledzenia ruchu abonentów, ich rejestracji (na bieżąco) w
poszczególnych komórkach, a także nie jest realizowane przełączanie rozmów pomiędzy
sąsiednimi stacjami bazowymi. Podkreślić należy, że ewentualne przemieszczanie się terminali
wewnątrz obszaru odpowiadającego danej stacji bazowej jest w tym przypadku nieistotne.
Sieci dostępowe oparte na analogowych systemach komórkowych
W radiowych systemach dostępowych stosuje się następujące standardy telefonii
komórkowej analogowej: AMPS/TACS oraz NMT. W systemach tego typu sygnał mowy
przesyła się z wykorzystaniem modulacji FM w kanałach radiowych o szerokości 25 lub 30
kHz w pasmach: 450 MHz, 800 MHz lub 900 MHz. Głównymi zaletami tego typu rozwiązań
jest to, że są to systemy stosunkowo proste konstrukcyjnie o stosunkowo dużym zasięgu (20–
30 km) i niewielkich opóźnieniach w transmisji.
Niestety znana konstrukcja umożliwia podsłuchiwanie rozmów przesyłanych w kanale
radiowym a proste mechanizmy służące do identyfikacji terminali nie zabezpieczają w
dostateczny sposób systemu przed dostępem niepowołanych osób. Ponadto systemy te mają
niewielkie przepływności i pojemności określane liczbą podłączonych abonentów.
Sieci dostępowe oparte na cyfrowych systemach komórkowych
W tym przypadku możliwe jest wykorzystanie standardów cyfrowych GSM, wraz z jego
wersją wysokoczęstotliwościową DCS 1800, a także standardu DAMPS. Systemy te działają w
pasmach 900 MHz oraz 1800 MHz. Sygnały mowy przesyła się w kanale radiowym w postaci
ciągu binarnego o przepustowości od około 7 kbit/s do 13 kbit/s.
Główne zalety rozwiązań opartych na cyfrowych systemach telefonii komórkowej
wynikają z tego, że są to nowoczesne, szeroko stosowane standardy, odpowiadające
współczesnym wymaganiom. Powszechność standardów oznacza łatwy dostęp do szerokiej
gamy układów scalonych, dostarczanych przez wielu producentów, a także niskie koszty stałe
związane z projektowaniem systemu, w przeliczeniu na pojedynczego użytkownika. Systemy
cyfrowe oferują duże pojemności. Typowa stacja bazowa z 8 nadajnikami radiowymi obsługuje
64 kanały rozmowne, co pozwala na zaspokojenie potrzeb ruchowych ponad 600 abonentów
prywatnych. W przypadku systemów pracujących poniżej l GHz, zasięg łączności jest
porównywalny z systemami analogowymi, a w przypadku łączności w paśmie 1800 MHz jest
znacznie mniejszy: rzędu 10–20 km. W porównaniu z systemami analogowymi, jakość
łączności w systemach cyfrowych zależy znacznie mniej od odległości terminala od stacji
bazowej. Wreszcie cyfrowa obróbka sygnału mowy oraz zastosowanie układów
mikroprocesorowych umożliwia stosowanie zaawansowanych procedur służących szyfrowaniu
informacji oraz identyfikacji użytkowników.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
10
Sieci dostępowe oparte na cyfrowych systemach telefonii bezprzewodowej
W systemach pętli abonenckich stosowane są, jak dotąd, następujące standardy cyfrowych
systemów bezprzewodowych: DECT oraz CT 2. Sygnał mowy w tych systemach nie zostaje
poddany większej kompresji, w kanale przesyłany jest w postaci ciągu binarnego o
przepływności 32 kbit/s, co odpowiada jakości sygnału mowy przesyłanego w sieci stałej.
Proste algorytmy obróbki sygnału mowy prowadzą z kolei do niewielkich opóźnień, rzędu 10–
15 ms.
Systemy telefonii bezprzewodowej, w przeciwieństwie do standardów telefonii
komórkowej, definiują głównie interfejs radiowy co sprawia, że projektant ma dużą swobodę
w definiowaniu funkcji charakterystycznych dla danego zastosowania. Dogodna jest realizacja
dostępu użytkownika do sieci ISDN, co najmniej z przepływnościami 32 kbit/s, a w przypadku
standardu DECT 144 kbit/s. Złożoność sprzętowa systemu jest niewielka (CT 2) lub średnia
(DECT); w każdym razie jest ona mniejsza od złożoności systemów komórkowych. Cyfrowa
realizacja sprzyja wbudowywaniu nowoczesnych mechanizmów identyfikacji rozmówców i
szyfrowania informacji. System DECT posiada takie mechanizmy wbudowane, a w systemie
CT 2 możne je łatwo wprowadzić jako opcję dodatkową.
Cechą charakterystyczną wszystkich systemów telefonii bezprzewodowej jest ich niewielki
zasięg łączności: typowo do kilkuset metrów. Bezwzględna pojemność systemu, mierzona
liczbą abonentów obsługiwanych przez jedną stację bazową, jest niewielka (CT 2) lub średnia
(DECT).
Sieci dostępowe oparte na wielodostępie kodowym CDMA
Bezprzewodowe pętle abonenckie realizowane w technologiach opisanych powyżej
wykorzystywały sygnały wąskopasmowe do transmisji wiadomości. Innym rozwiązaniem jest
zastosowanie do tego celu sygnałów z poszerzonym widmem, co prowadzi do tzw.
zwielokrotniania kodowego sygnałów. System oparty na technice CDMA cechuje się wysoką
odpornością na zakłócenia, niewielkimi opóźnieniami oraz dużymi pojemnościami.
Zalety systemów szerokopasmowych są szczególnie widoczne jedynie w przypadkach gdy
szerokość pasma wykorzystywanego przez system jest dostatecznie duża, co nie jest łatwo
zrealizować w praktyce, wobec znacznego zagęszczenia użytkowników pasma radiowego.
System mikrofalowe typu point-multipoint
Ostatnim sposobem wykorzystywanym do realizacji bezprzewodowych pętli abonenckich
jest rozwiązanie polegające na zastosowaniu pewnej liczby indywidualnych łączy punkt-punkt,
w miejsce transmisji rozsiewczej jaka realizowana była w poprzednio omawianych systemach.
Rozwiązanie takie określa się często jako system microwave pointmultipoint (MPMP).
Systemy takie oferowane są przez kilku producentów. Pomimo licznych różnic występujących
pomiędzy poszczególnymi systemami MPMP, ich cechą wspólną jest wykorzystywanie
częstotliwości mikrofalowych z przedziału od 1,7 GHz do 2,4 GHz w celu zestawiania łączy o
przepływności od 2 Mbit/s do 4 Mbit/s. W systemach MPMP stosuje się najczęściej wielodostęp
czasowy TDMA. Cechą charakterystyczną systemów MPMP jest stosunkowo duży zasięg,
nawet przekraczający 50 km, przy czym wymagana jest bezpośrednia widoczność pomiędzy
nadajnikiem i odbiornikiem. Systemy MPMP mają dość dużą pojemność i zwykle jest
podłączany do tradycyjnej centrali telefonicznej, a opcjonalnie do sieci ISDN kanałem 2B+D.
4.1.2. Pytania sprawdzające
Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
11
1. Jakie są główne rodzaje sieci dostępowych?
2. Jakie typy łączy telekomunikacyjnych są wykorzystywane między centralą a
koncentratorem?
3. Jakie są główne parametry sieci dostępowych?
4. Na jakich częstotliwościach pracują analogowe sieci dostępowe?
5. Jakie są zalety systemu CDMA?
4.1.3. Ćwiczenia
Ćwiczenie 1
Porównaj na podstawie danych zamieszczonych w instrukcji ćwiczenia najważniejsze
parametry różnych sieci dostępowych.
Sposób wykonania ćwiczenia.
Aby wykonać ćwiczenie, powinieneś:
1) zapisać wszystkie posiadane dane liczbowe niezbędne do wykonania zadania,
2) ustalić, które wartości parametrów są bardziej korzystne, a które mniej, 3)
dokonać analizy porównawczej.
4) sformułować odpowiedź i wnioski.
Wyposażenie stanowiska pracy:
− zeszyt,
− długopis,
− instrukcja do
ćwiczenia, − kalkulator, −
literatura.
4.1.4. Sprawdzian postępów
Czy potrafisz:
Tak Nie
1) scharakteryzować główne rodzaje sieci dostępowych?
2) scharakteryzować łącza między koncentratorem i centralą?
3) określić główne parametry sieci dostępowych?
4) przyporządkować częstotliwości do określonych sieci dostępowych?
5) wskazać zalety poszczególnych rodzajów sieci dostępowych?
4.2. CB-Radio
4.2.1. Materiał nauczania
Nazwa CB-Radio pochodzi od angielskich słów „Citizens Band Radio” i oznacza
„Obywatelskie Pasmo Radiowe”.
CB w pojęciu potocznym to łączność radiowa dostępna dla wszystkich obywateli. Z nazwą
tą kojarzy się także gwałtownie rozwijający się ruch społeczny, skupiający zainteresowanych
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
12
nawiązywaniem łączności za pomocą prostych i stosunkowo tanich urządzeń radiowych. CB-
RADIO jest to rodzaj łączności radiowej nie wymagający odpowiednich kwalifikacji,
stwarzający jednocześnie porównywalne możliwości z łącznością kwalifikowaną-amatorską na
pasmach KF i UKF. Nie oznacza to jednak, że dla łączności CB wystarcza tylko posiadanie
radia. Generalna przewaga łączności CB w porównaniu z łącznością amatorską polega przede
wszystkim na:
− możliwości przemieszczania się nadajnika bez specjalnych zabiegów
administracyjnoprawnych, którą uzyskuje się przez zgłoszenie przy rejestracji urządzenia
w Państwowej Agencji Radiokomunikacyjnej (PAR). Uzyskanie takiego zezwolenia nie
wymaga żadnych wstępnych umiejętności operatorskich czy praktyki w nawiązywaniu
łączności,
− pozwala jednocześnie na uzupełnienie łączności telefonicznej wszędzie tam, gdzie jej nie ma
lub z różnych względów być nie może (woda, góry, samochód itp.). W wielu przypadkach
może się stać jedynym zabezpieczeniem ratunkowym, sposobem przekazania informacji
bądź porozumienia się,
− jest także pierwszym krokiem do łączności bardziej kwalifikowanej o większych mocach i
zasięgach na pasmach amatorskich. Znaczenie ma tu także pewna funkcja edukacyjna w
tym zakresie.
Na całym świecie do ogólnodostępnej komunikacji radiowej CB wydzielono specjalne
pasmo częstotliwości – 27 MHz. Pasmo to obejmujące zakres częstotliwości od 26 MHz do 28
MHz, podzielono na zakresy A, B, C, D i E.
A – 26,065 do 26,505 (MHz),
B – 26,515 do 26,955 (MHz),
C – 26,965 do 27,405 (MHz),
D – 27,415 do 27,855 (MHz),
E – 27,865 do 27,995 (MHz),
Dodatkowo zakresy podzielono na kanały oddalone od siebie co 10 kHz. Każdy zakres
obejmuje 40 kanałów.
Polska jest członkiem Europejskiej Konferencji Administracji Pocztowych i
Telekomunikacyjnych (CEPT), która to powołała i której podlega Europejski Instytut
Telekomunikacji do spraw Normalizacji (ETSI). Organizacja ta opracowała Europejską
Normę Telekomunikacyjną, zrzesza między innymi producentów i użytkowników sprzętu CB,
którzy biorą udział w redagowaniu norm i specyfikacji. Normy te określają wymagania
techniczne na produkcję, sposoby przeprowadzania badań w laboratoriach oraz zasady
właściwego wykorzystywania urządzeń.
Częstotliwości od 28,000 MHz do 29,700 MHz przeznaczone są wyłącznie dla
radiokomunikacji amatorskiej na zasadach pasma strzeżonego i w żadnym wypadku nie wolno
pracować na tych częstotliwościach bez licencji krótkofalarskiej.
Polskie przepisy komunikacji radiowej przewidują dla CB-radio 40 kanałów w paśmie C,
w zakresie częstotliwości 26,960–27,400 MHz.
Na świecie w zakresie B i C dopuszcza się korespondencję z modulacją AM i FM,
natomiast w pozostałych zakresach (zakres – używa się także nazwy czterdziestka) z modulacją
SSB.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
13
Podstawowym rodzajem modulacji stosowanym w Polsce jest modulacja amplitudy (AM),
zalecane jest stosowanie modulacji częstotliwości (FM) ze względu na mniejsze zakłócenia dla
otoczenia i wyższą jakość odbioru. Dopuszczone jest stosowanie modulacji jednowstęgowej
SSB (USB i LSB), co pozwala na powiększenie zasięgu i polepszenie jakości transmisji
(zwiększa odstęp od szumów i zakłóceń), jest to jednak okupione bardziej skomplikowaną
budową i wyższą ceną urządzeń. Dopuszczalna moc użytkowanych urządzeń wynosi aktualnie
4 W w emisji AM i FM oraz 12 W w emisji SSB.
REGULAMIN PRACY W PAŚMIE CB
1. Posiadacz radiotelefonu CB zobowiązany jest do użytkowania go zgodnie z warunkami
ustalonymi w zezwoleniu, w sposób nie naruszający obowiązującego w RP porządku
prawnego i zasad współżycia społecznego.
2. Właściciel urządzenia CB odpowiada za zgodny z przepisami sposób wykorzystania
swojego radiotelefonu również przez innych niż on sam użytkowników.
3. Posiadacz zezwolenia jest zobowiązany do odpowiedniego zabezpieczenia radiotelefonu
przed użyciem go przez osoby niepowołane.
4. Użytkownik radiotelefonu powinien w czasie pracy urządzenia posiadać przy sobie
odpowiednie zezwolenie i okazywać je na każdorazowe żądanie osób uprawnionych do
kontroli.
5. Przed rozpoczęciem rozmowy należy upewnić się czy kanał jest wolny.
6. Na początku każdej rozmowy oraz na każde żądanie korespondenta należy podać swój znak
wywoławczy określony w zezwoleniu PAR.
7. Na żądanie korespondenta należy podać aktualne miejsce nadawania.
8. W łączności CB obowiązuje odstęp międzykanałowy 10 KHz od częstotliwości zajętej.
9. Kanał 28 zaleca się wykorzystywać jako kanał wywoławczy.
10. W paśmie CB niedozwolone jest:
a) nadawanie i rozpowszechnianie informacji o charakterze politycznym, gospodarczym
i innych stanowiących tajemnicę państwową lub służbową, wszelkiej propagandy i
reklamy oraz wiadomości niezgodnych z zasadami współżycia społecznego,
b) używanie słów wulgarnych i obraźliwych,
c) używanie CB do prowadzenia działalności zarobkowej,
d) nadawanie muzyki,
e) nadawanie retransmisji,
f) nadawanie na kanale, na którym ktoś inny rozmawia,
g) nadużywanie haseł RATUNEK i BREAK,
h) używanie jako swojego, w całości lub w części, przydzielonego lub przeznaczonego
do przydzielenia komu innemu, oficjalnego znaku wywoławczego.
11. Kanał 9 (27,060 MHz,) jest przeznaczony wyłącznie do celów wzywania pomocy i pracy
służb ratunkowych.
12. W sytuacjach nadzwyczajnych użytkownik radiotelefonu może zapewnić sobie
pierwszeństwo przeprowadzenia rozmowy podając hasło RATUNEK. Operatorzy
pozostałych radiotelefonów zobowiązani są do zachowania ciszy radiowej aż do momentu
przejścia tego rozmówcy na inny kanał lub zakończenia rozmowy. Hasło RATUNEK może
być użyte jedynie w sytuacji zagrożenia życia, zdrowia, bezpieczeństwa lub mienia.
13. W przypadku braku reakcji służby ratunkowej każdy użytkownik radiotelefonu ma
obowiązek zareagować na odebrane hasło RATUNEK.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
14
14. W czasie prowadzenia akcji ratunkowej pierwszeństwo w eterze przysługuje stacjom w
następującej kolejności: 1) wołanej służby ratunkowej,
2) Sztabu Ratownictwa PL-CB RADIO,
3) wołającej o pomoc, przy czym stacji tej przysługuje pierwszeństwo w nawiązywaniu
łączności,
4) która pierwsza zareagowała na wołanie o ratunek. Pozostałe stacje przysłuchują się
jedynie i włączają się do akcji tylko na wyraźną prośbę stacji prowadzącej akcję
ratunkową.
15. Wywoływanie
a) kryptonimy alarmowe na Kanale Ratunkowym PL-CB RADIO9, oznaczają:
991 Sztaby Ratownictwa PL-CB RADIO,
992 jednostki Obrony Cywilnej,
993 zespoły do spraw nadzwyczajnych zagrożeń przy wojewodach i urzędach,
994 stanowiska dyspozycji inżyniera miasta,
996 Straż Miejska, 997
Policja,
998 Straż Pożarna,
999 Pogotowie Ratunkowe;
b) w celu zrozumiałości wywołania dopuszcza się wywoływanie służby dyżurującej,
używając jej nazwy i miejscowości, w której się znajduje np.: Pogotowie Ratunkowe
Gdańsk;
c) wywołujący na Kanale Ratunkowym PL-CB RADIO ma obowiązek podać swój znak
wywoławczy przydzielony przez PAR, ratownicy zarejestrowani w Krajowej Sieci
Ratownictwa PL-CB RADIO podają dodatkowo swój numer nadany przez
Sztab Krajowy;
d) powiadamiając służbę dyżurującą o zaistniałym wydarzeniu należy w sposób zwięzły
podać następujące informacje, zachowując kolejność: − kto woła,
− miejsce zdarzenia,
− co się stało, np.: wypadek drogowy cysterny; pożar stodoły itp.,
− liczba rannych i skutki zdarzenia np.: 4 osoby ranne, w tym dwie nieprzytomne, a u dwóch
uraz głowy i silne krwawienie, zablokowana droga itp.,
− na tym należy relację zakończyć i czekać na dyspozycje służby dyżurującej, oddalić się z
miejsca wypadku wolno tylko wtedy gdy służba dyżurująca nie zaleciła pozostania na
miejscu lub uzupełnienia informacji,
− przy prowadzeniu łączności ratunkowej należy każdorazowo potwierdzić odebranie
nadawanej informacji;
e) posiadacz radiotelefonu CB w razie napotkania wypadku, ma obowiązek zatrzymać
się i zorientować, czy są osoby ranne i czy na skutek wypadku istnieje jakieś
zagrożenie. W przypadku potrzeby interwencji jest on zobowiązany do niezwłocznego
powiadomienia odpowiedniej służby.
16. Na hasło BREAK należy na chwilę zwolnić kanał w celu umożliwienia nawiązania
łączności i uzgodnienia przejścia na inną częstotliwość lub przekazania krótkiej ważnej
informacji.
17. Pomiędzy nadawaniem a odbiorem należy zachować krótki, około 1 sekundowy odstęp.
18. W razie przerwania lub braku łączności, w czasie klęsk żywiołowych, w razie ratowania
życia ludzkiego itp. posiadacz urządzenia CB ma prawo i obowiązek używać lub
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
15
udostępniać swoje urządzenie dla przekazania wiadomości mających na celu wezwanie i
niesienie pomocy.
19. Praca urządzenia CB nie powinna przeszkadzać w pracy innych urządzeń CB.
20. W przypadku przekroczenia ustalonych przepisów i zasad komisje eterowe PL-CB RADIO
mogą wnioskować o czasowe zawieszenie lub cofnięcie zezwolenia.
Podstawową zaletą CB-radio zdobywającą dla niego coraz więcej zwolenników jest
możliwość nawiązywania łączności z punktami ruchomymi. Stwarza bowiem możliwość
bezpośredniego nawiązania kontaktu między zainteresowanymi bez ograniczeń wynikających
z rozmieszczenia sieci telekomunikacyjnej. Urządzenia CB-radio produkowane są jako
stacjonarne, przewoźne i przenośne.
Urządzenia przenośne
Są to niezależne urządzenia zawierające w jednej obudowie wszystkie elementy niezbędne
do samodzielnego działania. Są one na ogół małe i lekkie. Mają składaną antenę lub bardziej
wygodną, lecz o mniejszym zasięgu krótką antenę gumową. Istnieje możliwość wymiennego
stosowania obu rodzajów anten, a także przyłączenia się do anteny stacjonarnej. Urządzenia te
są zasilane z wewnętrznych źródeł prądu (baterie, akumulatory) z możliwością podłączenia do
zewnętrznego źródła zasilania (akumulator samochodowy, zasilacz stabilizowany). Baterie
bardzo szybko się wyładowują, szczególnie przy częstym nadawaniu dużą mocą. Są to powody
milknięcia odbiornika przy silniejszym sygnale, związane jest to z większym poborem prądu z
baterii, nie mówiąc już o spadku mocy nadawanej i tym samym zmniejszeniu się zasięgu. Z
tego względu zaleca się stosowanie akumulatorów i ich systematyczne doładowywanie, a raz
na kwartał rozładowanie do dopuszczalnego minimum i ponowne naładowanie. Takich
zabiegów wymagają akumulatorki kadmowo-niklowe, ponieważ upływności poszczególnych
ogniw są różne, a przeładowywanie jest bardzo szkodliwe (wiąże się z tym wydzielanie
temperatury; jest to oznaka, że ładowanie należy przerwać).
Ładowarki wysokiej klasy do takich akumulatorów wyposażone są w stabilizatory prądu
ładowania oraz elektroniczne urządzenie kontrolujące stan naładowania
(próbkującoodłączające). Działanie takiego urządzenia jest następujące: zawsze co
kilkadziesiąt sekund odłącza się na czas około jednej sekundy ładowanie, wykonując w tym
czasie: pomiar napięcia Uo pod obciążeniem, porównanie napięcia Uo z napięciem wzorcowym
Uw, załączenie dalszego ładowania jeżeli Uo<Uw lub przerwanie ładowania akumulatorków
jeżeli Uo>Uw.
Większość urządzeń przenośnych nie wymaga wyjmowania akumulatorów do ładowania,
gdyż wyposażone są one w odpowiednie gniazdo, do którego przyłącza się prostownik.
Urządzenia przenośne są najczęściej AM-owe rzadziej AM/FM, o mocy 4 W lub 5 W
wyposażone w przełączniki redukcji mocy do l W. Umożliwiają one utrzymanie łączności w
każdych warunkach, np. po podłączeniu do anteny stacjonarnej i zasilacza stabilizowanego
mogą pracować jako urządzenia stacjonarne. Podstawową różnicą w stosunku do pozostałych
urządzeń CB jest ich maksymalna miniaturyzacja.
Urządzenia przewoźne
Są to urządzenia samochodowe i jachtowe (różnią się między sobą jedynie sposobem
zamocowania anteny). Dzięki zastosowaniu zewnętrznych elementów (anteny, zasilacza i
mikrofonu) uzyskuje się znacznie wyższą jakość pracy całego urządzenia. Jako źródło zasilania
stosuje się akumulatory samochodowe. Antena umieszczona jest na zewnątrz samochodu.
Sposób i miejsce zamocowania anteny ma istotny wpływ na jakość pracy urządzenia CB.
Radiostacja nie musi być w tym przypadku tak bardzo zminiaturyzowana i może pobierać
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
16
znacznie więcej prądu. Dzięki temu jej cena jest na ogół znacznie niższa od urządzeń
przenośnych o porównywalnych parametrach.
Urządzenia stacjonarne
Są to na ogół większe, cięższe urządzenia wyposażone w wewnętrzne zasilacze sieciowe
oraz zewnętrzne mikrofony i anteny. Umożliwiają jednak lepszą jakość i komfort pracy.
Specjalne anteny bazowe zapewniają bardzo dobrą jakość odbioru i nadawania, ale ze względu
na swoje rozmiary nie nadają się do przemieszczania. W warunkach domowych także można
stosować (co najczęściej się zdarza) radiotelefony przewoźne, jednak konieczne staje się
zastosowanie dodatkowego zasilacza stabilizowanego o odpowiedniej wydajności prądowej.
Zasilacz taki musi dostarczać napięcie stabilizowane w wysokości 12–14 V. Musi także
umożliwiać pobór odpowiednio dużego prądu. Przeciętne radio CB przy nadawaniu pobiera
średnio 2–5 A, a przy odbiorze od 0,1 do l A. Przy wyborze zasilacza miarą powinna być przede
wszystkim jego wydajność prądowa, napięcie znamionowe zasilania zalecane przez producenta
sprzętu, do którego ma być użyty zasilacz.
4.2.2. Pytania sprawdzające
Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń.
1. Na czym polega przewaga łączności CB nad łącznością amatorską?
2. Jakie częstotliwości obejmuje pasmo CB?
3. Jakie rodzaje modulacji stosuje się w komunikacji CB?
4. Jakie są sposoby wywoływania rozmówców podczas komunikacji CB według regulaminu?
5. Co oznacza hasło BREAK?
6. Czym się różnią od siebie różne rodzaje urządzeń CB?
4.2.3. Ćwiczenia
Ćwiczenie 1
Przeprowadź symulację komunikacji CB (zgodnej z regulaminem) w warunkach podanych
w instrukcji zadania.
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1) rozpozanć założenia podane w instrukcji,
2) zapisać wszystkie kroki procesu wywołania i wyboru częstotliwości, 3)
wykonać połączenie CB.
Wyposażenie stanowiska pracy: −
instrukcja do zadania,
− urządzenie stacjonarne CB, −
papier, długopis, kalkulator.
Ćwiczenie 2.
Oblicz częstotliwość końcową 6 kanału na zakresie C nadajnika CB
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
17
Sposób wykonania ćwiczenia
Aby wykonać ćwiczenie, powinieneś:
1) ustalić przedział częstotliwości dla zakresu C,
2) ustalić początek i koniec pierwszego kanału w tym zakresie,
3) obliczyć częstotliwość końcową 6 kanału na zakresie C,
4) obliczyć łączne pasmo dostępne dla transmisji danych.
Wyposażenie stanowiska pracy:
− zeszyt do ćwiczeń,
− ołówek,
długopis, −
kalkulator, −
literatura.
4.2.4. Sprawdzian postępów
Czy potrafisz:
Tak Nie 1)
wyjaśnić na czym polega przewaga łączności CB nad łącznością
amatorską?
2) wymienić pasmo częstotliwości CB?
3) wskazać rodzaje modulacji w komunikacji CB?
4) stosować kryptonimy i hasła w łączności CB?
5) scharakteryzować różne typy urządzeń CB?
4.3. System radiokomunikacji cyfrowej TETRA
4.3.1. Materiał nauczania
Analogowy sygnał mowy, powstający w mikrofonie telefonu komórkowego, poddany
zostaje po wstępnej korekcji charakterystyki przetworzeniu na postać cyfrową. Przetwarzanie
to odbywa się identycznie, jak w przypadku telefonii stacjonarnej i nosi nazwę cyfryzacji
sygnału mowy.
System TETRA należy do systemów łączność określanych mianem systemów
trakningowych.
Tranking polega na automatycznym i dynamicznym przydziale wspólnego zbioru kanałów.
Abonent chcący nawiązać połączenie ma przydzielany kanał (z ich skończonej liczby
działających w systemie), a po zakończeniu połączenia zwraca go do wspólnej puli w celu
wykorzystania przez innych użytkowników.
Znika wówczas potrzeba ręcznego przeszukiwania kanałów, wolny zasób zostaje
automatycznie przydzielony przez system. Nie trzeba również nasłuchiwać w oczekiwaniu na
ciszę w kanale rozmownym.
System trankingowy charakteryzuje się dużą pojemnością. Zakłada się oczywiście, że nie
wszyscy abonenci w tym samym czasie będą chcieli skorzystać z kanałów radiowych. Można
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
18
wówczas dla wielu abonentów w systemie korzystać z ograniczonej puli dostępnych kanałów
dynamicznie przydzielając i zwalniając zasoby systemu.
Systemy trankingowe są bardzo niezawodne, kolejka oczekujących może się wydłużać, ale
wszyscy otrzymają dostęp do zasobów. W kolejce oczekujących na zasób można dogodnie
priorytetować rozmowy, odpowiednio zmieniając w niej pozycję żądania użytkownika.
Prywatność rozmów jest zachowana, nie ma bowiem możliwości ręcznego wejścia na dany
kanał i nasłuchiwania, ponieważ jak wspomniano są one przydzielane automatyczne i
rozłącznie dla różnych połączeń. Zważywszy stosowane w nich mechanizmy, systemy
trankingowe są w pełni skalowalne, możliwe jest wprost zwiększenie liczby korzystających
nich abonentów. W ramach sieci trankingowej można definiować grupy użytkowników i
przydzielać im rozłączne grupy kanałów, zapewniając w ten sposób mniejszy czas oczekiwania
na połączenie. Mogą one tworzyć prywatne sieci wykorzystywane przez firmy, które taką
usługę wykupiły. Możliwe są połączenia ze wszystkimi użytkownikami lub określoną grupą
stacji ruchomych. Dopuszczalne są połączenia poprzez stację bazową a także połączenia
bezpośrednie. Stacja ruchoma może również pełnić rolę retlanslatora dla użytkownika
odległego od stacji bazowej.
System TETRA (ang. Terrestrial Trunked Radio) jest to nowoczesny standard cyfrowej
łączności trankingowej umożliwiający transmisje głosu, danych i dodatkowych usług.
Realizacji funkcji trankingu w systemie TETRA możliwa jest tylko poprzez wydzielenie
jednego kanału fizycznego w stacji bazowej do realizacji głównego kanału sygnalizacyjnego
MCCH (Main Control Channel). MCCH służy do obsługi zgłoszeń i przywołań abonentów oraz
realizacji niektórych procedur i usług (np. transmisji statusów lub SDS). W przypadku dużej
liczby kanałów w stacji bazowej lub realizacji usług, które wymagają większej przepływności
kanału sterującego, standard TETRA umożliwia wydzielenie od jednego do trzech
dodatkowych kanałów sygnalizacyjnych SCCH (Secondary Control Channel). Sposób
organizacji kanałów w stacji bazowej przedstawiono na rysunku poniżej.
Rys. 2. Organizacja kanałów w stacji bazowej
Jeżeli operator dysponuje jednym kanałem radiowym, to stacja bazowa ma wydzielony
jeden kanał MCCH i trzy kanały robocze. Możliwa jest wówczas jednoczesna i niezależna
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
19
łączność trzech grup użytkowników. Gdy w systemie będzie zdefiniowanych więcej grup
użytkowników, to następne grupy będą mogły korzystać z łączności dopiero po zwolnieniu
kanału roboczego przez inną grupę.
System poprzez kanał sygnalizacyjny jest powiadamiany o kolejnych wywołaniach, jednak
sposób i czas ich realizacji jest uzależniony od uprawnień nadanych użytkownikom przez
administratora oraz od priorytetu wywołania. Dostęp do realizacji usług jest dwuetapowy.
Pierwszy z etapów wymaga, aby terminal za pomocą rywalizacyjnego protokołu ALOHA
uzyskał dostęp do kanału MCCH, w celu wysłania żądania obsługi i ewentualnego przydziału
kanału roboczego w celu realizacji drugiego etapu – transmisji głosu lub danych.
Architektura systemu TETRA
Struktura systemu TETRA jest elastyczna i może być odpowiednio kształtowana w
zależności od potrzeb użytkowników tego systemu. Dotyczy to zarówno elementów systemu,
jak i ich liczby. Jedną z naczelnych zalet systemu jest możliwość utworzenia wielu sieci
wirtualnych (logicznych) na bazie jednej infrastruktury techniczno-telekomunikacyjnej.
Użytkownicy, choć korzystają z jednego systemu, są podzieleni logicznie na grupy. O
uprawnieniach do nawiązywania łączności pomiędzy poszczególnymi użytkownikami w grupie
jak i między grupami decyduje administrator systemu lub uprawniony dyspozytor. Takie
rozwiązanie umożliwia wielu służbom realizować niezależnie od siebie łączność poprzez
wspólne urządzenia sieciowe i zasoby radiowe. Dostępność usług jest oczywiście uzależniona
od wolnych zasobów systemowych.
Rys. 3. Modułowość systemu TETRA [4 s. 4]
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
20
Rys. 4. Architektura systemu [4 s. 5]
Sposób podziału użytkowników, dostępne dla nich usługi oraz możliwość realizacji
połączeń z innymi użytkownikami mogą być zmieniane przez administratora systemu w
dowolnej chwili w zależności od aktualnych potrzeb. W skład typowego systemu TETRA
wchodzą (rys. 2):
– węzły sterujące SCN (Switching Control Node),
– stacje bazowe BS (Base Station),
– zdalne stanowiska liniowe dyspozytorów RLS (Remote Line Station),
– stanowiska administratorów sieci NMS (Network Management Station),
– zewnętrzne stanowiska zarządzania siecią ENMS (External Network Management
Station),
– terminale ruchome MS (Mobile Station),
– punkty styku (Gateway) z sieciami LAN/WAN, PSTN, ISDN, Internet, GSM, PDN, PEI
oraz innymi sieciami systemu TETRA itd.
Jeżeli funkcjonalność tego nie wymaga to nie wszystkie elementy systemu TETRA muszą
być zainstalowane. Oznacza to, że najprostszy system może być złożony ze stacji bazowej oraz
terminali. Tym samym może być on znacznie tańszy i atrakcyjniejszy dla operatorów
prowadzących działalność o charakterze lokalnym. Większa liczba stacji bazowych wymaga
rozbudowy infrastruktury. W standardzie TETRA nie zdefiniowano funkcjonalności
poszczególnych urządzeń a jedynie kilka interfejsów pomiędzy podstawowymi elementami.
Architektura i funkcjonalność urządzeń uzależniona jest od rozwiązań stosowanych przez
poszczególnych producentów. Nie jest raczej możliwe stosowanie urządzeń infrastruktury
TETRA od wielu producentów. Możliwość współpracy jest gwarantowana jedynie przy
zachowaniu wymagań zdefiniowanych przez ETSI dla kilku określonych interfejsów pomiędzy
urządzeniami (rys. 2): – interfejs radiowy AI (Air Interface),
– interfejs ISI (Inter System Interface) między sieciami TETRA,
– interfejs PEI (Peripheral Equipment Interface) między terminalem radiowym, a
urządzeniem końcowym transmisji danych,
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
21
– interfejs LSI (Line Station Interface) między terminalem przewodowym, a stanowiskiem
dyspozytorskim,
– interfejs do sieci zarządzania NMI (Network Management Interface), interfejsy zewnętrzne
do systemów PABX, PSTN, ISDN, PSDN.
Węzły sterujące SCN obsługują zarówno transmisję głosu, jak i danych, korzystając przy
tym z bazy danych o abonentach, ich uprawnieniach oraz przynależności do grup. Cechuje je
nadmiarowość, kluczowych dla funkcjonowania systemu telekomunikacyjnego, elementów
sieci. SCN może sterować pracą określonej liczby stacji bazowych (w typowych rozwiązaniach
do 8 BS) oraz określoną liczbą modułów nadawczo-odbiorczych w tych stacjach bazowych (np.
64 kanałami radiowymi we wszystkich sterowanych stacjach). Ograniczenia dotyczą również
liczby abonentów (zazwyczaj od kilku do kilkunastu tysięcy), przy czym limity mogą wynikać
z wariantu zakupionej przez operatora licencji. Najprostsze sieci z jedną BS nie wymagają SCN,
ponieważ BS posiada swój własny sterownik. Sieci rozległe TETRA zapewniają realizację
łączności w obrębie stacji bazowej, nawet gdy zostanie uszkodzony sterownik SCN lub łącze
SCN-BS. Stacje bazowe są elementami architektury sieci TETRA typu nadawczo-odbiorczego,
zapewniającymi użytkownikom systemu bezprzewodową łączność na obszarze geograficznym,
którego rozmiar jest zależny od warunków propagacyjnych, parametrów i sposobu
zamontowania urządzeń (np. anten). Pomimo, że w systemie TETRA można realizować
łączność nawet w odległości 60 km od stacji bazowej, to w przypadku planowania łączności w
dużych miastach lub miejscach o urozmaiconej rzeźbie terenu nie należy liczyć na takie osiągi
systemu i planować więcej stacji bazowych TETRA. Szczególnie, gdy planuje się dostępność
usług dla ponad 90% miejsc w dużym mieście.
Nadajniki stacji bazowych generują sygnały radiowe o mocy do 40 W, przy czym moc
maksymalna BS zależy od jej klasy (zdefiniowano 10 klas). Możliwa jest regulacja mocy od
0,6 W do mocy maksymalnej. W sieci TETRA stacje bazowe są połączone z SCN
przewodowymi lub bezprzewodowymi łączami stałymi E1, T1 lub nx64 kb/s.
W systemie można wyróżnić część komutacyjno-sieciową, stacje bazowe, i terminale. W
części komutacyjno-sieciowej znajdują się centrale główne, lokalne. Centrale lokalne są
podporządkowane centralom głównym pełniąc rolę pośrednią pomiędzy koncentratorami
wyniesionymi nowoczesnych central elektronicznych w telefonii stałej, a sterownikami stacji
bazowych w systemie GSM. W części komutacyjno-sieciowej znajduje się jeszcze moduł
rejestracji użytkowników, centrum eksploatacji i utrzymania oraz zespół modułów
pośredniczących, umożliwiających współpracę systemu z sieciami zewnętrznymi, takimi jak
PSTN, ISDN, pakietowej transmisji danych itp.
Szczególnie interesujące są mobilne stacje bazowe mBS (mobile Base Station), czyli
samochód ciężarowy z agregatem prądotwórczym i zamontowaną stacją bazową z zewnętrzną
anteną. Mobilne stacje bazowe umożliwiają realizacje doraźnej łączności w sytuacjach klęsk
żywiołowych, ataków terrorystycznych, gdy miejsca występowania tych zdarzeń leżą poza
zasięgiem sieci TETRA lub, gdy stacje bazowe zostały uszkodzone. Choć w systemie TETRA
przewidziano możliwość łączności w trybie bezpośrednim między terminalami bez
pośrednictwa stacji bazowej, to funkcjonalność ta może okazać się niewystarczająca do
komunikacji wielu licznych grup na rozległym obszarze. W takim przypadku tylko mobilna
stacja zapewni pełny zakres usług systemu TETRA.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
22
Należy pamiętać, że zakres usług świadczonych w sieciach TETRA zależy od
funkcjonalności infrastruktury i terminali. Obecnie jeszcze wiele terminali jak urządzeń
infrastruktury sieci nie umożliwia realizacji wszystkich usług zdefiniowanych dla systemu
TETRA. Terminale TETRA przewyższają funkcjonalnością i wytrzymałością telefony
komórkowe. Radiotelefony są bardziej odporne na wstrząsy, zalanie wodą, upadki, wibracje i
prace w nietypowych warunkach środowiskowych.
Zdefiniowano dla systemu TETRA 8 klasy terminali ruchowych, w tym 4 podstawowe o
dopuszczalnych maksymalnych mocach nadajników odpowiednio 1 W i 3 W dla terminali
doręcznych oraz 3 W, 10 W i 30 W dla terminali przewoźnych. Moc terminala jest regulowana
od 15 dBm do mocy maksymalnej z krokiem 5 dB. Terminale mogą być wyposażone w
odbiornik GPS, umożliwiający lokalizację użytkownika systemu TETRA oraz wiele innych
gadżetów, które dostępne są również w telefonach komórkowych.
Stanowiska dyspozytorskie usprawniają realizację zarządzania pracą podległych
użytkowników oraz ograniczone administrowanie podległymi grupami (dodawanie, usuwanie
abonentów oraz modyfikację ich uprawnień). Podstawową funkcją jest przyjmowanie zgłoszeń
od abonentów systemu TETRA, ale także obsługa wywołań spoza systemu, np. z publicznej
sieci telefonicznej.
Zarządzanie siecią (zarówno od strony technicznej jak i operacyjnej) jest realizowane przy
użyciu specjalistycznych aplikacji na stanowiskach administratorów systemu, zarówno w
miejscu ich fizycznej instalacji, jak również ze zdalnych terminali. Systemy zarządzające NMS
(Network Management System) zwykle wywodzą się ze sprawdzonych rozwiązań
opracowanych dla systemów telefonii stacjonarnej i komórkowej, jednak przystosowane są do
specyfiki i wymagań standardu TETRA. Zazwyczaj są to centralne systemy zarządzania o wielu
funkcjonalnościach.
Centrum zarządzania może dysponować systemem zintegrowanego sterowania łącznością
ICSS (Integrated Communications Control System), który umożliwia administratorowi:
– zarządzanie interfejsem radiowym,
– dostęp do baz danych,
– nadzór nad system AVL (Automatic Vehicle Location),
– nadzór nad systemem APL (Automatic Person Location), – możliwość łączności z
użytkownikami innych systemów,
– nadzór nad terminalami, m.in. ich autoryzację, blokowanie, odblokowywanie, określanie
priorytetów, tworzenie grup, obsługę alarmów itd.
Systemy ICSS umożliwiają również sterowanie systemem typu „one-seat”. Oznacza to, że
z jednego miejsca można zarządzać całą rozległą siecią.
Możliwe jest zaimplementowanie w systemach zarządzających serwerów rejestracji głosu i
danych, co wydaje się opcją szczególnie istotną dla służb ratowniczych, porządku i
bezpieczeństwa publicznego. Dane w takim serwerze powinny być przechowywane
odpowiednio długo, a zapisy powinny być oznaczane odpowiednimi i dokładnymi znacznikami
czasu. Jednak odtworzenie zapisanych informacji może być możliwe tylko dla uprawnionych
osób
Usługi udostępniane w systemie TETRA:
– dupleksowa transmisja mowy,
– tworzenie połączeń grupowych,
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
23
– transmisje rozsiewcze,
– połączenia priorytetowe,
– pakietowa transmisja danych,
– możliwość współpracy bezpośrednio dwóch radiotelefonów,
– nasłuch dyskretny,
– przechowywanie przez system wiadomości dla nieobecnych użytkowników.
Najważniejsze tryby pracy w standardzie TETRA to:
1. TETRA VD (Voice plus Data)
– mowa i dane z prędkościami 4,8kbit/s i 19,,2kbit/s, –
możliwa łączność między stacjami bez stacji bazowej.
2. TETRA POD (Packet Optimized Data) –
transmisja danych z prędkością 19,2kbit, –
tryb połączeniowy i bezpołączeniowy.
Algorytm ALOHA
W systemie TETRA wykorzystuje się znany od wielu lat algorytm ALOHA.
ALOHA to najprostszy (a jednocześnie najmniej efektywny) protokół przypadkowego
dostępu do kanału, zwany inaczej pure ALOHA (czysty Aloha). Zaprojektowany i
uruchomiony w 1971 roku w University of Hawaii. Pomysłodawcą tego protokołu był Norman
Abramson.
Było to pierwsze rozwiązanie takiego podejścia do problemu i zawierało jeszcze dużo
niedociągnięć:
– wszyscy użytkownicy używają jednego wspólnego kanału transmisyjnego. Każdy
użytkownik wysyła swoje pakiety bez jakiejkolwiek synchronizacji z innymi
użytkownikami kanału,
– nałożenie się jakiejkolwiek części jednego pakietu na inny pakiet w czasie powoduje
kolizje,
– każdy pakiet jest zabezpieczony przy pomocy kodu umożliwiającego detekcje błędów,
– po wysłaniu pakietu nadawca czeka na sygnał potwierdzenia poprawności odbioru ACK
(ang. Acknowledgment) od odbiorcy,
– jeśli nadawca nie otrzyma potwierdzenia ACK, wówczas uznaje nadany pakiet za stracony
i wysyła go ponownie, po losowo ustalonym czasie.
Rys. 5. Kolizje w systemie pure-ALOHA [6]
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
24
Prawdopodobieństwo wystąpienia kolizji w takim systemie będzie małe, jeśli liczba
użytkowników wspólnego kanału transmisyjnego będzie mała oraz ruch generowany przez
każdego z nich nie będzie zbyt duży. Wzrost liczby użytkowników będzie powodował coraz
częstsze nakładanie się na siebie pakietów a tym samym wzrost prawdopodobieństwa
wystąpienia kolizji.
Algorytm Slotted ALOHA
Protokół ten jest rozwinięciem poprzedniego. Niezsynchronizowany czas dostępu do
medium został podzielony na szczeliny. Długość pojedynczej szczeliny czasowej jest równa
jest długości pakietu (zakłada się stała długość pakietu T). Ulepszeniem w porównaniu do pure
ALOHA jest to, że stacja, gdy chce nadawać, może to zrobić tylko na początku czasu trwania
szczeliny. Dzięki temu pakiety wysłane przez dwie stacje będą kolidowały, tylko wtedy gdy
nałożą się całkowicie. Czas kolizji zatem jest dwa razy krótszy niż w pureALOHA i wynosi T.
Rys. 6. Przeciwdziałanie kolizjom w systemie Slotted ALOHA [6]
Budowa ramki pakietu.
Rys. 7. Struktura ramki pakietu systemu TETRA
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
25
Rys. 8. Struktury czasowe dla ramki systemu
Całe dostępne dla systemu TETRA pasmo częstotliwości zostało podzielone nośnymi w
odstępach co 25 kHz. Każda nośna transmituje cztery kanały mowy lub danych w trybie TDMA
z przeplatanym kanałem sterującym.
Struktura czasowa danych transmitowanych na każdej nośnej ma charakter hierarchiczny.
Największą strukturą jest hiperramka o długości 61,2 s i dzieli się ona na 60 multiramek. Każda
multiramka (o czasie trwania 1,02 s) zawiera 18 ramek (56,67 ms każda). Ostatnia osiemnasta
ramka zawiera informacje sterujące. Ramka dzieli się na 4 szczeliny czasowe. Każda jest
okresowo używana przez maksymalnie cztery terminale, przy czym na żądanie terminala
system może mu przydzielić także 2, 3 a nawet wszystkie 4 szczeliny. Szczeliny czasowe w
kierunku od terminala do stacji bazowej mogą być podzielone na dwie półszczeliny. W każdej
szczelinie o czasie trwania 14,17 ms przesyłanych jest 510 pojedynczych bitów. Jeden bit trwa
więc 27,78 μs. Można łatwo przeliczyć, że całkowita przepływność w jednym kanale
częstotliwościowym wynosi 36000 bit/s. Oczywiście ze względu na konieczność przesyłania
informacji sterujących, oraz protekcyjnych przepływność danych użytkownika jest mniejsza i
wynosi maksymalnie 28,8 kbit/s, 7,2 kbit/s w każdym z czterech kanałów logicznych.
4.3.2. Pytania sprawdzające
Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń.
1. Co to jest system trankingowy?
2. Jak działa system trankingowy?
3. Czym jest system TETRA?
4. Jaki protokół wykorzystuje system TETRA?
5. Jak przedstawia się architektura systemu TETRA?
6. Jakie usługi oferuje system?
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
26
4.3.3. Ćwiczenia
Ćwiczenie 1
Porównaj protokoły ALOHA i Slotted ALOHA.
Sposób wykonania ćwiczenia.
Aby wykonać ćwiczenie, powinieneś:
1) przeczytać fragment poradnika dla ucznia,
2) przeanalizować działanie obu protokołów,
3) wskazać główne wady protokołu ALOHA,
4) przeanalizować rozwiązania wprowadzone w systemie s – ALOHA, 5) zapisać wnioski z
analiz.
Wyposażenie stanowiska pracy:
– poradnik dla ucznia,
– komputer z dostępem do Internetu.
Ćwiczenie 2
Zaprojektuj system w oparciu o system TETRA zawierający dwie komórki sieci.
Sposób wykonania ćwiczenia.
Aby wykonać ćwiczenie, powinieneś:
1) przeczytać fragment poradnika dla ucznia,
2) przeanalizować działanie bloków systemu,
3) połączyć dwie stacje bazowe wykorzystując odpowiednie moduły sprzęgające,
4) dołączyć brakujące moduły zewnętrzne,
5) ewentualnie wyszukać dodatkowe informacje w sieci.
Wyposażenie stanowiska pracy:
– poradnik dla ucznia,
– plansze z topologią systemu, –
komputer z dostępem do Internetu.
Ćwiczenie 3
Opisz zasadę przydziału i zarządzania dostępnymi kanałami w obrębie stacji bazowej.
Sposób wykonania ćwiczenia.
Aby wykonać ćwiczenie, powinieneś:
1) przeczytać fragment poradnika dla ucznia,
2) przeanalizować zasady przydziału kanałów dla grup odbiorców,
3) zwrócić uwagę na priorytety w zarządzaniu przydziałami, 4) poszukać przykładowych
rozwiązań w Internecie, 5) sformułować wnioski.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
27
Wyposażenie stanowiska pracy: –
poradnik dla ucznia,
– plansze z topologią systemu.
Ćwiczenie 4
Scharakteryzuj usługi dostępne w systemie TETRA.
Sposób wykonania ćwiczenia.
Aby wykonać ćwiczenie, powinieneś:
1) przeczytać fragment poradnika dla ucznia,
2) wynotować dostępne usługi,
3) wyszukać w sieci opisy tych rozwiązań,
4) wyszukać dostawców urządzeń działających na rynku,
5) sprawdzić czy wszystkie usługi oferowane przez system są zaimplementowane w
rozwiązaniach sprzętowych.
Wyposażenie stanowiska pracy:
– poradnik dla ucznia,
– komputer z dostępem do Internetu.
4.3.4. Sprawdzian postępów
Czy potrafisz:
Tak Nie
1) zdefiniować pojęcie systemu trankingowego?
2) scharakteryzować wady protokołu ALOHA?
3) wskazać innowacje wprowadzone w systemie Slotted Aloha?
4) wyjaśnić budowę pakietu w systemie TETRA?
5) wskazać węzłowe punkty w architekturze systemu?
6) wymienić usługi oferowane przez system?
4.4. System radiokomunikacji DECT
4.4.1. Materiał nauczania
Standard DECT.
DECT (Digital Enhanced Cordless Telecommunications) jest elastycznym standardem
cyfrowego dostępu radiowego dla bezprzewodowej komunikacji w mieszkaniach, firmach i
urzędach publicznych. DECT dostarcza mechanizmy dla transmisji głosu i danych oraz
zapewnia integrację z innymi technologiami takim jak ISDN, GSM i bezprzewodowy LAN.
Standard DECT może zostać wykorzystany między innymi w następujących
zastosowaniach:
– domowy telefon bezprzewodowy,
– w bezprzewodowych sieciach z centralą,
– bezprzewodowy dostęp do sieci lokalnych, – uzupełnienie systemów komórkowych.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
28
Telefonia bezprzewodowa obejmuje grupę rozwiązań, które zapewniają dwukierunkową,
bezprzewodową łączność telefoniczną o wysokiej jakości przy odległościach rzędu kilkuset
metrów od stacji bazowej. W miejscach publicznych systemy takie pokrywają zazwyczaj
jedynie obszary, charakteryzujące się szczególnie dużym zapotrzebowaniem na łączność
bezprzewodową, jak np. lotniska, dworce kolejowe czy centra handlowe.
Standard DECT wykorzystuje wiele zaawansowanych cyfrowych technik radiowych w
celu wydajnego wykorzystania widma radiowego, zapewnienia wysokiej jakości transmisji
głosu i bezpieczeństwa, niskiego ryzyka interferencji radiowych oraz niskiego poziomu mocy
nadawczej.
DECT wykorzystuje kilka typów kodowania w zależności do jakiego rozwiązania ma być
zastosowany:
– TDMA (Time Division Multiple Access) – zapewnia bardzo niskie interefencje dzięki
czemu możliwe jest stworzenie systemu o bardzo dużej pojemności – do 100 000
użytkowników na 1 km²,
– ADPCM (Adaptive Differential Pulse Code Modulation) – zapewnia bardzo wysoką jakość
głosu porównywalną z telefonią przewodową,
– DCS/DCA (Dynamic Channel Selection / Allocation) – gwarantuje przydzielenie
najlepszego dostępnego kanału radiowego. Cecha ta zapewnia możliwość pracy kilku
systemów DECT na tym samym obszarze przy zapewnieniu wysokiej jakości głosu oraz
bezpieczeństwa połączeń dla użytkowników końcowych.
DECT jest systemem elastycznym i ewolucyjnym umożliwiającym wprowadzanie nowych
aplikacji i usług.
Przykładem takim jest GAP (Generic Access Profile), który zapewnia współpracę
systemów różnych producentów w zakresie aplikacji głosowych poprzez zestandaryzowanie
komend. Jeżeli jakieś urządzenie DECT posiada znak GAP, to oznacza to że współpracuje z
innymi urządzeniami które również obsługują profil GAP.
Parametry techniczne systemu:
– Pasmo częstotliwości. W większości krajów DECT pracuje w specjalnie wydzielonym
paśmie częstotliwości – w Europie pomiędzy 1880 a 1900 MHz. Na innych kontynentach
stosuje się również inne pasma, od 1,5 do 3,6 GHz,
– Technika modulacji. Podział pasma częstotliwości na poszczególne kanały odbywa się
zgodnie z algorytmem MC/TDMA/TDD. Algorytm przydzielania kanałów może
podlegać dynamicznym zmianom. Zwiększa to odporność na zakłócenia,
– Zasięg. W obrębie budynków zasięg systemów DECT jest ograniczony do około 50
metrów. W otwartej przestrzeni zwiększa się do około 300 metrów. Ponieważ dopuszczalna
jest stosunkowo wysoka moc wyjściowa 250 mW, z anteną kierunkową można uzyskać
zasięg do 3 km,
– Typy danych i ruchu. W podstawowej specyfikacji DECT obsługuje synchroniczną i
symetryczną transmisję mowy. Rozszerzenie standardu dodaje ważne usługi do pakietowej
transmisji danych. Przy wykorzystaniu wszystkich kanałów można przesłać maksymalnie
20 Mb/s,
– Usługi. W celu rozszerzenia oferty na kolejnym etapie zdefiniowano DECT Multimedia
Access Profile. Opiera się on na stosowanych już standardach, jak GAP i DPRS, dopuszcza
jednak dodatkowe usługi, np. Direct Link Access (DLA), w celu tworzenia połączeń
sieciowych ad hoc.
Architektura systemu.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
29
Rys. 9. Architektura systemu DECT[5]
PP – Części ruchome (Portable Parts)
RFP – Stacje bazowe (Radio Fixed Parts)
PABX – Centrala abonencka (Private Automatic Branch Exchange)
CCFP – Centrum sterowania DECT (Central Control Fixed Parts)
Opis techniczny systemu DECT:
– rodzaj wielodostępu MC-TDMA/TDD – system wielu nośnych, wielodostęp z podziałem
czasu TDMA i dwukierunkowość z podziałem czasu,
– modulacja GFSK (Gaussian Trequency Shift Keying) – binarne kluczowanie
częstotliwości z gaussowskim kształtowaniem sygnału modulującego,
– filtr w paśmie podstawowym z parametrem BT = 0,5 (gaussowski),
– dewiacja częstotliwości – 288 kHz,
– pasmo częstotliwości – 1880 do 1900 MHz,
– częstotliwość fali nośnej kanału 1 – 1881,792 MHz,. kanału 10–1897,334 MHz,
– odstęp międzykanałowy – 1728 kHz,
– liczba kanałów radiowych – 10,
– liczba kanałów rozmównych w kanale radiowym – 12,
– max liczba kanałów rozmównych – 120,
– czas trwania ramki – 10 ms (12Tx + 12Rx),
– całkowita przepływność informacji w systemie (Gross Bit Rate) – 1152 kbit/s,
– kodek – 32 kbit/s ADPCM zgodnie z zał. G.721 CCITT,
– dopuszczalna prędkość stacji ruchomej – do 20 km/h ( GSM do 250 km/h), –
promień komórki sieci – 50–300 m.
Strukturę systemu DECT stanowi:
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
30
– warstwa fizyczna PHL (Phisical Layer) określa parametry transmisji radiowej takie jak
częstotliwość nośna, metoda modulacji, struktura ramek czasowych, wymagania na poziom
emisji niepożądanych etc,
– warstwa zarządzania dostępem do systemu MAC (Medium Access Control Layer).
Warstwa MAC kontroluje usługi rozsiewcze, przywołania stacji ruchomej, przenoszenia
połączeń poprzez wybór kanałów fizycznych i alokację kanałów logicznych.
– warstwa zarządzania przepływem danych DLC (Data Link Control Layer). Warstwa DLC
steruje przepływem danych do warstwy sieciowej, jest odpowiedzialna za formatowanie
oraz zabezpieczanie i korekcję błędów dla każdej szczeliny czasowej,
– warstwa sieciowa (Network Layer). Warstwa sieciowa jest główną warstwą sygnalizacji
systemu DECT; wykorzystuje się protokóły ISDN oraz GSM. Warstwa sieciowa jest
odpowiedzialna za realizację połączeń i usług, zarządzanie ruchem.
4.4.2. Pytania sprawdzające
Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń.
1. W jakich rozwiązaniach stosuje się system DECT?
2. Jakie systemy kodowania są wykorzystywane w systemie DECT?
3. Jaki jest zasięg roboczy urządzeń w takiej sieci?
4. Czy potrafisz przedstawić strukturę warstwową systemu?
4.4.3. Ćwiczenia
Ćwiczenie 1
Scharakteryzuj sposoby kodowania stosowane w systemie DECT.
Sposób wykonania ćwiczenia.
Aby wykonać ćwiczenie, powinieneś:
1) przeczytać fragment poradnika dla ucznia,
Rys. 10. Struktura transmitowanych danych [4]
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
31
2) wynotować technologie kodowania sygnałów, 3)
wyszukać w sieci opisy tych sposobów kodowania,
4) przedstawić zakres ich stosowania.
Wyposażenie stanowiska pracy:
– poradnik dla ucznia,
– komputer z dostępem do Internetu.
Ćwiczenie 2
Scharakteryzuj system kodowania TDMA.
Sposób wykonania ćwiczenia.
Aby wykonać ćwiczenie, powinieneś:
1) przeczytać fragment poradnika dla ucznia,
2) wyszukać dane w sieci na temat systemu TDMA,
3) dokonać analizy i scharakteryzować ten system kodowania informacji.
Wyposażenie stanowiska pracy:
– plansze i dane katalogowe,
– poradnik dla ucznia,
– komputer z dostępem do Internetu.
Ćwiczenie 3
Implementacja systemu DECT w rozwiązaniach telekomunikacyjnych dostępnych na
rynku.
Sposób wykonania ćwiczenia.
Aby wykonać ćwiczenie, powinieneś:
1) przeczytać fragment poradnika dla ucznia,
2) przeanalizować założenia techniczne systemu,
3) uzupełnić dane na temat systemu korzystając z Internetu,
4) dokonać analizy rynku tego typu rozwiązań,
5) przedstawić spektrum zastosowań założeń systemu w
rozwiązaniach telekomunikacyjnych.
Wyposażenie stanowiska pracy:
– plansze i dane katalogowe,
– poradnik dla ucznia,
– komputer z dostępem do Internetu.
4.4.4. Sprawdzian postępów
Czy potrafisz:
Tak Nie
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
32
1) wyjaśnić czym polega technologia DECT?
2) wyjaśnić w jakich rozwiązaniach telekomunikacyjnych ma
zastosowanie system DECT?
3) określić jakie są parametry techniczne systemu?
4) scharakteryzować model warstwowy systemu?
5) określić sposoby kodowania implementowane w systemie?
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
33
5. SPRAWDZIAN OSIĄGNIĘĆ
INSTRUKCJA DLA UCZNIA
1. Przeczytaj uważnie instrukcję.
2. Podpisz imieniem i nazwiskiem kartę odpowiedzi.
3. Zapoznaj się z zestawem zadań testowych.
4. Test zawiera 20 zadań. Do każdego zadania dołączone są 4 możliwości odpowiedzi. Tylko
jedna jest prawidłowa.
5. Udzielaj odpowiedzi na załączonej karcie odpowiedzi, stawiając w odpowiedniej rubryce
znak X. W przypadku pomyłki należy błędną odpowiedź zaznaczyć kółkiem, a następnie
ponownie zakreślić odpowiedź prawidłową.
6. Pracuj samodzielnie, bo tylko wtedy będziesz miał satysfakcję z wykonanego zadania.
7. Jeśli udzielenie odpowiedzi będzie Ci sprawiało trudność, wtedy odłóż jego rozwiązanie na
później i wróć do niego, gdy zostanie Ci wolny czas.
8. Na rozwiązanie testu masz 40 minut.
Powodzenia!
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
34
ZESTAW ZADAŃ TESTOWYCH
1. System trankingowy to system
a) operacyjny komputerów w sieciach telekomunikacyjnych.
b) inwigilacji użytkowników sieci informatycznych.
c) o dynamicznie przydzielanym kanale z dostępnej puli.
d) zabezpieczania sieci telekomunikacyjnych.
2. Algorytm ALOHA to
a) nowoczesny algorytm szyfrowania danych.
b) protokół przypadkowego dostępu do kanału.
c) sposób na włamania do sieci komputerowych.
d) mechanizm ochrony systemów teleinformatycznych.
3. Sygnał ACK to
a) sygnał potwierdzenia odbioru pakietu.
b) sygnał końca nadawania.
c) sygnał informujący o zagubieniu pakietu.
d) informacja o próbie włamania do systemu.
4. Pasmo częstotliwości w systemie TETRA zostało podzielone nośnymi w odstępach a) co
10 kHz.
b) co 15 kHz.
c) co 20 kHz.
d) co 25 kHz.
5. Ramka pakietu TETRA to przykład budowy
a) liniowej.
b) hierarchicznej,
c) mieszanej.
d) chaotycznej.
6. System DECT zapewnia łączność
a) dwukierunkową
b) jednokierunkową.
c) poziomową.
d) szeregową.
7. Architektura systemu DECT
a) nie jest elastyczna.
b) jest raz określona i niezmienna.
c) jest starym I zarzuconym rozwiązaniem.
d) pozwala na rozbudowę w miarę potrzeb.
8. Zasięg systemu DECT
a) wynosi max. 150 m.
b) wynosi ok. 10 m.
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
35
c) może być zwiększony do ok. 3 km.
d) nie jest jednoznacznie określony.
9. Odstęp między kanałami w systemie DECT wynosi
a) 1728 kHz.
b) 1500 kHz.
c) 1250 kHz.
d) 25 KHz.
10. System DECT posiada strukturę
a) liniową dyskretną.
b) warstwową.
c) dyskretną.
d) równoległą.
11. Pętla abonencka składa się z
a) centrali i koncentratora.
b) centrali i bazy.
c) koncentratora i bazy.
d) komórki i centrali.
12. W systemie sieci dostępowych terminale muszą
a) być zarejestrowane u operatora i posiadają kilka stacji radiowych.
b) powiadomić operatora o działalności i posiadają kilka stacji radiowych.
c) być zarejestrowane u operatora i posiadają tylko jedną stację radiową.
d) powiadomić operatora o działalności i posiadają tylko jedną stację radiową.
13. Do standardów telefonii komórkowej analogowej zaliczamy
a) AMPS i GSM.
b) AMPS/TACS i NMT.
c) DCS i NMT.
d) DAMPS i NMT.
14. Systemy cyfrowe sieci dostępowych działają w pasmach
a) 900 MHz i 800 MHz.
b) 1900 MHz i 800 MHz.
c) 900 MHz i 1800 MHz
d) 800 MHz i 1800 MHz.
15. Systemy DECT i CT 2
a) stosują kompresję cyfrową i mają niewielkie opóźnienia sygnału.
b) nie stosują kompresji cyfrowej i mają duże opóźnienia sygnału.
c) stosują kompresję cyfrową i mają duże opóźnienia sygnału,
d) nie stosują kompresji cyfrową i mają niewielkie opóźnienia sygnału.
16. Systemy MPMP działają w paśmie
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
36
a) od 1,7 GHZ do 2,4 GHz.
b) od 0,17 GHZ do 0,24 GHz.
c) od 1,7 GHZ do 1,8 GHz.
d) od 0,9 GHZ do 1,2 GHz.
17. Skrót CB – Radio oznacza
a) Amatorskie radio.
b) Radio cyfrowe.
c) Obywatelskie Pasmo Radiowe.
d) Powszechne Pasmo Radiowe.
18. Zakres A pasma CB mieści się w granicach:
a) 27,865 do 27,995 (MHz).
b) 27,415 do 27,855 (MHz).
c) 26,965 do 27,405 (MHz).
d) 26,065 do 26,505 (MHz).
19. Na żądanie korespondenta należy podczas łączności CB podać
a) znak wywoławczy.
b) podpis elektroniczny.
c) nazwisko i imię.
d) numer PESEL.
20. Urządzenia przenośne CB działają najczęściej w systemie modulacji
a) FM o mocy 4W.
b) AM o mocy 4W.
c) FM o mocy 14W.
d) AM o mocy 14W.
KARTA ODPOWIEDZI
Imię i nazwisko…………………………………………………………………………………..
Eksploatowanie systemów telefonii komórkowych
Zakreśl poprawną odpowiedź.
Nr
zadania
Odpowiedź Punkty
1 a b c d
2 a b c d
3 a b c d
4 a b c d
5 a b c d
„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
37
6 a b c d
7 a b c d
8 a b c d
9 a b c d
10 a b c d
11 a b c d
12 a b c d
13 a b c d
14 a b c d
15 a b c d
16 a b c d
17 a b c d
18 a b c d
19 a b c d
20 a b c d
Razem:
6. LITERATURA
1. Witold Chołubowicz, Maciej Szwabe, GSM – Ależ to proste! WKiŁ, Warszawa 2006
2. http://www.wikipedia.pl
3. http://www.elektroda.pl
4. www.ire.pw.edu.pl/zrk/PL/SRKO/srko – kf2.pdf
5. www.wlipinski.ps.pl/download/DYDAKTYKA/1 – DYPLOMY/Prezentacje/Wyklad –
Telefonia_2.ppt
6. www.um.warszawa.pl/konferencje_bk/pliki/r2_8_6_tetra_podstawowe.pdf
7. http://speed.boy.webpark.pl/wlan3.htm
8. „Transport publiczny w Warszawie” dr inż. Zbigniew Jóskiewicz
9. „Mobility In Disttributed Systems” Prof. Dr. ing. Jems B. Schmitt rozdział 3, strona 14
10. Michalina J., Wielgosiński B.: CB i radiokomunikacja. Wydawnictwo Bogmar, Olsztyn
1994
11. Rutkowski J.: Teletransmisja. PWSZ, Warszawa 1970
12. Jajszczyk A.: Wstęp do telekomutacji. WNT, Warszawa 2000

Más contenido relacionado

La actualidad más candente

Technik.teleinformatyk 312[02] z3.01_u
Technik.teleinformatyk 312[02] z3.01_uTechnik.teleinformatyk 312[02] z3.01_u
Technik.teleinformatyk 312[02] z3.01_uRzeźnik Sebastian
 
Technik.teleinformatyk 312[02] o2.01_u
Technik.teleinformatyk 312[02] o2.01_uTechnik.teleinformatyk 312[02] o2.01_u
Technik.teleinformatyk 312[02] o2.01_uRzeźnik Sebastian
 
Technik.teleinformatyk 312[02] z3.03_u
Technik.teleinformatyk 312[02] z3.03_uTechnik.teleinformatyk 312[02] z3.03_u
Technik.teleinformatyk 312[02] z3.03_uRzeźnik Sebastian
 
Technik.teleinformatyk 312[02] z3.02_u
Technik.teleinformatyk 312[02] z3.02_uTechnik.teleinformatyk 312[02] z3.02_u
Technik.teleinformatyk 312[02] z3.02_uRzeźnik Sebastian
 
Technik.teleinformatyk 312[02] z3.04_u
Technik.teleinformatyk 312[02] z3.04_uTechnik.teleinformatyk 312[02] z3.04_u
Technik.teleinformatyk 312[02] z3.04_uRzeźnik Sebastian
 
Technik.teleinformatyk 312[02] z4.02_u
Technik.teleinformatyk 312[02] z4.02_uTechnik.teleinformatyk 312[02] z4.02_u
Technik.teleinformatyk 312[02] z4.02_uRzeźnik Sebastian
 
3. Rozpoznawanie zjawisk występujących w polu elektrycznym, magnetycznym i el...
3. Rozpoznawanie zjawisk występujących w polu elektrycznym, magnetycznym i el...3. Rozpoznawanie zjawisk występujących w polu elektrycznym, magnetycznym i el...
3. Rozpoznawanie zjawisk występujących w polu elektrycznym, magnetycznym i el...Lukas Pobocha
 
25. Eksploatowanie układów napędowych z maszynami prądu przemiennego
25. Eksploatowanie układów napędowych z maszynami prądu przemiennego 25. Eksploatowanie układów napędowych z maszynami prądu przemiennego
25. Eksploatowanie układów napędowych z maszynami prądu przemiennego Lukas Pobocha
 
18. Dobieranie przewodów elektrycznych
18. Dobieranie przewodów elektrycznych18. Dobieranie przewodów elektrycznych
18. Dobieranie przewodów elektrycznychLukas Pobocha
 
24. Eksploatowanie uniwersalnych przyrządów pomiarowych
24. Eksploatowanie uniwersalnych przyrządów pomiarowych24. Eksploatowanie uniwersalnych przyrządów pomiarowych
24. Eksploatowanie uniwersalnych przyrządów pomiarowychLukas Pobocha
 
19. Montowanie osprzętu w instalacjach elektrycznych
19. Montowanie osprzętu w instalacjach elektrycznych19. Montowanie osprzętu w instalacjach elektrycznych
19. Montowanie osprzętu w instalacjach elektrycznychLukas Pobocha
 
4. Obliczanie i pomiary parametrów obwodu prądu jednofazowego
4. Obliczanie i pomiary parametrów obwodu prądu jednofazowego4. Obliczanie i pomiary parametrów obwodu prądu jednofazowego
4. Obliczanie i pomiary parametrów obwodu prądu jednofazowegoLukas Pobocha
 
15. Przesyłanie energii elektrycznej
15. Przesyłanie energii elektrycznej15. Przesyłanie energii elektrycznej
15. Przesyłanie energii elektrycznejLukas Pobocha
 
8. Badanie wzmacniaczy tranzystorowych
8. Badanie wzmacniaczy tranzystorowych8. Badanie wzmacniaczy tranzystorowych
8. Badanie wzmacniaczy tranzystorowychLukas Pobocha
 
2. badanie obwodów prądu stałego
2. badanie obwodów prądu stałego2. badanie obwodów prądu stałego
2. badanie obwodów prądu stałegoLukas Pobocha
 
Technik.teleinformatyk 312[02] z1.03_u
Technik.teleinformatyk 312[02] z1.03_uTechnik.teleinformatyk 312[02] z1.03_u
Technik.teleinformatyk 312[02] z1.03_uRzeźnik Sebastian
 
3. Badanie obwodów prądu przemiennego
3. Badanie obwodów prądu przemiennego3. Badanie obwodów prądu przemiennego
3. Badanie obwodów prądu przemiennegoLukas Pobocha
 
15. Badanie układów transmisji sygnałów
15. Badanie układów transmisji sygnałów15. Badanie układów transmisji sygnałów
15. Badanie układów transmisji sygnałówLukas Pobocha
 

La actualidad más candente (20)

Technik.teleinformatyk 312[02] z3.01_u
Technik.teleinformatyk 312[02] z3.01_uTechnik.teleinformatyk 312[02] z3.01_u
Technik.teleinformatyk 312[02] z3.01_u
 
Technik.teleinformatyk 312[02] o2.01_u
Technik.teleinformatyk 312[02] o2.01_uTechnik.teleinformatyk 312[02] o2.01_u
Technik.teleinformatyk 312[02] o2.01_u
 
Technik.teleinformatyk 312[02] z3.03_u
Technik.teleinformatyk 312[02] z3.03_uTechnik.teleinformatyk 312[02] z3.03_u
Technik.teleinformatyk 312[02] z3.03_u
 
Technik.teleinformatyk 312[02] z3.02_u
Technik.teleinformatyk 312[02] z3.02_uTechnik.teleinformatyk 312[02] z3.02_u
Technik.teleinformatyk 312[02] z3.02_u
 
Technik.teleinformatyk 312[02] z3.04_u
Technik.teleinformatyk 312[02] z3.04_uTechnik.teleinformatyk 312[02] z3.04_u
Technik.teleinformatyk 312[02] z3.04_u
 
Technik.teleinformatyk 312[02] z4.02_u
Technik.teleinformatyk 312[02] z4.02_uTechnik.teleinformatyk 312[02] z4.02_u
Technik.teleinformatyk 312[02] z4.02_u
 
3. Rozpoznawanie zjawisk występujących w polu elektrycznym, magnetycznym i el...
3. Rozpoznawanie zjawisk występujących w polu elektrycznym, magnetycznym i el...3. Rozpoznawanie zjawisk występujących w polu elektrycznym, magnetycznym i el...
3. Rozpoznawanie zjawisk występujących w polu elektrycznym, magnetycznym i el...
 
25. Eksploatowanie układów napędowych z maszynami prądu przemiennego
25. Eksploatowanie układów napędowych z maszynami prądu przemiennego 25. Eksploatowanie układów napędowych z maszynami prądu przemiennego
25. Eksploatowanie układów napędowych z maszynami prądu przemiennego
 
18. Dobieranie przewodów elektrycznych
18. Dobieranie przewodów elektrycznych18. Dobieranie przewodów elektrycznych
18. Dobieranie przewodów elektrycznych
 
24. Eksploatowanie uniwersalnych przyrządów pomiarowych
24. Eksploatowanie uniwersalnych przyrządów pomiarowych24. Eksploatowanie uniwersalnych przyrządów pomiarowych
24. Eksploatowanie uniwersalnych przyrządów pomiarowych
 
19. Montowanie osprzętu w instalacjach elektrycznych
19. Montowanie osprzętu w instalacjach elektrycznych19. Montowanie osprzętu w instalacjach elektrycznych
19. Montowanie osprzętu w instalacjach elektrycznych
 
4. Obliczanie i pomiary parametrów obwodu prądu jednofazowego
4. Obliczanie i pomiary parametrów obwodu prądu jednofazowego4. Obliczanie i pomiary parametrów obwodu prądu jednofazowego
4. Obliczanie i pomiary parametrów obwodu prądu jednofazowego
 
15. Przesyłanie energii elektrycznej
15. Przesyłanie energii elektrycznej15. Przesyłanie energii elektrycznej
15. Przesyłanie energii elektrycznej
 
8. Badanie wzmacniaczy tranzystorowych
8. Badanie wzmacniaczy tranzystorowych8. Badanie wzmacniaczy tranzystorowych
8. Badanie wzmacniaczy tranzystorowych
 
2. badanie obwodów prądu stałego
2. badanie obwodów prądu stałego2. badanie obwodów prądu stałego
2. badanie obwodów prądu stałego
 
Technik.teleinformatyk 312[02] z1.03_u
Technik.teleinformatyk 312[02] z1.03_uTechnik.teleinformatyk 312[02] z1.03_u
Technik.teleinformatyk 312[02] z1.03_u
 
3. Badanie obwodów prądu przemiennego
3. Badanie obwodów prądu przemiennego3. Badanie obwodów prądu przemiennego
3. Badanie obwodów prądu przemiennego
 
Technik.elektryk 311[08] z1.06_u
Technik.elektryk 311[08] z1.06_uTechnik.elektryk 311[08] z1.06_u
Technik.elektryk 311[08] z1.06_u
 
15. Badanie układów transmisji sygnałów
15. Badanie układów transmisji sygnałów15. Badanie układów transmisji sygnałów
15. Badanie układów transmisji sygnałów
 
Technik.elektryk 311[08] z4.04_u
Technik.elektryk 311[08] z4.04_uTechnik.elektryk 311[08] z4.04_u
Technik.elektryk 311[08] z4.04_u
 

Destacado

Sebastian styrc
Sebastian styrcSebastian styrc
Sebastian styrcTonnypl
 
Europes environment assessment_of_assessments
Europes environment assessment_of_assessmentsEuropes environment assessment_of_assessments
Europes environment assessment_of_assessmentsMikel Orrantia Diez
 
Wykaz dotacji udzielonych organizacjom pozarządowym oraz innym podmiotom prow...
Wykaz dotacji udzielonych organizacjom pozarządowym oraz innym podmiotom prow...Wykaz dotacji udzielonych organizacjom pozarządowym oraz innym podmiotom prow...
Wykaz dotacji udzielonych organizacjom pozarządowym oraz innym podmiotom prow...Waldemar Duczmal
 
Prawo karne nieletnich. od opieki do odpowiedzialności - ebook
Prawo karne nieletnich. od opieki do odpowiedzialności - ebookPrawo karne nieletnich. od opieki do odpowiedzialności - ebook
Prawo karne nieletnich. od opieki do odpowiedzialności - ebooke-booksweb.pl
 
SZTUKA PERSWAZJI, czyli język wpływu i manipulacji. Warsztaty
SZTUKA PERSWAZJI, czyli język wpływu i manipulacji. WarsztatySZTUKA PERSWAZJI, czyli język wpływu i manipulacji. Warsztaty
SZTUKA PERSWAZJI, czyli język wpływu i manipulacji. WarsztatyWydawnictwo Helion
 
Znaczenie studiów nadane przez studentów
Znaczenie studiów nadane przez studentówZnaczenie studiów nadane przez studentów
Znaczenie studiów nadane przez studentówpaulinakaa113
 
Wpływ społeczny
Wpływ społecznyWpływ społeczny
Wpływ społecznyAnna Meslin
 
Arkana - Katalog produktów detalicznych / Wiosna 2014
Arkana - Katalog produktów detalicznych / Wiosna 2014Arkana - Katalog produktów detalicznych / Wiosna 2014
Arkana - Katalog produktów detalicznych / Wiosna 2014ArkanaKosmetyki
 
Photoshop CS2/CS2 PL. Biblia profesjonalisty
Photoshop CS2/CS2 PL. Biblia profesjonalistyPhotoshop CS2/CS2 PL. Biblia profesjonalisty
Photoshop CS2/CS2 PL. Biblia profesjonalistyWydawnictwo Helion
 
chemical secret By Tim Vicary Jennifer BassettNewobwchemicaltest
chemical secret By Tim Vicary Jennifer BassettNewobwchemicaltestchemical secret By Tim Vicary Jennifer BassettNewobwchemicaltest
chemical secret By Tim Vicary Jennifer BassettNewobwchemicaltestMarjorie Sandoval Muñoz
 
Cz.4 uczenie się i style działania a motywacja
Cz.4 uczenie się i style działania a motywacjaCz.4 uczenie się i style działania a motywacja
Cz.4 uczenie się i style działania a motywacjaplatformastartup
 

Destacado (14)

Sebastian styrc
Sebastian styrcSebastian styrc
Sebastian styrc
 
Europes environment assessment_of_assessments
Europes environment assessment_of_assessmentsEuropes environment assessment_of_assessments
Europes environment assessment_of_assessments
 
Wykaz dotacji udzielonych organizacjom pozarządowym oraz innym podmiotom prow...
Wykaz dotacji udzielonych organizacjom pozarządowym oraz innym podmiotom prow...Wykaz dotacji udzielonych organizacjom pozarządowym oraz innym podmiotom prow...
Wykaz dotacji udzielonych organizacjom pozarządowym oraz innym podmiotom prow...
 
Prawo karne nieletnich. od opieki do odpowiedzialności - ebook
Prawo karne nieletnich. od opieki do odpowiedzialności - ebookPrawo karne nieletnich. od opieki do odpowiedzialności - ebook
Prawo karne nieletnich. od opieki do odpowiedzialności - ebook
 
SZTUKA PERSWAZJI, czyli język wpływu i manipulacji. Warsztaty
SZTUKA PERSWAZJI, czyli język wpływu i manipulacji. WarsztatySZTUKA PERSWAZJI, czyli język wpływu i manipulacji. Warsztaty
SZTUKA PERSWAZJI, czyli język wpływu i manipulacji. Warsztaty
 
Znaczenie studiów nadane przez studentów
Znaczenie studiów nadane przez studentówZnaczenie studiów nadane przez studentów
Znaczenie studiów nadane przez studentów
 
Wpływ społeczny
Wpływ społecznyWpływ społeczny
Wpływ społeczny
 
2.3 fryzjer
2.3 fryzjer2.3 fryzjer
2.3 fryzjer
 
Arkana - Katalog produktów detalicznych / Wiosna 2014
Arkana - Katalog produktów detalicznych / Wiosna 2014Arkana - Katalog produktów detalicznych / Wiosna 2014
Arkana - Katalog produktów detalicznych / Wiosna 2014
 
Photoshop CS2/CS2 PL. Biblia profesjonalisty
Photoshop CS2/CS2 PL. Biblia profesjonalistyPhotoshop CS2/CS2 PL. Biblia profesjonalisty
Photoshop CS2/CS2 PL. Biblia profesjonalisty
 
chemical secret By Tim Vicary Jennifer BassettNewobwchemicaltest
chemical secret By Tim Vicary Jennifer BassettNewobwchemicaltestchemical secret By Tim Vicary Jennifer BassettNewobwchemicaltest
chemical secret By Tim Vicary Jennifer BassettNewobwchemicaltest
 
Malarz-tapeciarz
Malarz-tapeciarzMalarz-tapeciarz
Malarz-tapeciarz
 
Cz.4 uczenie się i style działania a motywacja
Cz.4 uczenie się i style działania a motywacjaCz.4 uczenie się i style działania a motywacja
Cz.4 uczenie się i style działania a motywacja
 
Układ przeniesienia napędu- sprzęgła i skrzynie biegów
Układ przeniesienia napędu- sprzęgła i skrzynie biegówUkład przeniesienia napędu- sprzęgła i skrzynie biegów
Układ przeniesienia napędu- sprzęgła i skrzynie biegów
 

Similar a Technik.teleinformatyk 312[02] z2.02_u

29. Badanie odbiornika telewizyjnego
29. Badanie odbiornika telewizyjnego29. Badanie odbiornika telewizyjnego
29. Badanie odbiornika telewizyjnegoLukas Pobocha
 
Technik.mechatronik 311[50] z1.05_u
Technik.mechatronik 311[50] z1.05_uTechnik.mechatronik 311[50] z1.05_u
Technik.mechatronik 311[50] z1.05_uKubaSroka
 
28. Badanie odbiornika radiowego
28. Badanie odbiornika radiowego28. Badanie odbiornika radiowego
28. Badanie odbiornika radiowegoLukas Pobocha
 
34. Montowanie i badanie sieci telewizji kablowej
34. Montowanie i badanie sieci telewizji kablowej34. Montowanie i badanie sieci telewizji kablowej
34. Montowanie i badanie sieci telewizji kablowejLukas Pobocha
 
43. Instalowanie i konfigurowanie sieci
43. Instalowanie i konfigurowanie sieci43. Instalowanie i konfigurowanie sieci
43. Instalowanie i konfigurowanie sieciLukas Pobocha
 
30. Montowanie i badanie instalacji do odbioru telewizji satelitarnej
30. Montowanie i badanie instalacji do odbioru telewizji satelitarnej30. Montowanie i badanie instalacji do odbioru telewizji satelitarnej
30. Montowanie i badanie instalacji do odbioru telewizji satelitarnejLukas Pobocha
 
Mrr Sukiennik Model Realizacji Sieci Szerokopasmowych 20080417
Mrr Sukiennik Model Realizacji Sieci Szerokopasmowych 20080417Mrr Sukiennik Model Realizacji Sieci Szerokopasmowych 20080417
Mrr Sukiennik Model Realizacji Sieci Szerokopasmowych 20080417martin.zawisza
 
Mrr Sukiennik Model Realizacji Sieci Szerokopasmowych 20080417
Mrr Sukiennik Model Realizacji Sieci Szerokopasmowych 20080417Mrr Sukiennik Model Realizacji Sieci Szerokopasmowych 20080417
Mrr Sukiennik Model Realizacji Sieci Szerokopasmowych 20080417martin.zawisza
 
PLNOG 9: Jerzy Paczocha - System Informacyjny o Infrastrukturze Szerokopasmow...
PLNOG 9: Jerzy Paczocha - System Informacyjny o Infrastrukturze Szerokopasmow...PLNOG 9: Jerzy Paczocha - System Informacyjny o Infrastrukturze Szerokopasmow...
PLNOG 9: Jerzy Paczocha - System Informacyjny o Infrastrukturze Szerokopasmow...PROIDEA
 
Technik.mechatronik 311[50] o1.05_u
Technik.mechatronik 311[50] o1.05_uTechnik.mechatronik 311[50] o1.05_u
Technik.mechatronik 311[50] o1.05_uKubaSroka
 
Sprawozdanie z działalności RCI
Sprawozdanie z działalności RCISprawozdanie z działalności RCI
Sprawozdanie z działalności RCIUWM
 
PLNOG 13: Sylwester Chojnacki: Jak efektywnie wykorzystać kolejny okres progr...
PLNOG 13: Sylwester Chojnacki: Jak efektywnie wykorzystać kolejny okres progr...PLNOG 13: Sylwester Chojnacki: Jak efektywnie wykorzystać kolejny okres progr...
PLNOG 13: Sylwester Chojnacki: Jak efektywnie wykorzystać kolejny okres progr...PROIDEA
 
Wielkopolska sieć szerokopasmowa - świat od zaraz
Wielkopolska sieć szerokopasmowa - świat od zarazWielkopolska sieć szerokopasmowa - świat od zaraz
Wielkopolska sieć szerokopasmowa - świat od zarazINEA
 
Program na rzecz wspierania polityki w zakresie technologii informacyjnych i ...
Program na rzecz wspierania polityki w zakresie technologii informacyjnych i ...Program na rzecz wspierania polityki w zakresie technologii informacyjnych i ...
Program na rzecz wspierania polityki w zakresie technologii informacyjnych i ...kontaktowy.eu
 
PLNOG : Darek Wichniewicz - Polityka peeringowa ATMAN Wielkie otwarcie Teleho...
PLNOG : Darek Wichniewicz - Polityka peeringowa ATMAN Wielkie otwarcie Teleho...PLNOG : Darek Wichniewicz - Polityka peeringowa ATMAN Wielkie otwarcie Teleho...
PLNOG : Darek Wichniewicz - Polityka peeringowa ATMAN Wielkie otwarcie Teleho...PROIDEA
 

Similar a Technik.teleinformatyk 312[02] z2.02_u (20)

29. Badanie odbiornika telewizyjnego
29. Badanie odbiornika telewizyjnego29. Badanie odbiornika telewizyjnego
29. Badanie odbiornika telewizyjnego
 
Technik.mechatronik 311[50] z1.05_u
Technik.mechatronik 311[50] z1.05_uTechnik.mechatronik 311[50] z1.05_u
Technik.mechatronik 311[50] z1.05_u
 
28. Badanie odbiornika radiowego
28. Badanie odbiornika radiowego28. Badanie odbiornika radiowego
28. Badanie odbiornika radiowego
 
34. Montowanie i badanie sieci telewizji kablowej
34. Montowanie i badanie sieci telewizji kablowej34. Montowanie i badanie sieci telewizji kablowej
34. Montowanie i badanie sieci telewizji kablowej
 
Technik.transportu.kolejowego 311[38] z2.02_u
Technik.transportu.kolejowego 311[38] z2.02_uTechnik.transportu.kolejowego 311[38] z2.02_u
Technik.transportu.kolejowego 311[38] z2.02_u
 
43. Instalowanie i konfigurowanie sieci
43. Instalowanie i konfigurowanie sieci43. Instalowanie i konfigurowanie sieci
43. Instalowanie i konfigurowanie sieci
 
30. Montowanie i badanie instalacji do odbioru telewizji satelitarnej
30. Montowanie i badanie instalacji do odbioru telewizji satelitarnej30. Montowanie i badanie instalacji do odbioru telewizji satelitarnej
30. Montowanie i badanie instalacji do odbioru telewizji satelitarnej
 
Mrr Sukiennik Model Realizacji Sieci Szerokopasmowych 20080417
Mrr Sukiennik Model Realizacji Sieci Szerokopasmowych 20080417Mrr Sukiennik Model Realizacji Sieci Szerokopasmowych 20080417
Mrr Sukiennik Model Realizacji Sieci Szerokopasmowych 20080417
 
Mrr Sukiennik Model Realizacji Sieci Szerokopasmowych 20080417
Mrr Sukiennik Model Realizacji Sieci Szerokopasmowych 20080417Mrr Sukiennik Model Realizacji Sieci Szerokopasmowych 20080417
Mrr Sukiennik Model Realizacji Sieci Szerokopasmowych 20080417
 
Technik.elektryk 311[08] z3.01_u
Technik.elektryk 311[08] z3.01_uTechnik.elektryk 311[08] z3.01_u
Technik.elektryk 311[08] z3.01_u
 
PLNOG 9: Jerzy Paczocha - System Informacyjny o Infrastrukturze Szerokopasmow...
PLNOG 9: Jerzy Paczocha - System Informacyjny o Infrastrukturze Szerokopasmow...PLNOG 9: Jerzy Paczocha - System Informacyjny o Infrastrukturze Szerokopasmow...
PLNOG 9: Jerzy Paczocha - System Informacyjny o Infrastrukturze Szerokopasmow...
 
Technik.mechatronik 311[50] o1.05_u
Technik.mechatronik 311[50] o1.05_uTechnik.mechatronik 311[50] o1.05_u
Technik.mechatronik 311[50] o1.05_u
 
Lakiernik 714[03] l2.02_u
Lakiernik 714[03] l2.02_uLakiernik 714[03] l2.02_u
Lakiernik 714[03] l2.02_u
 
Sprawozdanie z działalności RCI
Sprawozdanie z działalności RCISprawozdanie z działalności RCI
Sprawozdanie z działalności RCI
 
PLNOG 13: Sylwester Chojnacki: Jak efektywnie wykorzystać kolejny okres progr...
PLNOG 13: Sylwester Chojnacki: Jak efektywnie wykorzystać kolejny okres progr...PLNOG 13: Sylwester Chojnacki: Jak efektywnie wykorzystać kolejny okres progr...
PLNOG 13: Sylwester Chojnacki: Jak efektywnie wykorzystać kolejny okres progr...
 
Wielkopolska sieć szerokopasmowa - świat od zaraz
Wielkopolska sieć szerokopasmowa - świat od zarazWielkopolska sieć szerokopasmowa - świat od zaraz
Wielkopolska sieć szerokopasmowa - świat od zaraz
 
Blucity
BlucityBlucity
Blucity
 
Łącze Satelitarne
Łącze SatelitarneŁącze Satelitarne
Łącze Satelitarne
 
Program na rzecz wspierania polityki w zakresie technologii informacyjnych i ...
Program na rzecz wspierania polityki w zakresie technologii informacyjnych i ...Program na rzecz wspierania polityki w zakresie technologii informacyjnych i ...
Program na rzecz wspierania polityki w zakresie technologii informacyjnych i ...
 
PLNOG : Darek Wichniewicz - Polityka peeringowa ATMAN Wielkie otwarcie Teleho...
PLNOG : Darek Wichniewicz - Polityka peeringowa ATMAN Wielkie otwarcie Teleho...PLNOG : Darek Wichniewicz - Polityka peeringowa ATMAN Wielkie otwarcie Teleho...
PLNOG : Darek Wichniewicz - Polityka peeringowa ATMAN Wielkie otwarcie Teleho...
 

Más de Rzeźnik Sebastian

Technik.teleinformatyk 312[02] z4.01_u
Technik.teleinformatyk 312[02] z4.01_uTechnik.teleinformatyk 312[02] z4.01_u
Technik.teleinformatyk 312[02] z4.01_uRzeźnik Sebastian
 
Technik.teleinformatyk 312[02] z1.04_u
Technik.teleinformatyk 312[02] z1.04_uTechnik.teleinformatyk 312[02] z1.04_u
Technik.teleinformatyk 312[02] z1.04_uRzeźnik Sebastian
 
Technik.teleinformatyk 312[02] z1.02_u
Technik.teleinformatyk 312[02] z1.02_uTechnik.teleinformatyk 312[02] z1.02_u
Technik.teleinformatyk 312[02] z1.02_uRzeźnik Sebastian
 
Technik.teleinformatyk 312[02] z1.01_u
Technik.teleinformatyk 312[02] z1.01_uTechnik.teleinformatyk 312[02] z1.01_u
Technik.teleinformatyk 312[02] z1.01_uRzeźnik Sebastian
 
Technik.teleinformatyk 312[02] o1.02_u
Technik.teleinformatyk 312[02] o1.02_uTechnik.teleinformatyk 312[02] o1.02_u
Technik.teleinformatyk 312[02] o1.02_uRzeźnik Sebastian
 
Technik.teleinformatyk 312[02] o1.01_u
Technik.teleinformatyk 312[02] o1.01_uTechnik.teleinformatyk 312[02] o1.01_u
Technik.teleinformatyk 312[02] o1.01_uRzeźnik Sebastian
 

Más de Rzeźnik Sebastian (6)

Technik.teleinformatyk 312[02] z4.01_u
Technik.teleinformatyk 312[02] z4.01_uTechnik.teleinformatyk 312[02] z4.01_u
Technik.teleinformatyk 312[02] z4.01_u
 
Technik.teleinformatyk 312[02] z1.04_u
Technik.teleinformatyk 312[02] z1.04_uTechnik.teleinformatyk 312[02] z1.04_u
Technik.teleinformatyk 312[02] z1.04_u
 
Technik.teleinformatyk 312[02] z1.02_u
Technik.teleinformatyk 312[02] z1.02_uTechnik.teleinformatyk 312[02] z1.02_u
Technik.teleinformatyk 312[02] z1.02_u
 
Technik.teleinformatyk 312[02] z1.01_u
Technik.teleinformatyk 312[02] z1.01_uTechnik.teleinformatyk 312[02] z1.01_u
Technik.teleinformatyk 312[02] z1.01_u
 
Technik.teleinformatyk 312[02] o1.02_u
Technik.teleinformatyk 312[02] o1.02_uTechnik.teleinformatyk 312[02] o1.02_u
Technik.teleinformatyk 312[02] o1.02_u
 
Technik.teleinformatyk 312[02] o1.01_u
Technik.teleinformatyk 312[02] o1.01_uTechnik.teleinformatyk 312[02] o1.01_u
Technik.teleinformatyk 312[02] o1.01_u
 

Technik.teleinformatyk 312[02] z2.02_u

  • 1. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”
  • 2. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 1 MINISTERSTWO EDUKACJI NARODOWEJ Grzegorz Lis Eksploatowanie systemów radiokomunikacyjnych 312[02].Z2.02 Poradnik dla ucznia
  • 3. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 2 Wydawca Instytut Technologii Eksploatacji – Państwowy Instytut Badawczy Radom 2007 Recenzenci: prof. PŁ dr hab. inż. Krzysztof Pacholski dr inż. Marian Jerzy Korczyński Opracowanie redakcyjne: mgr inż. Ryszard Zankowski Konsultacja: mgr Małgorzata Sienna Poradnik stanowi obudowę dydaktyczną programu jednostki modułowej 312[02].Z2.02, „Eksploatowanie systemów radiokomunikacyjnych”, zawartego w modułowym programie nauczania dla zawodu technik teleinformatyk.
  • 4. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 3 Wydawca Instytut Technologii Eksploatacji – Państwowy Instytut Badawczy, Radom 2007 SPIS TREŚCI 1. Wprowadzenie 3 2. Wymagania wstępne 5 3. Cele kształcenia 6 4. Materiał nauczania 7 4.1. Radiowe sieci dostępowe 7 4.1.1. Materiał nauczania 7 4.1.2. Pytania sprawdzające 9 4.1.3. Ćwiczenia 10 4.1.4. Sprawdzian postępów 10 4.2. CB-Radio 11 4.2.1. Materiał nauczania 11 4.2.2. Pytania sprawdzające 15 4.2.3. Ćwiczenia 15 4.2.4. Sprawdzian postępów 16 4.3. System radiokomunikacji cyfrowej TETRA 17 4.3.1. Materiał nauczania 17 4.3.2. Pytania sprawdzające 24 4.3.3. Ćwiczenia 25 4.3.4. Sprawdzian postępów 26 4.4. System radiokomunikacji DECT 27 4.4.1. Materiał nauczania 27
  • 5. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 4 4.4.2. Pytania sprawdzające 29 4.4.3. Ćwiczenia 30 4.4.4. Sprawdzian postępów 31 5. Sprawdzian osiągnięć 32 6. Literatura 37 1. WPROWADZENIE Poradnik będzie Ci pomocny w przyswajaniu wiedzy o budowie, działaniu i usługach systemów radiokomunikacyjnych oraz ich eksploatowania i zarządzania. W poradniku znajdziesz: – wymagania wstępne – wykaz umiejętności, jakie powinieneś mieć już ukształtowane, abyś bez problemów mógł korzystać z poradnika, – cele kształcenia – wykaz umiejętności, jakie ukształtujesz podczas pracy z poradnikiem, – materiał nauczania – wiadomości teoretyczne niezbędne do opanowania treści jednostki modułowej, – zestaw pytań, abyś mógł sprawdzić, czy już opanowałeś określone treści, – ćwiczenia, które pomogą Ci zweryfikować wiadomości teoretyczne oraz ukształtować umiejętności praktyczne, – sprawdzian postępów, – sprawdzian osiągnięć, przykładowy zestaw zadań. Zaliczenie testu potwierdzi opanowanie materiału całej jednostki modułowej, – literaturę uzupełniającą.
  • 6. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 5 Schemat układu jednostek modułowych 2. WYMAGANIA WSTĘPNE Przystępując do realizacji programu jednostki modułowej powinieneś umieć: − interpretować podstawowe pojęcia z zakresu elektroniki, − czytać schematy ideowe i montażowe układów i podzespołów elektronicznych, − wyjaśniać zjawiska związane z przesyłaniem sygnałów analogowych i cyfrowych, − wyjaśniać zasady przetwarzania analogowo-cyfrowego sygnałów, − posługiwać się pojęciami z zakresu radiofonii i telewizji, 312[02].Z2 Urządzenia i systemy telekomunikacyjne 312[02].Z2.02 Eksploatowanie systemów radiokomunikacyjnych 312[02].Z2.01 Badanie urządzeń radiowo-telewizyjnych 312[02].Z2.03 Eksploatowanie sieci telefonii komórkowych 312[02].Z2.04 Eksploatowanie telekomunikacyjnych systemów przewodowych
  • 7. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 6 − obliczać wielkości elektryczne związane z radiofonią i telewizją, − wyjaśniać zasady tworzenia i przetwarzania sygnałów analogowych w urządzeniach radiowo-telewizyjnych, − posługiwać się dokumentacją techniczną urządzeń radiowo-telewizyjnych, − charakteryzować poszczególne bloki funkcjonalne nadajników i odbiorników radiowych oraz telewizyjnych, − wykonywać montaż elementów i podzespołów urządzeń i sieci telekomunikacyjnych, − użytkować systemy telekomunikacyjne oraz dokonywać ich przeglądów i napraw, − stosować przepisy bezpieczeństwa i higieny pracy, ochrony przeciwpożarowej oraz ochrony środowiska.
  • 8. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 7 3. CELE KSZTAŁCENIA W wyniku realizacji programu jednostki modułowej powinieneś umieć: – posłużyć się pojęciami z zakresu systemów telefonii komórkowej, – posłużyć się pojęciami z zakresu radiokomunikacji, – wyjaśnić budowę i działanie systemów radiokomunikacyjnych, – odczytać schematy blokowe i ideowe sprzętu radiokomunikacyjnego, – wyjaśnić zasadę działania radiokomunikacji publicznej CB, – wyjaśnić zasadę działania radiokomunikacji służb ratunkowych, – wyjaśnić zasadę działania radiokomunikacji trankingowej, – rozróżnić systemy oraz sieci łączności radiokomunikacji cyfrowej, – zastosować przyrządy pomiarowe stosowane w radiokomunikacji, – wyjaśnić zastosowanie radiokomunikacji w sieciach teleinformatycznych, – zintegrować urządzenia radiokomunikacyjne ze sprzętem teleinformatycznym, – zastosować zasady bezpieczeństwa i higieny pracy podczas użytkowania i konserwacji sprzętu radiokomunikacyjnego, – posłużyć się językiem angielskim zawodowym w zakresie zagadnień radiokomunikacji, – udzielić pierwszej pomocy osobom poszkodowanym podczas obsługi sprzętu radiokomunikacyjnego, – posłużyć się sprzętem ratunkowym i ratowniczym.
  • 9. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 8 4. MATERIAŁ NAUCZANIA 4.1. Radiowe sieci dostępowe 4.1.1. Materiał nauczania Radiowe sieci dostępowe, nazywane także bezprzewodowymi pętlami abonenckimi, stanowią przykład systemu łączności leżącego na pograniczu sieci stałych i systemów radiokomunikacji ruchomej. Ich popularność wyraźnie rośnie w ostatnich latach, do czego zdecydowanie przyczyniło się upowszechnienie systemów radiokomunikacji ruchomej, a szczególnie opracowanie nowych standardów systemów telefonii komórkowej i telefonu bezprzewodowej, miniaturyzacja podzespołów i obniżka ich kosztów. W architekturze klasycznych publicznych sieci telekomunikacyjnych, łącze lokalne odgrywa bardzo istotną rolę. Poprzez takie łącze realizuje się dostęp abonentów do sieci, a poprzez nie do usług oferowanych w sieci. Pojęcie pętli abonenckiej obejmuje wszystkie elementy publicznej sieci telekomunikacyjnej pomiędzy centralą a końcowym abonentem usługo telekomunikacyjnej (rys. 1). Rys. 1. Części składowe pętli abonenckiej oraz wykorzystywane w niej sposoby transmisji [1, s. 177] Pętla abonencka składa się z części transmisyjnej, łączącej centralę z koncentratorem oraz z części dostępowej, pomiędzy koncentratorem a abonentem końcowym. Obie części pętli abonenckiej (transmisyjna i dostępowa) mogą fizycznie wykorzystywać różne typy łączy telekomunikacyjnych (kablowe, światłowodowe, satelitarne, radiowe naziemne). W chwili obecnej, łącza abonenckie w publicznej stałej sieci telefonicznej realizuje się z reguły przy wykorzystaniu symetrycznych kabli miedzianych. Rozwiązanie to ma szereg wad. Instalacja tradycyjnego okablowania w pętlach abonenckich jest czasochłonna i droga, a dalsze utrzymanie istniejącego okablowania wymaga znacznych nakładów. Dlatego też operatorzy telekomunikacyjni poszukują nowych, bardziej opłacalnych rozwiązań umożliwiających podłączenie abonenta końcowego do infrastruktury sieci. Organizacja łączności w bezprzewodowym łączu lokalnym przypomina w pewnym stopniu sytuację w pojedynczej komórce systemu telefonii komórkowej. W obu przypadkach mamy do czynienia ze stacją nadawczo-odbiorczą połączoną łączem stałym z pozostałymi węzłami klasycznej sieci telekomunikacyjnej. Wokół stacji znajduje się obszar łączności, którego kształt, mówiąc w dużym uproszczeniu, przypomina koło. Promień koła wynika z zasięgu
  • 10. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 9 łączności. Na obszarze łączności znajduje się pewna liczba terminali, które są zdolne poprzez łącze radiowe realizować łączność pomiędzy sobą, z abonentami sieci stałej, a także za jej pośrednictwem z abonentami innych systemów telekomunikacyjnych. Pomiędzy systemami telefonii komórkowej a radiowymi sieciami dostępowymi istnieje także kilka istotnych różnic. Przede wszystkim, w radiowej sieci dostępowej zbiór terminali działających w obszarze odpowiadającym pojedynczej stacji bazowej jest stały, tj. terminale muszą być zarejestrowane u operatora danej sieci dostępowej i posiadają przypisaną danemu terminalowi wyłącznie jedną radiową stację bazową. W przeciwieństwie do tego, w systemie komórkowym liczba i rodzaj terminali w danej komórce podlegają bezustannym zmianom. W efekcie, radiowe systemy dostępowe są znacznie uboższe w warstwie sterującej, m.in. pozbawione są funkcji śledzenia ruchu abonentów, ich rejestracji (na bieżąco) w poszczególnych komórkach, a także nie jest realizowane przełączanie rozmów pomiędzy sąsiednimi stacjami bazowymi. Podkreślić należy, że ewentualne przemieszczanie się terminali wewnątrz obszaru odpowiadającego danej stacji bazowej jest w tym przypadku nieistotne. Sieci dostępowe oparte na analogowych systemach komórkowych W radiowych systemach dostępowych stosuje się następujące standardy telefonii komórkowej analogowej: AMPS/TACS oraz NMT. W systemach tego typu sygnał mowy przesyła się z wykorzystaniem modulacji FM w kanałach radiowych o szerokości 25 lub 30 kHz w pasmach: 450 MHz, 800 MHz lub 900 MHz. Głównymi zaletami tego typu rozwiązań jest to, że są to systemy stosunkowo proste konstrukcyjnie o stosunkowo dużym zasięgu (20– 30 km) i niewielkich opóźnieniach w transmisji. Niestety znana konstrukcja umożliwia podsłuchiwanie rozmów przesyłanych w kanale radiowym a proste mechanizmy służące do identyfikacji terminali nie zabezpieczają w dostateczny sposób systemu przed dostępem niepowołanych osób. Ponadto systemy te mają niewielkie przepływności i pojemności określane liczbą podłączonych abonentów. Sieci dostępowe oparte na cyfrowych systemach komórkowych W tym przypadku możliwe jest wykorzystanie standardów cyfrowych GSM, wraz z jego wersją wysokoczęstotliwościową DCS 1800, a także standardu DAMPS. Systemy te działają w pasmach 900 MHz oraz 1800 MHz. Sygnały mowy przesyła się w kanale radiowym w postaci ciągu binarnego o przepustowości od około 7 kbit/s do 13 kbit/s. Główne zalety rozwiązań opartych na cyfrowych systemach telefonii komórkowej wynikają z tego, że są to nowoczesne, szeroko stosowane standardy, odpowiadające współczesnym wymaganiom. Powszechność standardów oznacza łatwy dostęp do szerokiej gamy układów scalonych, dostarczanych przez wielu producentów, a także niskie koszty stałe związane z projektowaniem systemu, w przeliczeniu na pojedynczego użytkownika. Systemy cyfrowe oferują duże pojemności. Typowa stacja bazowa z 8 nadajnikami radiowymi obsługuje 64 kanały rozmowne, co pozwala na zaspokojenie potrzeb ruchowych ponad 600 abonentów prywatnych. W przypadku systemów pracujących poniżej l GHz, zasięg łączności jest porównywalny z systemami analogowymi, a w przypadku łączności w paśmie 1800 MHz jest znacznie mniejszy: rzędu 10–20 km. W porównaniu z systemami analogowymi, jakość łączności w systemach cyfrowych zależy znacznie mniej od odległości terminala od stacji bazowej. Wreszcie cyfrowa obróbka sygnału mowy oraz zastosowanie układów mikroprocesorowych umożliwia stosowanie zaawansowanych procedur służących szyfrowaniu informacji oraz identyfikacji użytkowników.
  • 11. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 10 Sieci dostępowe oparte na cyfrowych systemach telefonii bezprzewodowej W systemach pętli abonenckich stosowane są, jak dotąd, następujące standardy cyfrowych systemów bezprzewodowych: DECT oraz CT 2. Sygnał mowy w tych systemach nie zostaje poddany większej kompresji, w kanale przesyłany jest w postaci ciągu binarnego o przepływności 32 kbit/s, co odpowiada jakości sygnału mowy przesyłanego w sieci stałej. Proste algorytmy obróbki sygnału mowy prowadzą z kolei do niewielkich opóźnień, rzędu 10– 15 ms. Systemy telefonii bezprzewodowej, w przeciwieństwie do standardów telefonii komórkowej, definiują głównie interfejs radiowy co sprawia, że projektant ma dużą swobodę w definiowaniu funkcji charakterystycznych dla danego zastosowania. Dogodna jest realizacja dostępu użytkownika do sieci ISDN, co najmniej z przepływnościami 32 kbit/s, a w przypadku standardu DECT 144 kbit/s. Złożoność sprzętowa systemu jest niewielka (CT 2) lub średnia (DECT); w każdym razie jest ona mniejsza od złożoności systemów komórkowych. Cyfrowa realizacja sprzyja wbudowywaniu nowoczesnych mechanizmów identyfikacji rozmówców i szyfrowania informacji. System DECT posiada takie mechanizmy wbudowane, a w systemie CT 2 możne je łatwo wprowadzić jako opcję dodatkową. Cechą charakterystyczną wszystkich systemów telefonii bezprzewodowej jest ich niewielki zasięg łączności: typowo do kilkuset metrów. Bezwzględna pojemność systemu, mierzona liczbą abonentów obsługiwanych przez jedną stację bazową, jest niewielka (CT 2) lub średnia (DECT). Sieci dostępowe oparte na wielodostępie kodowym CDMA Bezprzewodowe pętle abonenckie realizowane w technologiach opisanych powyżej wykorzystywały sygnały wąskopasmowe do transmisji wiadomości. Innym rozwiązaniem jest zastosowanie do tego celu sygnałów z poszerzonym widmem, co prowadzi do tzw. zwielokrotniania kodowego sygnałów. System oparty na technice CDMA cechuje się wysoką odpornością na zakłócenia, niewielkimi opóźnieniami oraz dużymi pojemnościami. Zalety systemów szerokopasmowych są szczególnie widoczne jedynie w przypadkach gdy szerokość pasma wykorzystywanego przez system jest dostatecznie duża, co nie jest łatwo zrealizować w praktyce, wobec znacznego zagęszczenia użytkowników pasma radiowego. System mikrofalowe typu point-multipoint Ostatnim sposobem wykorzystywanym do realizacji bezprzewodowych pętli abonenckich jest rozwiązanie polegające na zastosowaniu pewnej liczby indywidualnych łączy punkt-punkt, w miejsce transmisji rozsiewczej jaka realizowana była w poprzednio omawianych systemach. Rozwiązanie takie określa się często jako system microwave pointmultipoint (MPMP). Systemy takie oferowane są przez kilku producentów. Pomimo licznych różnic występujących pomiędzy poszczególnymi systemami MPMP, ich cechą wspólną jest wykorzystywanie częstotliwości mikrofalowych z przedziału od 1,7 GHz do 2,4 GHz w celu zestawiania łączy o przepływności od 2 Mbit/s do 4 Mbit/s. W systemach MPMP stosuje się najczęściej wielodostęp czasowy TDMA. Cechą charakterystyczną systemów MPMP jest stosunkowo duży zasięg, nawet przekraczający 50 km, przy czym wymagana jest bezpośrednia widoczność pomiędzy nadajnikiem i odbiornikiem. Systemy MPMP mają dość dużą pojemność i zwykle jest podłączany do tradycyjnej centrali telefonicznej, a opcjonalnie do sieci ISDN kanałem 2B+D. 4.1.2. Pytania sprawdzające Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń.
  • 12. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 11 1. Jakie są główne rodzaje sieci dostępowych? 2. Jakie typy łączy telekomunikacyjnych są wykorzystywane między centralą a koncentratorem? 3. Jakie są główne parametry sieci dostępowych? 4. Na jakich częstotliwościach pracują analogowe sieci dostępowe? 5. Jakie są zalety systemu CDMA? 4.1.3. Ćwiczenia Ćwiczenie 1 Porównaj na podstawie danych zamieszczonych w instrukcji ćwiczenia najważniejsze parametry różnych sieci dostępowych. Sposób wykonania ćwiczenia. Aby wykonać ćwiczenie, powinieneś: 1) zapisać wszystkie posiadane dane liczbowe niezbędne do wykonania zadania, 2) ustalić, które wartości parametrów są bardziej korzystne, a które mniej, 3) dokonać analizy porównawczej. 4) sformułować odpowiedź i wnioski. Wyposażenie stanowiska pracy: − zeszyt, − długopis, − instrukcja do ćwiczenia, − kalkulator, − literatura. 4.1.4. Sprawdzian postępów Czy potrafisz: Tak Nie 1) scharakteryzować główne rodzaje sieci dostępowych? 2) scharakteryzować łącza między koncentratorem i centralą? 3) określić główne parametry sieci dostępowych? 4) przyporządkować częstotliwości do określonych sieci dostępowych? 5) wskazać zalety poszczególnych rodzajów sieci dostępowych? 4.2. CB-Radio 4.2.1. Materiał nauczania Nazwa CB-Radio pochodzi od angielskich słów „Citizens Band Radio” i oznacza „Obywatelskie Pasmo Radiowe”. CB w pojęciu potocznym to łączność radiowa dostępna dla wszystkich obywateli. Z nazwą tą kojarzy się także gwałtownie rozwijający się ruch społeczny, skupiający zainteresowanych
  • 13. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 12 nawiązywaniem łączności za pomocą prostych i stosunkowo tanich urządzeń radiowych. CB- RADIO jest to rodzaj łączności radiowej nie wymagający odpowiednich kwalifikacji, stwarzający jednocześnie porównywalne możliwości z łącznością kwalifikowaną-amatorską na pasmach KF i UKF. Nie oznacza to jednak, że dla łączności CB wystarcza tylko posiadanie radia. Generalna przewaga łączności CB w porównaniu z łącznością amatorską polega przede wszystkim na: − możliwości przemieszczania się nadajnika bez specjalnych zabiegów administracyjnoprawnych, którą uzyskuje się przez zgłoszenie przy rejestracji urządzenia w Państwowej Agencji Radiokomunikacyjnej (PAR). Uzyskanie takiego zezwolenia nie wymaga żadnych wstępnych umiejętności operatorskich czy praktyki w nawiązywaniu łączności, − pozwala jednocześnie na uzupełnienie łączności telefonicznej wszędzie tam, gdzie jej nie ma lub z różnych względów być nie może (woda, góry, samochód itp.). W wielu przypadkach może się stać jedynym zabezpieczeniem ratunkowym, sposobem przekazania informacji bądź porozumienia się, − jest także pierwszym krokiem do łączności bardziej kwalifikowanej o większych mocach i zasięgach na pasmach amatorskich. Znaczenie ma tu także pewna funkcja edukacyjna w tym zakresie. Na całym świecie do ogólnodostępnej komunikacji radiowej CB wydzielono specjalne pasmo częstotliwości – 27 MHz. Pasmo to obejmujące zakres częstotliwości od 26 MHz do 28 MHz, podzielono na zakresy A, B, C, D i E. A – 26,065 do 26,505 (MHz), B – 26,515 do 26,955 (MHz), C – 26,965 do 27,405 (MHz), D – 27,415 do 27,855 (MHz), E – 27,865 do 27,995 (MHz), Dodatkowo zakresy podzielono na kanały oddalone od siebie co 10 kHz. Każdy zakres obejmuje 40 kanałów. Polska jest członkiem Europejskiej Konferencji Administracji Pocztowych i Telekomunikacyjnych (CEPT), która to powołała i której podlega Europejski Instytut Telekomunikacji do spraw Normalizacji (ETSI). Organizacja ta opracowała Europejską Normę Telekomunikacyjną, zrzesza między innymi producentów i użytkowników sprzętu CB, którzy biorą udział w redagowaniu norm i specyfikacji. Normy te określają wymagania techniczne na produkcję, sposoby przeprowadzania badań w laboratoriach oraz zasady właściwego wykorzystywania urządzeń. Częstotliwości od 28,000 MHz do 29,700 MHz przeznaczone są wyłącznie dla radiokomunikacji amatorskiej na zasadach pasma strzeżonego i w żadnym wypadku nie wolno pracować na tych częstotliwościach bez licencji krótkofalarskiej. Polskie przepisy komunikacji radiowej przewidują dla CB-radio 40 kanałów w paśmie C, w zakresie częstotliwości 26,960–27,400 MHz. Na świecie w zakresie B i C dopuszcza się korespondencję z modulacją AM i FM, natomiast w pozostałych zakresach (zakres – używa się także nazwy czterdziestka) z modulacją SSB.
  • 14. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 13 Podstawowym rodzajem modulacji stosowanym w Polsce jest modulacja amplitudy (AM), zalecane jest stosowanie modulacji częstotliwości (FM) ze względu na mniejsze zakłócenia dla otoczenia i wyższą jakość odbioru. Dopuszczone jest stosowanie modulacji jednowstęgowej SSB (USB i LSB), co pozwala na powiększenie zasięgu i polepszenie jakości transmisji (zwiększa odstęp od szumów i zakłóceń), jest to jednak okupione bardziej skomplikowaną budową i wyższą ceną urządzeń. Dopuszczalna moc użytkowanych urządzeń wynosi aktualnie 4 W w emisji AM i FM oraz 12 W w emisji SSB. REGULAMIN PRACY W PAŚMIE CB 1. Posiadacz radiotelefonu CB zobowiązany jest do użytkowania go zgodnie z warunkami ustalonymi w zezwoleniu, w sposób nie naruszający obowiązującego w RP porządku prawnego i zasad współżycia społecznego. 2. Właściciel urządzenia CB odpowiada za zgodny z przepisami sposób wykorzystania swojego radiotelefonu również przez innych niż on sam użytkowników. 3. Posiadacz zezwolenia jest zobowiązany do odpowiedniego zabezpieczenia radiotelefonu przed użyciem go przez osoby niepowołane. 4. Użytkownik radiotelefonu powinien w czasie pracy urządzenia posiadać przy sobie odpowiednie zezwolenie i okazywać je na każdorazowe żądanie osób uprawnionych do kontroli. 5. Przed rozpoczęciem rozmowy należy upewnić się czy kanał jest wolny. 6. Na początku każdej rozmowy oraz na każde żądanie korespondenta należy podać swój znak wywoławczy określony w zezwoleniu PAR. 7. Na żądanie korespondenta należy podać aktualne miejsce nadawania. 8. W łączności CB obowiązuje odstęp międzykanałowy 10 KHz od częstotliwości zajętej. 9. Kanał 28 zaleca się wykorzystywać jako kanał wywoławczy. 10. W paśmie CB niedozwolone jest: a) nadawanie i rozpowszechnianie informacji o charakterze politycznym, gospodarczym i innych stanowiących tajemnicę państwową lub służbową, wszelkiej propagandy i reklamy oraz wiadomości niezgodnych z zasadami współżycia społecznego, b) używanie słów wulgarnych i obraźliwych, c) używanie CB do prowadzenia działalności zarobkowej, d) nadawanie muzyki, e) nadawanie retransmisji, f) nadawanie na kanale, na którym ktoś inny rozmawia, g) nadużywanie haseł RATUNEK i BREAK, h) używanie jako swojego, w całości lub w części, przydzielonego lub przeznaczonego do przydzielenia komu innemu, oficjalnego znaku wywoławczego. 11. Kanał 9 (27,060 MHz,) jest przeznaczony wyłącznie do celów wzywania pomocy i pracy służb ratunkowych. 12. W sytuacjach nadzwyczajnych użytkownik radiotelefonu może zapewnić sobie pierwszeństwo przeprowadzenia rozmowy podając hasło RATUNEK. Operatorzy pozostałych radiotelefonów zobowiązani są do zachowania ciszy radiowej aż do momentu przejścia tego rozmówcy na inny kanał lub zakończenia rozmowy. Hasło RATUNEK może być użyte jedynie w sytuacji zagrożenia życia, zdrowia, bezpieczeństwa lub mienia. 13. W przypadku braku reakcji służby ratunkowej każdy użytkownik radiotelefonu ma obowiązek zareagować na odebrane hasło RATUNEK.
  • 15. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 14 14. W czasie prowadzenia akcji ratunkowej pierwszeństwo w eterze przysługuje stacjom w następującej kolejności: 1) wołanej służby ratunkowej, 2) Sztabu Ratownictwa PL-CB RADIO, 3) wołającej o pomoc, przy czym stacji tej przysługuje pierwszeństwo w nawiązywaniu łączności, 4) która pierwsza zareagowała na wołanie o ratunek. Pozostałe stacje przysłuchują się jedynie i włączają się do akcji tylko na wyraźną prośbę stacji prowadzącej akcję ratunkową. 15. Wywoływanie a) kryptonimy alarmowe na Kanale Ratunkowym PL-CB RADIO9, oznaczają: 991 Sztaby Ratownictwa PL-CB RADIO, 992 jednostki Obrony Cywilnej, 993 zespoły do spraw nadzwyczajnych zagrożeń przy wojewodach i urzędach, 994 stanowiska dyspozycji inżyniera miasta, 996 Straż Miejska, 997 Policja, 998 Straż Pożarna, 999 Pogotowie Ratunkowe; b) w celu zrozumiałości wywołania dopuszcza się wywoływanie służby dyżurującej, używając jej nazwy i miejscowości, w której się znajduje np.: Pogotowie Ratunkowe Gdańsk; c) wywołujący na Kanale Ratunkowym PL-CB RADIO ma obowiązek podać swój znak wywoławczy przydzielony przez PAR, ratownicy zarejestrowani w Krajowej Sieci Ratownictwa PL-CB RADIO podają dodatkowo swój numer nadany przez Sztab Krajowy; d) powiadamiając służbę dyżurującą o zaistniałym wydarzeniu należy w sposób zwięzły podać następujące informacje, zachowując kolejność: − kto woła, − miejsce zdarzenia, − co się stało, np.: wypadek drogowy cysterny; pożar stodoły itp., − liczba rannych i skutki zdarzenia np.: 4 osoby ranne, w tym dwie nieprzytomne, a u dwóch uraz głowy i silne krwawienie, zablokowana droga itp., − na tym należy relację zakończyć i czekać na dyspozycje służby dyżurującej, oddalić się z miejsca wypadku wolno tylko wtedy gdy służba dyżurująca nie zaleciła pozostania na miejscu lub uzupełnienia informacji, − przy prowadzeniu łączności ratunkowej należy każdorazowo potwierdzić odebranie nadawanej informacji; e) posiadacz radiotelefonu CB w razie napotkania wypadku, ma obowiązek zatrzymać się i zorientować, czy są osoby ranne i czy na skutek wypadku istnieje jakieś zagrożenie. W przypadku potrzeby interwencji jest on zobowiązany do niezwłocznego powiadomienia odpowiedniej służby. 16. Na hasło BREAK należy na chwilę zwolnić kanał w celu umożliwienia nawiązania łączności i uzgodnienia przejścia na inną częstotliwość lub przekazania krótkiej ważnej informacji. 17. Pomiędzy nadawaniem a odbiorem należy zachować krótki, około 1 sekundowy odstęp. 18. W razie przerwania lub braku łączności, w czasie klęsk żywiołowych, w razie ratowania życia ludzkiego itp. posiadacz urządzenia CB ma prawo i obowiązek używać lub
  • 16. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 15 udostępniać swoje urządzenie dla przekazania wiadomości mających na celu wezwanie i niesienie pomocy. 19. Praca urządzenia CB nie powinna przeszkadzać w pracy innych urządzeń CB. 20. W przypadku przekroczenia ustalonych przepisów i zasad komisje eterowe PL-CB RADIO mogą wnioskować o czasowe zawieszenie lub cofnięcie zezwolenia. Podstawową zaletą CB-radio zdobywającą dla niego coraz więcej zwolenników jest możliwość nawiązywania łączności z punktami ruchomymi. Stwarza bowiem możliwość bezpośredniego nawiązania kontaktu między zainteresowanymi bez ograniczeń wynikających z rozmieszczenia sieci telekomunikacyjnej. Urządzenia CB-radio produkowane są jako stacjonarne, przewoźne i przenośne. Urządzenia przenośne Są to niezależne urządzenia zawierające w jednej obudowie wszystkie elementy niezbędne do samodzielnego działania. Są one na ogół małe i lekkie. Mają składaną antenę lub bardziej wygodną, lecz o mniejszym zasięgu krótką antenę gumową. Istnieje możliwość wymiennego stosowania obu rodzajów anten, a także przyłączenia się do anteny stacjonarnej. Urządzenia te są zasilane z wewnętrznych źródeł prądu (baterie, akumulatory) z możliwością podłączenia do zewnętrznego źródła zasilania (akumulator samochodowy, zasilacz stabilizowany). Baterie bardzo szybko się wyładowują, szczególnie przy częstym nadawaniu dużą mocą. Są to powody milknięcia odbiornika przy silniejszym sygnale, związane jest to z większym poborem prądu z baterii, nie mówiąc już o spadku mocy nadawanej i tym samym zmniejszeniu się zasięgu. Z tego względu zaleca się stosowanie akumulatorów i ich systematyczne doładowywanie, a raz na kwartał rozładowanie do dopuszczalnego minimum i ponowne naładowanie. Takich zabiegów wymagają akumulatorki kadmowo-niklowe, ponieważ upływności poszczególnych ogniw są różne, a przeładowywanie jest bardzo szkodliwe (wiąże się z tym wydzielanie temperatury; jest to oznaka, że ładowanie należy przerwać). Ładowarki wysokiej klasy do takich akumulatorów wyposażone są w stabilizatory prądu ładowania oraz elektroniczne urządzenie kontrolujące stan naładowania (próbkującoodłączające). Działanie takiego urządzenia jest następujące: zawsze co kilkadziesiąt sekund odłącza się na czas około jednej sekundy ładowanie, wykonując w tym czasie: pomiar napięcia Uo pod obciążeniem, porównanie napięcia Uo z napięciem wzorcowym Uw, załączenie dalszego ładowania jeżeli Uo<Uw lub przerwanie ładowania akumulatorków jeżeli Uo>Uw. Większość urządzeń przenośnych nie wymaga wyjmowania akumulatorów do ładowania, gdyż wyposażone są one w odpowiednie gniazdo, do którego przyłącza się prostownik. Urządzenia przenośne są najczęściej AM-owe rzadziej AM/FM, o mocy 4 W lub 5 W wyposażone w przełączniki redukcji mocy do l W. Umożliwiają one utrzymanie łączności w każdych warunkach, np. po podłączeniu do anteny stacjonarnej i zasilacza stabilizowanego mogą pracować jako urządzenia stacjonarne. Podstawową różnicą w stosunku do pozostałych urządzeń CB jest ich maksymalna miniaturyzacja. Urządzenia przewoźne Są to urządzenia samochodowe i jachtowe (różnią się między sobą jedynie sposobem zamocowania anteny). Dzięki zastosowaniu zewnętrznych elementów (anteny, zasilacza i mikrofonu) uzyskuje się znacznie wyższą jakość pracy całego urządzenia. Jako źródło zasilania stosuje się akumulatory samochodowe. Antena umieszczona jest na zewnątrz samochodu. Sposób i miejsce zamocowania anteny ma istotny wpływ na jakość pracy urządzenia CB. Radiostacja nie musi być w tym przypadku tak bardzo zminiaturyzowana i może pobierać
  • 17. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 16 znacznie więcej prądu. Dzięki temu jej cena jest na ogół znacznie niższa od urządzeń przenośnych o porównywalnych parametrach. Urządzenia stacjonarne Są to na ogół większe, cięższe urządzenia wyposażone w wewnętrzne zasilacze sieciowe oraz zewnętrzne mikrofony i anteny. Umożliwiają jednak lepszą jakość i komfort pracy. Specjalne anteny bazowe zapewniają bardzo dobrą jakość odbioru i nadawania, ale ze względu na swoje rozmiary nie nadają się do przemieszczania. W warunkach domowych także można stosować (co najczęściej się zdarza) radiotelefony przewoźne, jednak konieczne staje się zastosowanie dodatkowego zasilacza stabilizowanego o odpowiedniej wydajności prądowej. Zasilacz taki musi dostarczać napięcie stabilizowane w wysokości 12–14 V. Musi także umożliwiać pobór odpowiednio dużego prądu. Przeciętne radio CB przy nadawaniu pobiera średnio 2–5 A, a przy odbiorze od 0,1 do l A. Przy wyborze zasilacza miarą powinna być przede wszystkim jego wydajność prądowa, napięcie znamionowe zasilania zalecane przez producenta sprzętu, do którego ma być użyty zasilacz. 4.2.2. Pytania sprawdzające Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń. 1. Na czym polega przewaga łączności CB nad łącznością amatorską? 2. Jakie częstotliwości obejmuje pasmo CB? 3. Jakie rodzaje modulacji stosuje się w komunikacji CB? 4. Jakie są sposoby wywoływania rozmówców podczas komunikacji CB według regulaminu? 5. Co oznacza hasło BREAK? 6. Czym się różnią od siebie różne rodzaje urządzeń CB? 4.2.3. Ćwiczenia Ćwiczenie 1 Przeprowadź symulację komunikacji CB (zgodnej z regulaminem) w warunkach podanych w instrukcji zadania. Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś: 1) rozpozanć założenia podane w instrukcji, 2) zapisać wszystkie kroki procesu wywołania i wyboru częstotliwości, 3) wykonać połączenie CB. Wyposażenie stanowiska pracy: − instrukcja do zadania, − urządzenie stacjonarne CB, − papier, długopis, kalkulator. Ćwiczenie 2. Oblicz częstotliwość końcową 6 kanału na zakresie C nadajnika CB
  • 18. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 17 Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś: 1) ustalić przedział częstotliwości dla zakresu C, 2) ustalić początek i koniec pierwszego kanału w tym zakresie, 3) obliczyć częstotliwość końcową 6 kanału na zakresie C, 4) obliczyć łączne pasmo dostępne dla transmisji danych. Wyposażenie stanowiska pracy: − zeszyt do ćwiczeń, − ołówek, długopis, − kalkulator, − literatura. 4.2.4. Sprawdzian postępów Czy potrafisz: Tak Nie 1) wyjaśnić na czym polega przewaga łączności CB nad łącznością amatorską? 2) wymienić pasmo częstotliwości CB? 3) wskazać rodzaje modulacji w komunikacji CB? 4) stosować kryptonimy i hasła w łączności CB? 5) scharakteryzować różne typy urządzeń CB? 4.3. System radiokomunikacji cyfrowej TETRA 4.3.1. Materiał nauczania Analogowy sygnał mowy, powstający w mikrofonie telefonu komórkowego, poddany zostaje po wstępnej korekcji charakterystyki przetworzeniu na postać cyfrową. Przetwarzanie to odbywa się identycznie, jak w przypadku telefonii stacjonarnej i nosi nazwę cyfryzacji sygnału mowy. System TETRA należy do systemów łączność określanych mianem systemów trakningowych. Tranking polega na automatycznym i dynamicznym przydziale wspólnego zbioru kanałów. Abonent chcący nawiązać połączenie ma przydzielany kanał (z ich skończonej liczby działających w systemie), a po zakończeniu połączenia zwraca go do wspólnej puli w celu wykorzystania przez innych użytkowników. Znika wówczas potrzeba ręcznego przeszukiwania kanałów, wolny zasób zostaje automatycznie przydzielony przez system. Nie trzeba również nasłuchiwać w oczekiwaniu na ciszę w kanale rozmownym. System trankingowy charakteryzuje się dużą pojemnością. Zakłada się oczywiście, że nie wszyscy abonenci w tym samym czasie będą chcieli skorzystać z kanałów radiowych. Można
  • 19. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 18 wówczas dla wielu abonentów w systemie korzystać z ograniczonej puli dostępnych kanałów dynamicznie przydzielając i zwalniając zasoby systemu. Systemy trankingowe są bardzo niezawodne, kolejka oczekujących może się wydłużać, ale wszyscy otrzymają dostęp do zasobów. W kolejce oczekujących na zasób można dogodnie priorytetować rozmowy, odpowiednio zmieniając w niej pozycję żądania użytkownika. Prywatność rozmów jest zachowana, nie ma bowiem możliwości ręcznego wejścia na dany kanał i nasłuchiwania, ponieważ jak wspomniano są one przydzielane automatyczne i rozłącznie dla różnych połączeń. Zważywszy stosowane w nich mechanizmy, systemy trankingowe są w pełni skalowalne, możliwe jest wprost zwiększenie liczby korzystających nich abonentów. W ramach sieci trankingowej można definiować grupy użytkowników i przydzielać im rozłączne grupy kanałów, zapewniając w ten sposób mniejszy czas oczekiwania na połączenie. Mogą one tworzyć prywatne sieci wykorzystywane przez firmy, które taką usługę wykupiły. Możliwe są połączenia ze wszystkimi użytkownikami lub określoną grupą stacji ruchomych. Dopuszczalne są połączenia poprzez stację bazową a także połączenia bezpośrednie. Stacja ruchoma może również pełnić rolę retlanslatora dla użytkownika odległego od stacji bazowej. System TETRA (ang. Terrestrial Trunked Radio) jest to nowoczesny standard cyfrowej łączności trankingowej umożliwiający transmisje głosu, danych i dodatkowych usług. Realizacji funkcji trankingu w systemie TETRA możliwa jest tylko poprzez wydzielenie jednego kanału fizycznego w stacji bazowej do realizacji głównego kanału sygnalizacyjnego MCCH (Main Control Channel). MCCH służy do obsługi zgłoszeń i przywołań abonentów oraz realizacji niektórych procedur i usług (np. transmisji statusów lub SDS). W przypadku dużej liczby kanałów w stacji bazowej lub realizacji usług, które wymagają większej przepływności kanału sterującego, standard TETRA umożliwia wydzielenie od jednego do trzech dodatkowych kanałów sygnalizacyjnych SCCH (Secondary Control Channel). Sposób organizacji kanałów w stacji bazowej przedstawiono na rysunku poniżej. Rys. 2. Organizacja kanałów w stacji bazowej Jeżeli operator dysponuje jednym kanałem radiowym, to stacja bazowa ma wydzielony jeden kanał MCCH i trzy kanały robocze. Możliwa jest wówczas jednoczesna i niezależna
  • 20. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 19 łączność trzech grup użytkowników. Gdy w systemie będzie zdefiniowanych więcej grup użytkowników, to następne grupy będą mogły korzystać z łączności dopiero po zwolnieniu kanału roboczego przez inną grupę. System poprzez kanał sygnalizacyjny jest powiadamiany o kolejnych wywołaniach, jednak sposób i czas ich realizacji jest uzależniony od uprawnień nadanych użytkownikom przez administratora oraz od priorytetu wywołania. Dostęp do realizacji usług jest dwuetapowy. Pierwszy z etapów wymaga, aby terminal za pomocą rywalizacyjnego protokołu ALOHA uzyskał dostęp do kanału MCCH, w celu wysłania żądania obsługi i ewentualnego przydziału kanału roboczego w celu realizacji drugiego etapu – transmisji głosu lub danych. Architektura systemu TETRA Struktura systemu TETRA jest elastyczna i może być odpowiednio kształtowana w zależności od potrzeb użytkowników tego systemu. Dotyczy to zarówno elementów systemu, jak i ich liczby. Jedną z naczelnych zalet systemu jest możliwość utworzenia wielu sieci wirtualnych (logicznych) na bazie jednej infrastruktury techniczno-telekomunikacyjnej. Użytkownicy, choć korzystają z jednego systemu, są podzieleni logicznie na grupy. O uprawnieniach do nawiązywania łączności pomiędzy poszczególnymi użytkownikami w grupie jak i między grupami decyduje administrator systemu lub uprawniony dyspozytor. Takie rozwiązanie umożliwia wielu służbom realizować niezależnie od siebie łączność poprzez wspólne urządzenia sieciowe i zasoby radiowe. Dostępność usług jest oczywiście uzależniona od wolnych zasobów systemowych. Rys. 3. Modułowość systemu TETRA [4 s. 4]
  • 21. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 20 Rys. 4. Architektura systemu [4 s. 5] Sposób podziału użytkowników, dostępne dla nich usługi oraz możliwość realizacji połączeń z innymi użytkownikami mogą być zmieniane przez administratora systemu w dowolnej chwili w zależności od aktualnych potrzeb. W skład typowego systemu TETRA wchodzą (rys. 2): – węzły sterujące SCN (Switching Control Node), – stacje bazowe BS (Base Station), – zdalne stanowiska liniowe dyspozytorów RLS (Remote Line Station), – stanowiska administratorów sieci NMS (Network Management Station), – zewnętrzne stanowiska zarządzania siecią ENMS (External Network Management Station), – terminale ruchome MS (Mobile Station), – punkty styku (Gateway) z sieciami LAN/WAN, PSTN, ISDN, Internet, GSM, PDN, PEI oraz innymi sieciami systemu TETRA itd. Jeżeli funkcjonalność tego nie wymaga to nie wszystkie elementy systemu TETRA muszą być zainstalowane. Oznacza to, że najprostszy system może być złożony ze stacji bazowej oraz terminali. Tym samym może być on znacznie tańszy i atrakcyjniejszy dla operatorów prowadzących działalność o charakterze lokalnym. Większa liczba stacji bazowych wymaga rozbudowy infrastruktury. W standardzie TETRA nie zdefiniowano funkcjonalności poszczególnych urządzeń a jedynie kilka interfejsów pomiędzy podstawowymi elementami. Architektura i funkcjonalność urządzeń uzależniona jest od rozwiązań stosowanych przez poszczególnych producentów. Nie jest raczej możliwe stosowanie urządzeń infrastruktury TETRA od wielu producentów. Możliwość współpracy jest gwarantowana jedynie przy zachowaniu wymagań zdefiniowanych przez ETSI dla kilku określonych interfejsów pomiędzy urządzeniami (rys. 2): – interfejs radiowy AI (Air Interface), – interfejs ISI (Inter System Interface) między sieciami TETRA, – interfejs PEI (Peripheral Equipment Interface) między terminalem radiowym, a urządzeniem końcowym transmisji danych,
  • 22. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 21 – interfejs LSI (Line Station Interface) między terminalem przewodowym, a stanowiskiem dyspozytorskim, – interfejs do sieci zarządzania NMI (Network Management Interface), interfejsy zewnętrzne do systemów PABX, PSTN, ISDN, PSDN. Węzły sterujące SCN obsługują zarówno transmisję głosu, jak i danych, korzystając przy tym z bazy danych o abonentach, ich uprawnieniach oraz przynależności do grup. Cechuje je nadmiarowość, kluczowych dla funkcjonowania systemu telekomunikacyjnego, elementów sieci. SCN może sterować pracą określonej liczby stacji bazowych (w typowych rozwiązaniach do 8 BS) oraz określoną liczbą modułów nadawczo-odbiorczych w tych stacjach bazowych (np. 64 kanałami radiowymi we wszystkich sterowanych stacjach). Ograniczenia dotyczą również liczby abonentów (zazwyczaj od kilku do kilkunastu tysięcy), przy czym limity mogą wynikać z wariantu zakupionej przez operatora licencji. Najprostsze sieci z jedną BS nie wymagają SCN, ponieważ BS posiada swój własny sterownik. Sieci rozległe TETRA zapewniają realizację łączności w obrębie stacji bazowej, nawet gdy zostanie uszkodzony sterownik SCN lub łącze SCN-BS. Stacje bazowe są elementami architektury sieci TETRA typu nadawczo-odbiorczego, zapewniającymi użytkownikom systemu bezprzewodową łączność na obszarze geograficznym, którego rozmiar jest zależny od warunków propagacyjnych, parametrów i sposobu zamontowania urządzeń (np. anten). Pomimo, że w systemie TETRA można realizować łączność nawet w odległości 60 km od stacji bazowej, to w przypadku planowania łączności w dużych miastach lub miejscach o urozmaiconej rzeźbie terenu nie należy liczyć na takie osiągi systemu i planować więcej stacji bazowych TETRA. Szczególnie, gdy planuje się dostępność usług dla ponad 90% miejsc w dużym mieście. Nadajniki stacji bazowych generują sygnały radiowe o mocy do 40 W, przy czym moc maksymalna BS zależy od jej klasy (zdefiniowano 10 klas). Możliwa jest regulacja mocy od 0,6 W do mocy maksymalnej. W sieci TETRA stacje bazowe są połączone z SCN przewodowymi lub bezprzewodowymi łączami stałymi E1, T1 lub nx64 kb/s. W systemie można wyróżnić część komutacyjno-sieciową, stacje bazowe, i terminale. W części komutacyjno-sieciowej znajdują się centrale główne, lokalne. Centrale lokalne są podporządkowane centralom głównym pełniąc rolę pośrednią pomiędzy koncentratorami wyniesionymi nowoczesnych central elektronicznych w telefonii stałej, a sterownikami stacji bazowych w systemie GSM. W części komutacyjno-sieciowej znajduje się jeszcze moduł rejestracji użytkowników, centrum eksploatacji i utrzymania oraz zespół modułów pośredniczących, umożliwiających współpracę systemu z sieciami zewnętrznymi, takimi jak PSTN, ISDN, pakietowej transmisji danych itp. Szczególnie interesujące są mobilne stacje bazowe mBS (mobile Base Station), czyli samochód ciężarowy z agregatem prądotwórczym i zamontowaną stacją bazową z zewnętrzną anteną. Mobilne stacje bazowe umożliwiają realizacje doraźnej łączności w sytuacjach klęsk żywiołowych, ataków terrorystycznych, gdy miejsca występowania tych zdarzeń leżą poza zasięgiem sieci TETRA lub, gdy stacje bazowe zostały uszkodzone. Choć w systemie TETRA przewidziano możliwość łączności w trybie bezpośrednim między terminalami bez pośrednictwa stacji bazowej, to funkcjonalność ta może okazać się niewystarczająca do komunikacji wielu licznych grup na rozległym obszarze. W takim przypadku tylko mobilna stacja zapewni pełny zakres usług systemu TETRA.
  • 23. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 22 Należy pamiętać, że zakres usług świadczonych w sieciach TETRA zależy od funkcjonalności infrastruktury i terminali. Obecnie jeszcze wiele terminali jak urządzeń infrastruktury sieci nie umożliwia realizacji wszystkich usług zdefiniowanych dla systemu TETRA. Terminale TETRA przewyższają funkcjonalnością i wytrzymałością telefony komórkowe. Radiotelefony są bardziej odporne na wstrząsy, zalanie wodą, upadki, wibracje i prace w nietypowych warunkach środowiskowych. Zdefiniowano dla systemu TETRA 8 klasy terminali ruchowych, w tym 4 podstawowe o dopuszczalnych maksymalnych mocach nadajników odpowiednio 1 W i 3 W dla terminali doręcznych oraz 3 W, 10 W i 30 W dla terminali przewoźnych. Moc terminala jest regulowana od 15 dBm do mocy maksymalnej z krokiem 5 dB. Terminale mogą być wyposażone w odbiornik GPS, umożliwiający lokalizację użytkownika systemu TETRA oraz wiele innych gadżetów, które dostępne są również w telefonach komórkowych. Stanowiska dyspozytorskie usprawniają realizację zarządzania pracą podległych użytkowników oraz ograniczone administrowanie podległymi grupami (dodawanie, usuwanie abonentów oraz modyfikację ich uprawnień). Podstawową funkcją jest przyjmowanie zgłoszeń od abonentów systemu TETRA, ale także obsługa wywołań spoza systemu, np. z publicznej sieci telefonicznej. Zarządzanie siecią (zarówno od strony technicznej jak i operacyjnej) jest realizowane przy użyciu specjalistycznych aplikacji na stanowiskach administratorów systemu, zarówno w miejscu ich fizycznej instalacji, jak również ze zdalnych terminali. Systemy zarządzające NMS (Network Management System) zwykle wywodzą się ze sprawdzonych rozwiązań opracowanych dla systemów telefonii stacjonarnej i komórkowej, jednak przystosowane są do specyfiki i wymagań standardu TETRA. Zazwyczaj są to centralne systemy zarządzania o wielu funkcjonalnościach. Centrum zarządzania może dysponować systemem zintegrowanego sterowania łącznością ICSS (Integrated Communications Control System), który umożliwia administratorowi: – zarządzanie interfejsem radiowym, – dostęp do baz danych, – nadzór nad system AVL (Automatic Vehicle Location), – nadzór nad systemem APL (Automatic Person Location), – możliwość łączności z użytkownikami innych systemów, – nadzór nad terminalami, m.in. ich autoryzację, blokowanie, odblokowywanie, określanie priorytetów, tworzenie grup, obsługę alarmów itd. Systemy ICSS umożliwiają również sterowanie systemem typu „one-seat”. Oznacza to, że z jednego miejsca można zarządzać całą rozległą siecią. Możliwe jest zaimplementowanie w systemach zarządzających serwerów rejestracji głosu i danych, co wydaje się opcją szczególnie istotną dla służb ratowniczych, porządku i bezpieczeństwa publicznego. Dane w takim serwerze powinny być przechowywane odpowiednio długo, a zapisy powinny być oznaczane odpowiednimi i dokładnymi znacznikami czasu. Jednak odtworzenie zapisanych informacji może być możliwe tylko dla uprawnionych osób Usługi udostępniane w systemie TETRA: – dupleksowa transmisja mowy, – tworzenie połączeń grupowych,
  • 24. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 23 – transmisje rozsiewcze, – połączenia priorytetowe, – pakietowa transmisja danych, – możliwość współpracy bezpośrednio dwóch radiotelefonów, – nasłuch dyskretny, – przechowywanie przez system wiadomości dla nieobecnych użytkowników. Najważniejsze tryby pracy w standardzie TETRA to: 1. TETRA VD (Voice plus Data) – mowa i dane z prędkościami 4,8kbit/s i 19,,2kbit/s, – możliwa łączność między stacjami bez stacji bazowej. 2. TETRA POD (Packet Optimized Data) – transmisja danych z prędkością 19,2kbit, – tryb połączeniowy i bezpołączeniowy. Algorytm ALOHA W systemie TETRA wykorzystuje się znany od wielu lat algorytm ALOHA. ALOHA to najprostszy (a jednocześnie najmniej efektywny) protokół przypadkowego dostępu do kanału, zwany inaczej pure ALOHA (czysty Aloha). Zaprojektowany i uruchomiony w 1971 roku w University of Hawaii. Pomysłodawcą tego protokołu był Norman Abramson. Było to pierwsze rozwiązanie takiego podejścia do problemu i zawierało jeszcze dużo niedociągnięć: – wszyscy użytkownicy używają jednego wspólnego kanału transmisyjnego. Każdy użytkownik wysyła swoje pakiety bez jakiejkolwiek synchronizacji z innymi użytkownikami kanału, – nałożenie się jakiejkolwiek części jednego pakietu na inny pakiet w czasie powoduje kolizje, – każdy pakiet jest zabezpieczony przy pomocy kodu umożliwiającego detekcje błędów, – po wysłaniu pakietu nadawca czeka na sygnał potwierdzenia poprawności odbioru ACK (ang. Acknowledgment) od odbiorcy, – jeśli nadawca nie otrzyma potwierdzenia ACK, wówczas uznaje nadany pakiet za stracony i wysyła go ponownie, po losowo ustalonym czasie. Rys. 5. Kolizje w systemie pure-ALOHA [6]
  • 25. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 24 Prawdopodobieństwo wystąpienia kolizji w takim systemie będzie małe, jeśli liczba użytkowników wspólnego kanału transmisyjnego będzie mała oraz ruch generowany przez każdego z nich nie będzie zbyt duży. Wzrost liczby użytkowników będzie powodował coraz częstsze nakładanie się na siebie pakietów a tym samym wzrost prawdopodobieństwa wystąpienia kolizji. Algorytm Slotted ALOHA Protokół ten jest rozwinięciem poprzedniego. Niezsynchronizowany czas dostępu do medium został podzielony na szczeliny. Długość pojedynczej szczeliny czasowej jest równa jest długości pakietu (zakłada się stała długość pakietu T). Ulepszeniem w porównaniu do pure ALOHA jest to, że stacja, gdy chce nadawać, może to zrobić tylko na początku czasu trwania szczeliny. Dzięki temu pakiety wysłane przez dwie stacje będą kolidowały, tylko wtedy gdy nałożą się całkowicie. Czas kolizji zatem jest dwa razy krótszy niż w pureALOHA i wynosi T. Rys. 6. Przeciwdziałanie kolizjom w systemie Slotted ALOHA [6] Budowa ramki pakietu. Rys. 7. Struktura ramki pakietu systemu TETRA
  • 26. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 25 Rys. 8. Struktury czasowe dla ramki systemu Całe dostępne dla systemu TETRA pasmo częstotliwości zostało podzielone nośnymi w odstępach co 25 kHz. Każda nośna transmituje cztery kanały mowy lub danych w trybie TDMA z przeplatanym kanałem sterującym. Struktura czasowa danych transmitowanych na każdej nośnej ma charakter hierarchiczny. Największą strukturą jest hiperramka o długości 61,2 s i dzieli się ona na 60 multiramek. Każda multiramka (o czasie trwania 1,02 s) zawiera 18 ramek (56,67 ms każda). Ostatnia osiemnasta ramka zawiera informacje sterujące. Ramka dzieli się na 4 szczeliny czasowe. Każda jest okresowo używana przez maksymalnie cztery terminale, przy czym na żądanie terminala system może mu przydzielić także 2, 3 a nawet wszystkie 4 szczeliny. Szczeliny czasowe w kierunku od terminala do stacji bazowej mogą być podzielone na dwie półszczeliny. W każdej szczelinie o czasie trwania 14,17 ms przesyłanych jest 510 pojedynczych bitów. Jeden bit trwa więc 27,78 μs. Można łatwo przeliczyć, że całkowita przepływność w jednym kanale częstotliwościowym wynosi 36000 bit/s. Oczywiście ze względu na konieczność przesyłania informacji sterujących, oraz protekcyjnych przepływność danych użytkownika jest mniejsza i wynosi maksymalnie 28,8 kbit/s, 7,2 kbit/s w każdym z czterech kanałów logicznych. 4.3.2. Pytania sprawdzające Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń. 1. Co to jest system trankingowy? 2. Jak działa system trankingowy? 3. Czym jest system TETRA? 4. Jaki protokół wykorzystuje system TETRA? 5. Jak przedstawia się architektura systemu TETRA? 6. Jakie usługi oferuje system?
  • 27. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 26 4.3.3. Ćwiczenia Ćwiczenie 1 Porównaj protokoły ALOHA i Slotted ALOHA. Sposób wykonania ćwiczenia. Aby wykonać ćwiczenie, powinieneś: 1) przeczytać fragment poradnika dla ucznia, 2) przeanalizować działanie obu protokołów, 3) wskazać główne wady protokołu ALOHA, 4) przeanalizować rozwiązania wprowadzone w systemie s – ALOHA, 5) zapisać wnioski z analiz. Wyposażenie stanowiska pracy: – poradnik dla ucznia, – komputer z dostępem do Internetu. Ćwiczenie 2 Zaprojektuj system w oparciu o system TETRA zawierający dwie komórki sieci. Sposób wykonania ćwiczenia. Aby wykonać ćwiczenie, powinieneś: 1) przeczytać fragment poradnika dla ucznia, 2) przeanalizować działanie bloków systemu, 3) połączyć dwie stacje bazowe wykorzystując odpowiednie moduły sprzęgające, 4) dołączyć brakujące moduły zewnętrzne, 5) ewentualnie wyszukać dodatkowe informacje w sieci. Wyposażenie stanowiska pracy: – poradnik dla ucznia, – plansze z topologią systemu, – komputer z dostępem do Internetu. Ćwiczenie 3 Opisz zasadę przydziału i zarządzania dostępnymi kanałami w obrębie stacji bazowej. Sposób wykonania ćwiczenia. Aby wykonać ćwiczenie, powinieneś: 1) przeczytać fragment poradnika dla ucznia, 2) przeanalizować zasady przydziału kanałów dla grup odbiorców, 3) zwrócić uwagę na priorytety w zarządzaniu przydziałami, 4) poszukać przykładowych rozwiązań w Internecie, 5) sformułować wnioski.
  • 28. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 27 Wyposażenie stanowiska pracy: – poradnik dla ucznia, – plansze z topologią systemu. Ćwiczenie 4 Scharakteryzuj usługi dostępne w systemie TETRA. Sposób wykonania ćwiczenia. Aby wykonać ćwiczenie, powinieneś: 1) przeczytać fragment poradnika dla ucznia, 2) wynotować dostępne usługi, 3) wyszukać w sieci opisy tych rozwiązań, 4) wyszukać dostawców urządzeń działających na rynku, 5) sprawdzić czy wszystkie usługi oferowane przez system są zaimplementowane w rozwiązaniach sprzętowych. Wyposażenie stanowiska pracy: – poradnik dla ucznia, – komputer z dostępem do Internetu. 4.3.4. Sprawdzian postępów Czy potrafisz: Tak Nie 1) zdefiniować pojęcie systemu trankingowego? 2) scharakteryzować wady protokołu ALOHA? 3) wskazać innowacje wprowadzone w systemie Slotted Aloha? 4) wyjaśnić budowę pakietu w systemie TETRA? 5) wskazać węzłowe punkty w architekturze systemu? 6) wymienić usługi oferowane przez system? 4.4. System radiokomunikacji DECT 4.4.1. Materiał nauczania Standard DECT. DECT (Digital Enhanced Cordless Telecommunications) jest elastycznym standardem cyfrowego dostępu radiowego dla bezprzewodowej komunikacji w mieszkaniach, firmach i urzędach publicznych. DECT dostarcza mechanizmy dla transmisji głosu i danych oraz zapewnia integrację z innymi technologiami takim jak ISDN, GSM i bezprzewodowy LAN. Standard DECT może zostać wykorzystany między innymi w następujących zastosowaniach: – domowy telefon bezprzewodowy, – w bezprzewodowych sieciach z centralą, – bezprzewodowy dostęp do sieci lokalnych, – uzupełnienie systemów komórkowych.
  • 29. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 28 Telefonia bezprzewodowa obejmuje grupę rozwiązań, które zapewniają dwukierunkową, bezprzewodową łączność telefoniczną o wysokiej jakości przy odległościach rzędu kilkuset metrów od stacji bazowej. W miejscach publicznych systemy takie pokrywają zazwyczaj jedynie obszary, charakteryzujące się szczególnie dużym zapotrzebowaniem na łączność bezprzewodową, jak np. lotniska, dworce kolejowe czy centra handlowe. Standard DECT wykorzystuje wiele zaawansowanych cyfrowych technik radiowych w celu wydajnego wykorzystania widma radiowego, zapewnienia wysokiej jakości transmisji głosu i bezpieczeństwa, niskiego ryzyka interferencji radiowych oraz niskiego poziomu mocy nadawczej. DECT wykorzystuje kilka typów kodowania w zależności do jakiego rozwiązania ma być zastosowany: – TDMA (Time Division Multiple Access) – zapewnia bardzo niskie interefencje dzięki czemu możliwe jest stworzenie systemu o bardzo dużej pojemności – do 100 000 użytkowników na 1 km², – ADPCM (Adaptive Differential Pulse Code Modulation) – zapewnia bardzo wysoką jakość głosu porównywalną z telefonią przewodową, – DCS/DCA (Dynamic Channel Selection / Allocation) – gwarantuje przydzielenie najlepszego dostępnego kanału radiowego. Cecha ta zapewnia możliwość pracy kilku systemów DECT na tym samym obszarze przy zapewnieniu wysokiej jakości głosu oraz bezpieczeństwa połączeń dla użytkowników końcowych. DECT jest systemem elastycznym i ewolucyjnym umożliwiającym wprowadzanie nowych aplikacji i usług. Przykładem takim jest GAP (Generic Access Profile), który zapewnia współpracę systemów różnych producentów w zakresie aplikacji głosowych poprzez zestandaryzowanie komend. Jeżeli jakieś urządzenie DECT posiada znak GAP, to oznacza to że współpracuje z innymi urządzeniami które również obsługują profil GAP. Parametry techniczne systemu: – Pasmo częstotliwości. W większości krajów DECT pracuje w specjalnie wydzielonym paśmie częstotliwości – w Europie pomiędzy 1880 a 1900 MHz. Na innych kontynentach stosuje się również inne pasma, od 1,5 do 3,6 GHz, – Technika modulacji. Podział pasma częstotliwości na poszczególne kanały odbywa się zgodnie z algorytmem MC/TDMA/TDD. Algorytm przydzielania kanałów może podlegać dynamicznym zmianom. Zwiększa to odporność na zakłócenia, – Zasięg. W obrębie budynków zasięg systemów DECT jest ograniczony do około 50 metrów. W otwartej przestrzeni zwiększa się do około 300 metrów. Ponieważ dopuszczalna jest stosunkowo wysoka moc wyjściowa 250 mW, z anteną kierunkową można uzyskać zasięg do 3 km, – Typy danych i ruchu. W podstawowej specyfikacji DECT obsługuje synchroniczną i symetryczną transmisję mowy. Rozszerzenie standardu dodaje ważne usługi do pakietowej transmisji danych. Przy wykorzystaniu wszystkich kanałów można przesłać maksymalnie 20 Mb/s, – Usługi. W celu rozszerzenia oferty na kolejnym etapie zdefiniowano DECT Multimedia Access Profile. Opiera się on na stosowanych już standardach, jak GAP i DPRS, dopuszcza jednak dodatkowe usługi, np. Direct Link Access (DLA), w celu tworzenia połączeń sieciowych ad hoc. Architektura systemu.
  • 30. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 29 Rys. 9. Architektura systemu DECT[5] PP – Części ruchome (Portable Parts) RFP – Stacje bazowe (Radio Fixed Parts) PABX – Centrala abonencka (Private Automatic Branch Exchange) CCFP – Centrum sterowania DECT (Central Control Fixed Parts) Opis techniczny systemu DECT: – rodzaj wielodostępu MC-TDMA/TDD – system wielu nośnych, wielodostęp z podziałem czasu TDMA i dwukierunkowość z podziałem czasu, – modulacja GFSK (Gaussian Trequency Shift Keying) – binarne kluczowanie częstotliwości z gaussowskim kształtowaniem sygnału modulującego, – filtr w paśmie podstawowym z parametrem BT = 0,5 (gaussowski), – dewiacja częstotliwości – 288 kHz, – pasmo częstotliwości – 1880 do 1900 MHz, – częstotliwość fali nośnej kanału 1 – 1881,792 MHz,. kanału 10–1897,334 MHz, – odstęp międzykanałowy – 1728 kHz, – liczba kanałów radiowych – 10, – liczba kanałów rozmównych w kanale radiowym – 12, – max liczba kanałów rozmównych – 120, – czas trwania ramki – 10 ms (12Tx + 12Rx), – całkowita przepływność informacji w systemie (Gross Bit Rate) – 1152 kbit/s, – kodek – 32 kbit/s ADPCM zgodnie z zał. G.721 CCITT, – dopuszczalna prędkość stacji ruchomej – do 20 km/h ( GSM do 250 km/h), – promień komórki sieci – 50–300 m. Strukturę systemu DECT stanowi:
  • 31. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 30 – warstwa fizyczna PHL (Phisical Layer) określa parametry transmisji radiowej takie jak częstotliwość nośna, metoda modulacji, struktura ramek czasowych, wymagania na poziom emisji niepożądanych etc, – warstwa zarządzania dostępem do systemu MAC (Medium Access Control Layer). Warstwa MAC kontroluje usługi rozsiewcze, przywołania stacji ruchomej, przenoszenia połączeń poprzez wybór kanałów fizycznych i alokację kanałów logicznych. – warstwa zarządzania przepływem danych DLC (Data Link Control Layer). Warstwa DLC steruje przepływem danych do warstwy sieciowej, jest odpowiedzialna za formatowanie oraz zabezpieczanie i korekcję błędów dla każdej szczeliny czasowej, – warstwa sieciowa (Network Layer). Warstwa sieciowa jest główną warstwą sygnalizacji systemu DECT; wykorzystuje się protokóły ISDN oraz GSM. Warstwa sieciowa jest odpowiedzialna za realizację połączeń i usług, zarządzanie ruchem. 4.4.2. Pytania sprawdzające Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń. 1. W jakich rozwiązaniach stosuje się system DECT? 2. Jakie systemy kodowania są wykorzystywane w systemie DECT? 3. Jaki jest zasięg roboczy urządzeń w takiej sieci? 4. Czy potrafisz przedstawić strukturę warstwową systemu? 4.4.3. Ćwiczenia Ćwiczenie 1 Scharakteryzuj sposoby kodowania stosowane w systemie DECT. Sposób wykonania ćwiczenia. Aby wykonać ćwiczenie, powinieneś: 1) przeczytać fragment poradnika dla ucznia, Rys. 10. Struktura transmitowanych danych [4]
  • 32. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 31 2) wynotować technologie kodowania sygnałów, 3) wyszukać w sieci opisy tych sposobów kodowania, 4) przedstawić zakres ich stosowania. Wyposażenie stanowiska pracy: – poradnik dla ucznia, – komputer z dostępem do Internetu. Ćwiczenie 2 Scharakteryzuj system kodowania TDMA. Sposób wykonania ćwiczenia. Aby wykonać ćwiczenie, powinieneś: 1) przeczytać fragment poradnika dla ucznia, 2) wyszukać dane w sieci na temat systemu TDMA, 3) dokonać analizy i scharakteryzować ten system kodowania informacji. Wyposażenie stanowiska pracy: – plansze i dane katalogowe, – poradnik dla ucznia, – komputer z dostępem do Internetu. Ćwiczenie 3 Implementacja systemu DECT w rozwiązaniach telekomunikacyjnych dostępnych na rynku. Sposób wykonania ćwiczenia. Aby wykonać ćwiczenie, powinieneś: 1) przeczytać fragment poradnika dla ucznia, 2) przeanalizować założenia techniczne systemu, 3) uzupełnić dane na temat systemu korzystając z Internetu, 4) dokonać analizy rynku tego typu rozwiązań, 5) przedstawić spektrum zastosowań założeń systemu w rozwiązaniach telekomunikacyjnych. Wyposażenie stanowiska pracy: – plansze i dane katalogowe, – poradnik dla ucznia, – komputer z dostępem do Internetu. 4.4.4. Sprawdzian postępów Czy potrafisz: Tak Nie
  • 33. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 32 1) wyjaśnić czym polega technologia DECT? 2) wyjaśnić w jakich rozwiązaniach telekomunikacyjnych ma zastosowanie system DECT? 3) określić jakie są parametry techniczne systemu? 4) scharakteryzować model warstwowy systemu? 5) określić sposoby kodowania implementowane w systemie?
  • 34. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 33 5. SPRAWDZIAN OSIĄGNIĘĆ INSTRUKCJA DLA UCZNIA 1. Przeczytaj uważnie instrukcję. 2. Podpisz imieniem i nazwiskiem kartę odpowiedzi. 3. Zapoznaj się z zestawem zadań testowych. 4. Test zawiera 20 zadań. Do każdego zadania dołączone są 4 możliwości odpowiedzi. Tylko jedna jest prawidłowa. 5. Udzielaj odpowiedzi na załączonej karcie odpowiedzi, stawiając w odpowiedniej rubryce znak X. W przypadku pomyłki należy błędną odpowiedź zaznaczyć kółkiem, a następnie ponownie zakreślić odpowiedź prawidłową. 6. Pracuj samodzielnie, bo tylko wtedy będziesz miał satysfakcję z wykonanego zadania. 7. Jeśli udzielenie odpowiedzi będzie Ci sprawiało trudność, wtedy odłóż jego rozwiązanie na później i wróć do niego, gdy zostanie Ci wolny czas. 8. Na rozwiązanie testu masz 40 minut. Powodzenia!
  • 35. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 34 ZESTAW ZADAŃ TESTOWYCH 1. System trankingowy to system a) operacyjny komputerów w sieciach telekomunikacyjnych. b) inwigilacji użytkowników sieci informatycznych. c) o dynamicznie przydzielanym kanale z dostępnej puli. d) zabezpieczania sieci telekomunikacyjnych. 2. Algorytm ALOHA to a) nowoczesny algorytm szyfrowania danych. b) protokół przypadkowego dostępu do kanału. c) sposób na włamania do sieci komputerowych. d) mechanizm ochrony systemów teleinformatycznych. 3. Sygnał ACK to a) sygnał potwierdzenia odbioru pakietu. b) sygnał końca nadawania. c) sygnał informujący o zagubieniu pakietu. d) informacja o próbie włamania do systemu. 4. Pasmo częstotliwości w systemie TETRA zostało podzielone nośnymi w odstępach a) co 10 kHz. b) co 15 kHz. c) co 20 kHz. d) co 25 kHz. 5. Ramka pakietu TETRA to przykład budowy a) liniowej. b) hierarchicznej, c) mieszanej. d) chaotycznej. 6. System DECT zapewnia łączność a) dwukierunkową b) jednokierunkową. c) poziomową. d) szeregową. 7. Architektura systemu DECT a) nie jest elastyczna. b) jest raz określona i niezmienna. c) jest starym I zarzuconym rozwiązaniem. d) pozwala na rozbudowę w miarę potrzeb. 8. Zasięg systemu DECT a) wynosi max. 150 m. b) wynosi ok. 10 m.
  • 36. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 35 c) może być zwiększony do ok. 3 km. d) nie jest jednoznacznie określony. 9. Odstęp między kanałami w systemie DECT wynosi a) 1728 kHz. b) 1500 kHz. c) 1250 kHz. d) 25 KHz. 10. System DECT posiada strukturę a) liniową dyskretną. b) warstwową. c) dyskretną. d) równoległą. 11. Pętla abonencka składa się z a) centrali i koncentratora. b) centrali i bazy. c) koncentratora i bazy. d) komórki i centrali. 12. W systemie sieci dostępowych terminale muszą a) być zarejestrowane u operatora i posiadają kilka stacji radiowych. b) powiadomić operatora o działalności i posiadają kilka stacji radiowych. c) być zarejestrowane u operatora i posiadają tylko jedną stację radiową. d) powiadomić operatora o działalności i posiadają tylko jedną stację radiową. 13. Do standardów telefonii komórkowej analogowej zaliczamy a) AMPS i GSM. b) AMPS/TACS i NMT. c) DCS i NMT. d) DAMPS i NMT. 14. Systemy cyfrowe sieci dostępowych działają w pasmach a) 900 MHz i 800 MHz. b) 1900 MHz i 800 MHz. c) 900 MHz i 1800 MHz d) 800 MHz i 1800 MHz. 15. Systemy DECT i CT 2 a) stosują kompresję cyfrową i mają niewielkie opóźnienia sygnału. b) nie stosują kompresji cyfrowej i mają duże opóźnienia sygnału. c) stosują kompresję cyfrową i mają duże opóźnienia sygnału, d) nie stosują kompresji cyfrową i mają niewielkie opóźnienia sygnału. 16. Systemy MPMP działają w paśmie
  • 37. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 36 a) od 1,7 GHZ do 2,4 GHz. b) od 0,17 GHZ do 0,24 GHz. c) od 1,7 GHZ do 1,8 GHz. d) od 0,9 GHZ do 1,2 GHz. 17. Skrót CB – Radio oznacza a) Amatorskie radio. b) Radio cyfrowe. c) Obywatelskie Pasmo Radiowe. d) Powszechne Pasmo Radiowe. 18. Zakres A pasma CB mieści się w granicach: a) 27,865 do 27,995 (MHz). b) 27,415 do 27,855 (MHz). c) 26,965 do 27,405 (MHz). d) 26,065 do 26,505 (MHz). 19. Na żądanie korespondenta należy podczas łączności CB podać a) znak wywoławczy. b) podpis elektroniczny. c) nazwisko i imię. d) numer PESEL. 20. Urządzenia przenośne CB działają najczęściej w systemie modulacji a) FM o mocy 4W. b) AM o mocy 4W. c) FM o mocy 14W. d) AM o mocy 14W. KARTA ODPOWIEDZI Imię i nazwisko………………………………………………………………………………….. Eksploatowanie systemów telefonii komórkowych Zakreśl poprawną odpowiedź. Nr zadania Odpowiedź Punkty 1 a b c d 2 a b c d 3 a b c d 4 a b c d 5 a b c d
  • 38. „Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 37 6 a b c d 7 a b c d 8 a b c d 9 a b c d 10 a b c d 11 a b c d 12 a b c d 13 a b c d 14 a b c d 15 a b c d 16 a b c d 17 a b c d 18 a b c d 19 a b c d 20 a b c d Razem: 6. LITERATURA 1. Witold Chołubowicz, Maciej Szwabe, GSM – Ależ to proste! WKiŁ, Warszawa 2006 2. http://www.wikipedia.pl 3. http://www.elektroda.pl 4. www.ire.pw.edu.pl/zrk/PL/SRKO/srko – kf2.pdf 5. www.wlipinski.ps.pl/download/DYDAKTYKA/1 – DYPLOMY/Prezentacje/Wyklad – Telefonia_2.ppt 6. www.um.warszawa.pl/konferencje_bk/pliki/r2_8_6_tetra_podstawowe.pdf 7. http://speed.boy.webpark.pl/wlan3.htm 8. „Transport publiczny w Warszawie” dr inż. Zbigniew Jóskiewicz 9. „Mobility In Disttributed Systems” Prof. Dr. ing. Jems B. Schmitt rozdział 3, strona 14 10. Michalina J., Wielgosiński B.: CB i radiokomunikacja. Wydawnictwo Bogmar, Olsztyn 1994 11. Rutkowski J.: Teletransmisja. PWSZ, Warszawa 1970 12. Jajszczyk A.: Wstęp do telekomutacji. WNT, Warszawa 2000