SlideShare una empresa de Scribd logo
1 de 42
Prepared By : Md.Feroz Mahmud
ID:130103023
13th
Batch (session 2012-2016)
Department : Textile Engineering
Email: Sisirbste@gmail.com
www. Textilelab.blogspot.com (visit)
Prepared By :
Total Textile Process at a Glance
Today, the textile industry, which uses on an average six hundred dyes
and chemicals for the production of consumer textiles, is considered
must polluting.
With the kind of awareness and restrictions coming in to ecology of
textiles world over, the first thing every textile processor need to
know prior to processing any materials are the nature of end use of
the textile being processed and the country which being exported.
Because each end use, e.g. baby wear, clothing in direct contact with
skin, furnishing fabrics etc. will have different specifications just as
each country will have different legislation.
We are polluting our environment as well as destroying
our world by using non eco dyes and chemical
• Prohibited amines
• Chlorinated phenols
• Formaldehyde
• Extractable heavy metals
• Residuals pesticides
• Allergenic dyes
• Chlorinated Benzenes & Toluene compound
• Phthalates
• Organo Tin compound
Because it create different problem:
• Health Problems
• Clothing dyes can cause the following health problems:
• skin rashes
• headaches
• trouble concentrating
• nausea
• diarrhea
• fatigue
• muscle and joint pain
• dizziness
• breathing difficulties
• irregular heart beat
• seizures
•Furthermore, children can experience the following:
•red cheeks and ears
•dark circles under the eyes
•hyperactivity
•behavioral problems
•learning problems
Because clothing is in constant contact with your skin, the chemicals are
absorbed into your skin through your pores. They can then enter your
liver, kidney, bones, heart and brain.
Most people have some sort of chemical sensitivity. Some are more
sensitive to chemicals than others. Those who are more sensitive will
notice the impact of clothing dyes more than others. Those of us who
aren’t as sensitive, may still experience some symptoms but just not
realize it.
A Dyeing process that is most suitable
and within the norms of Eco labels
standards is called Eco Dyeing.
Some of the useful tips all may consider are:
• Select dyestuff that does not contain Chlorinated benzene and toluene.
• Avoid using Carcinogenic dyestuffs in your combinations.
• Avoid using Allergic dyestuffs (some selected disperse dyes are allergic).
• Do not use chelating agents that contain phosphates.
• Use APEO and NPEO free surfactants as dispersing agents.
• Ascertain that your surfactant do not contain any ethoxylated products.
• Use Formic acid for neutralization purposes rather than Acetic acid.
• Do not use formaldehyde containing dye fixing agents after reactive/direct
dyeing.
• Use Natural dyes can be used and that does not have heavy metals etc,
give the first preference.
• Most important is to control and limit the use of water for
all purposes.
• If reactive dyeing is carried out, where ever possible go for
low salt and no salt dyeing/trials.
• Avoid reprocessing, save energy, money and water.
• Try and establish a system of Right First Time practice in
dyeing.
• In reactive dyeing, where ever possible you may try cold
dyeing to save energy. Preconditioning method is one such
procedure.
• In disperse dyeing avoid using phenolic carriers. Select
dyestuffs carefully.
• In wool and silk dyeing metal complex dyes' selection
should be optimistic.
• In all cases of wet processing, establish a suitable system of
water recycling either with an R.O.system or Nano System.
Government Eco-Labels Commercial Eco-Labels
Eco mark – Japan Oeko Tex 100 – Germany/
Austria
Green Seal – USA Tox Proof – TUV, Germany
Flower – EU GuT – Carpets, Germany
Different country maintain different Eco-Labels
No Eco parameter Permissible limits
01 Presence of banned amine <30 ppm
02 Presence of pentachlorophenol(PCP) <0.5 ppm (Baby wear : <0.05 ppm)
03 Presence of formaldehyde <300 ppm - material not in direct skin
contact,
<75 ppm – material in direct skin contact,
<20 ppm – baby wear.
04 Presence of heavy metals*
Customer specific
05 Residual pesticides <1.0 ppm (Baby wear 0.5 ppm)
06 Allergenic dyes Not to be used
07 Carcinogenic dyes Not to be used
08 Chlorinated benzene & Toluene <1.0 ppm
09 Presence of Phthalate <0.01 ppm
10 Organic Tin Compounds <1.0 ppm
11 pH
value of Aqueous Extract Should be nearly neutral (pH
-4.5 to 7.5)
12 Color fastness As per specification
Typical eco-parameters under the Eco-labels for finished textiles are,
CRITERIA FOR ECO-LABELS
Product based
Process based
Environmental Regulation
• Oeko—Tex standard,
• REACH,
• GOTS,
• Bluesign
• EU Eco Label
• Made In Green
• Made By
Product based
Pertains to the limits of harmful chemicals which vary with the
intended use of textiles.
• Group 1
Baby wear, the limits are the lowest (stringent) for the cloths and
textiles for babies below age 3.
• Group 2
Material in direct skin contact, worn next to skin, for example –
underwear, bed sheets and night dresses etc.
• Group 3
Materials are not in direct skin contact. Textile worn as second layer
dresses, coats, articles with linings.
• Group 4
Furnishings articles and accessories for decorative purpose. e.g.
table wear, upholstery, curtains, textiles flooring and mattresses.
• These are recommendations for processes to be avoided such as
• Bleaching with hypochlorite.
• Use of chlorinated organic compounds as carriers in dyeing of polyester
• Optimum use of water and energy.
• Dyestuffs when exhausted on fiber are fixed only to the extent of 50-
90%, the un-exhausted dye with chemical impurities contaminate the
effluent, hence there is a need to ensure that dyestuff and dye additives
that go in to the dyeing process are eco friendly.
• Ecological norms for the dye are considered assuming it’s concentration
up to 10% on textile and 2% dye diluted to 1:2500 in effluent.
• Fastness properties (washing and rubbing dry/wet) of dyes on finished
textiles also form part of eco norms considering their possible transfer
on the skin.
Process Based
Any of a class of colored, water soluble
compounds that have an affinity for fiber and
are taken up directly, such as the benzidine
derivatives. Direct dyes are usually cheap and
easily applied, and they can yield bright colors.
Wash fastness is poor but may be improved
by after treatment. Most packaged dyes sold
for home use are direct dyes.
Direct dyes are also called substantive dyes because of their
excellent substantively for cellulosic textile materials like
cotton and viscose rayon. This class of dyes derives its name
from its property of having direct affinity for cellulosic fibres,
when applied from an aqueous solution.
• Solubility in water.
• Affinity to cellulosic fiber.
• Easy penetration
• Washing fastness are not good enough
• It is applied in neutral as alkali medium
• Cheap
• This dye does not react with fiber. But create H-bond
R N H-----------O cellulose
A H
Direct dye
• Chemically, direct dyes are sodium salts of aromatic sulphonic acids and
most of them contain an azo group as the main chromophore. They are in
general duller than the fiber reactive dyes, and exhibit poor wash
fastness. Goods dyed with direct dyes unless; given a proper after
treatment tend to bleed with every wash. The direct dyes in many cases
exhibit a better light fastness as compared to the reactive dyes.
Properties of Direct Dyes:
Vat dyes are an ancient class of dye, based on the
original natural dye, Indigo, which is now
produced synthetically. Both cotton and wool, as
well as other fibers, can be dyed with vat dyes.
Not all vat dyeing is done with vat dyes! "Vat
dyeing" means dyeing in a bucket or vat. It can be
done whenever a solid even shade, the same
color over the entire garment, is wanted, using
almost any dye, including fiber reactive dye,
direct dye, acid dye, etc. The opposite of vat
dyeing is direct dye application, such as, for
example, tie dyeing.
Vat dye
Most vat dyes are less suitable than, say, fiber
reactive dyes, for the home dyer, as they are difficult
to work with; they require a reducing agent to
solubilize them. The dye is soluble only in its reduced
(oxygen-free) form. The fiber is immersed repeatedly
in this oxygen-free dye bath, and then exposed to
the air, whereupon the water-soluble reduced form
changes color as oxygen turns it to the water-
insoluble form. Indigo is an example of this dye class;
it changes from yellow, in the dye bath, to green and
then blue as the air hits it.
• Vat dye, being insoluble in water, cannot be directly applied to
textile materials. They have to be converted into their water soluble
form, having affinity for textile fibre such as cellulosic fibres. This
conversion is usually brought about in two steps,
• Reduction of the dye into the weakly acidic leuco vat form and
• Salt formation by neutralizing these acidic leuco vat dyes by sodium
hydroxide to give a water soluble product.
• Since the second step result in the formation of water soluble
sodium salt of the leuco vat dye it may be called the solubilising
step. Reduction followed by solubilising is called vatting of the dye.
For this purpose sodium hydrosulphite Na2S2O4( usually called
hydros) is used as the reducing agent and sodium hydroxide as the
solubilising (neutralizing ) agent.
Properties of vat dye:
They tend to be fairly hydrophobic (though this depends on the structure of R1 and R2), but not
as much as, say, a long hydrocarbon would be, since the -COOC- groups cause some polarity.
The polymer chains in a sample of polyester are highly crystalline (for a polymer) and quite
tightly packed together. The result of this is that polyesters have very little affinity for large
ionic dyes- the dyes simply cannot either distribute between the chains, or form satisfactory
intermolecular interactions. Therefore, acid and direct dye classes are useless for this
polymer. Disperse dyes have low solubility in water, but they can interact with the polyester
chains by forming dispersed particles. Their main use is the dyeing of polyesters, and they
find minor use dyeing cellulose acetates and polyamides. The general structure of disperse
dyes is small, planar and non-ionic, with attached polar functional groups like -NO2 and -CN.
The shape makes it easier for the dye to slide between the tightly-packed polymer chains, and
the polar groups improve the water solubility, improve the dipolar bonding between dye and
polymer and affect the color of the dye. However, their small size means that disperse dyes
are quite volatile, and tend to sublime out of the polymer at sufficiently high temperatures.
The dye is generally applied under pressure, at temperatures of about 130o
C. At this
temperature, thermal agitation causes the polymer's structure to become looser and less
crystalline, opening gaps for the dye molecules to enter. The interactions between dye and
polymer are thought to be Van-der-Waals and dipole forces. The volatility of the dye can
cause loss of color density, and staining of other materials at high temperatures. This can be
counteracted by using larger molecules or making the dye more polar (or both). This has a
drawback, however, in that this new larger, more polar molecule will need more extreme
forcing conditions to dye the polymer.
Disperse dyes
• Non soluble
• Non ionic
• Molecularly disperse
• Used for manmade fibre dyeing ex-polyester, polyamide fibre.
• Hydrophobic textile material dyeing.
• Fair to good light fastness (4-5)
• Color fastness, wash fastness (3-4)
Properties of disperse dye:
REACTIVE DYE
Unlike other dyes, reactive dye actually forms a covalent bond with the cellulose or
protein molecule. Once the bond is formed, the dye molecule has become an actual
part of the cellulose fiber molecule. No wonder you can safely wash a garment that
has been dyed in bright fiber reactive colors with white clothing, a hundred times,
without endangering the whites in the least - even if it is all different bright colors, or
even solid black! The official definition of a "fiber reactive dye" is provided by Rys
and Zollinger in chapter VII of their book, The Theory of Coloration of Textiles
(1975) from the Dyers Company Publications Trust, England. A fiber reactive dye "is
a colored compound which has a suitable group capable of forming a covalent bond
between a carbon atom of the dye ion or molecule and an oxygen, nitrogen, or
sulphur atom of a hydroxy, an amino or a mercapto group respectively of the
substrate." They point out that the definition excludes mordant dyes and 1: 1
chromium azo dye complexes which, in dyeing protein fibers may form covalent
bonds between metal ion and nucleophilic groups of the fiber. What all this means is
that a fiber reactive dye reacts to form a true bond (not just a plus or minus charge
attraction or an entrapment in the fiber) with the fiber involved. In the case of
cellulose the bond is with the hydroxyl (-OH) groups present in vast numbers on the
cellulose molecule and in the case of protein fibers with the amino (-NH3 ) group
present on the protein molecule.
• Reactive dyes are highly soluble in water.
• Dye creates on covalent bond with fiber.
• Reactive dye can be used for dyeing cellulosic cotton, wool nylon.
• Fixation occurred in alkaline solution.
• Reactive dye can produce all types of shades.
• Dyeing method is easy for reactive dye.
• Light fastness is very good; rating 6 out of 8.
• Wash fastness is also good (rating: 4-5).
• Fixation occurred in alkaline solution.
Properties of reactive dye
The dyeing principle is based on fiber reactivity and involves the reaction of a functional group of the
dyestuff with a site on the fiber to form a covalent link between the dye molecule and the
substance.
The Four structural feature of typical reactive dyes molecule are:
• 1. The chromophoric grouping, contributing the color
• 2. The reactive system, enabling the dye to react with hydroxy group in cellulose.
• 3. A bridging group that links the reactive system to the chromophore.
• 4. One or more solublising group, usually sulphuric acid substituent attached to the chromophoric
group for their color, although the azo chromophore –N=N- is by itself the most important.
All the reactive dyes contain sodium sulphonate group for solubility and dissolve in water to
give colored sulphonate anions and sodium cations. Most reactive dyes have one to four of these
sulphonate group, General form of reactive dye is as follows:
S------R----B----X
Where, S = Water solubility group
R = Chromophore
X = Reactive System
B = Bond between reactive system and Chromophore
Mechanism of Dyeing
Natural Indigo Madder Lac Catechu
Pomegranate Kamala Mayrabolan Himalayan Rubrub
Natural dye Extract From This plant
Natural indigo
Naturally colored cotton
Natural Dye
Natural Dye
Natural Dye
Airflow Dyeing MachineAirflow Dyeing Machine
Evaporate
Curve
Gas
Dyeing Process

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Direct dye
Direct dyeDirect dye
Direct dye
 
Vat dye
Vat dyeVat dye
Vat dye
 
Pigment Dyeing
Pigment DyeingPigment Dyeing
Pigment Dyeing
 
Reactive dye,23.03.2016
Reactive dye,23.03.2016Reactive dye,23.03.2016
Reactive dye,23.03.2016
 
Bleaching, textile treatment
Bleaching, textile treatmentBleaching, textile treatment
Bleaching, textile treatment
 
Leveling agents chemistry and Performance
Leveling agents chemistry and PerformanceLeveling agents chemistry and Performance
Leveling agents chemistry and Performance
 
Disperse Dyes For Dyeing Of Synthetic Fibres
Disperse Dyes For Dyeing Of Synthetic FibresDisperse Dyes For Dyeing Of Synthetic Fibres
Disperse Dyes For Dyeing Of Synthetic Fibres
 
reactive dyes in dyeing
reactive dyes in dyeing reactive dyes in dyeing
reactive dyes in dyeing
 
Vat dye
Vat dyeVat dye
Vat dye
 
DYEING OF ELASTIC FIBRES ( DYEING OF SPANDEX,LYCRA,POLY-EURATHANES)
DYEING OF ELASTIC FIBRES ( DYEING OF SPANDEX,LYCRA,POLY-EURATHANES)DYEING OF ELASTIC FIBRES ( DYEING OF SPANDEX,LYCRA,POLY-EURATHANES)
DYEING OF ELASTIC FIBRES ( DYEING OF SPANDEX,LYCRA,POLY-EURATHANES)
 
Pigment dyeing
Pigment dyeingPigment dyeing
Pigment dyeing
 
Dyeing methods
Dyeing methodsDyeing methods
Dyeing methods
 
Introduction of vat dye /Some knowledge for Vat dyes.
Introduction of vat dye  /Some knowledge for Vat dyes.Introduction of vat dye  /Some knowledge for Vat dyes.
Introduction of vat dye /Some knowledge for Vat dyes.
 
Reactive Dye
Reactive Dye Reactive Dye
Reactive Dye
 
Pretreatment of textile materials
Pretreatment of textile materialsPretreatment of textile materials
Pretreatment of textile materials
 
Sulfur dye Presentation
Sulfur dye PresentationSulfur dye Presentation
Sulfur dye Presentation
 
Reactive dye (B.Sc in Textile Engineering)
Reactive dye (B.Sc in Textile Engineering)Reactive dye (B.Sc in Textile Engineering)
Reactive dye (B.Sc in Textile Engineering)
 
Cotton fibre dyeing in textile
Cotton fibre dyeing in textileCotton fibre dyeing in textile
Cotton fibre dyeing in textile
 
Vat Dye (Full PDF) | Vat Dye
Vat Dye (Full PDF) | Vat DyeVat Dye (Full PDF) | Vat Dye
Vat Dye (Full PDF) | Vat Dye
 
Acid dye presentation
Acid dye presentationAcid dye presentation
Acid dye presentation
 

Similar a Dyeing Process

Bleaching of Textiles
Bleaching of TextilesBleaching of Textiles
Bleaching of TextilesZubair Awan
 
Bleaching process in textile processing
Bleaching process in textile processingBleaching process in textile processing
Bleaching process in textile processingFarhan ullah baig
 
Dye and dye intermediates
Dye and dye intermediatesDye and dye intermediates
Dye and dye intermediatesdeepak waghmare
 
Salt Free Reactive Dyeing of Knitted Fabric
Salt Free Reactive Dyeing of Knitted FabricSalt Free Reactive Dyeing of Knitted Fabric
Salt Free Reactive Dyeing of Knitted FabricMd. Ibrahim Hossain
 
Environment issues in dyeing, priniting, finishing of textiles
Environment issues in dyeing, priniting, finishing of textilesEnvironment issues in dyeing, priniting, finishing of textiles
Environment issues in dyeing, priniting, finishing of textilesAdane Nega
 
Environment issues in dyeing, priniting, finishing of textiles
Environment issues in dyeing, priniting, finishing of textilesEnvironment issues in dyeing, priniting, finishing of textiles
Environment issues in dyeing, priniting, finishing of textilesAdane Nega
 
Environment issues in dyeing, priniting, finishing of textiles
Environment issues in dyeing, priniting, finishing of textilesEnvironment issues in dyeing, priniting, finishing of textiles
Environment issues in dyeing, priniting, finishing of textilesAdane Nega
 
Environment issues in dyeing, priniting, finishing of textiles
Environment issues in dyeing, priniting, finishing of textilesEnvironment issues in dyeing, priniting, finishing of textiles
Environment issues in dyeing, priniting, finishing of textilesAdane Nega
 
IMPACT OF DYES ON ENVIRONMENT & REMEDIATION
IMPACT OF DYES ON ENVIRONMENT & REMEDIATIONIMPACT OF DYES ON ENVIRONMENT & REMEDIATION
IMPACT OF DYES ON ENVIRONMENT & REMEDIATIONpgayatrinaidu
 
Effect of Various Conditions on Disperse Dyeing
Effect of Various Conditions on Disperse DyeingEffect of Various Conditions on Disperse Dyeing
Effect of Various Conditions on Disperse DyeingMd Rakibul Hassan
 
Slide Bleaching: Enhancing Visualization
Slide Bleaching: Enhancing VisualizationSlide Bleaching: Enhancing Visualization
Slide Bleaching: Enhancing VisualizationShayanAhmad60
 
Ecofriedly dyeing process and ecolabels
Ecofriedly dyeing process and ecolabelsEcofriedly dyeing process and ecolabels
Ecofriedly dyeing process and ecolabelsChandran Kani
 
pigmentdyeing-140802091102-phpapp01.pptx
pigmentdyeing-140802091102-phpapp01.pptxpigmentdyeing-140802091102-phpapp01.pptx
pigmentdyeing-140802091102-phpapp01.pptxKamleshRanani1
 
Textile processing toxicity and health hazard. Green Environment Ideas (Bangl...
Textile processing toxicity and health hazard. Green Environment Ideas (Bangl...Textile processing toxicity and health hazard. Green Environment Ideas (Bangl...
Textile processing toxicity and health hazard. Green Environment Ideas (Bangl...md sohag miah
 
class 12th chemistry project
class 12th chemistry projectclass 12th chemistry project
class 12th chemistry projectNitesh Kushwaha
 

Similar a Dyeing Process (20)

Eco friendly dyes and dyeing procedure
Eco friendly dyes and dyeing procedureEco friendly dyes and dyeing procedure
Eco friendly dyes and dyeing procedure
 
Bleaching of Textiles
Bleaching of TextilesBleaching of Textiles
Bleaching of Textiles
 
Bleaching process in textile processing
Bleaching process in textile processingBleaching process in textile processing
Bleaching process in textile processing
 
Dye and dye intermediates
Dye and dye intermediatesDye and dye intermediates
Dye and dye intermediates
 
Salt Free Reactive Dyeing of Knitted Fabric
Salt Free Reactive Dyeing of Knitted FabricSalt Free Reactive Dyeing of Knitted Fabric
Salt Free Reactive Dyeing of Knitted Fabric
 
Dye pollution
Dye pollutionDye pollution
Dye pollution
 
Environment issues in dyeing, priniting, finishing of textiles
Environment issues in dyeing, priniting, finishing of textilesEnvironment issues in dyeing, priniting, finishing of textiles
Environment issues in dyeing, priniting, finishing of textiles
 
Environment issues in dyeing, priniting, finishing of textiles
Environment issues in dyeing, priniting, finishing of textilesEnvironment issues in dyeing, priniting, finishing of textiles
Environment issues in dyeing, priniting, finishing of textiles
 
Environment issues in dyeing, priniting, finishing of textiles
Environment issues in dyeing, priniting, finishing of textilesEnvironment issues in dyeing, priniting, finishing of textiles
Environment issues in dyeing, priniting, finishing of textiles
 
Environment issues in dyeing, priniting, finishing of textiles
Environment issues in dyeing, priniting, finishing of textilesEnvironment issues in dyeing, priniting, finishing of textiles
Environment issues in dyeing, priniting, finishing of textiles
 
Bleaching
BleachingBleaching
Bleaching
 
1 reactive dyes
1 reactive dyes1 reactive dyes
1 reactive dyes
 
IMPACT OF DYES ON ENVIRONMENT & REMEDIATION
IMPACT OF DYES ON ENVIRONMENT & REMEDIATIONIMPACT OF DYES ON ENVIRONMENT & REMEDIATION
IMPACT OF DYES ON ENVIRONMENT & REMEDIATION
 
Effect of Various Conditions on Disperse Dyeing
Effect of Various Conditions on Disperse DyeingEffect of Various Conditions on Disperse Dyeing
Effect of Various Conditions on Disperse Dyeing
 
Slide Bleaching: Enhancing Visualization
Slide Bleaching: Enhancing VisualizationSlide Bleaching: Enhancing Visualization
Slide Bleaching: Enhancing Visualization
 
Ecofriedly dyeing process and ecolabels
Ecofriedly dyeing process and ecolabelsEcofriedly dyeing process and ecolabels
Ecofriedly dyeing process and ecolabels
 
pigmentdyeing-140802091102-phpapp01.pptx
pigmentdyeing-140802091102-phpapp01.pptxpigmentdyeing-140802091102-phpapp01.pptx
pigmentdyeing-140802091102-phpapp01.pptx
 
Textile processing toxicity and health hazard. Green Environment Ideas (Bangl...
Textile processing toxicity and health hazard. Green Environment Ideas (Bangl...Textile processing toxicity and health hazard. Green Environment Ideas (Bangl...
Textile processing toxicity and health hazard. Green Environment Ideas (Bangl...
 
Novel dyeing techniques
Novel dyeing techniquesNovel dyeing techniques
Novel dyeing techniques
 
class 12th chemistry project
class 12th chemistry projectclass 12th chemistry project
class 12th chemistry project
 

Más de BGMEA University Of Fashion & Technology (16)

Feroz mahmud 20381101 sustainable_ fashion
Feroz mahmud 20381101 sustainable_ fashionFeroz mahmud 20381101 sustainable_ fashion
Feroz mahmud 20381101 sustainable_ fashion
 
Adidas brand research
Adidas brand researchAdidas brand research
Adidas brand research
 
role of merchandising due to covid-converted
role of merchandising due to covid-convertedrole of merchandising due to covid-converted
role of merchandising due to covid-converted
 
Let's Go Driver apps tutorial
Let's Go Driver apps tutorialLet's Go Driver apps tutorial
Let's Go Driver apps tutorial
 
Ups 090419105235-phpapp01
Ups 090419105235-phpapp01Ups 090419105235-phpapp01
Ups 090419105235-phpapp01
 
Feroz 130103023
Feroz 130103023Feroz 130103023
Feroz 130103023
 
Intern ppt
Intern pptIntern ppt
Intern ppt
 
Foam dyeing
Foam dyeingFoam dyeing
Foam dyeing
 
Bangladeshheritage 150812052103-lva1-app6891
Bangladeshheritage 150812052103-lva1-app6891Bangladeshheritage 150812052103-lva1-app6891
Bangladeshheritage 150812052103-lva1-app6891
 
Smart tex
Smart texSmart tex
Smart tex
 
bbnn
bbnnbbnn
bbnn
 
Pigment printing 130103023
Pigment printing 130103023Pigment printing 130103023
Pigment printing 130103023
 
Finishingoftextile 130103023
Finishingoftextile 130103023Finishingoftextile 130103023
Finishingoftextile 130103023
 
Mgt3035 140324095346-phpapp01
Mgt3035 140324095346-phpapp01Mgt3035 140324095346-phpapp01
Mgt3035 140324095346-phpapp01
 
Knittingneedles 130103023-phpapp01
Knittingneedles 130103023-phpapp01Knittingneedles 130103023-phpapp01
Knittingneedles 130103023-phpapp01
 
Industrial hygiene
Industrial hygieneIndustrial hygiene
Industrial hygiene
 

Último

Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdfSuman Jyoti
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...tanu pandey
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfRagavanV2
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Standamitlee9823
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 

Último (20)

Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 

Dyeing Process

  • 1.
  • 2. Prepared By : Md.Feroz Mahmud ID:130103023 13th Batch (session 2012-2016) Department : Textile Engineering Email: Sisirbste@gmail.com www. Textilelab.blogspot.com (visit) Prepared By :
  • 3. Total Textile Process at a Glance
  • 4. Today, the textile industry, which uses on an average six hundred dyes and chemicals for the production of consumer textiles, is considered must polluting. With the kind of awareness and restrictions coming in to ecology of textiles world over, the first thing every textile processor need to know prior to processing any materials are the nature of end use of the textile being processed and the country which being exported. Because each end use, e.g. baby wear, clothing in direct contact with skin, furnishing fabrics etc. will have different specifications just as each country will have different legislation.
  • 5. We are polluting our environment as well as destroying our world by using non eco dyes and chemical
  • 6. • Prohibited amines • Chlorinated phenols • Formaldehyde • Extractable heavy metals • Residuals pesticides • Allergenic dyes • Chlorinated Benzenes & Toluene compound • Phthalates • Organo Tin compound
  • 7. Because it create different problem: • Health Problems • Clothing dyes can cause the following health problems: • skin rashes • headaches • trouble concentrating • nausea • diarrhea • fatigue • muscle and joint pain • dizziness • breathing difficulties • irregular heart beat • seizures
  • 8. •Furthermore, children can experience the following: •red cheeks and ears •dark circles under the eyes •hyperactivity •behavioral problems •learning problems Because clothing is in constant contact with your skin, the chemicals are absorbed into your skin through your pores. They can then enter your liver, kidney, bones, heart and brain. Most people have some sort of chemical sensitivity. Some are more sensitive to chemicals than others. Those who are more sensitive will notice the impact of clothing dyes more than others. Those of us who aren’t as sensitive, may still experience some symptoms but just not realize it.
  • 9. A Dyeing process that is most suitable and within the norms of Eco labels standards is called Eco Dyeing.
  • 10. Some of the useful tips all may consider are: • Select dyestuff that does not contain Chlorinated benzene and toluene. • Avoid using Carcinogenic dyestuffs in your combinations. • Avoid using Allergic dyestuffs (some selected disperse dyes are allergic). • Do not use chelating agents that contain phosphates. • Use APEO and NPEO free surfactants as dispersing agents. • Ascertain that your surfactant do not contain any ethoxylated products. • Use Formic acid for neutralization purposes rather than Acetic acid. • Do not use formaldehyde containing dye fixing agents after reactive/direct dyeing. • Use Natural dyes can be used and that does not have heavy metals etc, give the first preference.
  • 11. • Most important is to control and limit the use of water for all purposes. • If reactive dyeing is carried out, where ever possible go for low salt and no salt dyeing/trials. • Avoid reprocessing, save energy, money and water. • Try and establish a system of Right First Time practice in dyeing. • In reactive dyeing, where ever possible you may try cold dyeing to save energy. Preconditioning method is one such procedure. • In disperse dyeing avoid using phenolic carriers. Select dyestuffs carefully. • In wool and silk dyeing metal complex dyes' selection should be optimistic. • In all cases of wet processing, establish a suitable system of water recycling either with an R.O.system or Nano System.
  • 12. Government Eco-Labels Commercial Eco-Labels Eco mark – Japan Oeko Tex 100 – Germany/ Austria Green Seal – USA Tox Proof – TUV, Germany Flower – EU GuT – Carpets, Germany Different country maintain different Eco-Labels
  • 13. No Eco parameter Permissible limits 01 Presence of banned amine <30 ppm 02 Presence of pentachlorophenol(PCP) <0.5 ppm (Baby wear : <0.05 ppm) 03 Presence of formaldehyde <300 ppm - material not in direct skin contact, <75 ppm – material in direct skin contact, <20 ppm – baby wear. 04 Presence of heavy metals* Customer specific 05 Residual pesticides <1.0 ppm (Baby wear 0.5 ppm) 06 Allergenic dyes Not to be used 07 Carcinogenic dyes Not to be used 08 Chlorinated benzene & Toluene <1.0 ppm 09 Presence of Phthalate <0.01 ppm 10 Organic Tin Compounds <1.0 ppm 11 pH value of Aqueous Extract Should be nearly neutral (pH -4.5 to 7.5) 12 Color fastness As per specification Typical eco-parameters under the Eco-labels for finished textiles are,
  • 14.
  • 15. CRITERIA FOR ECO-LABELS Product based Process based
  • 16. Environmental Regulation • Oeko—Tex standard, • REACH, • GOTS, • Bluesign • EU Eco Label • Made In Green • Made By
  • 17.
  • 18. Product based Pertains to the limits of harmful chemicals which vary with the intended use of textiles. • Group 1 Baby wear, the limits are the lowest (stringent) for the cloths and textiles for babies below age 3. • Group 2 Material in direct skin contact, worn next to skin, for example – underwear, bed sheets and night dresses etc. • Group 3 Materials are not in direct skin contact. Textile worn as second layer dresses, coats, articles with linings. • Group 4 Furnishings articles and accessories for decorative purpose. e.g. table wear, upholstery, curtains, textiles flooring and mattresses.
  • 19. • These are recommendations for processes to be avoided such as • Bleaching with hypochlorite. • Use of chlorinated organic compounds as carriers in dyeing of polyester • Optimum use of water and energy. • Dyestuffs when exhausted on fiber are fixed only to the extent of 50- 90%, the un-exhausted dye with chemical impurities contaminate the effluent, hence there is a need to ensure that dyestuff and dye additives that go in to the dyeing process are eco friendly. • Ecological norms for the dye are considered assuming it’s concentration up to 10% on textile and 2% dye diluted to 1:2500 in effluent. • Fastness properties (washing and rubbing dry/wet) of dyes on finished textiles also form part of eco norms considering their possible transfer on the skin. Process Based
  • 20. Any of a class of colored, water soluble compounds that have an affinity for fiber and are taken up directly, such as the benzidine derivatives. Direct dyes are usually cheap and easily applied, and they can yield bright colors. Wash fastness is poor but may be improved by after treatment. Most packaged dyes sold for home use are direct dyes.
  • 21. Direct dyes are also called substantive dyes because of their excellent substantively for cellulosic textile materials like cotton and viscose rayon. This class of dyes derives its name from its property of having direct affinity for cellulosic fibres, when applied from an aqueous solution.
  • 22. • Solubility in water. • Affinity to cellulosic fiber. • Easy penetration • Washing fastness are not good enough • It is applied in neutral as alkali medium • Cheap • This dye does not react with fiber. But create H-bond R N H-----------O cellulose A H Direct dye • Chemically, direct dyes are sodium salts of aromatic sulphonic acids and most of them contain an azo group as the main chromophore. They are in general duller than the fiber reactive dyes, and exhibit poor wash fastness. Goods dyed with direct dyes unless; given a proper after treatment tend to bleed with every wash. The direct dyes in many cases exhibit a better light fastness as compared to the reactive dyes. Properties of Direct Dyes:
  • 23. Vat dyes are an ancient class of dye, based on the original natural dye, Indigo, which is now produced synthetically. Both cotton and wool, as well as other fibers, can be dyed with vat dyes. Not all vat dyeing is done with vat dyes! "Vat dyeing" means dyeing in a bucket or vat. It can be done whenever a solid even shade, the same color over the entire garment, is wanted, using almost any dye, including fiber reactive dye, direct dye, acid dye, etc. The opposite of vat dyeing is direct dye application, such as, for example, tie dyeing. Vat dye
  • 24. Most vat dyes are less suitable than, say, fiber reactive dyes, for the home dyer, as they are difficult to work with; they require a reducing agent to solubilize them. The dye is soluble only in its reduced (oxygen-free) form. The fiber is immersed repeatedly in this oxygen-free dye bath, and then exposed to the air, whereupon the water-soluble reduced form changes color as oxygen turns it to the water- insoluble form. Indigo is an example of this dye class; it changes from yellow, in the dye bath, to green and then blue as the air hits it.
  • 25. • Vat dye, being insoluble in water, cannot be directly applied to textile materials. They have to be converted into their water soluble form, having affinity for textile fibre such as cellulosic fibres. This conversion is usually brought about in two steps, • Reduction of the dye into the weakly acidic leuco vat form and • Salt formation by neutralizing these acidic leuco vat dyes by sodium hydroxide to give a water soluble product. • Since the second step result in the formation of water soluble sodium salt of the leuco vat dye it may be called the solubilising step. Reduction followed by solubilising is called vatting of the dye. For this purpose sodium hydrosulphite Na2S2O4( usually called hydros) is used as the reducing agent and sodium hydroxide as the solubilising (neutralizing ) agent. Properties of vat dye:
  • 26. They tend to be fairly hydrophobic (though this depends on the structure of R1 and R2), but not as much as, say, a long hydrocarbon would be, since the -COOC- groups cause some polarity. The polymer chains in a sample of polyester are highly crystalline (for a polymer) and quite tightly packed together. The result of this is that polyesters have very little affinity for large ionic dyes- the dyes simply cannot either distribute between the chains, or form satisfactory intermolecular interactions. Therefore, acid and direct dye classes are useless for this polymer. Disperse dyes have low solubility in water, but they can interact with the polyester chains by forming dispersed particles. Their main use is the dyeing of polyesters, and they find minor use dyeing cellulose acetates and polyamides. The general structure of disperse dyes is small, planar and non-ionic, with attached polar functional groups like -NO2 and -CN. The shape makes it easier for the dye to slide between the tightly-packed polymer chains, and the polar groups improve the water solubility, improve the dipolar bonding between dye and polymer and affect the color of the dye. However, their small size means that disperse dyes are quite volatile, and tend to sublime out of the polymer at sufficiently high temperatures. The dye is generally applied under pressure, at temperatures of about 130o C. At this temperature, thermal agitation causes the polymer's structure to become looser and less crystalline, opening gaps for the dye molecules to enter. The interactions between dye and polymer are thought to be Van-der-Waals and dipole forces. The volatility of the dye can cause loss of color density, and staining of other materials at high temperatures. This can be counteracted by using larger molecules or making the dye more polar (or both). This has a drawback, however, in that this new larger, more polar molecule will need more extreme forcing conditions to dye the polymer. Disperse dyes
  • 27. • Non soluble • Non ionic • Molecularly disperse • Used for manmade fibre dyeing ex-polyester, polyamide fibre. • Hydrophobic textile material dyeing. • Fair to good light fastness (4-5) • Color fastness, wash fastness (3-4) Properties of disperse dye:
  • 28. REACTIVE DYE Unlike other dyes, reactive dye actually forms a covalent bond with the cellulose or protein molecule. Once the bond is formed, the dye molecule has become an actual part of the cellulose fiber molecule. No wonder you can safely wash a garment that has been dyed in bright fiber reactive colors with white clothing, a hundred times, without endangering the whites in the least - even if it is all different bright colors, or even solid black! The official definition of a "fiber reactive dye" is provided by Rys and Zollinger in chapter VII of their book, The Theory of Coloration of Textiles (1975) from the Dyers Company Publications Trust, England. A fiber reactive dye "is a colored compound which has a suitable group capable of forming a covalent bond between a carbon atom of the dye ion or molecule and an oxygen, nitrogen, or sulphur atom of a hydroxy, an amino or a mercapto group respectively of the substrate." They point out that the definition excludes mordant dyes and 1: 1 chromium azo dye complexes which, in dyeing protein fibers may form covalent bonds between metal ion and nucleophilic groups of the fiber. What all this means is that a fiber reactive dye reacts to form a true bond (not just a plus or minus charge attraction or an entrapment in the fiber) with the fiber involved. In the case of cellulose the bond is with the hydroxyl (-OH) groups present in vast numbers on the cellulose molecule and in the case of protein fibers with the amino (-NH3 ) group present on the protein molecule.
  • 29.
  • 30. • Reactive dyes are highly soluble in water. • Dye creates on covalent bond with fiber. • Reactive dye can be used for dyeing cellulosic cotton, wool nylon. • Fixation occurred in alkaline solution. • Reactive dye can produce all types of shades. • Dyeing method is easy for reactive dye. • Light fastness is very good; rating 6 out of 8. • Wash fastness is also good (rating: 4-5). • Fixation occurred in alkaline solution. Properties of reactive dye
  • 31. The dyeing principle is based on fiber reactivity and involves the reaction of a functional group of the dyestuff with a site on the fiber to form a covalent link between the dye molecule and the substance. The Four structural feature of typical reactive dyes molecule are: • 1. The chromophoric grouping, contributing the color • 2. The reactive system, enabling the dye to react with hydroxy group in cellulose. • 3. A bridging group that links the reactive system to the chromophore. • 4. One or more solublising group, usually sulphuric acid substituent attached to the chromophoric group for their color, although the azo chromophore –N=N- is by itself the most important. All the reactive dyes contain sodium sulphonate group for solubility and dissolve in water to give colored sulphonate anions and sodium cations. Most reactive dyes have one to four of these sulphonate group, General form of reactive dye is as follows: S------R----B----X Where, S = Water solubility group R = Chromophore X = Reactive System B = Bond between reactive system and Chromophore Mechanism of Dyeing
  • 32.
  • 33. Natural Indigo Madder Lac Catechu Pomegranate Kamala Mayrabolan Himalayan Rubrub Natural dye Extract From This plant
  • 34.