SlideShare una empresa de Scribd logo
1 de 19
RELAYS
BY: ENGR. MART NIKKI LOU M. MANTILLA, REE, RME
CONTENT
S
1.INTRODUCTION
2.PRINCIPLE
3.OPERATION
4.TYPES AND THEIR EXPLANATION
5.ADVANTAGES
6.DISADVANTAGES
7.APPLICATIONS
INTRODUCTION
• A relay is an electrically operated switch.
• Many relays use an electromagnet to mechanically operate
a switch, but other operating principles are also used, such as
solid-state relay.
• Relays are used where it is necessary to control a circuit by a
low-power signal (with complete electrical isolation between
control and controlled circuits), or where several circuits must
be controlled by one signal.
• The first relays were used in long distance telegraph
circuits as amplifiers: they repeated the signal coming in from
one circuit and re-transmitted it on another circuit.
• A type of relay that can handle the high power required to
directly control an electric motor or other loads is called a
contactor.
PRINCIPLE
• A relay may also be called an “electromagnetic switch”
• Relays use a “low amperage circuit” to control a “high
amperage circuit”
• The low amperage circuit controls an electromagnetic device.
• The electromagnetic device “closes/opens” the high amperage
circuit.
OPERATION
• A simple electromagnetic relay consists of a coil of wire
wrapped around a soft iron core, an iron yoke which
provides a low reluctance path for magnetic flux, a movable
iron armature, and one or more sets of contacts.
• The armature is hinged to the yoke and mechanically linked
to one or more sets of moving contacts.
• It is held in place by a spring so that when the relay is de-
energized there is an air gap in the magnetic circuit.
• In this condition, one of the two sets of contacts in the relay
pictured is closed, and the other set is open. Other relays may
have more or fewer sets of contacts depending on their
function.
• The relay in the picture also has a wire connecting the
armature to the yoke.
• When an electric current is passed through the coil it
generates a magnetic field that activates the armature,
and the consequent movement of the movable contact(s)
either makes or breaks (depending upon construction) a
connection with a fixed contact.
• If the set of contacts was closed when the relay was de-
energized, then the movement opens the contacts and
breaks the connection, and vice versa if the contacts
were open.
• When the current to the coil is switched off, the
armature is returned by a force, approximately half as
strong as the magnetic force, to its relaxed position.
Usually this force is provided by a spring, but gravity is
also used commonly in industrial motor starters.
⚫ Most relays are manufactured to operate quickly. In a
low-voltage application this reduces noise; in a high
voltage or current application it reduces arcing.
⚫ When the coil is energized with direct current, a diode
is often placed across the coil to dissipate the energy
from the collapsing magnetic field at deactivation,
which would otherwise generate a voltage spike
dangerous to semiconductor circuit components.
TYPES
1.LACHING RELAY
2.INDUCTION TYPE RELAY
3.REED RELAY
4.MERCURY-WETTED RELAY
5.SOLID STATE RELAY
Latching relay
•
•
•
• A latching relay (also called "impulse", "keep", or "stay"
relays)maintains either contact position indefinitely without power
applied to the coil.
The advantage is that one coil consumes power only for an instant
while the relay is being switched, and the relay contacts retain this
setting across a power outage.
Alatching relay allows remote control of building lighting without
the hum that may be produced from a continuously (AC) energized
coil.
This type is widely used where control is from simple switches or
single-ended outputs of a control system, and such relays are found
in avionics and numerous industrial applications.
Induction type relay
• These are used as protective relays inAC systems alone and are
usable with DC systems.
• The actuating force for contacts movement is developed by a
moving conductor that may be a disc or a cup ,through the
interaction of electromagnetic fluxes due to fault currents.
• These are of several types like shaded pole, watt-hour and induction
cup structures and are mostly used as directional relays in power-
system protection and also for high-speed switching operation
applications.
Reed relay
•
•
•
•
Reed relays can switch.Areed relay is a reed switch enclosed in
a solenoid.
The switch has a set of contacts inside an faster than larger relays
and require very little power from the control circuit. However,
they have relatively low switching current and voltage ratings.
Though rare, the reeds can become magnetized over time, which
makes them stick 'on' even when no current is present; changing
the orientation of the reeds with respect to the solenoid's
magnetic field can resolve this problem.
Sealed contacts with mercury-wetted contacts have longer
operating lives and less contact chatter than any other kind of
relay.
Mercury-wetted relay
• A mercury-wetted relay is a form of reed relay in
which the contacts are wetted with mercury.
• Such relays are used to switch low-voltage signals
(one volt or less) where the mercury reduces the
contact resistance and associated voltage drop, for
low-current signals where surface contamination may
make for a poor contact, or for high-speed
applications where the mercury eliminates contact
bounce.
• Mercury wetted relays are position-sensitive and
must be mounted vertically to work properly.
Because of the toxicity and expense of liquid
mercury, these relays are now rarely used.
Solid-state relay
• A solid state relay or SSR is a solid state electronic
component that provides a function similar to an
electromechanical relay but does not have any moving
components, increasing long-term reliability.
• A solid-state relay uses a thyristor, TRIAC or other solid-
state switching device, activated by the control signal, to
switch the controlled load, instead of a solenoid
• An optocoupler (a light-emitting diode (LED) coupled with a
phototransistor) can be used to isolate control and
controlled circuits.
• As every solid-state device has a small voltage drop across
it, this voltage drop limits the amount of current a given
SSR can handle.
ADVANTAGES:-
• Electromagnetic relays have fast operation and fast
reset.
• They can be used for both ac and dc systems for
protection of ac and dc equipment.
• They have the properties such as simple, robust,
compact and most reliable & These relays are almost
instantaneous.
DISADVANTAGES:-
• The directional feature is absent in electromagnetic
relays. Requires periodic maintenance and testing
unlike static relays.
• Relay operation can be affected due to ageing of the
components and dust, pollution resulting in spurious
trips.
APPLICATIONS:-
• Electromagnetic relays are employed for the protection of
various ac and dc equipments.
• The over/under current and voltage protection of various ac
and dc equipments.
• For differential protection.
• Used as auxiliary relays in the contact systems of protective
relay schemes.
SERIES JP 'T' TYPE RELAY
• T type relay is a Compact PCB mounting relay with a
Intetnational standard foot print.
• It has a switching Capacity of 30A at NO and 20A at NC at 240
AC. Available in various coil voltages in both Open type as well
as Epoxy sealed versions. 40A model also avaliable under
series 'JH'.
Applications-
• Automobiles
• Air conditioning
• Ventilators
• Heaters
• Power Conditioning .
HF1(SERIES) CHASSIS
MOUNTING POWER RELAY
•CHASSIS MOUNTING POWER RELAY is a heavy duty 30A
power relay available in varies AC as well as DC coils.
•It is special between Phase insulation barrier to prevent ionisation.
•The relay is available in both vertical as well as horizontal
mounting.
•Applications-
•Stabilizers
•Inverters
•Heaters
•Circuit Breakers
•Welding Machines
Conclusion
⚫ This was touched-on before but it’s worth
special attention. Remember that certain
devices require considerable current
(amps).
⚫ High current devices required big, heavy
switches to handle the current.
• Unfortunately, these would be ugly and
expansive, so engineers use relays.
Thank you.!

Más contenido relacionado

Similar a TOPIC 2.1- Relays.pptx

Electrical Basics-VBR
Electrical Basics-VBRElectrical Basics-VBR
Electrical Basics-VBRVijay Raskar
 
electric relay
electric relayelectric relay
electric relayaditya das
 
Power System Protection and Testing of Electrical Equipment.pptx
Power System Protection and Testing of Electrical Equipment.pptxPower System Protection and Testing of Electrical Equipment.pptx
Power System Protection and Testing of Electrical Equipment.pptxAbhishekRanjan17318
 
switchyard-151103200304-lva1-app6891.pptx
switchyard-151103200304-lva1-app6891.pptxswitchyard-151103200304-lva1-app6891.pptx
switchyard-151103200304-lva1-app6891.pptxssuserb5bb0e
 
Differential Protection Relay
DifferentialProtection RelayDifferentialProtection Relay
Differential Protection Relaykishore kish
 
400 kv Heerapura gss ppt by ishan pdf
400 kv Heerapura gss ppt by ishan pdf 400 kv Heerapura gss ppt by ishan pdf
400 kv Heerapura gss ppt by ishan pdf Ishan Khandelwal
 
Protection & switchgear
Protection & switchgear   Protection & switchgear
Protection & switchgear johny renoald
 
What Are Relays, and What Kinds Are There.pdf
What Are Relays, and What Kinds Are There.pdfWhat Are Relays, and What Kinds Are There.pdf
What Are Relays, and What Kinds Are There.pdfexpess-technology
 
Electric drives and controls
Electric drives and controlsElectric drives and controls
Electric drives and controlsAnandKumar2123
 
Electrical substation general_equipments
Electrical substation general_equipmentsElectrical substation general_equipments
Electrical substation general_equipmentsEman Dacanay
 
Substation presentation by ram
Substation presentation by ramSubstation presentation by ram
Substation presentation by ramGRBabu Naidu
 

Similar a TOPIC 2.1- Relays.pptx (20)

Electrical Basics-VBR
Electrical Basics-VBRElectrical Basics-VBR
Electrical Basics-VBR
 
Relay and protection
Relay and protection Relay and protection
Relay and protection
 
electric relay
electric relayelectric relay
electric relay
 
Power System Protection and Testing of Electrical Equipment.pptx
Power System Protection and Testing of Electrical Equipment.pptxPower System Protection and Testing of Electrical Equipment.pptx
Power System Protection and Testing of Electrical Equipment.pptx
 
The important use of reactors in substations
The important use of reactors in substationsThe important use of reactors in substations
The important use of reactors in substations
 
Switchyard
SwitchyardSwitchyard
Switchyard
 
switchyard-151103200304-lva1-app6891.pptx
switchyard-151103200304-lva1-app6891.pptxswitchyard-151103200304-lva1-app6891.pptx
switchyard-151103200304-lva1-app6891.pptx
 
RELAY.pptx
RELAY.pptxRELAY.pptx
RELAY.pptx
 
Differential Protection Relay
DifferentialProtection RelayDifferentialProtection Relay
Differential Protection Relay
 
Relays
RelaysRelays
Relays
 
400 kv Heerapura gss ppt by ishan pdf
400 kv Heerapura gss ppt by ishan pdf 400 kv Heerapura gss ppt by ishan pdf
400 kv Heerapura gss ppt by ishan pdf
 
Protection relays
Protection relaysProtection relays
Protection relays
 
Adaptive Relaying,Report
Adaptive Relaying,ReportAdaptive Relaying,Report
Adaptive Relaying,Report
 
Protection & switchgear
Protection & switchgear   Protection & switchgear
Protection & switchgear
 
What Are Relays, and What Kinds Are There.pdf
What Are Relays, and What Kinds Are There.pdfWhat Are Relays, and What Kinds Are There.pdf
What Are Relays, and What Kinds Are There.pdf
 
Ashwani kumar
Ashwani kumarAshwani kumar
Ashwani kumar
 
Electric drives and controls
Electric drives and controlsElectric drives and controls
Electric drives and controls
 
34866616-Relay.ppt
34866616-Relay.ppt34866616-Relay.ppt
34866616-Relay.ppt
 
Electrical substation general_equipments
Electrical substation general_equipmentsElectrical substation general_equipments
Electrical substation general_equipments
 
Substation presentation by ram
Substation presentation by ramSubstation presentation by ram
Substation presentation by ram
 

Más de MartMantilla1

Republic Act 11032 (Ease of Doing Business and Efficient Government Service D...
Republic Act 11032 (Ease of Doing Business and Efficient Government Service D...Republic Act 11032 (Ease of Doing Business and Efficient Government Service D...
Republic Act 11032 (Ease of Doing Business and Efficient Government Service D...MartMantilla1
 
CHAPTER 19- Sections 1,3,45&6.pptx
CHAPTER 19- Sections 1,3,45&6.pptxCHAPTER 19- Sections 1,3,45&6.pptx
CHAPTER 19- Sections 1,3,45&6.pptxMartMantilla1
 
Report Government.pptx
Report Government.pptxReport Government.pptx
Report Government.pptxMartMantilla1
 
Human resources.pptx
Human resources.pptxHuman resources.pptx
Human resources.pptxMartMantilla1
 
POPULATION AND SAMPLING.pptx
POPULATION AND SAMPLING.pptxPOPULATION AND SAMPLING.pptx
POPULATION AND SAMPLING.pptxMartMantilla1
 
meanmedianmoderangeppt-130314221942-phpapp02.pptx
meanmedianmoderangeppt-130314221942-phpapp02.pptxmeanmedianmoderangeppt-130314221942-phpapp02.pptx
meanmedianmoderangeppt-130314221942-phpapp02.pptxMartMantilla1
 
Topic 10- Read and Understand Electrical Symbols and Diagrams.pptx
Topic 10- Read and Understand Electrical Symbols and Diagrams.pptxTopic 10- Read and Understand Electrical Symbols and Diagrams.pptx
Topic 10- Read and Understand Electrical Symbols and Diagrams.pptxMartMantilla1
 
Topic 9- Electronic Symbols.ppt
Topic 9- Electronic Symbols.pptTopic 9- Electronic Symbols.ppt
Topic 9- Electronic Symbols.pptMartMantilla1
 
Topic 11- Read Only Memory (ROM).pptx
Topic 11- Read Only Memory (ROM).pptxTopic 11- Read Only Memory (ROM).pptx
Topic 11- Read Only Memory (ROM).pptxMartMantilla1
 
Topic 10- Random Access Memory (RAM).pptx
Topic 10- Random Access Memory (RAM).pptxTopic 10- Random Access Memory (RAM).pptx
Topic 10- Random Access Memory (RAM).pptxMartMantilla1
 
Topic 9- Integrated Circuits (IC).pptx
Topic 9- Integrated Circuits (IC).pptxTopic 9- Integrated Circuits (IC).pptx
Topic 9- Integrated Circuits (IC).pptxMartMantilla1
 
Topic 4- Transistors.pptx
Topic 4- Transistors.pptxTopic 4- Transistors.pptx
Topic 4- Transistors.pptxMartMantilla1
 
Topic 3- Diodes.pptx
Topic 3- Diodes.pptxTopic 3- Diodes.pptx
Topic 3- Diodes.pptxMartMantilla1
 
Topic 2.1- Semiconductors.pptx
Topic 2.1- Semiconductors.pptxTopic 2.1- Semiconductors.pptx
Topic 2.1- Semiconductors.pptxMartMantilla1
 
Topic 1.2- Electronic Equipment used on ships (Navigational Equipment).pptx
Topic 1.2- Electronic Equipment used on ships (Navigational Equipment).pptxTopic 1.2- Electronic Equipment used on ships (Navigational Equipment).pptx
Topic 1.2- Electronic Equipment used on ships (Navigational Equipment).pptxMartMantilla1
 
TOPIC 6.2- Power System Faults and Protection System.pptx
TOPIC 6.2- Power System Faults and Protection System.pptxTOPIC 6.2- Power System Faults and Protection System.pptx
TOPIC 6.2- Power System Faults and Protection System.pptxMartMantilla1
 
TOPIC 6- Transformer Protection.pptx
TOPIC 6- Transformer Protection.pptxTOPIC 6- Transformer Protection.pptx
TOPIC 6- Transformer Protection.pptxMartMantilla1
 
TOPIC 5.6- Switchgear and Its Components.pptx
TOPIC 5.6- Switchgear and Its Components.pptxTOPIC 5.6- Switchgear and Its Components.pptx
TOPIC 5.6- Switchgear and Its Components.pptxMartMantilla1
 
TOPIC 5.1- A.C. GENERATORS.pptx
TOPIC 5.1- A.C. GENERATORS.pptxTOPIC 5.1- A.C. GENERATORS.pptx
TOPIC 5.1- A.C. GENERATORS.pptxMartMantilla1
 
TOPIC 5- D.C. GENERATORS.pptx
TOPIC 5- D.C. GENERATORS.pptxTOPIC 5- D.C. GENERATORS.pptx
TOPIC 5- D.C. GENERATORS.pptxMartMantilla1
 

Más de MartMantilla1 (20)

Republic Act 11032 (Ease of Doing Business and Efficient Government Service D...
Republic Act 11032 (Ease of Doing Business and Efficient Government Service D...Republic Act 11032 (Ease of Doing Business and Efficient Government Service D...
Republic Act 11032 (Ease of Doing Business and Efficient Government Service D...
 
CHAPTER 19- Sections 1,3,45&6.pptx
CHAPTER 19- Sections 1,3,45&6.pptxCHAPTER 19- Sections 1,3,45&6.pptx
CHAPTER 19- Sections 1,3,45&6.pptx
 
Report Government.pptx
Report Government.pptxReport Government.pptx
Report Government.pptx
 
Human resources.pptx
Human resources.pptxHuman resources.pptx
Human resources.pptx
 
POPULATION AND SAMPLING.pptx
POPULATION AND SAMPLING.pptxPOPULATION AND SAMPLING.pptx
POPULATION AND SAMPLING.pptx
 
meanmedianmoderangeppt-130314221942-phpapp02.pptx
meanmedianmoderangeppt-130314221942-phpapp02.pptxmeanmedianmoderangeppt-130314221942-phpapp02.pptx
meanmedianmoderangeppt-130314221942-phpapp02.pptx
 
Topic 10- Read and Understand Electrical Symbols and Diagrams.pptx
Topic 10- Read and Understand Electrical Symbols and Diagrams.pptxTopic 10- Read and Understand Electrical Symbols and Diagrams.pptx
Topic 10- Read and Understand Electrical Symbols and Diagrams.pptx
 
Topic 9- Electronic Symbols.ppt
Topic 9- Electronic Symbols.pptTopic 9- Electronic Symbols.ppt
Topic 9- Electronic Symbols.ppt
 
Topic 11- Read Only Memory (ROM).pptx
Topic 11- Read Only Memory (ROM).pptxTopic 11- Read Only Memory (ROM).pptx
Topic 11- Read Only Memory (ROM).pptx
 
Topic 10- Random Access Memory (RAM).pptx
Topic 10- Random Access Memory (RAM).pptxTopic 10- Random Access Memory (RAM).pptx
Topic 10- Random Access Memory (RAM).pptx
 
Topic 9- Integrated Circuits (IC).pptx
Topic 9- Integrated Circuits (IC).pptxTopic 9- Integrated Circuits (IC).pptx
Topic 9- Integrated Circuits (IC).pptx
 
Topic 4- Transistors.pptx
Topic 4- Transistors.pptxTopic 4- Transistors.pptx
Topic 4- Transistors.pptx
 
Topic 3- Diodes.pptx
Topic 3- Diodes.pptxTopic 3- Diodes.pptx
Topic 3- Diodes.pptx
 
Topic 2.1- Semiconductors.pptx
Topic 2.1- Semiconductors.pptxTopic 2.1- Semiconductors.pptx
Topic 2.1- Semiconductors.pptx
 
Topic 1.2- Electronic Equipment used on ships (Navigational Equipment).pptx
Topic 1.2- Electronic Equipment used on ships (Navigational Equipment).pptxTopic 1.2- Electronic Equipment used on ships (Navigational Equipment).pptx
Topic 1.2- Electronic Equipment used on ships (Navigational Equipment).pptx
 
TOPIC 6.2- Power System Faults and Protection System.pptx
TOPIC 6.2- Power System Faults and Protection System.pptxTOPIC 6.2- Power System Faults and Protection System.pptx
TOPIC 6.2- Power System Faults and Protection System.pptx
 
TOPIC 6- Transformer Protection.pptx
TOPIC 6- Transformer Protection.pptxTOPIC 6- Transformer Protection.pptx
TOPIC 6- Transformer Protection.pptx
 
TOPIC 5.6- Switchgear and Its Components.pptx
TOPIC 5.6- Switchgear and Its Components.pptxTOPIC 5.6- Switchgear and Its Components.pptx
TOPIC 5.6- Switchgear and Its Components.pptx
 
TOPIC 5.1- A.C. GENERATORS.pptx
TOPIC 5.1- A.C. GENERATORS.pptxTOPIC 5.1- A.C. GENERATORS.pptx
TOPIC 5.1- A.C. GENERATORS.pptx
 
TOPIC 5- D.C. GENERATORS.pptx
TOPIC 5- D.C. GENERATORS.pptxTOPIC 5- D.C. GENERATORS.pptx
TOPIC 5- D.C. GENERATORS.pptx
 

Último

kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadhamedmustafa094
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxMuhammadAsimMuhammad6
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxNadaHaitham1
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Call Girls Mumbai
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 

Último (20)

Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 

TOPIC 2.1- Relays.pptx

  • 1. RELAYS BY: ENGR. MART NIKKI LOU M. MANTILLA, REE, RME
  • 2. CONTENT S 1.INTRODUCTION 2.PRINCIPLE 3.OPERATION 4.TYPES AND THEIR EXPLANATION 5.ADVANTAGES 6.DISADVANTAGES 7.APPLICATIONS
  • 3. INTRODUCTION • A relay is an electrically operated switch. • Many relays use an electromagnet to mechanically operate a switch, but other operating principles are also used, such as solid-state relay. • Relays are used where it is necessary to control a circuit by a low-power signal (with complete electrical isolation between control and controlled circuits), or where several circuits must be controlled by one signal. • The first relays were used in long distance telegraph circuits as amplifiers: they repeated the signal coming in from one circuit and re-transmitted it on another circuit. • A type of relay that can handle the high power required to directly control an electric motor or other loads is called a contactor.
  • 4. PRINCIPLE • A relay may also be called an “electromagnetic switch” • Relays use a “low amperage circuit” to control a “high amperage circuit” • The low amperage circuit controls an electromagnetic device. • The electromagnetic device “closes/opens” the high amperage circuit.
  • 5. OPERATION • A simple electromagnetic relay consists of a coil of wire wrapped around a soft iron core, an iron yoke which provides a low reluctance path for magnetic flux, a movable iron armature, and one or more sets of contacts. • The armature is hinged to the yoke and mechanically linked to one or more sets of moving contacts. • It is held in place by a spring so that when the relay is de- energized there is an air gap in the magnetic circuit. • In this condition, one of the two sets of contacts in the relay pictured is closed, and the other set is open. Other relays may have more or fewer sets of contacts depending on their function. • The relay in the picture also has a wire connecting the armature to the yoke.
  • 6. • When an electric current is passed through the coil it generates a magnetic field that activates the armature, and the consequent movement of the movable contact(s) either makes or breaks (depending upon construction) a connection with a fixed contact. • If the set of contacts was closed when the relay was de- energized, then the movement opens the contacts and breaks the connection, and vice versa if the contacts were open. • When the current to the coil is switched off, the armature is returned by a force, approximately half as strong as the magnetic force, to its relaxed position. Usually this force is provided by a spring, but gravity is also used commonly in industrial motor starters.
  • 7. ⚫ Most relays are manufactured to operate quickly. In a low-voltage application this reduces noise; in a high voltage or current application it reduces arcing. ⚫ When the coil is energized with direct current, a diode is often placed across the coil to dissipate the energy from the collapsing magnetic field at deactivation, which would otherwise generate a voltage spike dangerous to semiconductor circuit components.
  • 8. TYPES 1.LACHING RELAY 2.INDUCTION TYPE RELAY 3.REED RELAY 4.MERCURY-WETTED RELAY 5.SOLID STATE RELAY
  • 9. Latching relay • • • • A latching relay (also called "impulse", "keep", or "stay" relays)maintains either contact position indefinitely without power applied to the coil. The advantage is that one coil consumes power only for an instant while the relay is being switched, and the relay contacts retain this setting across a power outage. Alatching relay allows remote control of building lighting without the hum that may be produced from a continuously (AC) energized coil. This type is widely used where control is from simple switches or single-ended outputs of a control system, and such relays are found in avionics and numerous industrial applications.
  • 10. Induction type relay • These are used as protective relays inAC systems alone and are usable with DC systems. • The actuating force for contacts movement is developed by a moving conductor that may be a disc or a cup ,through the interaction of electromagnetic fluxes due to fault currents. • These are of several types like shaded pole, watt-hour and induction cup structures and are mostly used as directional relays in power- system protection and also for high-speed switching operation applications.
  • 11. Reed relay • • • • Reed relays can switch.Areed relay is a reed switch enclosed in a solenoid. The switch has a set of contacts inside an faster than larger relays and require very little power from the control circuit. However, they have relatively low switching current and voltage ratings. Though rare, the reeds can become magnetized over time, which makes them stick 'on' even when no current is present; changing the orientation of the reeds with respect to the solenoid's magnetic field can resolve this problem. Sealed contacts with mercury-wetted contacts have longer operating lives and less contact chatter than any other kind of relay.
  • 12. Mercury-wetted relay • A mercury-wetted relay is a form of reed relay in which the contacts are wetted with mercury. • Such relays are used to switch low-voltage signals (one volt or less) where the mercury reduces the contact resistance and associated voltage drop, for low-current signals where surface contamination may make for a poor contact, or for high-speed applications where the mercury eliminates contact bounce. • Mercury wetted relays are position-sensitive and must be mounted vertically to work properly. Because of the toxicity and expense of liquid mercury, these relays are now rarely used.
  • 13. Solid-state relay • A solid state relay or SSR is a solid state electronic component that provides a function similar to an electromechanical relay but does not have any moving components, increasing long-term reliability. • A solid-state relay uses a thyristor, TRIAC or other solid- state switching device, activated by the control signal, to switch the controlled load, instead of a solenoid • An optocoupler (a light-emitting diode (LED) coupled with a phototransistor) can be used to isolate control and controlled circuits. • As every solid-state device has a small voltage drop across it, this voltage drop limits the amount of current a given SSR can handle.
  • 14. ADVANTAGES:- • Electromagnetic relays have fast operation and fast reset. • They can be used for both ac and dc systems for protection of ac and dc equipment. • They have the properties such as simple, robust, compact and most reliable & These relays are almost instantaneous. DISADVANTAGES:- • The directional feature is absent in electromagnetic relays. Requires periodic maintenance and testing unlike static relays. • Relay operation can be affected due to ageing of the components and dust, pollution resulting in spurious trips.
  • 15. APPLICATIONS:- • Electromagnetic relays are employed for the protection of various ac and dc equipments. • The over/under current and voltage protection of various ac and dc equipments. • For differential protection. • Used as auxiliary relays in the contact systems of protective relay schemes.
  • 16. SERIES JP 'T' TYPE RELAY • T type relay is a Compact PCB mounting relay with a Intetnational standard foot print. • It has a switching Capacity of 30A at NO and 20A at NC at 240 AC. Available in various coil voltages in both Open type as well as Epoxy sealed versions. 40A model also avaliable under series 'JH'. Applications- • Automobiles • Air conditioning • Ventilators • Heaters • Power Conditioning .
  • 17. HF1(SERIES) CHASSIS MOUNTING POWER RELAY •CHASSIS MOUNTING POWER RELAY is a heavy duty 30A power relay available in varies AC as well as DC coils. •It is special between Phase insulation barrier to prevent ionisation. •The relay is available in both vertical as well as horizontal mounting. •Applications- •Stabilizers •Inverters •Heaters •Circuit Breakers •Welding Machines
  • 18. Conclusion ⚫ This was touched-on before but it’s worth special attention. Remember that certain devices require considerable current (amps). ⚫ High current devices required big, heavy switches to handle the current. • Unfortunately, these would be ugly and expansive, so engineers use relays.