Linear Algebra

Linear Algebra

1. The wedge product of two vectors u, v ∈ Rn
, u ∧ v, is given by the matrix u ∧ v = 1/2(uT
v − vT
u).
Show that u ∧ v is skew symmetric.
Solution: (u ∧ v)
T
= 1/2(uT
v − vT
u)
T
= 1/2((uT
v)T
− (vT
u)T
) = 1/2(vT
(uT
)T
− uT
(vT
)T
) =
1/2(vT
u − uT
v).
2. The α−rotation matrix, Rα, is given by:
Rα =
cos α − sin α
sin α cos α
.
2.1. Show that the determinant of Rα is independent of α.
Solution: |Rα| = cos2
α + sin2
α = 1 and the conclusion follows.
2.2. Verify that indeed Rα rotates a vector in R2
by an angle of amplitude α.
Solution: Let u = (x, y) ∈ R2
be such vector. Setting x = r cos θ and y = r sin θ, one can write
u in the form u = (r cos θ, r sin θ), where r = u = x2 + y2 and θ = arctan(y/x) and thus such
coordinates r and θ are uniquely determined. Hence, using those coordinates, we have:
Rα =
cos α − sin α
sin α cos α
r cos θ
r sin θ
=
r cos α cos θ − r sin α sin θ
r sin α cos θ + r cos α sin θ
=
r cos(α + θ)
r sin(α + θ)
.
This shows that Rα rotates a vector in R2
by an angle of amplitude α.
2.3. Show that Rα is orthogonal.
Solution: There is a quicker way to answer this exercise: noticing that the columns of Rα form an
orthonormal basis of R2
. Nevertheless, we can use the definition to show that R−1
α = RT
α . Clearly,
by exercise 2.1., Rα is invertible. Thus:
cos α sin α
− sin α cos α
cos α − sin α
sin α cos α
= I2.
where I2 denotes the identity matrix of order 2.
2.4. Let O(2) be the set of orthogonal matrices of order 2 (clearly, Rα ∈ O(2)). Show that O(2) is a
group under matrix multiplication.
Solution: The existence of an identity, inverse element is obvious (just take I2). Associativity is also
straightforward. Finally, we just need to show that O(2) is closed under matrix multiplication. Take
A, B ∈ O(2). Then (AB)(AB)T
= ABBT
AT
= AAT
= I2 and so (AB)T
= (AB)−1
is an element of
O(2).
2.5. Show that the correspondence T : α ∈ [0, 2π[ → O(2); α → Rα is well defined and is one–to–one. Is
it onto?
Solution: Let α = β. Then it is clear that Rα = Rβ, for all α, β ∈ [0, 2π[ and thus T is well
defined. Moreover, since cosine and sine functions are injective in [0, 2π[ and alternate in sign in the
four quadrants it follows that T is also one–to–one. Although it is not onto since O(2) also includes
matrices whose determinant equals -1.
3. Consider the transformation T : R2
→ R between vector spaces defined by T(u, v) = u + v.
3.1. Verify that T is linear.
Solution: Trivial.
3.2. Find ker(T). Conclude that T is not injective.
Solution: ker(T) = {(1, −1)}, i.e., the subspace of R2
generated by the vector (1, −1). Thus ker(T)
has many infinitely elements and hence T is not injective.
3.3. Write T as a linear combination of the elements of a basis of R2∗
, the dual of R2
.
Solution: Take the canonical basis of R2
. (φ1, φ2) is the dual basis, where φi : R2
→ R, for i = 1, 2,
are defined by φ1(u, v) = u and φ2(u, v) = v. Thus, clearly T = 1 ∗ φ1 + 1 ∗ φ2.

Recomendados

Asymptotic Growth of FunctionsAsymptotic Growth of Functions
Asymptotic Growth of FunctionsDEVTYPE
2.2K vistas8 diapositivas
Limits And DerivativeLimits And Derivative
Limits And DerivativeAshams kurian
22K vistas69 diapositivas
Clase3 NotacionClase3 Notacion
Clase3 Notacionluzenith_g
615 vistas57 diapositivas

Más contenido relacionado

La actualidad más candente

Introduction to differentiationIntroduction to differentiation
Introduction to differentiationShaun Wilson
4.4K vistas23 diapositivas
Fourier seriesFourier series
Fourier seriesTarun Gehlot
1.8K vistas23 diapositivas
Chapter 2 (maths 3)Chapter 2 (maths 3)
Chapter 2 (maths 3)Prathab Harinathan
58K vistas31 diapositivas
senior seminarsenior seminar
senior seminarJose Stewart
470 vistas33 diapositivas

La actualidad más candente(20)

Introduction to differentiationIntroduction to differentiation
Introduction to differentiation
Shaun Wilson4.4K vistas
Fourier seriesFourier series
Fourier series
Tarun Gehlot1.8K vistas
Chapter 2 (maths 3)Chapter 2 (maths 3)
Chapter 2 (maths 3)
Prathab Harinathan58K vistas
Proof of Beal's conjecture Proof of Beal's conjecture
Proof of Beal's conjecture
nikos mantzakouras98 vistas
senior seminarsenior seminar
senior seminar
Jose Stewart470 vistas
Fourier series 2Fourier series 2
Fourier series 2
Dr. Nirav Vyas2.1K vistas
A Proof of the Riemann  HypothesisA Proof of the Riemann  Hypothesis
A Proof of the Riemann Hypothesis
nikos mantzakouras1.7K vistas
Partial differential equationsPartial differential equations
Partial differential equations
aman189429.1K vistas
The Application of DerivativesThe Application of Derivatives
The Application of Derivatives
divaprincess0915.5K vistas
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 l
Pepa Vidosa Serradilla6.2K vistas
limits and continuitylimits and continuity
limits and continuity
Elias Dinsa2.8K vistas
Fourier seriesFourier series
Fourier series
Naveen Sihag49.3K vistas
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
Matthew Leingang2.2K vistas
Pertemuan 5Pertemuan 5
Pertemuan 5
Aswar Amiruddin1.5K vistas
Partial differentiation B techPartial differentiation B tech
Partial differentiation B tech
Raj verma8.6K vistas
Bai giang Dao ham riengBai giang Dao ham rieng
Bai giang Dao ham rieng
Nhan Nguyen2.4K vistas
Solve EquationsSolve Equations
Solve Equations
nikos mantzakouras92 vistas

Similar a Linear Algebra(20)

Vector spaceVector space
Vector space
Jaimin Patel20K vistas
Midterm assign 2Midterm assign 2
Midterm assign 2
meezanchand11 vistas
Permutations 2020Permutations 2020
Permutations 2020
Robert Geofroy210 vistas
Signals Processing Homework HelpSignals Processing Homework Help
Signals Processing Homework Help
Matlab Assignment Experts119 vistas
Linear Algebra Gauss Jordan elimination.pptxLinear Algebra Gauss Jordan elimination.pptx
Linear Algebra Gauss Jordan elimination.pptx
Maths Assignment Help22 vistas
Dynamical systemsDynamical systems
Dynamical systems
Springer894 vistas
torsionbinormalnotestorsionbinormalnotes
torsionbinormalnotes
Jeremy Lane915 vistas
holbert-supermfldholbert-supermfld
holbert-supermfld
James Holbert295 vistas
MC0082 –Theory of Computer ScienceMC0082 –Theory of Computer Science
MC0082 –Theory of Computer Science
Aravind NC1.4K vistas
Double_Integral.pdfDouble_Integral.pdf
Double_Integral.pdf
d00a7ece63 vistas
Quantum Hw 15Quantum Hw 15
Quantum Hw 15
guestb5026a953 vistas
Parameterized curves in r^3Parameterized curves in r^3
Parameterized curves in r^3
Tarun Gehlot2.5K vistas
2007082320070823
20070823
neostar508 vistas
Applied III  Chapter 4(1).pdfApplied III  Chapter 4(1).pdf
Applied III Chapter 4(1).pdf
DawitThomas7 vistas
Ps02 cmth03 unit 1Ps02 cmth03 unit 1
Ps02 cmth03 unit 1
Prakash Dabhi1.6K vistas
signal space analysis.pptsignal space analysis.ppt
signal space analysis.ppt
PatrickMumba7182 vistas

Más de Maths Tutoring

O que é a pedagogiaO que é a pedagogia
O que é a pedagogiaMaths Tutoring
143 vistas1 diapositiva
Teste DerivadasTeste Derivadas
Teste DerivadasMaths Tutoring
147 vistas3 diapositivas
Ficha2 DerivadasFicha2 Derivadas
Ficha2 DerivadasMaths Tutoring
69 vistas1 diapositiva
Teste 12ano Teste 12ano
Teste 12ano Maths Tutoring
61 vistas1 diapositiva
limite sinx/x 12 anolimite sinx/x 12 ano
limite sinx/x 12 anoMaths Tutoring
52 vistas1 diapositiva

Más de Maths Tutoring(20)

O que é a pedagogiaO que é a pedagogia
O que é a pedagogia
Maths Tutoring143 vistas
Teste DerivadasTeste Derivadas
Teste Derivadas
Maths Tutoring147 vistas
Ficha2 DerivadasFicha2 Derivadas
Ficha2 Derivadas
Maths Tutoring69 vistas
Teste 12ano Teste 12ano
Teste 12ano
Maths Tutoring61 vistas
Identidades trigonométricasIdentidades trigonométricas
Identidades trigonométricas
Maths Tutoring32 vistas
limite sinx/x 12 anolimite sinx/x 12 ano
limite sinx/x 12 ano
Maths Tutoring52 vistas
Trigonometria 12 ano revisoesTrigonometria 12 ano revisoes
Trigonometria 12 ano revisoes
Maths Tutoring39 vistas
Teorema de BolzanoTeorema de Bolzano
Teorema de Bolzano
Maths Tutoring66 vistas
Teste algebra linearTeste algebra linear
Teste algebra linear
Maths Tutoring61 vistas
Teste 11ano produto interno e vetoresTeste 11ano produto interno e vetores
Teste 11ano produto interno e vetores
Maths Tutoring45 vistas
Teste eqs e intervalos com resTeste eqs e intervalos com res
Teste eqs e intervalos com res
Maths Tutoring34 vistas
Teste equações e intervalosTeste equações e intervalos
Teste equações e intervalos
Maths Tutoring33 vistas
Sucessoes e series com resSucessoes e series com res
Sucessoes e series com res
Maths Tutoring85 vistas
Sucessoes, séries 20/21Sucessoes, séries 20/21
Sucessoes, séries 20/21
Maths Tutoring35 vistas
Ano 20/21 - Ficha 9ano - IntervalosAno 20/21 - Ficha 9ano - Intervalos
Ano 20/21 - Ficha 9ano - Intervalos
Maths Tutoring120 vistas
Fluid Mechanics ExercisesFluid Mechanics Exercises
Fluid Mechanics Exercises
Maths Tutoring122 vistas
Worksheet - Differential EquationsWorksheet - Differential Equations
Worksheet - Differential Equations
Maths Tutoring44 vistas
Numeros complexos fichaNumeros complexos ficha
Numeros complexos ficha
Maths Tutoring27 vistas
Teste polinómios 2 - 10.º ano Fev2020Teste polinómios 2 - 10.º ano Fev2020
Teste polinómios 2 - 10.º ano Fev2020
Maths Tutoring34 vistas

Último(20)

Drama KS5 BreakdownDrama KS5 Breakdown
Drama KS5 Breakdown
WestHatch50 vistas
Gopal Chakraborty Memorial Quiz 2.0 Prelims.pptxGopal Chakraborty Memorial Quiz 2.0 Prelims.pptx
Gopal Chakraborty Memorial Quiz 2.0 Prelims.pptx
Debapriya Chakraborty221 vistas
SIMPLE PRESENT TENSE_new.pptxSIMPLE PRESENT TENSE_new.pptx
SIMPLE PRESENT TENSE_new.pptx
nisrinamadani2146 vistas
Use of Probiotics in Aquaculture.pptxUse of Probiotics in Aquaculture.pptx
Use of Probiotics in Aquaculture.pptx
AKSHAY MANDAL69 vistas
AI Tools for Business and StartupsAI Tools for Business and Startups
AI Tools for Business and Startups
Svetlin Nakov57 vistas
Classification of crude drugs.pptxClassification of crude drugs.pptx
Classification of crude drugs.pptx
GayatriPatra1449 vistas
Class 10 English  lesson plansClass 10 English  lesson plans
Class 10 English lesson plans
Tariq KHAN172 vistas
ANATOMY AND PHYSIOLOGY UNIT 1 { PART-1}ANATOMY AND PHYSIOLOGY UNIT 1 { PART-1}
ANATOMY AND PHYSIOLOGY UNIT 1 { PART-1}
DR .PALLAVI PATHANIA156 vistas
Narration lesson plan.docxNarration lesson plan.docx
Narration lesson plan.docx
Tariq KHAN90 vistas
Streaming Quiz 2023.pdfStreaming Quiz 2023.pdf
Streaming Quiz 2023.pdf
Quiz Club NITW87 vistas
ICS3211_lecture 08_2023.pdfICS3211_lecture 08_2023.pdf
ICS3211_lecture 08_2023.pdf
Vanessa Camilleri68 vistas
Sociology KS5Sociology KS5
Sociology KS5
WestHatch50 vistas
NS3 Unit 2 Life processes of animals.pptxNS3 Unit 2 Life processes of animals.pptx
NS3 Unit 2 Life processes of animals.pptx
manuelaromero201389 vistas
Class 10 English notes 23-24.pptxClass 10 English notes 23-24.pptx
Class 10 English notes 23-24.pptx
Tariq KHAN63 vistas
Women from Hackney’s History: Stoke Newington by Sue DoeWomen from Hackney’s History: Stoke Newington by Sue Doe
Women from Hackney’s History: Stoke Newington by Sue Doe
History of Stoke Newington103 vistas

Linear Algebra

  • 1. 1. The wedge product of two vectors u, v ∈ Rn , u ∧ v, is given by the matrix u ∧ v = 1/2(uT v − vT u). Show that u ∧ v is skew symmetric. Solution: (u ∧ v) T = 1/2(uT v − vT u) T = 1/2((uT v)T − (vT u)T ) = 1/2(vT (uT )T − uT (vT )T ) = 1/2(vT u − uT v). 2. The α−rotation matrix, Rα, is given by: Rα = cos α − sin α sin α cos α . 2.1. Show that the determinant of Rα is independent of α. Solution: |Rα| = cos2 α + sin2 α = 1 and the conclusion follows. 2.2. Verify that indeed Rα rotates a vector in R2 by an angle of amplitude α. Solution: Let u = (x, y) ∈ R2 be such vector. Setting x = r cos θ and y = r sin θ, one can write u in the form u = (r cos θ, r sin θ), where r = u = x2 + y2 and θ = arctan(y/x) and thus such coordinates r and θ are uniquely determined. Hence, using those coordinates, we have: Rα = cos α − sin α sin α cos α r cos θ r sin θ = r cos α cos θ − r sin α sin θ r sin α cos θ + r cos α sin θ = r cos(α + θ) r sin(α + θ) . This shows that Rα rotates a vector in R2 by an angle of amplitude α. 2.3. Show that Rα is orthogonal. Solution: There is a quicker way to answer this exercise: noticing that the columns of Rα form an orthonormal basis of R2 . Nevertheless, we can use the definition to show that R−1 α = RT α . Clearly, by exercise 2.1., Rα is invertible. Thus: cos α sin α − sin α cos α cos α − sin α sin α cos α = I2. where I2 denotes the identity matrix of order 2. 2.4. Let O(2) be the set of orthogonal matrices of order 2 (clearly, Rα ∈ O(2)). Show that O(2) is a group under matrix multiplication. Solution: The existence of an identity, inverse element is obvious (just take I2). Associativity is also straightforward. Finally, we just need to show that O(2) is closed under matrix multiplication. Take A, B ∈ O(2). Then (AB)(AB)T = ABBT AT = AAT = I2 and so (AB)T = (AB)−1 is an element of O(2). 2.5. Show that the correspondence T : α ∈ [0, 2π[ → O(2); α → Rα is well defined and is one–to–one. Is it onto? Solution: Let α = β. Then it is clear that Rα = Rβ, for all α, β ∈ [0, 2π[ and thus T is well defined. Moreover, since cosine and sine functions are injective in [0, 2π[ and alternate in sign in the four quadrants it follows that T is also one–to–one. Although it is not onto since O(2) also includes matrices whose determinant equals -1. 3. Consider the transformation T : R2 → R between vector spaces defined by T(u, v) = u + v. 3.1. Verify that T is linear. Solution: Trivial. 3.2. Find ker(T). Conclude that T is not injective. Solution: ker(T) = {(1, −1)}, i.e., the subspace of R2 generated by the vector (1, −1). Thus ker(T) has many infinitely elements and hence T is not injective. 3.3. Write T as a linear combination of the elements of a basis of R2∗ , the dual of R2 . Solution: Take the canonical basis of R2 . (φ1, φ2) is the dual basis, where φi : R2 → R, for i = 1, 2, are defined by φ1(u, v) = u and φ2(u, v) = v. Thus, clearly T = 1 ∗ φ1 + 1 ∗ φ2.