SlideShare una empresa de Scribd logo
1 de 12
Descargar para leer sin conexiรณn
Page | 1
VIVEKANANDA COLLEGE, TIRUVEDAKAM WEST
(Residential & Autonomous โ€“ A Gurukula Institute of Life-Training)
(Affiliated to Madurai Kamaraj University)
PART III: PHYSICS MAJOR โ€“ FOURTH SEMESTER-CORE SUBJECT PAPER-II
NUMERICAL METHODS โ€“ 06CT42
(For those who joined in June 2018 and after)
Reference Text Book: Numerical Methods โ€“ P.Kandasamy, K.Thilagavathy & K.Gunavathi,
S.Chand & Company Ltd., New Delhi, 2014.
UNIT โ€“ IV Numerical Differentiation and Integration
Numerical Differentiation
Introduction
We found the polynomial curve y = f (x), passing through the (n+1) ordered pairs (xi, yi), i=0, 1,
2โ€ฆn. Now we are trying to find the derivative value of such curves at a given x = xk (say), whose x0 <
xk < xn.
To get derivative, we first find the curve y = f (x) through the points and then differentiate and get its
value at the required point.
If the values of x are equally spaced. We get the interpolating polynomial due to Newton-Gregory.
โ€ข If the derivative is required at a point nearer to the starting value in the table, we use
Newtonโ€™s forward interpolation formula.
โ€ข If we require the derivative at the end of the table, we use Newtonโ€™s backward interpolation
formula.
โ€ข If the value of derivative is required near the middle of the table value, we use one of the
central difference interpolation formulae.
Newtonโ€™s forward difference formula to get the derivative
Newtonโ€™s forward difference interpolation formula is
๐‘ฆ (๐‘ฅ0 + ๐‘ขโ„Ž) = ๐‘ฆ๐‘ข = ๐‘ฆ0 + ๐‘ขโˆ†๐‘ฆ0 +
๐‘ข(๐‘ข โˆ’ 1)
2!
โˆ†2
๐‘ฆ0 +
๐‘ข(๐‘ข โˆ’ 1)(๐‘ข โˆ’ 2)
3!
โˆ†3
๐‘ฆ0 + โ‹ฏ
where ๐‘ฆ (๐‘ฅ) is a polynomial of degree ๐‘› ๐‘–๐‘› ๐‘ฅ ๐‘Ž๐‘›๐‘‘ ๐‘ข =
๐‘ฅ โˆ’ ๐‘ฅ0
โ„Ž
where โ„Ž ๐‘–s interval of differencing
The values of first and second derivative at the starting value ๐‘ฅ = ๐‘ฅ0 for given by
(
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
)
๐‘ฅ=๐‘ฅ0
=
1
โ„Ž
[โˆ† ๐‘ฆ0 โˆ’
1
2
โˆ†2
๐‘ฆ0 +
1
3
โˆ†3
๐‘ฆ0 โˆ’ โ‹ฏ ]
(
๐‘‘2
๐‘ฆ
๐‘‘๐‘ฅ2
)
๐‘ฅ=๐‘ฅ0
=
1
โ„Ž2
[โˆ†2
๐‘ฆ0 โˆ’ โˆ†3
๐‘ฆ0 +
11
12
โˆ†4
๐‘ฆ0 โˆ’ โ‹ฏ ]
Page | 2
Problems:
1. The table given below revels the velocity v of a body during the time โ€˜tโ€™ specified. find its
acceleration at t = 1.1
t : 1.0 1.1 1.2 1.3 1.4
v : 43.1 47.7 52.1 56.4 60.8
๐’๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง. ๐‘ฃ is dependent on time ๐‘ก ๐‘–. ๐‘’. , ๐‘ฃ = ๐‘ฃ(๐‘ก). we require acceleration =
๐‘‘๐‘ฃ
๐‘‘๐‘ก
.
therefore, we have to find ๐‘ฃโ€ฒ(1.1).
๐ด๐‘ 
๐‘‘๐‘ฃ
๐‘‘๐‘ก
๐‘Ž๐‘ก ๐‘ก = 1.1 is require, (nearer to beginning value), we use ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘› ๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž.
๐‘ฃ(๐‘ก) = ๐‘ฃ (๐‘ฅ0 + ๐‘ขโ„Ž) = ๐‘ฃ0 + ๐‘ขโˆ†๐‘ฃ0 +
๐‘ข(๐‘ข โˆ’ 1)
2!
โˆ†2
๐‘ฃ0 +
๐‘ข(๐‘ข โˆ’ 1)(๐‘ข โˆ’ 2)
3!
โˆ†3
๐‘ฃ0 + โ‹ฏ
๐‘‘๐‘ฃ
๐‘‘๐‘ก
=
1
โ„Ž
.
๐‘‘๐‘ฃ
๐‘‘๐‘ก
=
1
โ„Ž
[โˆ†๐‘ฃ0 +
2๐‘ข โˆ’ 1
2
โˆ†2
๐‘ฃ0 +
3๐‘ข2
โˆ’ 6๐‘ข + 2
6
โˆ†3
๐‘ฃ0 + โ‹ฏ ]
where ๐‘ข =
๐‘ก โˆ’ ๐‘ก0
โ„Ž
=
1.1 โˆ’ 1.0
0.1
= 1
(
๐‘‘๐‘ฃ
๐‘‘๐‘ก
)
๐‘ก=1.1
= (
๐‘‘๐‘ฃ
๐‘‘๐‘ก
)
๐‘›=1
=
1
0.1
[4.6 +
1
2
(โˆ’0.2) +
1
6
(0.1) +
1
12
(0.1)]
= 10[4.6 โˆ’ 0.1 โˆ’ 0.0166 + 0.0083]
= ๐Ÿ’๐Ÿ’. ๐Ÿ—๐Ÿ๐Ÿ•
t
1.0
1.1
1.2
1.3
1.4
v
43.1
47.7
52.1
56.4
60.8
โˆ†๐‘ฃ
4.6
4.4
4.3
4.4
โˆ†2
๐‘ฃ
-0.2
-0.1
0.1
โˆ†3
๐‘ฃ
0.1
0.2
โˆ†4
๐‘ฃ
0.1
Page | 3
2. Derive the Newtonโ€™s forward difference formula to get the derivative.
We are given (๐‘› + 1)ordered pairs (๐‘ฅ๐‘–, ๐‘ฆ๐‘–)๐‘– = 0, 1, โ€ฆ ๐‘›. we want to find the derivative of
๐‘ฆ = ๐‘“(๐‘ฅ) passing through the (๐‘› + 1) points, at a point near to the startinng value ๐‘ฅ = ๐‘ฅ0
Newtonโ€™s forward difference interpolation formula is
๐‘ฆ (๐‘ฅ0 + ๐‘ขโ„Ž) = ๐‘ฆ๐‘ข = ๐‘ฆ0 + ๐‘ขโˆ†๐‘ฆ0 +
๐‘ข(๐‘ข โˆ’ 1)
2!
โˆ†2
๐‘ฆ0 +
๐‘ข(๐‘ข โˆ’ 1)(๐‘ข โˆ’ 2)
3!
โˆ†3
๐‘ฆ0 + โ‹ฏ โ€ฆ (1)
where ๐‘ฆ (๐‘ฅ) is a polynomial of degree ๐‘› ๐‘–๐‘› ๐‘ฅ ๐‘Ž๐‘›๐‘‘ ๐‘ข =
๐‘ฅ โˆ’ ๐‘ฅ0
โ„Ž
Differentiating ๐‘ฆ(๐‘ฅ) w. r. t. ๐‘ฅ,
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
=
๐‘‘๐‘ฆ
๐‘‘๐‘ข
.
๐‘‘๐‘ข
๐‘‘๐‘ฅ
=
1
โ„Ž
.
๐‘‘๐‘ฆ
๐‘‘๐‘ข
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
=
1
โ„Ž
[โˆ†๐‘ฆ0 +
2๐‘ข โˆ’ 1
2
โˆ†2
๐‘ฆ0 +
3๐‘ข2
โˆ’ 6๐‘ข + 2
6
โˆ†3
๐‘ฆ0 +
(4๐‘ข3
โˆ’ 18๐‘ข2
+ 22๐‘ข โˆ’ 6)
24
โˆ†4
๐‘ฆ0] โ€ฆ . (2)
Equation (2) gives the value of
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
at general ๐‘ฅ which may be anywhere in the interval.
In special case like ๐‘ฅ = ๐‘ฅ0, ๐‘–. ๐‘’. , ๐‘ข = 0 ๐‘–๐‘› (2)
(
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
)
๐‘ฅ=๐‘ฅ0
= (
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
)
๐‘ข=0
=
1
โ„Ž
[โˆ†๐‘ฆ0 +
1
2
โˆ†2
๐‘ฆ0 +
1
3
โˆ†3
๐‘ฆ0 โˆ’
1
4
โˆ†4
๐‘ฆ0 + โ‹ฏ ] โ€ฆ (3)
Differentiating (2) again w. r. t. ๐‘ฅ,
๐‘‘2
๐‘ฆ
๐‘‘๐‘ฅ2
=
๐‘‘
๐‘‘๐‘ข
(
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
) .
๐‘‘๐‘ข
๐‘‘๐‘ฅ
=
๐‘‘
๐‘‘๐‘ข
(
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
) .
1
โ„Ž
๐‘‘2
๐‘ฆ
๐‘‘๐‘ฅ2
=
1
โ„Ž2
[โˆ†2
๐‘ฆ0 + (๐‘ข โˆ’ 1)โˆ†3
๐‘ฆ0 +
(6๐‘ข2
โˆ’ 18๐‘ข + 11)
12
โˆ†4
๐‘ฆ0 + โ‹ฏ ] โ€ฆ (4)
Equation (4) give the second derivative value at ๐‘ฅ = ๐‘ฅ.
setting ๐‘ฅ = ๐‘ฅ0 ๐‘–. ๐‘’. , ๐‘ข = 0 ๐‘–๐‘› (4)
(
๐‘‘2
๐‘ฆ
๐‘‘๐‘ฅ2
)
๐‘ฅ=๐‘ฅ0
=
1
โ„Ž2
[โˆ†2
๐‘ฆ0 โˆ’ โˆ†3
๐‘ฆ0 +
11
12
โˆ†4
๐‘ฆ0 + โ‹ฏ ] โ€ฆ (5)
This equation (5) give the value of second derivative at the starting value ๐‘ฅ = ๐‘ฅ0
3. ๐“๐ก๐ž ๐ญ๐š๐›๐ฅ๐ž ๐›๐ž๐ฅ๐จ๐ฐ ๐ ๐ข๐ฏ๐ž๐ฌ ๐ญ๐ก๐ž ๐ซ๐ž๐ฌ๐ฎ๐ฅ๐ญ๐ฌ ๐จ๐Ÿ ๐š๐ง ๐จ๐›๐ฌ๐ž๐ซ๐ฏ๐š๐ญ๐ข๐จ๐ง: ๐›‰ ๐ข๐ฌ ๐ญ๐ก๐ž ๐จ๐›๐ฌ๐ž๐ซ๐ฏ๐ž๐ ๐ญ๐ž๐ฆ๐ฉ๐ž๐ซ๐š๐ญ๐ฎ๐ซ๐ž ๐ข๐ง
๐๐ž๐ ๐ซ๐ž๐ž๐ฌ ๐œ๐ž๐ง๐ญ๐ซ๐ข๐ ๐ซ๐š๐๐ž ๐จ๐Ÿ๐š ๐ฏ๐ž๐ฌ๐ฌ๐ž๐ฅ ๐จ๐Ÿ ๐œ๐จ๐จ๐ฅ๐ข๐ง๐  ๐ฐ๐š๐ญ๐ž๐ซ; ๐ญ ๐ข๐ฌ ๐ญ๐ก๐ž ๐ญ๐ข๐ฆ๐ž ๐ข๐ง ๐ฆ๐ข๐ง๐ฎ๐ญ๐ž๐ฌ ๐Ÿ๐ซ๐จ๐ฆ ๐ญ๐ก๐ž
๐›๐ž๐ ๐ข๐ง๐ง๐ข๐ง๐  ๐จ๐Ÿ ๐จ๐›๐ฌ๐ž๐ซ๐ฏ๐š๐ญ๐ข๐จ๐ง.
๐…๐ข๐ง๐ ๐ญ๐ก๐ž ๐š๐ฉ๐ฉ๐ซ๐จ๐ฑ๐ข๐ฆ๐š๐ญ๐ž ๐ซ๐š๐ญ๐ž ๐จ๐Ÿ ๐œ๐จ๐จ๐ฅ๐ข๐ง๐  ๐š๐ญ ๐’• = ๐Ÿ‘ ๐’‚๐’๐’… ๐Ÿ‘. ๐Ÿ“
t :
๐œฝ :
1
85.3
3
74.5
5
67.0
7
60.5
9
54.3
Page | 4
Solution. we form below the difference table
t
1
3
5
7
9
๐œƒ
85.3
74.5
67.0
60.5
54.3
โˆ†๐œƒ
-10.8
-7.5
-6.5
-6.2
โˆ†2
๐œƒ
3.3
1.0
0.3
โˆ†3
๐œƒ
-2.3
-0.7
โˆ†4
๐œƒ
1.6
๐‘‘๐œƒ
๐‘‘๐‘ก
represents the rate of cooling
๐‘ข =
๐‘ก โˆ’ ๐‘ก0
โ„Ž
=
๐‘ก โˆ’ 1
2
๐ด๐‘ก ๐‘ก = 3, ๐‘ข = 1 ๐ด๐‘ก ๐‘ก = 3.5, ๐‘ข = 1.25 โ„Ž = 2
(i) Putting ๐‘ข = 1 ๐‘–๐‘›
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
(
๐‘‘๐œƒ
๐‘‘๐‘ก
)
๐‘ก=3
= (
๐‘‘๐œƒ
๐‘‘๐‘ก
)
๐‘ข=1
=
1
2
[โˆ’10.8 โˆ’
1
2
(3.3) โˆ’
1
6
(โˆ’2.3) +
1
12
(1.6)]
=
1
2
[โˆ’10.8 + 1.65 + 0.38333 + 0.13333]
= โˆ’๐Ÿ’. ๐Ÿ‘๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ•
(ii)Putting ๐‘ข = 1.25 ๐‘–๐‘›
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
(
๐‘‘๐œƒ
๐‘‘๐‘ก
)
๐‘ก=3.5
= (
๐‘‘๐œƒ
๐‘‘๐‘ก
)
๐‘ข=1.25
=
1
2
[โˆ’10.8 + 0.75(3.3) โˆ’ (0.1354)(โˆ’2.3) + (0.04948)(1.6)]
=
1
2
[โˆ’10.8 + 2.475 + 0.31142 + 0.079168]
= โˆ’๐Ÿ‘. ๐Ÿ—๐Ÿ”๐Ÿ•๐Ÿ๐Ÿ–
Newtonโ€™s backward difference formula to compute the derivative
Consider Newtonโ€™s backward difference interpolation formula.
๐‘ฆ(๐‘ฅ) = ๐‘ฆ (๐‘ฅ0 + ๐‘ฃโ„Ž) = ๐‘ฆ๐‘› + ๐‘ฃโˆ†๐‘ฆ๐‘› +
๐‘ฃ(๐‘ฃ + 1)
2!
โˆ‡2
๐‘ฆ๐‘› +
๐‘ฃ(๐‘ฃ + 1)(๐‘ฃ + 2)
3!
โˆ‡3
๐‘ฆ๐‘› + โ‹ฏ
Page | 5
where ๐‘ฃ =
๐‘ฅ โˆ’ ๐‘ฅ0
โ„Ž
h is interval of differencing.
The value of first and second derivative at the ending value ๐‘ฅ = ๐‘ฅ ๐‘› given by
(
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
)
๐‘ฅ=๐‘ฅ ๐‘›
=
1
โ„Ž
[โˆ‡๐‘ฆ๐‘› +
1
2
โˆ‡2
๐‘ฆ๐‘› +
1
3
โˆ‡3
๐‘ฆ๐‘› +
1
4
โˆ‡4
๐‘ฆ๐‘› + โ‹ฏ ]
(
๐‘‘2
๐‘ฆ
๐‘‘๐‘ฅ2
)
๐‘ฅ=๐‘ฅ ๐‘›
=
1
โ„Ž2
[โˆ‡2
๐‘ฆ๐‘› + โˆ‡3
๐‘ฆ๐‘› +
11
12
โˆ‡4
๐‘ฆ๐‘› + โ‹ฏ ]
4. ๐€ ๐ซ๐จ๐ ๐ข๐ฌ ๐ซ๐จ๐ญ๐š๐ญ๐ข๐ง๐  ๐ข๐ง ๐š ๐ฉ๐ฅ๐š๐ง๐ž. ๐“๐ก๐ž ๐Ÿ๐จ๐ฅ๐ฅ๐จ๐ฐ๐ข๐ง๐ง๐  ๐ญ๐š๐›๐ฅ๐ž ๐ ๐ข๐ฏ๐ž๐ฌ ๐ญ๐ก๐ž ๐š๐ง๐ ๐ฅ๐ž ๐›‰ (๐ข๐ง ๐ซ๐š๐๐ข๐š๐ง๐ฌ) ๐ญ๐ก๐ซ๐จ๐ฎ๐ ๐ก
๐ฐ๐ก๐ข๐œ๐ก ๐ญ๐ก๐ž ๐ซ๐จ๐ ๐ก๐š๐ฌ ๐ญ๐ฎ๐ซ๐ง๐ž๐ ๐Ÿ๐จ๐ซ ๐ฏ๐š๐ซ๐ข๐จ๐ฎ๐ฌ ๐ฏ๐š๐ฅ๐ฎ๐ž๐ฌ ๐จ๐Ÿ ๐ญ๐ข๐ฆ๐ž ๐ญ (๐ฌ๐ž๐œ๐จ๐ง๐๐ฌ). ๐‚๐š๐ฅ๐œ๐ฎ๐ฅ๐š๐ญ๐ž ๐ญ๐ก๐ž ๐š๐ง๐ ๐ฎ๐ฅ๐š๐ซ
๐ฏ๐ž๐ฅ๐จ๐œ๐ข๐ญ๐ฒ ๐š๐ง๐ ๐š๐ง๐ ๐ฎ๐ฅ๐š๐ซ ๐š๐œ๐œ๐ž๐ฅ๐ž๐ซ๐š๐ญ๐ข๐จ๐ง ๐จ๐Ÿ ๐ญ๐ก๐ž ๐ซ๐จ๐ ๐š๐ญ = ๐ŸŽ. ๐Ÿ” ๐ฌ๐ž๐œ๐จ๐ง๐๐ฌ.
t : 0 0.2 0.4 0.6 0.8 1.0
๐œฝ : 0 0.12 0.49 1.12 2.02 3.20
Solution. We form the difference table below:
t
0
0.2
0.4
0.6
0.8
1.0
๐œƒ
0
0.12
0.49
1.12
2.02
3.20
โˆ‡๐œƒ
0.12
0.37
0.63
0.90
1.18
โˆ‡2
๐œƒ
0.25
0.26
0.27
0.28
โˆ‡3
๐œƒ
0.01
0.01
0.01
โˆ‡4
๐œƒ
0
0
๐‘ฅ = 0.6 is toward the end, we will use backward difference formula. โ„Ž = 0.2
(
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
)
๐‘ฅ
=
1
โ„Ž
[โˆ†๐‘ฆ๐‘› +
2๐‘ฃ +
2
โˆ‡2
๐‘ฆ๐‘› +
3๐‘ฃ2
+ 6๐‘ฃ + 2
6
โˆ‡3
๐‘ฆ๐‘› +
4๐‘ฃ3
+ 18๐‘ฃ2
+ 22๐‘ฃ + 6
24
โˆ‡4
๐‘ฆ๐‘› + โ‹ฏ ] โ€ฆ (1)
๐ป๐‘’๐‘Ÿ๐‘’ ๐‘ฃ =
๐‘ฅ โˆ’ ๐‘ฅ ๐‘›
โ„Ž
=
0.6 โˆ’ 1.0
0.2
= โˆ’2
Using in (1),
๐‘‘๐œƒ
๐‘‘๐‘ก
represents the angular velocity
Page | 6
(
๐‘‘๐œƒ
๐‘‘๐‘ก
)
๐‘ก=0.6
=
1
0.2
[1.18 โˆ’
3
2
(0.28) +
1
3
(0.01)]
= 5[1.18 โˆ’ 0.42 + 0.00333]
= ๐Ÿ‘. ๐Ÿ–๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ“
๐’“๐’‚๐’…
๐’”๐’†๐’„
๐‘‘2
๐œƒ
๐‘‘๐‘ก2
represents the angular acceleration
Also, (
๐‘‘2
๐‘ฆ
๐‘‘๐‘ก2
) =
1
โ„Ž2
[โˆ‡2
๐‘ฆ๐‘› + (v + 1)โˆ‡3
๐‘ฆ๐‘› + โ‹ฏ ]
(
๐‘‘2
๐œƒ
๐‘‘๐‘ก2
)
๐‘ก=0.6
=
1
0.04
[0.28 โˆ’ 0.01]
= ๐Ÿ”. ๐Ÿ•๐Ÿ“
๐’“๐’‚๐’…
๐’”๐’†๐’„ ๐Ÿ
5. ๐…๐ข๐ง๐ ๐ญ๐ก๐ž ๐Ÿ๐ข๐ซ๐ฌ๐ญ ๐ญ๐ฐ๐จ ๐๐ž๐ซ๐ข๐ฏ๐š๐ญ๐ข๐ž๐ฌ ๐จ๐Ÿ (๐’™)
๐Ÿ
๐Ÿ‘ ๐’‚๐’• ๐’™ = ๐Ÿ“๐ŸŽ ๐š๐ง๐ ๐’™ = ๐Ÿ“๐Ÿ” ๐ ๐ข๐ฏ๐ž๐ง ๐ญ๐ก๐ž ๐ญ๐š๐›๐ฅ๐ž ๐›๐ž๐ฅ๐จ๐ฐ
x : 50 51 52 53 54 55 56
y =(๐’™)
๐Ÿ
๐Ÿ‘ :
3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259
Solution.
We require ๐‘“โ€ฒ(๐‘ฅ) ๐‘Ž๐‘ก ๐‘ฅ = 50 we use ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘›โ€ฒ
๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž and
๐‘กo get ๐‘“โ€ฒ(๐‘ฅ) ๐‘Ž๐‘ก ๐‘ฅ = 56 we use ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘›โ€ฒ
๐‘  ๐‘๐‘Ž๐‘๐‘˜๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž.
By ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘›โ€ฒ
๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž,
โ„Ž = 1 ๐‘ข =
๐‘ฅ โˆ’ ๐‘ฅ0
โ„Ž
=
50 โˆ’ 50
1
= 0
๐ƒ๐ข๐Ÿ๐Ÿ๐ž๐ซ๐ž๐ง๐œ๐ž ๐“๐š๐›๐ฅ๐ž
x
50
51
52
53
54
55
56
y
3.6840
3.7084
3.7325
3.7563
3.7798
3.8030
3.8259
โˆ†๐‘ฆ
0.0244
0.0241
0.0238
0.0235
0.0232
0.0229
โˆ†2
๐‘ฆ
-0.0003
-0.0003
-0.0003
-0.0003
-0.0003
โˆ†3
๐‘ฆ
0
0
0
0
Page | 7
(
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
)
๐‘ฅ=๐‘ฅ0
= (
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
)
๐‘ข=0
=
1
โ„Ž
[โˆ† ๐‘ฆ0 โˆ’
1
2
โˆ†2
๐‘ฆ0 +
1
3
โˆ†3
๐‘ฆ0 โˆ’ โ‹ฏ ]
=
1
1
[0.0244 โˆ’
1
2
(โˆ’0.0003) +
1
3
(0)]
= ๐ŸŽ. ๐ŸŽ๐Ÿ๐Ÿ’๐Ÿ“๐Ÿ“
(
๐‘‘2
๐‘ฆ
๐‘‘๐‘ฅ2
)
๐‘ฅ=50
= (
๐‘‘2
๐‘ฆ
๐‘‘๐‘ฅ2
)
๐‘ข=0
=
1
โ„Ž2
[โˆ†2
๐‘ฆ0 โˆ’ โˆ†3
๐‘ฆ0 + โ‹ฏ ]
= 1[โˆ’0.0003]
= โˆ’๐ŸŽ. ๐ŸŽ๐ŸŽ๐ŸŽ๐Ÿ‘.
๐ต๐‘ฆ ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘›โ€ฒ
๐‘  ๐‘๐‘Ž๐‘๐‘˜๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž,
(
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
)
๐‘ฅ=๐‘ฅ ๐‘›
= (
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
)
๐‘ฃ=0
=
1
โ„Ž
[โˆ‡๐‘ฆ๐‘› +
1
2
โˆ‡2
๐‘ฆ๐‘› +
1
3
โˆ‡3
๐‘ฆ๐‘› + โ‹ฏ ]
(
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
)
๐‘ฅ=56
=
1
1
[0.0229 +
1
2
(โˆ’0.0003) + 0 ]
= ๐ŸŽ. ๐ŸŽ๐Ÿ๐Ÿ๐Ÿ•๐Ÿ“
(
๐‘‘2
๐‘ฆ
๐‘‘๐‘ฅ2
)
๐‘ฅ=๐‘ฅ ๐‘›
=
1
โ„Ž2
[โˆ‡2
๐‘ฆ๐‘› + โˆ‡3
๐‘ฆ๐‘› + โ‹ฏ ]
=
1
1
[โˆ’0.0003]
= โˆ’๐ŸŽ. ๐ŸŽ๐ŸŽ๐ŸŽ๐Ÿ‘
NUMERICAL INTEGRATION
Introduction
We know that โˆซ ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ represents the area between ๐‘ฆ = ๐‘“(๐‘ฅ), ๐‘ฅ โˆ’ axis and the
๐‘
๐‘Ž
ordinates ๐‘ฅ = ๐‘Ž and ๐‘ฅ = ๐‘. This integration is possible only if the ๐‘“(๐‘ฅ)is explicitly given and
if it is integrable. The problem of numerical integration can be stated as follows: Given a
set of (๐‘› + 1) paird values (๐‘ฅ๐‘–, ๐‘ฆ๐‘–), ๐‘– = 0, 1, 2, โ€ฆ ๐‘› ๐‘œf the function ๐‘ฆ = ๐‘“(๐‘ฅ), where ๐‘“(๐‘ฅ) is
not known explicitly, it is required to compute โˆซ ๐‘ฆ ๐‘‘๐‘ฅ.
๐‘ฅ ๐‘›
๐‘ฅ0
As we did in the case of interpolation
or numerical differentation, we replace ๐‘“(๐‘ฅ) by an interpolating polynomial ๐‘ƒ๐‘›(๐‘ฅ) ๐‘Žnd obtain
โˆซ ๐‘ƒ๐‘›(๐‘ฅ)๐‘‘๐‘ฅ which is approximately taken as the value for โˆซ ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ.
๐‘ฅ ๐‘›
๐‘ฅ0
๐‘ฅ0
๐‘ฅ ๐‘›
Page | 8
A general quadrature formula for equidistant ordinates ( or Newton-Coteโ€™s formula)
For equally spaced intervals, we have Newtonโ€™s forward difference formula as
๐‘ฆ (๐‘ฅ0 + ๐‘ขโ„Ž) = ๐‘ฆ๐‘ข = ๐‘ฆ0 + ๐‘ขโˆ†๐‘ฆ0 +
๐‘ข(๐‘ข โˆ’ 1)
2!
โˆ†2
๐‘ฆ0 +
๐‘ข(๐‘ข โˆ’ 1)(๐‘ข โˆ’ 2)
3!
โˆ†3
๐‘ฆ0 + โ‹ฏ
Here, ๐‘ข =
๐‘ฅ โˆ’ ๐‘ฅ0
โ„Ž
where h is interval of differencing
๐‘ ince ๐‘ฅ ๐‘› = ๐‘ฅ0 + ๐‘›โ„Ž and , ๐‘ข =
๐‘ฅ โˆ’ ๐‘ฅ0
โ„Ž
we have
๐‘ฅ โˆ’ ๐‘ฅ0
โ„Ž
= ๐‘› = ๐‘ข.
โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ โ‰ˆ โ„Ž[
๐‘ฅ ๐‘›
๐‘ฅ0
๐‘›๐‘ฆ0 +
๐‘›2
2
โˆ†๐‘ฆ0 +
1
2
(
๐‘›3
3
โˆ’
๐‘›2
2
) โˆ†2
๐‘ฆ0 +
1
6
(
๐‘›4
4
โˆ’ ๐‘›3
+ ๐‘›2
) โˆ†3
๐‘ฆ0 + โ‹ฏ
Above the equation is called ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘› โˆ’ ๐ถ๐‘œ๐‘ก๐‘’โ€ฒ
๐‘  ๐‘ž๐‘ข๐‘Ž๐‘‘๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž and is a general
๐‘ž๐‘ข๐‘Ž๐‘‘๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž. Giving various values for ๐‘›, we get a number of special formula.
Trapezoidal rule
๐ต๐‘ฆ ๐‘๐‘ข๐‘ก๐‘ก๐‘–๐‘›๐‘” ๐‘› = 1, ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘› โˆ’ ๐ถ๐‘œ๐‘ก๐‘’โ€ฒ
๐‘  ๐‘ž๐‘ข๐‘Ž๐‘‘๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž (๐‘–. ๐‘’. , ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘Ž๐‘Ÿ๐‘’ ๐‘œ๐‘›๐‘™๐‘ฆ ๐‘ก๐‘ค๐‘œ
๐‘๐‘Ž๐‘–๐‘Ÿ๐‘’๐‘‘๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’๐‘  ๐‘Ž๐‘›๐‘‘ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘œ๐‘™๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘๐‘œ๐‘™๐‘ฆ๐‘›๐‘œ๐‘š๐‘–๐‘Ž๐‘™ ๐‘–๐‘  ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ).
โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ = โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ = โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ + โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ + โ‹ฏ + โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ
๐‘ฅ0+๐‘›โ„Ž
๐‘ฅ0+(๐‘›โˆ’1)โ„Ž
๐‘ฅ0+2โ„Ž
๐‘ฅ0+โ„Ž
๐‘ฅ0+โ„Ž
๐‘ฅ0
๐‘ฅ0+๐‘›โ„Ž
๐‘ฅ0
๐‘ฅ ๐‘›
๐‘ฅ0
=
โ„Ž
2
[(๐‘ฆ0 + ๐‘ฆ๐‘›) + 2(๐‘ฆ1 + ๐‘ฆ2 + ๐‘ฆ3 + โ‹ฏ + ๐‘ฆ ๐‘›โˆ’1)]
=
โ„Ž
2
[(๐‘†๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘Ÿ๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘™๐‘Ž๐‘ ๐‘ก ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘ )
+ 2(๐‘†๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘ )
This is known as Trapezoidal Rule.
Simpsonโ€™s one-third rule
Setting n =2 in Newton-Cotes quadrature formula,
โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ = โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ = โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ + โ‹ฏ + โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ
๐‘ฅ ๐‘›
๐‘ฅ ๐‘›โˆ’2
๐‘ฅ4
๐‘ฅ2
๐‘ฅ2
๐‘ฅ0
๐‘ฅ ๐‘›
๐‘ฅ0
=
โ„Ž
3
[(๐‘ฆ0 + ๐‘ฆ๐‘›) + 2(๐‘ฆ2 + ๐‘ฆ4 + โ‹ฏ ) + 4(๐‘ฆ1 + ๐‘ฆ3 + โ‹ฏ )]
=
โ„Ž
3
[๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘Ÿ๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘™๐‘Ž๐‘ ๐‘ก ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘ 
+ 2(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” ๐‘œ๐‘‘๐‘‘ ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘  + 4(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘’๐‘ฃ๐‘’๐‘› ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘ )]
Page | 9
Simpsonโ€™s three-eighths rule
Putting n = 3 in Newton-Coteโ€™s quadrature formula,
๐ผ๐‘“ ๐‘› ๐‘–๐‘  ๐‘Ž ๐‘š๐‘ข๐‘™๐‘ก๐‘–๐‘๐‘™๐‘’ ๐‘œ๐‘“ 3
โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ = โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ = โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ + โ‹ฏ + โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ
๐‘ฅ0+๐‘›โ„Ž
๐‘ฅ0+(๐‘›โˆ’3)โ„Ž
๐‘ฅ0+6โ„Ž
๐‘ฅ0+3โ„Ž
๐‘ฅ0+3โ„Ž
๐‘ฅ0
๐‘ฅ0+๐‘›โ„Ž
๐‘ฅ0
=
3โ„Ž
8
[(๐‘ฆ0 + ๐‘ฆ๐‘›) + 3(๐‘ฆ1 + ๐‘ฆ2 + ๐‘ฆ4 + ๐‘ฆ5 + โ‹ฏ + ๐‘ฆ ๐‘›โˆ’1) + 2(๐‘ฆ3 + ๐‘ฆ6 + ๐‘ฆ9 + โ‹ฏ + ๐‘ฆ๐‘›)]
Above the equation is called ๐‘†๐‘–๐‘š๐‘๐‘ ๐‘œ๐‘›โ€ฒ
๐‘  ๐‘กโ„Ž๐‘Ÿ๐‘’๐‘’ โˆ’ ๐‘’๐‘–๐‘”โ„Ž๐‘ก๐‘ ๐‘  ๐‘Ÿ๐‘ข๐‘™๐‘’ which is applicable only when
๐‘› ๐‘–s multiple of 3.
6. Evaluate โˆซ ๐’™ ๐Ÿ’
๐’…๐’™ ๐ฎ๐ฌ๐ข๐ง๐  ๐ข) ๐“๐ซ๐š๐ฉ๐ž๐ณ๐จ๐ข๐๐š๐ฅ ๐ซ๐ฎ๐ฅ๐ž ๐ข๐ข) ๐’๐ข๐ฆ๐ฉ๐ฌ๐จ๐งโ€ฒ
๐ฌ ๐ซ๐ฎ๐ฅ๐ž
๐Ÿ‘
โˆ’๐Ÿ‘
Solution. Here ๐‘ฆ(๐‘ฅ) = ๐‘ฅ4
. Interval length (๐‘ โˆ’ ๐‘Ž) = 6. So, we divide 6 equal intervals with
โ„Ž =
3 โˆ’ (โˆ’3)
6
=
6
6
= 1. we form below the table
x -3 -2 -1 0 1 2 3
y 81 16 1 0 1 16 81
i) By Trapezoidal rule,
โˆซ ๐‘ฅ4
๐‘‘๐‘ฅ โ‰ˆ
โ„Ž
2
[(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘Ÿ๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘™๐‘Ž๐‘ ๐‘ก ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘  + 2(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘ )
3
โˆ’3
โ‰ˆ
1
2
[(81 + 81) + 2(16 + 1 + 0 + 1 + 16)
โ‰ˆ ๐Ÿ๐Ÿ๐Ÿ“
๐‘–๐‘–) ๐ต๐‘ฆ ๐‘ ๐‘–๐‘š๐‘๐‘ ๐‘œ๐‘›โ€ฒ
๐‘  ๐‘œ๐‘›๐‘’ โˆ’ ๐‘กโ„Ž๐‘–๐‘Ÿ๐‘‘ ๐‘Ÿ๐‘ข๐‘™๐‘’
โˆซ ๐‘ฆ ๐‘‘๐‘ฅ โ‰ˆ
1
3
[(81 + 81) + 2(1 + 1) + 4(16 + 0 + 16)]
3
โˆ’3
โ‰ˆ ๐Ÿ—๐Ÿ–
๐‘–๐‘–๐‘–) ๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘› = 6, (๐‘š๐‘ข๐‘™๐‘ก๐‘–๐‘๐‘™๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘Ÿ๐‘’๐‘’), we can also use ๐‘†๐‘–๐‘š๐‘๐‘ ๐‘œ๐‘›โ€ฒ
๐‘  ๐‘กโ„Ž๐‘Ÿ๐‘’๐‘’ โˆ’ ๐‘’๐‘–๐‘”โ„Ž๐‘กโ„Ž๐‘  ๐‘Ÿ๐‘ข๐‘™๐‘’.
โˆซ ๐‘ฆ ๐‘‘๐‘ฅ โ‰ˆ
3
8
[(81 + 81) + 3(16 + 1 + 1 + 16) + 2(0)] โ‰ˆ ๐Ÿ—๐Ÿ—.
3
โˆ’3
7. ๐„๐ฏ๐š๐ฅ๐ฎ๐ญ๐ž โˆซ
๐๐ฑ
๐Ÿ+๐ฑ
๐ฎ๐ฌ๐ข๐ง๐  ๐ข) ๐“๐ซ๐š๐ฉ๐ž๐ณ๐จ๐ข๐๐š๐ฅ ๐ซ๐ฎ๐ฅ๐ž ๐ข๐ข) ๐’๐ข๐ฆ๐ฉ๐ฌ๐จ๐งโ€ฒ
๐ฌ ๐ซ๐ฎ๐ฅ๐ž
๐Ÿ”
๐ŸŽ
Solution. Take the number of intervals as 6
Page | 10
โ„Ž =
6 โˆ’ 0
6
= 1
x 0 1 2 3 4 5 6
๐‘ฆ =
1
1 + ๐‘ฅ
1 0.5 1/3 1/4 1/5 1/6 1/7
๐‘–) ๐ต๐‘ฆ ๐‘‡๐‘Ÿ๐‘Ž๐‘๐‘’๐‘ง๐‘œ๐‘–๐‘‘๐‘Ž๐‘™ ๐‘Ÿ๐‘ข๐‘™๐‘’,
โˆซ
๐‘‘๐‘ฅ
1 + ๐‘ฅ
6
0
=
โ„Ž
2
[(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘Ÿ๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘™๐‘Ž๐‘ ๐‘ก ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘  + 2(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘ )
=
1
2
[(1 +
1
7
) + 2 (0.5 +
1
3
+
1
4
+
1
5
+
1
6
)]
= ๐Ÿ. ๐ŸŽ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ๐Ÿ–๐Ÿ“๐Ÿ•
๐‘–๐‘–) ๐ต๐‘ฆ ๐‘†๐‘–๐‘š๐‘๐‘ ๐‘œ๐‘›โ€ฒ
๐‘  ๐‘œ๐‘›๐‘’ โˆ’ ๐‘กโ„Ž๐‘–๐‘Ÿ๐‘‘ ๐‘Ÿ๐‘ข๐‘™๐‘’,
๐ผ =
1
3
[(1 +
1
7
) + 2 (
1
3
+
1
5
) + 4 (
1
2
+
1
4
+
1
6
)]
=
1
3
(1 +
1
7
+
16
15
+
22
6
) = ๐Ÿ. ๐Ÿ—๐Ÿ“๐Ÿ–๐Ÿ•๐Ÿ‘๐ŸŽ๐Ÿ๐Ÿ”
๐‘–๐‘–๐‘–) ๐ต๐‘ฆ ๐‘†๐‘–๐‘š๐‘๐‘ ๐‘œ๐‘›โ€ฒ
๐‘  ๐‘กโ„Ž๐‘Ÿ๐‘’๐‘’ โˆ’ ๐‘’๐‘–๐‘”โ„Ž๐‘กโ„Ž๐‘  ๐‘Ÿ๐‘ข๐‘™๐‘’,
๐ผ =
3
8
[(1 +
1
7
) + 3 (0.5 +
1
3
+
1
5
+
1
6
) + 2 (
1
4
)]
= ๐Ÿ. ๐Ÿ—๐Ÿ”๐Ÿ”๐ŸŽ๐Ÿ•๐Ÿ๐Ÿ’๐Ÿ‘
8. ๐€ ๐ซ๐ข๐ฏ๐ž๐ซ ๐ข๐ฌ ๐Ÿ–๐ŸŽ ๐ฆ๐ž๐ญ๐ซ๐ž๐ฌ ๐ฐ๐ข๐๐ž. ๐“๐ก๐ž ๐๐ž๐ฉ๐ญ๐ก โ€ฒd'๐ข๐ง ๐ฆ๐ž๐ญ๐ซ๐ž๐ฌ๐š๐ญ ๐š ๐๐ข๐ฌ๐ญ๐š๐ง๐œ๐ž ๐’™ ๐’Ž๐’†๐’•๐’“๐’†๐’” ๐Ÿ๐ซ๐จ๐ฆ ๐จ๐ง๐ž ๐›๐š๐ง๐ค ๐ข๐ฌ
๐ ๐ข๐ฏ๐ž๐ง ๐›๐ฒ ๐ญ๐ก๐ž ๐Ÿ๐จ๐ฅ๐ฅ๐จ๐ฐ๐ข๐ง๐  ๐ญ๐š๐›๐ฅ๐ž. ๐‚๐š๐ฅ๐œ๐ฎ๐ฅ๐š๐ญ๐ž ๐ญ๐ก๐ž ๐š๐ซ๐ž๐š ๐จ๐Ÿ ๐œ๐ซ๐จ๐ฌ๐ฌ ๐ฌ๐ž๐œ๐ญ๐ข๐จ๐ง ๐จ๐Ÿ ๐ญ๐ก๐ž ๐ซ๐ข๐ฏ๐ž๐ซ ๐ฎ๐ฌ๐ข๐ง๐ 
๐’๐ข๐ฆ๐ฉ๐ฌ๐จ๐งโ€ฒ
๐ฌ ๐ซ๐ฎ๐ฅ๐ž.
x : 0 10 20 30 40 50 60 70 80
d : 0 4 7 9 12 15 14 8 3
Solution. Here h =10. Area of cross section is โˆซ ๐‘ฆ ๐‘‘๐‘ฅ
80
0
๐ด =
10
3
[(0 + 3) + 2(7 + 12 + 14) + 4(4 + 9 + 15 + 8)]
=
10
3
[3 + 66 + 144]
= ๐Ÿ•๐Ÿ๐ŸŽ ๐’”๐’’. ๐’Ž๐’†๐’•๐’“๐’†๐’”
Page | 11
9. ๐„๐ฏ๐š๐ฅ๐ฎ๐ญ๐ž โˆซ
๐’…๐’™
๐Ÿ+๐’™ ๐Ÿ ๐ฎ๐ฌ๐ข๐ง๐  ๐“๐ซ๐š๐ฉ๐ž๐ณ๐จ๐ข๐๐š๐ฅ ๐ซ๐ฎ๐ฅ๐ž ๐’˜๐’Š๐’•๐’‰ ๐’‰ = ๐ŸŽ. ๐Ÿ. ๐‡๐ž๐ง๐œ๐ž ๐จ๐›๐ญ๐š๐ข๐ง ๐š๐ฉ๐ฉ๐ซ๐จ๐ฑ๐ข๐ฆ๐š๐ญ๐ž ๐ฏ๐š๐ฅ๐ฎ๐ž ๐จ๐Ÿ ๐….
๐Ÿ
๐ŸŽ
๐‚๐š๐ง ๐ฒ๐จ๐ฎ ๐ฎ๐ฌ๐ž ๐จ๐ญ๐ก๐ž๐ซ ๐Ÿ๐จ๐ซ๐ฆ๐ฎ๐ฅ๐š๐ž ๐ข๐ง ๐ญ๐ก๐ข๐ฌ ๐œ๐š๐ฌ๐ž.
Solution. ๐ฟ๐‘’๐‘ก ๐‘ฆ(๐‘ฅ) =
๐‘‘๐‘ฅ
1+๐‘ฅ2
Interval is (1 โˆ’ 0) = 1 โ„Ž = 0.2
x 0 0.2 0.4 0.6 0.8 1.0
๐‘ฆ =
๐‘‘๐‘ฅ
1 + ๐‘ฅ2
1 0.96154 0.86207 0.73529 0.60976 0.50000
โˆซ
๐‘‘๐‘ฅ
1 + ๐‘ฅ2
1
0
=
โ„Ž
2
[(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘Ÿ๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘™๐‘Ž๐‘ ๐‘ก ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘  + 2(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘ )
=
0.2
2
[(1 + 0.5) + 2(0.96154 + 0.86207 + 0.73529 + 0.60976)
= (0.1)[1.5 + 6.33732]
= ๐ŸŽ. ๐Ÿ•๐Ÿ–๐Ÿ‘๐Ÿ•๐Ÿ‘๐Ÿ
๐ต๐‘ฆ ๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘›,
โˆซ
๐‘‘๐‘ฅ
1 + ๐‘ฅ2
= (tanโˆ’1
๐‘ฅ)0
1
=
๐œ‹
4
1
0
โˆด
๐œ‹
4
โ‰ˆ 0.783732
โˆด ๐œ‹ โ‰ˆ ๐Ÿ‘. ๐Ÿ๐Ÿ‘๐Ÿ’๐Ÿ—๐Ÿ‘ (๐’‚๐’‘๐’‘๐’“๐’๐’™๐’Š๐’Ž๐’‚๐’•๐’†๐’๐’š)
10. ๐„๐ฏ๐š๐ฅ๐ฎ๐ญ๐ž ๐ญ๐ก๐ž ๐ข๐ง๐ญ๐ž๐ ๐ซ๐š๐ฅ ๐‘ฐ = โˆซ ๐’๐’๐’ˆ ๐’† ๐’™ ๐’…๐’™ ๐ฎ๐ฌ๐ข๐ง๐  ๐“๐ซ๐š๐ฉ๐ž๐ณ๐จ๐ข๐๐š๐ฅ ๐š๐ง๐ ๐’๐ข๐ฆ๐ฉ๐ฌ๐จ๐งโ€ฒ
๐ฌ ๐ซ๐ฎ๐ฅ๐ž๐ฌ
๐Ÿ“.๐Ÿ
๐Ÿ’
Solution. Here b - a = 5.2 โ€“ 4 = 1.2
Hence, โ„Ž =
1.2
6
= 0.2
x : 4 4.2 4.4 4.6 4.8 5.0 5.2
๐‘“(๐‘ฅ)
= ๐‘™๐‘œ๐‘” ๐‘’ ๐‘ฅ:
1.3862944 1.4350845 1.4816045 1.5260563 1.5686159 1.6094379 1.6486586
๐‘–) ๐ต๐‘ฆ ๐‘‡๐‘Ÿ๐‘Ž๐‘๐‘’๐‘ง๐‘œ๐‘–๐‘‘๐‘Ž๐‘™ ๐‘Ÿ๐‘ข๐‘™๐‘’,
โˆซ ๐‘™๐‘œ๐‘” ๐‘’ ๐‘ฅ ๐‘‘๐‘ฅ =
0.2
2
[(1.3862944 + 1.6486586
5.2
4
+ 2(1.4350845 + 1.4816045 + 1.5260563 + 1.5686159 + 1.6094379)]
= ๐Ÿ. ๐Ÿ–๐Ÿ๐Ÿ•๐Ÿ”๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ
Page | 12
ii) Since n = 6, we can use Simpsonโ€ฒ
s rule
๐ต๐‘ฆ ๐‘†๐‘–๐‘š๐‘๐‘ ๐‘œ๐‘›โ€ฒ
๐‘  ๐‘œ๐‘›๐‘’ โˆ’ ๐‘กโ„Ž๐‘–๐‘Ÿ๐‘‘ ๐‘Ÿ๐‘ข๐‘™๐‘’
๐ผ =
0.2
3
[(1.3862944 + 1.6486586 + 2(1.4816045 + 1.5686159)
+ 4(1.4350845 + 1.5260563)]
= ๐Ÿ. ๐Ÿ–๐Ÿ๐Ÿ•๐Ÿ–๐Ÿ’๐Ÿ•๐Ÿ๐Ÿ’
๐‘–๐‘–๐‘–) ๐ต๐‘ฆ ๐‘†๐‘–๐‘š๐‘๐‘œ๐‘›๐‘ ๐‘œ๐‘›โ€ฒ
๐‘  ๐‘กโ„Ž๐‘–๐‘Ÿ๐‘‘ โˆ’ ๐‘’๐‘–๐‘”โ„Ž๐‘กโ„Ž๐‘  ๐‘Ÿ๐‘ข๐‘™๐‘’,
๐ผ =
3(0.2)
8
[(1.3862944 + 1.6486586)
+ 3(1.4350845 + 1.4816045 + 1.5686159 + 1.6094379 + 2(1.5260563)]
= ๐Ÿ. ๐Ÿ–๐Ÿ๐Ÿ•๐Ÿ–๐Ÿ’๐Ÿ•๐Ÿ๐Ÿ’
Short Answer:
1. Write down the Newton-Coteโ€™s quadrature formula.
โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ โ‰ˆ โ„Ž [๐‘›๐‘ฆ0 +
๐‘›2
2
โˆ†๐‘ฆ0 +
1
2
(
๐‘›3
3
โˆ’
๐‘›2
2
) โˆ†2
๐‘ฆ0 +
1
6
(
๐‘›4
4
โˆ’ ๐‘›3
+ ๐‘›2
) โˆ†3
๐‘ฆ0 + โ‹ฏ ]
๐‘ฅ ๐‘›
๐‘ฅ0
This equation is called ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘› โˆ’ ๐ถ๐‘œ๐‘ก๐‘’โ€ฒ
๐‘  ๐‘ž๐‘ข๐‘Ž๐‘‘๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž.
2. What is the nature of y (x) in the case of trapezoidal rule?
In trapezoidal rule, y (x) is a linear function of x.
3. State the nature of y (x) and number of intervals in the case of Simpsonโ€™s one-third rule?
In Simpsonโ€™s one-third rule, y (x) is a polynomial of degree two. To apply this rule n, the number of
intervals must be even.
4. What is the nature of y (x) in the case of Simpsonโ€™s three-eighths rule and when it is
applicable?
In Simpsonโ€™s third-eighths rule, y (x) is a polynomial of degree three. This rule is applicable if n, the
number of intervals is a multiple of 3.
5. Differentiate between Simpsonโ€™s one-third rule and Simpsonโ€™s three-eighths rule.
S.No Simpsonโ€™s one-third rule Simpsonโ€™s three-eighths rule
1 y (x) is a polynomial of degree two y (x) is a polynomial of degree three
2 The number of intervals must be even. The number of intervals is a multiple of 3.

Mรกs contenido relacionado

La actualidad mรกs candente

Power series
Power series Power series
Power series Pranav Veerani
ย 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equationsAhmed Haider
ย 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODEkishor pokar
ย 
Newton divided difference interpolation
Newton divided difference interpolationNewton divided difference interpolation
Newton divided difference interpolationVISHAL DONGA
ย 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equationsNisarg Amin
ย 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficientSanjay Singh
ย 
NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)krishnapriya R
ย 
Interpolation In Numerical Methods.
 Interpolation In Numerical Methods. Interpolation In Numerical Methods.
Interpolation In Numerical Methods.Abu Kaisar
ย 
Finite difference method
Finite difference methodFinite difference method
Finite difference methodDivyansh Verma
ย 
Interpolation and its applications
Interpolation and its applicationsInterpolation and its applications
Interpolation and its applicationsRinkuMonani
ย 
newton raphson method
newton raphson methodnewton raphson method
newton raphson methodYogesh Bhargawa
ย 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first ordervishalgohel12195
ย 
Beta & Gamma Functions
Beta & Gamma FunctionsBeta & Gamma Functions
Beta & Gamma FunctionsDrDeepaChauhan
ย 
Curve fitting
Curve fitting Curve fitting
Curve fitting shopnohinami
ย 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler methodSohaib Butt
ย 
trapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 ruletrapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 rulehitarth shah
ย 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Rai University
ย 

La actualidad mรกs candente (20)

Power series
Power series Power series
Power series
ย 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
ย 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODE
ย 
Newton divided difference interpolation
Newton divided difference interpolationNewton divided difference interpolation
Newton divided difference interpolation
ย 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
ย 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
ย 
NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)NUMERICAL METHODS -Iterative methods(indirect method)
NUMERICAL METHODS -Iterative methods(indirect method)
ย 
Jacobi method
Jacobi methodJacobi method
Jacobi method
ย 
Interpolation In Numerical Methods.
 Interpolation In Numerical Methods. Interpolation In Numerical Methods.
Interpolation In Numerical Methods.
ย 
Finite difference method
Finite difference methodFinite difference method
Finite difference method
ย 
Interpolation and its applications
Interpolation and its applicationsInterpolation and its applications
Interpolation and its applications
ย 
newton raphson method
newton raphson methodnewton raphson method
newton raphson method
ย 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
ย 
Beta & Gamma Functions
Beta & Gamma FunctionsBeta & Gamma Functions
Beta & Gamma Functions
ย 
Higher order differential equations
Higher order differential equationsHigher order differential equations
Higher order differential equations
ย 
Curve fitting
Curve fitting Curve fitting
Curve fitting
ย 
Euler and improved euler method
Euler and improved euler methodEuler and improved euler method
Euler and improved euler method
ย 
trapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 ruletrapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 rule
ย 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
ย 
Euler and runge kutta method
Euler and runge kutta methodEuler and runge kutta method
Euler and runge kutta method
ย 

Similar a Study Material Numerical Differentiation and Integration

Study Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsStudy Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsMeenakshisundaram N
ย 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfAnuBajpai5
ย 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIESMANISH KUMAR
ย 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
ย 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxjyotidighole2
ย 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationRai University
ย 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxPratik P Chougule
ย 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau
ย 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IRai University
ย 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSRai University
ย 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4MAY NURHAYATI
ย 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Rai University
ย 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
ย 
Application of Integration
Application of IntegrationApplication of Integration
Application of IntegrationRaymundo Raymund
ย 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiationSanthanam Krishnan
ย 
A05330107
A05330107A05330107
A05330107IOSR-JEN
ย 
Assignment_1_solutions.pdf
Assignment_1_solutions.pdfAssignment_1_solutions.pdf
Assignment_1_solutions.pdfAbhayRupareliya1
ย 
Z transforms
Z transformsZ transforms
Z transformssujathavvv
ย 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
ย 

Similar a Study Material Numerical Differentiation and Integration (20)

Interpolation
InterpolationInterpolation
Interpolation
ย 
Study Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential EquationsStudy Material Numerical Solution of Odinary Differential Equations
Study Material Numerical Solution of Odinary Differential Equations
ย 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
ย 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
ย 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
ย 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptx
ย 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
ย 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptx
ย 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
ย 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
ย 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
ย 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
ย 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
ย 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
ย 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
ย 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
ย 
A05330107
A05330107A05330107
A05330107
ย 
Assignment_1_solutions.pdf
Assignment_1_solutions.pdfAssignment_1_solutions.pdf
Assignment_1_solutions.pdf
ย 
Z transforms
Z transformsZ transforms
Z transforms
ย 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
ย 

Mรกs de Meenakshisundaram N

CSIR-UGC-NET-TIPS and Tricks to prepare Part A - Aptitude and Reasoning
CSIR-UGC-NET-TIPS and Tricks to prepare Part A - Aptitude and ReasoningCSIR-UGC-NET-TIPS and Tricks to prepare Part A - Aptitude and Reasoning
CSIR-UGC-NET-TIPS and Tricks to prepare Part A - Aptitude and ReasoningMeenakshisundaram N
ย 
Multiple Choice Questions - Numerical Methods
Multiple Choice Questions - Numerical MethodsMultiple Choice Questions - Numerical Methods
Multiple Choice Questions - Numerical MethodsMeenakshisundaram N
ย 
So You Want to Be A Physicist
So You Want to Be A Physicist So You Want to Be A Physicist
So You Want to Be A Physicist Meenakshisundaram N
ย 
Wave Properties of Particles
Wave Properties of ParticlesWave Properties of Particles
Wave Properties of ParticlesMeenakshisundaram N
ย 
Particle Properties of Waves
Particle Properties of Waves Particle Properties of Waves
Particle Properties of Waves Meenakshisundaram N
ย 
Numerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsNumerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsMeenakshisundaram N
ย 
Numerical Differentiation and Integration
 Numerical Differentiation and Integration Numerical Differentiation and Integration
Numerical Differentiation and IntegrationMeenakshisundaram N
ย 
Tips and Tricks to Clear - CSIR-UGC NET- Physical Sciences
Tips and Tricks to Clear - CSIR-UGC NET- Physical SciencesTips and Tricks to Clear - CSIR-UGC NET- Physical Sciences
Tips and Tricks to Clear - CSIR-UGC NET- Physical SciencesMeenakshisundaram N
ย 

Mรกs de Meenakshisundaram N (8)

CSIR-UGC-NET-TIPS and Tricks to prepare Part A - Aptitude and Reasoning
CSIR-UGC-NET-TIPS and Tricks to prepare Part A - Aptitude and ReasoningCSIR-UGC-NET-TIPS and Tricks to prepare Part A - Aptitude and Reasoning
CSIR-UGC-NET-TIPS and Tricks to prepare Part A - Aptitude and Reasoning
ย 
Multiple Choice Questions - Numerical Methods
Multiple Choice Questions - Numerical MethodsMultiple Choice Questions - Numerical Methods
Multiple Choice Questions - Numerical Methods
ย 
So You Want to Be A Physicist
So You Want to Be A Physicist So You Want to Be A Physicist
So You Want to Be A Physicist
ย 
Wave Properties of Particles
Wave Properties of ParticlesWave Properties of Particles
Wave Properties of Particles
ย 
Particle Properties of Waves
Particle Properties of Waves Particle Properties of Waves
Particle Properties of Waves
ย 
Numerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsNumerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential Equations
ย 
Numerical Differentiation and Integration
 Numerical Differentiation and Integration Numerical Differentiation and Integration
Numerical Differentiation and Integration
ย 
Tips and Tricks to Clear - CSIR-UGC NET- Physical Sciences
Tips and Tricks to Clear - CSIR-UGC NET- Physical SciencesTips and Tricks to Clear - CSIR-UGC NET- Physical Sciences
Tips and Tricks to Clear - CSIR-UGC NET- Physical Sciences
ย 

รšltimo

Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
ย 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .Poonam Aher Patil
ย 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
ย 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedDelhi Call girls
ย 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSรฉrgio Sacani
ย 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
ย 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
ย 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
ย 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxRizalinePalanog2
ย 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
ย 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPirithiRaju
ย 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
ย 
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
ย 
High Class Escorts in Hyderabad โ‚น7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad โ‚น7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad โ‚น7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad โ‚น7.5k Pick Up & Drop With Cash Payment 969456...chandars293
ย 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSรฉrgio Sacani
ย 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)Areesha Ahmad
ย 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sรฉrgio Sacani
ย 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
ย 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptxAlMamun560346
ย 
American Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptxAmerican Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptxabhishekdhamu51
ย 

รšltimo (20)

Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
ย 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
ย 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
ย 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
ย 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
ย 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
ย 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
ย 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
ย 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
ย 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
ย 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
ย 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
ย 
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Alandi Call Me 7737669865 Budget Friendly No Advance Booking
ย 
High Class Escorts in Hyderabad โ‚น7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad โ‚น7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad โ‚น7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad โ‚น7.5k Pick Up & Drop With Cash Payment 969456...
ย 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
ย 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
ย 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
ย 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
ย 
Seismic Method Estimate velocity from seismic data.pptx
Seismic Method Estimate velocity from seismic  data.pptxSeismic Method Estimate velocity from seismic  data.pptx
Seismic Method Estimate velocity from seismic data.pptx
ย 
American Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptxAmerican Type Culture Collection (ATCC).pptx
American Type Culture Collection (ATCC).pptx
ย 

Study Material Numerical Differentiation and Integration

  • 1. Page | 1 VIVEKANANDA COLLEGE, TIRUVEDAKAM WEST (Residential & Autonomous โ€“ A Gurukula Institute of Life-Training) (Affiliated to Madurai Kamaraj University) PART III: PHYSICS MAJOR โ€“ FOURTH SEMESTER-CORE SUBJECT PAPER-II NUMERICAL METHODS โ€“ 06CT42 (For those who joined in June 2018 and after) Reference Text Book: Numerical Methods โ€“ P.Kandasamy, K.Thilagavathy & K.Gunavathi, S.Chand & Company Ltd., New Delhi, 2014. UNIT โ€“ IV Numerical Differentiation and Integration Numerical Differentiation Introduction We found the polynomial curve y = f (x), passing through the (n+1) ordered pairs (xi, yi), i=0, 1, 2โ€ฆn. Now we are trying to find the derivative value of such curves at a given x = xk (say), whose x0 < xk < xn. To get derivative, we first find the curve y = f (x) through the points and then differentiate and get its value at the required point. If the values of x are equally spaced. We get the interpolating polynomial due to Newton-Gregory. โ€ข If the derivative is required at a point nearer to the starting value in the table, we use Newtonโ€™s forward interpolation formula. โ€ข If we require the derivative at the end of the table, we use Newtonโ€™s backward interpolation formula. โ€ข If the value of derivative is required near the middle of the table value, we use one of the central difference interpolation formulae. Newtonโ€™s forward difference formula to get the derivative Newtonโ€™s forward difference interpolation formula is ๐‘ฆ (๐‘ฅ0 + ๐‘ขโ„Ž) = ๐‘ฆ๐‘ข = ๐‘ฆ0 + ๐‘ขโˆ†๐‘ฆ0 + ๐‘ข(๐‘ข โˆ’ 1) 2! โˆ†2 ๐‘ฆ0 + ๐‘ข(๐‘ข โˆ’ 1)(๐‘ข โˆ’ 2) 3! โˆ†3 ๐‘ฆ0 + โ‹ฏ where ๐‘ฆ (๐‘ฅ) is a polynomial of degree ๐‘› ๐‘–๐‘› ๐‘ฅ ๐‘Ž๐‘›๐‘‘ ๐‘ข = ๐‘ฅ โˆ’ ๐‘ฅ0 โ„Ž where โ„Ž ๐‘–s interval of differencing The values of first and second derivative at the starting value ๐‘ฅ = ๐‘ฅ0 for given by ( ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ) ๐‘ฅ=๐‘ฅ0 = 1 โ„Ž [โˆ† ๐‘ฆ0 โˆ’ 1 2 โˆ†2 ๐‘ฆ0 + 1 3 โˆ†3 ๐‘ฆ0 โˆ’ โ‹ฏ ] ( ๐‘‘2 ๐‘ฆ ๐‘‘๐‘ฅ2 ) ๐‘ฅ=๐‘ฅ0 = 1 โ„Ž2 [โˆ†2 ๐‘ฆ0 โˆ’ โˆ†3 ๐‘ฆ0 + 11 12 โˆ†4 ๐‘ฆ0 โˆ’ โ‹ฏ ]
  • 2. Page | 2 Problems: 1. The table given below revels the velocity v of a body during the time โ€˜tโ€™ specified. find its acceleration at t = 1.1 t : 1.0 1.1 1.2 1.3 1.4 v : 43.1 47.7 52.1 56.4 60.8 ๐’๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง. ๐‘ฃ is dependent on time ๐‘ก ๐‘–. ๐‘’. , ๐‘ฃ = ๐‘ฃ(๐‘ก). we require acceleration = ๐‘‘๐‘ฃ ๐‘‘๐‘ก . therefore, we have to find ๐‘ฃโ€ฒ(1.1). ๐ด๐‘  ๐‘‘๐‘ฃ ๐‘‘๐‘ก ๐‘Ž๐‘ก ๐‘ก = 1.1 is require, (nearer to beginning value), we use ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘› ๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž. ๐‘ฃ(๐‘ก) = ๐‘ฃ (๐‘ฅ0 + ๐‘ขโ„Ž) = ๐‘ฃ0 + ๐‘ขโˆ†๐‘ฃ0 + ๐‘ข(๐‘ข โˆ’ 1) 2! โˆ†2 ๐‘ฃ0 + ๐‘ข(๐‘ข โˆ’ 1)(๐‘ข โˆ’ 2) 3! โˆ†3 ๐‘ฃ0 + โ‹ฏ ๐‘‘๐‘ฃ ๐‘‘๐‘ก = 1 โ„Ž . ๐‘‘๐‘ฃ ๐‘‘๐‘ก = 1 โ„Ž [โˆ†๐‘ฃ0 + 2๐‘ข โˆ’ 1 2 โˆ†2 ๐‘ฃ0 + 3๐‘ข2 โˆ’ 6๐‘ข + 2 6 โˆ†3 ๐‘ฃ0 + โ‹ฏ ] where ๐‘ข = ๐‘ก โˆ’ ๐‘ก0 โ„Ž = 1.1 โˆ’ 1.0 0.1 = 1 ( ๐‘‘๐‘ฃ ๐‘‘๐‘ก ) ๐‘ก=1.1 = ( ๐‘‘๐‘ฃ ๐‘‘๐‘ก ) ๐‘›=1 = 1 0.1 [4.6 + 1 2 (โˆ’0.2) + 1 6 (0.1) + 1 12 (0.1)] = 10[4.6 โˆ’ 0.1 โˆ’ 0.0166 + 0.0083] = ๐Ÿ’๐Ÿ’. ๐Ÿ—๐Ÿ๐Ÿ• t 1.0 1.1 1.2 1.3 1.4 v 43.1 47.7 52.1 56.4 60.8 โˆ†๐‘ฃ 4.6 4.4 4.3 4.4 โˆ†2 ๐‘ฃ -0.2 -0.1 0.1 โˆ†3 ๐‘ฃ 0.1 0.2 โˆ†4 ๐‘ฃ 0.1
  • 3. Page | 3 2. Derive the Newtonโ€™s forward difference formula to get the derivative. We are given (๐‘› + 1)ordered pairs (๐‘ฅ๐‘–, ๐‘ฆ๐‘–)๐‘– = 0, 1, โ€ฆ ๐‘›. we want to find the derivative of ๐‘ฆ = ๐‘“(๐‘ฅ) passing through the (๐‘› + 1) points, at a point near to the startinng value ๐‘ฅ = ๐‘ฅ0 Newtonโ€™s forward difference interpolation formula is ๐‘ฆ (๐‘ฅ0 + ๐‘ขโ„Ž) = ๐‘ฆ๐‘ข = ๐‘ฆ0 + ๐‘ขโˆ†๐‘ฆ0 + ๐‘ข(๐‘ข โˆ’ 1) 2! โˆ†2 ๐‘ฆ0 + ๐‘ข(๐‘ข โˆ’ 1)(๐‘ข โˆ’ 2) 3! โˆ†3 ๐‘ฆ0 + โ‹ฏ โ€ฆ (1) where ๐‘ฆ (๐‘ฅ) is a polynomial of degree ๐‘› ๐‘–๐‘› ๐‘ฅ ๐‘Ž๐‘›๐‘‘ ๐‘ข = ๐‘ฅ โˆ’ ๐‘ฅ0 โ„Ž Differentiating ๐‘ฆ(๐‘ฅ) w. r. t. ๐‘ฅ, ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = ๐‘‘๐‘ฆ ๐‘‘๐‘ข . ๐‘‘๐‘ข ๐‘‘๐‘ฅ = 1 โ„Ž . ๐‘‘๐‘ฆ ๐‘‘๐‘ข ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = 1 โ„Ž [โˆ†๐‘ฆ0 + 2๐‘ข โˆ’ 1 2 โˆ†2 ๐‘ฆ0 + 3๐‘ข2 โˆ’ 6๐‘ข + 2 6 โˆ†3 ๐‘ฆ0 + (4๐‘ข3 โˆ’ 18๐‘ข2 + 22๐‘ข โˆ’ 6) 24 โˆ†4 ๐‘ฆ0] โ€ฆ . (2) Equation (2) gives the value of ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ at general ๐‘ฅ which may be anywhere in the interval. In special case like ๐‘ฅ = ๐‘ฅ0, ๐‘–. ๐‘’. , ๐‘ข = 0 ๐‘–๐‘› (2) ( ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ) ๐‘ฅ=๐‘ฅ0 = ( ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ) ๐‘ข=0 = 1 โ„Ž [โˆ†๐‘ฆ0 + 1 2 โˆ†2 ๐‘ฆ0 + 1 3 โˆ†3 ๐‘ฆ0 โˆ’ 1 4 โˆ†4 ๐‘ฆ0 + โ‹ฏ ] โ€ฆ (3) Differentiating (2) again w. r. t. ๐‘ฅ, ๐‘‘2 ๐‘ฆ ๐‘‘๐‘ฅ2 = ๐‘‘ ๐‘‘๐‘ข ( ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ) . ๐‘‘๐‘ข ๐‘‘๐‘ฅ = ๐‘‘ ๐‘‘๐‘ข ( ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ) . 1 โ„Ž ๐‘‘2 ๐‘ฆ ๐‘‘๐‘ฅ2 = 1 โ„Ž2 [โˆ†2 ๐‘ฆ0 + (๐‘ข โˆ’ 1)โˆ†3 ๐‘ฆ0 + (6๐‘ข2 โˆ’ 18๐‘ข + 11) 12 โˆ†4 ๐‘ฆ0 + โ‹ฏ ] โ€ฆ (4) Equation (4) give the second derivative value at ๐‘ฅ = ๐‘ฅ. setting ๐‘ฅ = ๐‘ฅ0 ๐‘–. ๐‘’. , ๐‘ข = 0 ๐‘–๐‘› (4) ( ๐‘‘2 ๐‘ฆ ๐‘‘๐‘ฅ2 ) ๐‘ฅ=๐‘ฅ0 = 1 โ„Ž2 [โˆ†2 ๐‘ฆ0 โˆ’ โˆ†3 ๐‘ฆ0 + 11 12 โˆ†4 ๐‘ฆ0 + โ‹ฏ ] โ€ฆ (5) This equation (5) give the value of second derivative at the starting value ๐‘ฅ = ๐‘ฅ0 3. ๐“๐ก๐ž ๐ญ๐š๐›๐ฅ๐ž ๐›๐ž๐ฅ๐จ๐ฐ ๐ ๐ข๐ฏ๐ž๐ฌ ๐ญ๐ก๐ž ๐ซ๐ž๐ฌ๐ฎ๐ฅ๐ญ๐ฌ ๐จ๐Ÿ ๐š๐ง ๐จ๐›๐ฌ๐ž๐ซ๐ฏ๐š๐ญ๐ข๐จ๐ง: ๐›‰ ๐ข๐ฌ ๐ญ๐ก๐ž ๐จ๐›๐ฌ๐ž๐ซ๐ฏ๐ž๐ ๐ญ๐ž๐ฆ๐ฉ๐ž๐ซ๐š๐ญ๐ฎ๐ซ๐ž ๐ข๐ง ๐๐ž๐ ๐ซ๐ž๐ž๐ฌ ๐œ๐ž๐ง๐ญ๐ซ๐ข๐ ๐ซ๐š๐๐ž ๐จ๐Ÿ๐š ๐ฏ๐ž๐ฌ๐ฌ๐ž๐ฅ ๐จ๐Ÿ ๐œ๐จ๐จ๐ฅ๐ข๐ง๐  ๐ฐ๐š๐ญ๐ž๐ซ; ๐ญ ๐ข๐ฌ ๐ญ๐ก๐ž ๐ญ๐ข๐ฆ๐ž ๐ข๐ง ๐ฆ๐ข๐ง๐ฎ๐ญ๐ž๐ฌ ๐Ÿ๐ซ๐จ๐ฆ ๐ญ๐ก๐ž ๐›๐ž๐ ๐ข๐ง๐ง๐ข๐ง๐  ๐จ๐Ÿ ๐จ๐›๐ฌ๐ž๐ซ๐ฏ๐š๐ญ๐ข๐จ๐ง. ๐…๐ข๐ง๐ ๐ญ๐ก๐ž ๐š๐ฉ๐ฉ๐ซ๐จ๐ฑ๐ข๐ฆ๐š๐ญ๐ž ๐ซ๐š๐ญ๐ž ๐จ๐Ÿ ๐œ๐จ๐จ๐ฅ๐ข๐ง๐  ๐š๐ญ ๐’• = ๐Ÿ‘ ๐’‚๐’๐’… ๐Ÿ‘. ๐Ÿ“ t : ๐œฝ : 1 85.3 3 74.5 5 67.0 7 60.5 9 54.3
  • 4. Page | 4 Solution. we form below the difference table t 1 3 5 7 9 ๐œƒ 85.3 74.5 67.0 60.5 54.3 โˆ†๐œƒ -10.8 -7.5 -6.5 -6.2 โˆ†2 ๐œƒ 3.3 1.0 0.3 โˆ†3 ๐œƒ -2.3 -0.7 โˆ†4 ๐œƒ 1.6 ๐‘‘๐œƒ ๐‘‘๐‘ก represents the rate of cooling ๐‘ข = ๐‘ก โˆ’ ๐‘ก0 โ„Ž = ๐‘ก โˆ’ 1 2 ๐ด๐‘ก ๐‘ก = 3, ๐‘ข = 1 ๐ด๐‘ก ๐‘ก = 3.5, ๐‘ข = 1.25 โ„Ž = 2 (i) Putting ๐‘ข = 1 ๐‘–๐‘› ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ( ๐‘‘๐œƒ ๐‘‘๐‘ก ) ๐‘ก=3 = ( ๐‘‘๐œƒ ๐‘‘๐‘ก ) ๐‘ข=1 = 1 2 [โˆ’10.8 โˆ’ 1 2 (3.3) โˆ’ 1 6 (โˆ’2.3) + 1 12 (1.6)] = 1 2 [โˆ’10.8 + 1.65 + 0.38333 + 0.13333] = โˆ’๐Ÿ’. ๐Ÿ‘๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ• (ii)Putting ๐‘ข = 1.25 ๐‘–๐‘› ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ( ๐‘‘๐œƒ ๐‘‘๐‘ก ) ๐‘ก=3.5 = ( ๐‘‘๐œƒ ๐‘‘๐‘ก ) ๐‘ข=1.25 = 1 2 [โˆ’10.8 + 0.75(3.3) โˆ’ (0.1354)(โˆ’2.3) + (0.04948)(1.6)] = 1 2 [โˆ’10.8 + 2.475 + 0.31142 + 0.079168] = โˆ’๐Ÿ‘. ๐Ÿ—๐Ÿ”๐Ÿ•๐Ÿ๐Ÿ– Newtonโ€™s backward difference formula to compute the derivative Consider Newtonโ€™s backward difference interpolation formula. ๐‘ฆ(๐‘ฅ) = ๐‘ฆ (๐‘ฅ0 + ๐‘ฃโ„Ž) = ๐‘ฆ๐‘› + ๐‘ฃโˆ†๐‘ฆ๐‘› + ๐‘ฃ(๐‘ฃ + 1) 2! โˆ‡2 ๐‘ฆ๐‘› + ๐‘ฃ(๐‘ฃ + 1)(๐‘ฃ + 2) 3! โˆ‡3 ๐‘ฆ๐‘› + โ‹ฏ
  • 5. Page | 5 where ๐‘ฃ = ๐‘ฅ โˆ’ ๐‘ฅ0 โ„Ž h is interval of differencing. The value of first and second derivative at the ending value ๐‘ฅ = ๐‘ฅ ๐‘› given by ( ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ) ๐‘ฅ=๐‘ฅ ๐‘› = 1 โ„Ž [โˆ‡๐‘ฆ๐‘› + 1 2 โˆ‡2 ๐‘ฆ๐‘› + 1 3 โˆ‡3 ๐‘ฆ๐‘› + 1 4 โˆ‡4 ๐‘ฆ๐‘› + โ‹ฏ ] ( ๐‘‘2 ๐‘ฆ ๐‘‘๐‘ฅ2 ) ๐‘ฅ=๐‘ฅ ๐‘› = 1 โ„Ž2 [โˆ‡2 ๐‘ฆ๐‘› + โˆ‡3 ๐‘ฆ๐‘› + 11 12 โˆ‡4 ๐‘ฆ๐‘› + โ‹ฏ ] 4. ๐€ ๐ซ๐จ๐ ๐ข๐ฌ ๐ซ๐จ๐ญ๐š๐ญ๐ข๐ง๐  ๐ข๐ง ๐š ๐ฉ๐ฅ๐š๐ง๐ž. ๐“๐ก๐ž ๐Ÿ๐จ๐ฅ๐ฅ๐จ๐ฐ๐ข๐ง๐ง๐  ๐ญ๐š๐›๐ฅ๐ž ๐ ๐ข๐ฏ๐ž๐ฌ ๐ญ๐ก๐ž ๐š๐ง๐ ๐ฅ๐ž ๐›‰ (๐ข๐ง ๐ซ๐š๐๐ข๐š๐ง๐ฌ) ๐ญ๐ก๐ซ๐จ๐ฎ๐ ๐ก ๐ฐ๐ก๐ข๐œ๐ก ๐ญ๐ก๐ž ๐ซ๐จ๐ ๐ก๐š๐ฌ ๐ญ๐ฎ๐ซ๐ง๐ž๐ ๐Ÿ๐จ๐ซ ๐ฏ๐š๐ซ๐ข๐จ๐ฎ๐ฌ ๐ฏ๐š๐ฅ๐ฎ๐ž๐ฌ ๐จ๐Ÿ ๐ญ๐ข๐ฆ๐ž ๐ญ (๐ฌ๐ž๐œ๐จ๐ง๐๐ฌ). ๐‚๐š๐ฅ๐œ๐ฎ๐ฅ๐š๐ญ๐ž ๐ญ๐ก๐ž ๐š๐ง๐ ๐ฎ๐ฅ๐š๐ซ ๐ฏ๐ž๐ฅ๐จ๐œ๐ข๐ญ๐ฒ ๐š๐ง๐ ๐š๐ง๐ ๐ฎ๐ฅ๐š๐ซ ๐š๐œ๐œ๐ž๐ฅ๐ž๐ซ๐š๐ญ๐ข๐จ๐ง ๐จ๐Ÿ ๐ญ๐ก๐ž ๐ซ๐จ๐ ๐š๐ญ = ๐ŸŽ. ๐Ÿ” ๐ฌ๐ž๐œ๐จ๐ง๐๐ฌ. t : 0 0.2 0.4 0.6 0.8 1.0 ๐œฝ : 0 0.12 0.49 1.12 2.02 3.20 Solution. We form the difference table below: t 0 0.2 0.4 0.6 0.8 1.0 ๐œƒ 0 0.12 0.49 1.12 2.02 3.20 โˆ‡๐œƒ 0.12 0.37 0.63 0.90 1.18 โˆ‡2 ๐œƒ 0.25 0.26 0.27 0.28 โˆ‡3 ๐œƒ 0.01 0.01 0.01 โˆ‡4 ๐œƒ 0 0 ๐‘ฅ = 0.6 is toward the end, we will use backward difference formula. โ„Ž = 0.2 ( ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ) ๐‘ฅ = 1 โ„Ž [โˆ†๐‘ฆ๐‘› + 2๐‘ฃ + 2 โˆ‡2 ๐‘ฆ๐‘› + 3๐‘ฃ2 + 6๐‘ฃ + 2 6 โˆ‡3 ๐‘ฆ๐‘› + 4๐‘ฃ3 + 18๐‘ฃ2 + 22๐‘ฃ + 6 24 โˆ‡4 ๐‘ฆ๐‘› + โ‹ฏ ] โ€ฆ (1) ๐ป๐‘’๐‘Ÿ๐‘’ ๐‘ฃ = ๐‘ฅ โˆ’ ๐‘ฅ ๐‘› โ„Ž = 0.6 โˆ’ 1.0 0.2 = โˆ’2 Using in (1), ๐‘‘๐œƒ ๐‘‘๐‘ก represents the angular velocity
  • 6. Page | 6 ( ๐‘‘๐œƒ ๐‘‘๐‘ก ) ๐‘ก=0.6 = 1 0.2 [1.18 โˆ’ 3 2 (0.28) + 1 3 (0.01)] = 5[1.18 โˆ’ 0.42 + 0.00333] = ๐Ÿ‘. ๐Ÿ–๐Ÿ๐Ÿ”๐Ÿ”๐Ÿ“ ๐’“๐’‚๐’… ๐’”๐’†๐’„ ๐‘‘2 ๐œƒ ๐‘‘๐‘ก2 represents the angular acceleration Also, ( ๐‘‘2 ๐‘ฆ ๐‘‘๐‘ก2 ) = 1 โ„Ž2 [โˆ‡2 ๐‘ฆ๐‘› + (v + 1)โˆ‡3 ๐‘ฆ๐‘› + โ‹ฏ ] ( ๐‘‘2 ๐œƒ ๐‘‘๐‘ก2 ) ๐‘ก=0.6 = 1 0.04 [0.28 โˆ’ 0.01] = ๐Ÿ”. ๐Ÿ•๐Ÿ“ ๐’“๐’‚๐’… ๐’”๐’†๐’„ ๐Ÿ 5. ๐…๐ข๐ง๐ ๐ญ๐ก๐ž ๐Ÿ๐ข๐ซ๐ฌ๐ญ ๐ญ๐ฐ๐จ ๐๐ž๐ซ๐ข๐ฏ๐š๐ญ๐ข๐ž๐ฌ ๐จ๐Ÿ (๐’™) ๐Ÿ ๐Ÿ‘ ๐’‚๐’• ๐’™ = ๐Ÿ“๐ŸŽ ๐š๐ง๐ ๐’™ = ๐Ÿ“๐Ÿ” ๐ ๐ข๐ฏ๐ž๐ง ๐ญ๐ก๐ž ๐ญ๐š๐›๐ฅ๐ž ๐›๐ž๐ฅ๐จ๐ฐ x : 50 51 52 53 54 55 56 y =(๐’™) ๐Ÿ ๐Ÿ‘ : 3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259 Solution. We require ๐‘“โ€ฒ(๐‘ฅ) ๐‘Ž๐‘ก ๐‘ฅ = 50 we use ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘›โ€ฒ ๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž and ๐‘กo get ๐‘“โ€ฒ(๐‘ฅ) ๐‘Ž๐‘ก ๐‘ฅ = 56 we use ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘›โ€ฒ ๐‘  ๐‘๐‘Ž๐‘๐‘˜๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž. By ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘›โ€ฒ ๐‘  ๐‘“๐‘œ๐‘Ÿ๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž, โ„Ž = 1 ๐‘ข = ๐‘ฅ โˆ’ ๐‘ฅ0 โ„Ž = 50 โˆ’ 50 1 = 0 ๐ƒ๐ข๐Ÿ๐Ÿ๐ž๐ซ๐ž๐ง๐œ๐ž ๐“๐š๐›๐ฅ๐ž x 50 51 52 53 54 55 56 y 3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259 โˆ†๐‘ฆ 0.0244 0.0241 0.0238 0.0235 0.0232 0.0229 โˆ†2 ๐‘ฆ -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 โˆ†3 ๐‘ฆ 0 0 0 0
  • 7. Page | 7 ( ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ) ๐‘ฅ=๐‘ฅ0 = ( ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ) ๐‘ข=0 = 1 โ„Ž [โˆ† ๐‘ฆ0 โˆ’ 1 2 โˆ†2 ๐‘ฆ0 + 1 3 โˆ†3 ๐‘ฆ0 โˆ’ โ‹ฏ ] = 1 1 [0.0244 โˆ’ 1 2 (โˆ’0.0003) + 1 3 (0)] = ๐ŸŽ. ๐ŸŽ๐Ÿ๐Ÿ’๐Ÿ“๐Ÿ“ ( ๐‘‘2 ๐‘ฆ ๐‘‘๐‘ฅ2 ) ๐‘ฅ=50 = ( ๐‘‘2 ๐‘ฆ ๐‘‘๐‘ฅ2 ) ๐‘ข=0 = 1 โ„Ž2 [โˆ†2 ๐‘ฆ0 โˆ’ โˆ†3 ๐‘ฆ0 + โ‹ฏ ] = 1[โˆ’0.0003] = โˆ’๐ŸŽ. ๐ŸŽ๐ŸŽ๐ŸŽ๐Ÿ‘. ๐ต๐‘ฆ ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘›โ€ฒ ๐‘  ๐‘๐‘Ž๐‘๐‘˜๐‘ค๐‘Ž๐‘Ÿ๐‘‘ ๐‘‘๐‘–๐‘“๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž, ( ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ) ๐‘ฅ=๐‘ฅ ๐‘› = ( ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ) ๐‘ฃ=0 = 1 โ„Ž [โˆ‡๐‘ฆ๐‘› + 1 2 โˆ‡2 ๐‘ฆ๐‘› + 1 3 โˆ‡3 ๐‘ฆ๐‘› + โ‹ฏ ] ( ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ) ๐‘ฅ=56 = 1 1 [0.0229 + 1 2 (โˆ’0.0003) + 0 ] = ๐ŸŽ. ๐ŸŽ๐Ÿ๐Ÿ๐Ÿ•๐Ÿ“ ( ๐‘‘2 ๐‘ฆ ๐‘‘๐‘ฅ2 ) ๐‘ฅ=๐‘ฅ ๐‘› = 1 โ„Ž2 [โˆ‡2 ๐‘ฆ๐‘› + โˆ‡3 ๐‘ฆ๐‘› + โ‹ฏ ] = 1 1 [โˆ’0.0003] = โˆ’๐ŸŽ. ๐ŸŽ๐ŸŽ๐ŸŽ๐Ÿ‘ NUMERICAL INTEGRATION Introduction We know that โˆซ ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ represents the area between ๐‘ฆ = ๐‘“(๐‘ฅ), ๐‘ฅ โˆ’ axis and the ๐‘ ๐‘Ž ordinates ๐‘ฅ = ๐‘Ž and ๐‘ฅ = ๐‘. This integration is possible only if the ๐‘“(๐‘ฅ)is explicitly given and if it is integrable. The problem of numerical integration can be stated as follows: Given a set of (๐‘› + 1) paird values (๐‘ฅ๐‘–, ๐‘ฆ๐‘–), ๐‘– = 0, 1, 2, โ€ฆ ๐‘› ๐‘œf the function ๐‘ฆ = ๐‘“(๐‘ฅ), where ๐‘“(๐‘ฅ) is not known explicitly, it is required to compute โˆซ ๐‘ฆ ๐‘‘๐‘ฅ. ๐‘ฅ ๐‘› ๐‘ฅ0 As we did in the case of interpolation or numerical differentation, we replace ๐‘“(๐‘ฅ) by an interpolating polynomial ๐‘ƒ๐‘›(๐‘ฅ) ๐‘Žnd obtain โˆซ ๐‘ƒ๐‘›(๐‘ฅ)๐‘‘๐‘ฅ which is approximately taken as the value for โˆซ ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ. ๐‘ฅ ๐‘› ๐‘ฅ0 ๐‘ฅ0 ๐‘ฅ ๐‘›
  • 8. Page | 8 A general quadrature formula for equidistant ordinates ( or Newton-Coteโ€™s formula) For equally spaced intervals, we have Newtonโ€™s forward difference formula as ๐‘ฆ (๐‘ฅ0 + ๐‘ขโ„Ž) = ๐‘ฆ๐‘ข = ๐‘ฆ0 + ๐‘ขโˆ†๐‘ฆ0 + ๐‘ข(๐‘ข โˆ’ 1) 2! โˆ†2 ๐‘ฆ0 + ๐‘ข(๐‘ข โˆ’ 1)(๐‘ข โˆ’ 2) 3! โˆ†3 ๐‘ฆ0 + โ‹ฏ Here, ๐‘ข = ๐‘ฅ โˆ’ ๐‘ฅ0 โ„Ž where h is interval of differencing ๐‘ ince ๐‘ฅ ๐‘› = ๐‘ฅ0 + ๐‘›โ„Ž and , ๐‘ข = ๐‘ฅ โˆ’ ๐‘ฅ0 โ„Ž we have ๐‘ฅ โˆ’ ๐‘ฅ0 โ„Ž = ๐‘› = ๐‘ข. โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ โ‰ˆ โ„Ž[ ๐‘ฅ ๐‘› ๐‘ฅ0 ๐‘›๐‘ฆ0 + ๐‘›2 2 โˆ†๐‘ฆ0 + 1 2 ( ๐‘›3 3 โˆ’ ๐‘›2 2 ) โˆ†2 ๐‘ฆ0 + 1 6 ( ๐‘›4 4 โˆ’ ๐‘›3 + ๐‘›2 ) โˆ†3 ๐‘ฆ0 + โ‹ฏ Above the equation is called ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘› โˆ’ ๐ถ๐‘œ๐‘ก๐‘’โ€ฒ ๐‘  ๐‘ž๐‘ข๐‘Ž๐‘‘๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž and is a general ๐‘ž๐‘ข๐‘Ž๐‘‘๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž. Giving various values for ๐‘›, we get a number of special formula. Trapezoidal rule ๐ต๐‘ฆ ๐‘๐‘ข๐‘ก๐‘ก๐‘–๐‘›๐‘” ๐‘› = 1, ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘› โˆ’ ๐ถ๐‘œ๐‘ก๐‘’โ€ฒ ๐‘  ๐‘ž๐‘ข๐‘Ž๐‘‘๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž (๐‘–. ๐‘’. , ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘Ž๐‘Ÿ๐‘’ ๐‘œ๐‘›๐‘™๐‘ฆ ๐‘ก๐‘ค๐‘œ ๐‘๐‘Ž๐‘–๐‘Ÿ๐‘’๐‘‘๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’๐‘  ๐‘Ž๐‘›๐‘‘ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘œ๐‘™๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘๐‘œ๐‘™๐‘ฆ๐‘›๐‘œ๐‘š๐‘–๐‘Ž๐‘™ ๐‘–๐‘  ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ). โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ = โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ = โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ + โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ + โ‹ฏ + โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ ๐‘ฅ0+๐‘›โ„Ž ๐‘ฅ0+(๐‘›โˆ’1)โ„Ž ๐‘ฅ0+2โ„Ž ๐‘ฅ0+โ„Ž ๐‘ฅ0+โ„Ž ๐‘ฅ0 ๐‘ฅ0+๐‘›โ„Ž ๐‘ฅ0 ๐‘ฅ ๐‘› ๐‘ฅ0 = โ„Ž 2 [(๐‘ฆ0 + ๐‘ฆ๐‘›) + 2(๐‘ฆ1 + ๐‘ฆ2 + ๐‘ฆ3 + โ‹ฏ + ๐‘ฆ ๐‘›โˆ’1)] = โ„Ž 2 [(๐‘†๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘Ÿ๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘™๐‘Ž๐‘ ๐‘ก ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘ ) + 2(๐‘†๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘ ) This is known as Trapezoidal Rule. Simpsonโ€™s one-third rule Setting n =2 in Newton-Cotes quadrature formula, โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ = โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ = โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ + โ‹ฏ + โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ ๐‘ฅ ๐‘› ๐‘ฅ ๐‘›โˆ’2 ๐‘ฅ4 ๐‘ฅ2 ๐‘ฅ2 ๐‘ฅ0 ๐‘ฅ ๐‘› ๐‘ฅ0 = โ„Ž 3 [(๐‘ฆ0 + ๐‘ฆ๐‘›) + 2(๐‘ฆ2 + ๐‘ฆ4 + โ‹ฏ ) + 4(๐‘ฆ1 + ๐‘ฆ3 + โ‹ฏ )] = โ„Ž 3 [๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘Ÿ๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘™๐‘Ž๐‘ ๐‘ก ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘  + 2(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” ๐‘œ๐‘‘๐‘‘ ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘  + 4(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘’๐‘ฃ๐‘’๐‘› ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘ )]
  • 9. Page | 9 Simpsonโ€™s three-eighths rule Putting n = 3 in Newton-Coteโ€™s quadrature formula, ๐ผ๐‘“ ๐‘› ๐‘–๐‘  ๐‘Ž ๐‘š๐‘ข๐‘™๐‘ก๐‘–๐‘๐‘™๐‘’ ๐‘œ๐‘“ 3 โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ = โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ = โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ + โ‹ฏ + โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ ๐‘ฅ0+๐‘›โ„Ž ๐‘ฅ0+(๐‘›โˆ’3)โ„Ž ๐‘ฅ0+6โ„Ž ๐‘ฅ0+3โ„Ž ๐‘ฅ0+3โ„Ž ๐‘ฅ0 ๐‘ฅ0+๐‘›โ„Ž ๐‘ฅ0 = 3โ„Ž 8 [(๐‘ฆ0 + ๐‘ฆ๐‘›) + 3(๐‘ฆ1 + ๐‘ฆ2 + ๐‘ฆ4 + ๐‘ฆ5 + โ‹ฏ + ๐‘ฆ ๐‘›โˆ’1) + 2(๐‘ฆ3 + ๐‘ฆ6 + ๐‘ฆ9 + โ‹ฏ + ๐‘ฆ๐‘›)] Above the equation is called ๐‘†๐‘–๐‘š๐‘๐‘ ๐‘œ๐‘›โ€ฒ ๐‘  ๐‘กโ„Ž๐‘Ÿ๐‘’๐‘’ โˆ’ ๐‘’๐‘–๐‘”โ„Ž๐‘ก๐‘ ๐‘  ๐‘Ÿ๐‘ข๐‘™๐‘’ which is applicable only when ๐‘› ๐‘–s multiple of 3. 6. Evaluate โˆซ ๐’™ ๐Ÿ’ ๐’…๐’™ ๐ฎ๐ฌ๐ข๐ง๐  ๐ข) ๐“๐ซ๐š๐ฉ๐ž๐ณ๐จ๐ข๐๐š๐ฅ ๐ซ๐ฎ๐ฅ๐ž ๐ข๐ข) ๐’๐ข๐ฆ๐ฉ๐ฌ๐จ๐งโ€ฒ ๐ฌ ๐ซ๐ฎ๐ฅ๐ž ๐Ÿ‘ โˆ’๐Ÿ‘ Solution. Here ๐‘ฆ(๐‘ฅ) = ๐‘ฅ4 . Interval length (๐‘ โˆ’ ๐‘Ž) = 6. So, we divide 6 equal intervals with โ„Ž = 3 โˆ’ (โˆ’3) 6 = 6 6 = 1. we form below the table x -3 -2 -1 0 1 2 3 y 81 16 1 0 1 16 81 i) By Trapezoidal rule, โˆซ ๐‘ฅ4 ๐‘‘๐‘ฅ โ‰ˆ โ„Ž 2 [(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘Ÿ๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘™๐‘Ž๐‘ ๐‘ก ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘  + 2(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘ ) 3 โˆ’3 โ‰ˆ 1 2 [(81 + 81) + 2(16 + 1 + 0 + 1 + 16) โ‰ˆ ๐Ÿ๐Ÿ๐Ÿ“ ๐‘–๐‘–) ๐ต๐‘ฆ ๐‘ ๐‘–๐‘š๐‘๐‘ ๐‘œ๐‘›โ€ฒ ๐‘  ๐‘œ๐‘›๐‘’ โˆ’ ๐‘กโ„Ž๐‘–๐‘Ÿ๐‘‘ ๐‘Ÿ๐‘ข๐‘™๐‘’ โˆซ ๐‘ฆ ๐‘‘๐‘ฅ โ‰ˆ 1 3 [(81 + 81) + 2(1 + 1) + 4(16 + 0 + 16)] 3 โˆ’3 โ‰ˆ ๐Ÿ—๐Ÿ– ๐‘–๐‘–๐‘–) ๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘› = 6, (๐‘š๐‘ข๐‘™๐‘ก๐‘–๐‘๐‘™๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘Ÿ๐‘’๐‘’), we can also use ๐‘†๐‘–๐‘š๐‘๐‘ ๐‘œ๐‘›โ€ฒ ๐‘  ๐‘กโ„Ž๐‘Ÿ๐‘’๐‘’ โˆ’ ๐‘’๐‘–๐‘”โ„Ž๐‘กโ„Ž๐‘  ๐‘Ÿ๐‘ข๐‘™๐‘’. โˆซ ๐‘ฆ ๐‘‘๐‘ฅ โ‰ˆ 3 8 [(81 + 81) + 3(16 + 1 + 1 + 16) + 2(0)] โ‰ˆ ๐Ÿ—๐Ÿ—. 3 โˆ’3 7. ๐„๐ฏ๐š๐ฅ๐ฎ๐ญ๐ž โˆซ ๐๐ฑ ๐Ÿ+๐ฑ ๐ฎ๐ฌ๐ข๐ง๐  ๐ข) ๐“๐ซ๐š๐ฉ๐ž๐ณ๐จ๐ข๐๐š๐ฅ ๐ซ๐ฎ๐ฅ๐ž ๐ข๐ข) ๐’๐ข๐ฆ๐ฉ๐ฌ๐จ๐งโ€ฒ ๐ฌ ๐ซ๐ฎ๐ฅ๐ž ๐Ÿ” ๐ŸŽ Solution. Take the number of intervals as 6
  • 10. Page | 10 โ„Ž = 6 โˆ’ 0 6 = 1 x 0 1 2 3 4 5 6 ๐‘ฆ = 1 1 + ๐‘ฅ 1 0.5 1/3 1/4 1/5 1/6 1/7 ๐‘–) ๐ต๐‘ฆ ๐‘‡๐‘Ÿ๐‘Ž๐‘๐‘’๐‘ง๐‘œ๐‘–๐‘‘๐‘Ž๐‘™ ๐‘Ÿ๐‘ข๐‘™๐‘’, โˆซ ๐‘‘๐‘ฅ 1 + ๐‘ฅ 6 0 = โ„Ž 2 [(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘Ÿ๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘™๐‘Ž๐‘ ๐‘ก ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘  + 2(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘ ) = 1 2 [(1 + 1 7 ) + 2 (0.5 + 1 3 + 1 4 + 1 5 + 1 6 )] = ๐Ÿ. ๐ŸŽ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ๐Ÿ–๐Ÿ“๐Ÿ• ๐‘–๐‘–) ๐ต๐‘ฆ ๐‘†๐‘–๐‘š๐‘๐‘ ๐‘œ๐‘›โ€ฒ ๐‘  ๐‘œ๐‘›๐‘’ โˆ’ ๐‘กโ„Ž๐‘–๐‘Ÿ๐‘‘ ๐‘Ÿ๐‘ข๐‘™๐‘’, ๐ผ = 1 3 [(1 + 1 7 ) + 2 ( 1 3 + 1 5 ) + 4 ( 1 2 + 1 4 + 1 6 )] = 1 3 (1 + 1 7 + 16 15 + 22 6 ) = ๐Ÿ. ๐Ÿ—๐Ÿ“๐Ÿ–๐Ÿ•๐Ÿ‘๐ŸŽ๐Ÿ๐Ÿ” ๐‘–๐‘–๐‘–) ๐ต๐‘ฆ ๐‘†๐‘–๐‘š๐‘๐‘ ๐‘œ๐‘›โ€ฒ ๐‘  ๐‘กโ„Ž๐‘Ÿ๐‘’๐‘’ โˆ’ ๐‘’๐‘–๐‘”โ„Ž๐‘กโ„Ž๐‘  ๐‘Ÿ๐‘ข๐‘™๐‘’, ๐ผ = 3 8 [(1 + 1 7 ) + 3 (0.5 + 1 3 + 1 5 + 1 6 ) + 2 ( 1 4 )] = ๐Ÿ. ๐Ÿ—๐Ÿ”๐Ÿ”๐ŸŽ๐Ÿ•๐Ÿ๐Ÿ’๐Ÿ‘ 8. ๐€ ๐ซ๐ข๐ฏ๐ž๐ซ ๐ข๐ฌ ๐Ÿ–๐ŸŽ ๐ฆ๐ž๐ญ๐ซ๐ž๐ฌ ๐ฐ๐ข๐๐ž. ๐“๐ก๐ž ๐๐ž๐ฉ๐ญ๐ก โ€ฒd'๐ข๐ง ๐ฆ๐ž๐ญ๐ซ๐ž๐ฌ๐š๐ญ ๐š ๐๐ข๐ฌ๐ญ๐š๐ง๐œ๐ž ๐’™ ๐’Ž๐’†๐’•๐’“๐’†๐’” ๐Ÿ๐ซ๐จ๐ฆ ๐จ๐ง๐ž ๐›๐š๐ง๐ค ๐ข๐ฌ ๐ ๐ข๐ฏ๐ž๐ง ๐›๐ฒ ๐ญ๐ก๐ž ๐Ÿ๐จ๐ฅ๐ฅ๐จ๐ฐ๐ข๐ง๐  ๐ญ๐š๐›๐ฅ๐ž. ๐‚๐š๐ฅ๐œ๐ฎ๐ฅ๐š๐ญ๐ž ๐ญ๐ก๐ž ๐š๐ซ๐ž๐š ๐จ๐Ÿ ๐œ๐ซ๐จ๐ฌ๐ฌ ๐ฌ๐ž๐œ๐ญ๐ข๐จ๐ง ๐จ๐Ÿ ๐ญ๐ก๐ž ๐ซ๐ข๐ฏ๐ž๐ซ ๐ฎ๐ฌ๐ข๐ง๐  ๐’๐ข๐ฆ๐ฉ๐ฌ๐จ๐งโ€ฒ ๐ฌ ๐ซ๐ฎ๐ฅ๐ž. x : 0 10 20 30 40 50 60 70 80 d : 0 4 7 9 12 15 14 8 3 Solution. Here h =10. Area of cross section is โˆซ ๐‘ฆ ๐‘‘๐‘ฅ 80 0 ๐ด = 10 3 [(0 + 3) + 2(7 + 12 + 14) + 4(4 + 9 + 15 + 8)] = 10 3 [3 + 66 + 144] = ๐Ÿ•๐Ÿ๐ŸŽ ๐’”๐’’. ๐’Ž๐’†๐’•๐’“๐’†๐’”
  • 11. Page | 11 9. ๐„๐ฏ๐š๐ฅ๐ฎ๐ญ๐ž โˆซ ๐’…๐’™ ๐Ÿ+๐’™ ๐Ÿ ๐ฎ๐ฌ๐ข๐ง๐  ๐“๐ซ๐š๐ฉ๐ž๐ณ๐จ๐ข๐๐š๐ฅ ๐ซ๐ฎ๐ฅ๐ž ๐’˜๐’Š๐’•๐’‰ ๐’‰ = ๐ŸŽ. ๐Ÿ. ๐‡๐ž๐ง๐œ๐ž ๐จ๐›๐ญ๐š๐ข๐ง ๐š๐ฉ๐ฉ๐ซ๐จ๐ฑ๐ข๐ฆ๐š๐ญ๐ž ๐ฏ๐š๐ฅ๐ฎ๐ž ๐จ๐Ÿ ๐…. ๐Ÿ ๐ŸŽ ๐‚๐š๐ง ๐ฒ๐จ๐ฎ ๐ฎ๐ฌ๐ž ๐จ๐ญ๐ก๐ž๐ซ ๐Ÿ๐จ๐ซ๐ฆ๐ฎ๐ฅ๐š๐ž ๐ข๐ง ๐ญ๐ก๐ข๐ฌ ๐œ๐š๐ฌ๐ž. Solution. ๐ฟ๐‘’๐‘ก ๐‘ฆ(๐‘ฅ) = ๐‘‘๐‘ฅ 1+๐‘ฅ2 Interval is (1 โˆ’ 0) = 1 โ„Ž = 0.2 x 0 0.2 0.4 0.6 0.8 1.0 ๐‘ฆ = ๐‘‘๐‘ฅ 1 + ๐‘ฅ2 1 0.96154 0.86207 0.73529 0.60976 0.50000 โˆซ ๐‘‘๐‘ฅ 1 + ๐‘ฅ2 1 0 = โ„Ž 2 [(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘Ÿ๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘™๐‘Ž๐‘ ๐‘ก ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘  + 2(๐‘ ๐‘ข๐‘š ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘ ) = 0.2 2 [(1 + 0.5) + 2(0.96154 + 0.86207 + 0.73529 + 0.60976) = (0.1)[1.5 + 6.33732] = ๐ŸŽ. ๐Ÿ•๐Ÿ–๐Ÿ‘๐Ÿ•๐Ÿ‘๐Ÿ ๐ต๐‘ฆ ๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘›, โˆซ ๐‘‘๐‘ฅ 1 + ๐‘ฅ2 = (tanโˆ’1 ๐‘ฅ)0 1 = ๐œ‹ 4 1 0 โˆด ๐œ‹ 4 โ‰ˆ 0.783732 โˆด ๐œ‹ โ‰ˆ ๐Ÿ‘. ๐Ÿ๐Ÿ‘๐Ÿ’๐Ÿ—๐Ÿ‘ (๐’‚๐’‘๐’‘๐’“๐’๐’™๐’Š๐’Ž๐’‚๐’•๐’†๐’๐’š) 10. ๐„๐ฏ๐š๐ฅ๐ฎ๐ญ๐ž ๐ญ๐ก๐ž ๐ข๐ง๐ญ๐ž๐ ๐ซ๐š๐ฅ ๐‘ฐ = โˆซ ๐’๐’๐’ˆ ๐’† ๐’™ ๐’…๐’™ ๐ฎ๐ฌ๐ข๐ง๐  ๐“๐ซ๐š๐ฉ๐ž๐ณ๐จ๐ข๐๐š๐ฅ ๐š๐ง๐ ๐’๐ข๐ฆ๐ฉ๐ฌ๐จ๐งโ€ฒ ๐ฌ ๐ซ๐ฎ๐ฅ๐ž๐ฌ ๐Ÿ“.๐Ÿ ๐Ÿ’ Solution. Here b - a = 5.2 โ€“ 4 = 1.2 Hence, โ„Ž = 1.2 6 = 0.2 x : 4 4.2 4.4 4.6 4.8 5.0 5.2 ๐‘“(๐‘ฅ) = ๐‘™๐‘œ๐‘” ๐‘’ ๐‘ฅ: 1.3862944 1.4350845 1.4816045 1.5260563 1.5686159 1.6094379 1.6486586 ๐‘–) ๐ต๐‘ฆ ๐‘‡๐‘Ÿ๐‘Ž๐‘๐‘’๐‘ง๐‘œ๐‘–๐‘‘๐‘Ž๐‘™ ๐‘Ÿ๐‘ข๐‘™๐‘’, โˆซ ๐‘™๐‘œ๐‘” ๐‘’ ๐‘ฅ ๐‘‘๐‘ฅ = 0.2 2 [(1.3862944 + 1.6486586 5.2 4 + 2(1.4350845 + 1.4816045 + 1.5260563 + 1.5686159 + 1.6094379)] = ๐Ÿ. ๐Ÿ–๐Ÿ๐Ÿ•๐Ÿ”๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ
  • 12. Page | 12 ii) Since n = 6, we can use Simpsonโ€ฒ s rule ๐ต๐‘ฆ ๐‘†๐‘–๐‘š๐‘๐‘ ๐‘œ๐‘›โ€ฒ ๐‘  ๐‘œ๐‘›๐‘’ โˆ’ ๐‘กโ„Ž๐‘–๐‘Ÿ๐‘‘ ๐‘Ÿ๐‘ข๐‘™๐‘’ ๐ผ = 0.2 3 [(1.3862944 + 1.6486586 + 2(1.4816045 + 1.5686159) + 4(1.4350845 + 1.5260563)] = ๐Ÿ. ๐Ÿ–๐Ÿ๐Ÿ•๐Ÿ–๐Ÿ’๐Ÿ•๐Ÿ๐Ÿ’ ๐‘–๐‘–๐‘–) ๐ต๐‘ฆ ๐‘†๐‘–๐‘š๐‘๐‘œ๐‘›๐‘ ๐‘œ๐‘›โ€ฒ ๐‘  ๐‘กโ„Ž๐‘–๐‘Ÿ๐‘‘ โˆ’ ๐‘’๐‘–๐‘”โ„Ž๐‘กโ„Ž๐‘  ๐‘Ÿ๐‘ข๐‘™๐‘’, ๐ผ = 3(0.2) 8 [(1.3862944 + 1.6486586) + 3(1.4350845 + 1.4816045 + 1.5686159 + 1.6094379 + 2(1.5260563)] = ๐Ÿ. ๐Ÿ–๐Ÿ๐Ÿ•๐Ÿ–๐Ÿ’๐Ÿ•๐Ÿ๐Ÿ’ Short Answer: 1. Write down the Newton-Coteโ€™s quadrature formula. โˆซ ๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ โ‰ˆ โ„Ž [๐‘›๐‘ฆ0 + ๐‘›2 2 โˆ†๐‘ฆ0 + 1 2 ( ๐‘›3 3 โˆ’ ๐‘›2 2 ) โˆ†2 ๐‘ฆ0 + 1 6 ( ๐‘›4 4 โˆ’ ๐‘›3 + ๐‘›2 ) โˆ†3 ๐‘ฆ0 + โ‹ฏ ] ๐‘ฅ ๐‘› ๐‘ฅ0 This equation is called ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘› โˆ’ ๐ถ๐‘œ๐‘ก๐‘’โ€ฒ ๐‘  ๐‘ž๐‘ข๐‘Ž๐‘‘๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž. 2. What is the nature of y (x) in the case of trapezoidal rule? In trapezoidal rule, y (x) is a linear function of x. 3. State the nature of y (x) and number of intervals in the case of Simpsonโ€™s one-third rule? In Simpsonโ€™s one-third rule, y (x) is a polynomial of degree two. To apply this rule n, the number of intervals must be even. 4. What is the nature of y (x) in the case of Simpsonโ€™s three-eighths rule and when it is applicable? In Simpsonโ€™s third-eighths rule, y (x) is a polynomial of degree three. This rule is applicable if n, the number of intervals is a multiple of 3. 5. Differentiate between Simpsonโ€™s one-third rule and Simpsonโ€™s three-eighths rule. S.No Simpsonโ€™s one-third rule Simpsonโ€™s three-eighths rule 1 y (x) is a polynomial of degree two y (x) is a polynomial of degree three 2 The number of intervals must be even. The number of intervals is a multiple of 3.