SlideShare una empresa de Scribd logo
1 de 34
Descargar para leer sin conexión
Lockheed-­‐Martin	
  Advanced	
  Technology	
  Center	
  
J.	
  Michael	
  Pinneo,	
  Ph.D.,	
  J.D.	
  
September	
  24,	
  2009	
  
1	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Survey	
  
!  I.	
  Diamond	
  synthesis	
  and	
  properties	
  
!  II.	
  	
  Aerospace	
  applications	
  
2	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
CVD	
  Diamond	
  -­‐	
  Synthesis	
  
!  Overall	
  chemistry:	
  	
  deposition	
  occurs	
  in	
  diamond	
  
metastability	
  region,	
  graphite	
  stability	
  region	
  
!  i.	
  	
  CxHy	
  +	
  H0	
  !	
  Cg+	
  Cd	
  (mostly	
  graphite)	
  
!  ii.	
  	
  Cg	
  +	
  H0	
  !!!	
  CxHy	
  
!  iii.	
  	
  Cd	
  +	
  H0	
  -­‐>	
  CxHy	
  	
  (~1/400	
  ii.)	
  
!  Yields	
  poly-­‐	
  and	
  single-­‐crystal	
  
3	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
CVD	
  Diamond	
  –	
  Synthesis	
  Methods	
  
!  Hot	
  filament,	
  plasmas,	
  combustion,	
  ...	
  
4	
  
VHF	
  Plasma,	
  8”	
  
Combustion,	
  4”	
  linear	
  
Microwave	
  Plasma,	
  4”	
  
RF	
  Plasma	
  Torch	
  
DC	
  Plasma	
  Torch	
  
J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
CVD	
  Diamond	
  -­‐	
  Varie7es	
  Scale-up Experience
Microwave Diamond CVD
30Kw, 915 MHz
Plasma Scanning
Deposition Diameter 14"
Conformal 3-D Capability
Thickness Uniformity <8% over 12"
5	
  
Diamond	
  on	
  Si	
  Wafers	
  
Diamond-­‐coated	
  BC	
  wear	
  blocks	
  
and	
  Si3N4	
  ball	
  bearing	
  
Diamond	
  heat	
  
spreader	
  
prototype	
  for	
  
microprocessor	
  
Diamond-­‐coated	
  Si3N4	
  fiber	
  
Diamond-­‐coated	
  Si3N4	
  dome	
  
(14”	
  dia	
  x	
  3.5”	
  deep)	
  
J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
CVD	
  Diamond	
  –	
  Thermal	
  Proper7es	
  
!  Thermal	
  conductivity	
  @	
  273°K:	
  8	
  –	
  25	
  W/cm-­‐°K	
  
!  Thermal	
  conductivity	
  peak	
  ~	
  77°K:	
  60	
  W/cm-­‐°K	
  
!  Thermal	
  diffusivity:	
  1.16	
  cm2/sec	
  
!  Thermal	
  conductivity	
  is	
  high	
  even	
  in	
  
nanocrystalline	
  films	
  
!  Extremely	
  useful	
  in	
  thermal	
  management	
  
6	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
CVD	
  Diamond	
  –	
  	
  
Mechanical	
  Proper7es	
  
!  Hardness:	
  10,000	
  kg/mm2	
  
!  Modulus:	
  1,100	
  Gpa	
  
!  Poisson’s	
  ratio:	
  ~	
  0.06	
  
!  Thermal	
  Expansion	
  Coefficient:	
  ~	
  1	
  x	
  10-­‐6/°C	
  @	
  273°K	
  
!  Coefficient	
  of	
  sliding	
  friction	
  (µ):	
  10-­‐2	
  to	
  10-­‐3	
  	
  
!  Sonic	
  velocity:	
  ~	
  18	
  km/sec	
  
7	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
CVD	
  Diamond	
  	
  
Op7cal	
  Proper7es	
  
!  Transparent:	
  225	
  nm	
  –>	
  DC	
  
!  ~	
  5µm	
  –	
  6µm,	
  intrinsic	
  phonon	
  absorption	
  
!  Refractive	
  Index	
  ~	
  2.4	
  
!  Emissivity	
  @	
  273°K	
  ~	
  0.04	
  
8	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
CVD	
  Diamond	
  
Electronic	
  Proper7es	
  
!  Resistivity,	
  intrinsic:	
  >	
  1015	
  Ω-­‐cm	
  
!  Resistivity,	
  B-­‐doped:	
  10-­‐3	
  Ω-­‐cm	
  
!  Dielectric	
  constant:	
  	
  5.7	
  
!  Breakdown	
  field:	
  >	
  107	
  V/cm	
  
!  P	
  and	
  N	
  dopants:	
  B,	
  B	
  &	
  D	
  plasma	
  
9	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Aerospace	
  Applica7ons	
  
Thermal	
  Management	
  
10	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Heat	
  Spreaders	
  for	
  Ac7ve	
  Devices	
  
Device
Cold Plate
Diamond Heat Spreader!
K = 12 W/cm-°K
SiC Heat Spreader!
K = 2.5 W/cm-°K
T1	
  
T2	
  
Tr1	
  
Tr2	
  
Trn	
  
Q	
  ∝	
  (T1	
  –	
  T2)	
  	
  
Q	
  ∝	
  1/(∑	
  Tr1…Trn)	
  
11	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Diamond	
  Microprocessor	
  	
  
Heat	
  Spreaders	
  
!  IR	
  image	
  of	
  processor	
  
temperature	
  
!  Diamond	
  enabled	
  1.8x	
  
clock	
  rate	
  increase	
  	
  
12	
  
Die Temperature
w/ Copper Spreader
Die Temperature
w/ Diamond Spreader
Copper	
  Heat	
  Spreader	
   Diamond	
  Heat	
  Spreader	
  
J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
GaN	
  HEMT	
  
13	
  
5
© 2005-2006 Group4 Labs, LLC. All Rights Reserved
!""#$%&'%()*+#"%,+#-./+*+"#-)*/%0+1)2+3%&*%4#5
6(+*/-,%&'%,+#-%3&7"2+3%)3%(&*/%)*%2&89#")3&*%:)-,%-,+%3+9#"#-)&*%! #*0%:)0-,%&'%-,+%3&7"2+3;
4#5%+9)(#$+"3
<7=3-"#-+
d
T0 = 23°C
TP
!T = TP–T0
zy
!"#$%&'(%)*#'(+!$,-!,$#
J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Thermal	
  Management	
  
Heat	
  Spreaders,	
  GaN	
  HEMTs	
  
!  Attach	
  100µm	
  
diamond	
  heat	
  
spreader	
  to	
  GaN	
  
device:	
  
!  200%	
  increased	
  
power	
  cf.	
  SiC	
  heat	
  
spreader;	
  
!  1000%	
  increased	
  
power	
  cf.	
  Si	
  heat	
  
spreader.	
  
Courtesy	
  Group	
  4	
  Labs,	
  and	
  Jonathan	
  Felbinger	
  
and	
  Prof.	
  Eastman,	
  Cornell	
  University.	
  
14	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
!  4”	
  free-­‐standing	
  GaN	
  wafer	
  on	
  diamond	
  
15	
  
Courtesy	
  Group	
  4	
  Labs	
  
J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
16	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Separation	
  between	
  linear	
  sources	
  [µm]	
  	
  
GaN	
  HEMT	
  on	
  Diamond	
  
!  Benefits:	
  
!  Higher	
  output	
  power	
  
!  Lower	
  operating	
  temperature	
  
!  Greater	
  device	
  density	
  
!  System	
  Impact:	
  	
  
!  Radar	
  -­‐>	
  increased	
  target	
  acquisition	
  distance	
  
!  Active	
  ECM	
  -­‐>	
  increased	
  range,	
  effectiveness	
  
!  Increased	
  MTBF	
  -­‐>	
  reduced	
  maintenance	
  $,	
  time	
  
17	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Poten7al	
  Applica7on	
  
!  F-­‐35	
  thermal	
  issues	
  
!  Fuel	
  used	
  as	
  internal	
  systems	
  heat	
  sink	
  
!  Low	
  fuel	
  near	
  end	
  of	
  mission:	
  
!  Higher	
  fuel	
  temperature	
  
!  Lower	
  ∆T	
  in	
  thermal	
  transfer	
  chain	
  
!  Increased	
  avionics	
  temperature	
  
18	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
F-­‐35	
  Thermal	
  Issue	
  
!  Reduce	
  overall	
  thermal	
  resistance	
  between	
  
avionics	
  and	
  fuel	
  
!  Apply	
  diamond	
  to	
  thermal	
  transfer	
  path:	
  
!  Device	
  level:	
  diamond	
  heat	
  spreaders	
  
!  Card/module	
  level:	
  diamond	
  heat	
  pipes	
  &	
  plates	
  
!  Heat	
  exchangers:	
  diamond	
  or	
  diamond/SiC	
  
composites	
  
19	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Op7cal	
  Applica7ons	
  
!  Important	
  properties	
  
!  Broadband	
  transparency	
  
!  225	
  nm	
  -­‐>	
  DC	
  
!  Intrinsic	
  phonon	
  
absorption	
  ~	
  5	
  µm	
  –	
  6	
  µm	
  
!  Hardness	
  
!  Low	
  loss	
  tangent	
  (<	
  10-­‐4)	
  
20	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
IR	
  Op7cal	
  Applica7ons	
  
Rain/dust	
  impact	
  
damage	
  on	
  IR	
  optic	
  
(F-­‐15E)	
  
	
  
21	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
 
IR	
  Op7cal	
  Applica7ons	
  
!  Erosion	
  barrier	
  for	
  
ZnS/ZnSe	
  IR	
  optics	
  
!  Hardness,	
  IR	
  
transparency	
  
!  Can’t	
  CVD	
  direct	
  on	
  
IR	
  material,	
  but	
  
chalcogenide	
  “glue”	
  
works.	
  
!  AR	
  coatings	
  are	
  
available.	
  
VISIBLE	
  
22	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Op7cs:	
  High	
  Power	
  Lasers	
  
!  Windows/Lenses	
  
!  High	
  damage	
  threshold	
  
!  Physically	
  robust	
  
!  Solid	
  State	
  Lasers	
  
!  Increased	
  output	
  
!  Reduced	
  module	
  
volume	
  
Northrop-­‐Grumman	
  100	
  Kw	
  laser,	
  Phase	
  3,	
  JHPSSL	
  
Advanced	
  Tactical	
  Laser	
  (ATL)	
  
23	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Op7cs:	
  HPM	
  Windows	
  
!  DEW:	
  high	
  power	
  microwave	
  windows	
  (HPMW)	
  
!  High	
  K,	
  low	
  loss	
  tangent,	
  low	
  TCE	
  
!  >1	
  Gw	
  CW,	
  >	
  10	
  Gw	
  pulsed	
  @	
  90	
  GHz	
  
!  USAF	
  BAA/Raytheon	
  2009	
  win	
  to	
  provide	
  domestic	
  
source	
  
!  Current	
  vendors:	
  Europe,	
  Asia	
  
!  >$100K	
  each	
  	
  
24	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Mechanical,	
  Fric7on	
  &	
  Wear	
  
!  Important	
  properties	
  
!  Low	
  friction	
  
!  Hardness	
  
!  Modulus	
  
!  Corrosion	
  resistance	
  
25	
  
F-­‐15E	
  Exhaust	
  Flap	
  	
  
Mechanism	
  
J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Machining	
  Opera7ons	
  
!  Diamond-­‐coated	
  tooling	
  
Increased	
  tool	
  life	
  
Higher	
  machining	
  speeds	
  
Better	
  workpiece	
  finish	
  
26	
  
Diamond	
  –	
  coated	
  cutting	
  tools	
  
courtesy	
  of	
  Crystallume,	
  Inc.	
  
J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Bearings	
  and	
  Seals	
  
!  Good	
  coating	
  and	
  
performance	
  increases	
  
shown	
  for	
  diamond	
  on	
  
Si3N4	
  ball	
  bearings,	
  BC	
  
wear	
  shoes,	
  and	
  SiC	
  pump	
  
seals.	
  
!  Diamond	
  pump	
  seals	
  in	
  
commercial	
  production	
  by	
  
Advanced	
  Diamond	
  
Technologies,	
  Inc.	
  
27	
  
Diamond-­‐coated	
  pump	
  seals,	
  courtesy	
  of	
  
Advanced	
  Diamond	
  Technologies,	
  Inc.	
  
J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Diamond	
  as	
  a	
  MEMS	
  Material	
  
!  Hardness	
  &	
  Modulus	
  
!  Low	
  self-­‐adhesion/stiction	
  
!  Hydrophobic	
  
!  Tolerate	
  aggressive	
  
environments	
  
!  Surface	
  can	
  be	
  functionalized	
  
to	
  provide	
  sensing	
  capability	
  
28	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Diamond	
  RF	
  MEMS	
  Switch	
  
Diamond	
  for	
  High	
  Power	
  Lasers	
  
!  Desirable	
  properties:	
  transparency,	
  K,	
  TCE,	
  damage	
  
threshold	
  
!  Natural	
  diamond	
  laser	
  demonstrated	
  in	
  1985(1)	
  
!  Optically	
  pumped	
  (Ar	
  ion	
  laser)	
  
!  Lasing	
  medium:	
  H3	
  color	
  center,	
  530	
  nm	
  	
  
!  Tunable	
  due	
  to	
  coupling	
  with	
  phonon	
  energy	
  levels	
  
!  Efficiency	
  13.5%	
  
!  Interesting,	
  but	
  natural	
  diamonds	
  too	
  costly	
  &	
  rare	
  
29	
  
(1)	
  Rand	
  &	
  DeShazer,	
  Optical	
  Letters,	
  1985	
  vol.	
  10	
  (10)	
  pp.	
  481-­‐483	
  
J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Diamond	
  for	
  High	
  Power	
  Lasers	
  
!  What’s	
  changed?	
  
!  Large,	
  high	
  quality	
  single	
  crystal	
  diamonds	
  by	
  CVD	
  
!  R.	
  Hemley’s	
  group	
  at	
  Carnegie	
  Institute(2)	
  
!  Microwave	
  plasma	
  CVD	
  followed	
  by	
  HP	
  or	
  LP	
  anneal	
  
!  Highly	
  accessible	
  with	
  relatively	
  simple	
  equipment	
  
!  Cost-­‐effective	
  technology	
  
30	
  
(2)	
  Recent	
  advances	
  in	
  high-­‐growth	
  rate	
  single-­‐crystal	
  CVD	
  diamond,	
  Qi	
  Liang,	
  et	
  al.,	
  Diamond	
  and	
  Related	
  
Materials,	
  2009	
  vol.	
  18	
  (5-­‐8)	
  pp.	
  698-­‐703	
  
J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Diamond	
  for	
  High	
  Power	
  Lasers	
  
!  High	
  efficiency	
  diamond	
  Raman	
  laser(3)	
  
!  1.2	
  watt	
  output	
  @	
  573	
  nm,	
  532	
  nm	
  pump	
  
!  Conversion	
  efficiency	
  63.5%	
  
!  Slope	
  efficiency	
  75%	
  
!  Peak	
  photon	
  conversion	
  efficiency	
  91%	
  
!  Diode-­‐pumped	
  diamond	
  Raman	
  laser	
  shown	
  in	
  
2005(4)	
  
31	
  
(3)	
  Highly	
  efficient	
  diamond	
  Raman	
  laser,	
  Mildren	
  and	
  Sabella,	
  Optics	
  Letters,	
  2009	
  vol.	
  34	
  (18)	
  pp.	
  2811-­‐2813	
  
(4)	
  Diode	
  pumped	
  diamond	
  Raman	
  microchip	
  laser,	
  Demidovich,	
  et	
  al.,	
  	
  Conference	
  on	
  Lasers	
  and	
  Electro-­‐Optics	
  (CLEO)	
  Europe,	
  2005,	
  p.	
  251	
  
J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  
Diamond	
  for	
  Hypersonic	
  Flight	
  
!  Challenge:	
  extreme	
  aeroheating	
  of	
  vehicle	
  and	
  control	
  
surfaces	
  during	
  endoatmospheric	
  flight	
  (≥	
  2,500°C)	
  
!  Constrains	
  thermal	
  solutions	
  to	
  ablative	
  materials	
  
!  Ablatives	
  can	
  substantially	
  depart	
  from	
  nominal	
  
aerosurface	
  design	
  during	
  flight	
  
!  Impact	
  on	
  vehicles:	
  
!  Increased	
  control	
  authority	
  required	
  
!  Increased	
  total	
  divert	
  energy	
  needed	
  
!  Increases	
  vehicle	
  weight/size,	
  reduces	
  range	
  
!  Introduces	
  weather	
  (rain,	
  dust)	
  as	
  launch	
  limitation	
  
!  Resolution:	
  robust,	
  nonablative	
  thermal	
  coating	
  
J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
   32	
  
Diamond	
  for	
  Hypersonic	
  Flight	
  
!  Critical	
  info:	
  diamond	
  does	
  not	
  bulk	
  graphitize	
  at	
  T	
  >	
  
2,200°C	
  for	
  hours	
  
!  Suggests:	
  	
  Anti-­‐oxidation	
  coating	
  +	
  thick	
  diamond	
  
film	
  could	
  be	
  useful	
  as	
  a	
  robust,	
  nonablative	
  material	
  
for	
  some	
  hypersonic	
  endoatmospheric	
  missions.	
  
!  Oxidation	
  barrier:	
  	
  Re/Ir	
  –	
  affordable	
  because	
  <	
  10µm	
  
!  Low	
  diamond	
  TCE	
  –	
  helps	
  maintain	
  antioxidation	
  
coating	
  integrity	
  
!  Diamond	
  hardness/modulus	
  –	
  better	
  resistance	
  to	
  
particle	
  erosion	
  (rain,	
  dust)	
  than	
  ablatives	
  
J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
   33	
  
The	
  End	
  
34	
  J.	
  Michael	
  Pinneo,	
  michael@pinneo.org	
  

Más contenido relacionado

La actualidad más candente

Diamond Like Coating for Infrared Optics - Frank Minich
Diamond Like Coating for Infrared Optics - Frank MinichDiamond Like Coating for Infrared Optics - Frank Minich
Diamond Like Coating for Infrared Optics - Frank Minich
Dynasil Corporation of America
 
Beryllium (Tara Lay)
Beryllium (Tara Lay)Beryllium (Tara Lay)
Beryllium (Tara Lay)
kwalters00
 
2015.04 - IBC Capabilities Overview
2015.04 - IBC Capabilities Overview2015.04 - IBC Capabilities Overview
2015.04 - IBC Capabilities Overview
Solomon Berman
 

La actualidad más candente (9)

Diamond Like Coating for Infrared Optics - Frank Minich
Diamond Like Coating for Infrared Optics - Frank MinichDiamond Like Coating for Infrared Optics - Frank Minich
Diamond Like Coating for Infrared Optics - Frank Minich
 
Silicon Carbide in Microsystem Technology — Thin Film Versus Bulk Material
Silicon Carbide in Microsystem Technology — Thin Film Versus Bulk MaterialSilicon Carbide in Microsystem Technology — Thin Film Versus Bulk Material
Silicon Carbide in Microsystem Technology — Thin Film Versus Bulk Material
 
Beryllium
BerylliumBeryllium
Beryllium
 
Beryllium
BerylliumBeryllium
Beryllium
 
Beryllium
BerylliumBeryllium
Beryllium
 
Neodymium magnet
Neodymium magnetNeodymium magnet
Neodymium magnet
 
Beryllium (Tara Lay)
Beryllium (Tara Lay)Beryllium (Tara Lay)
Beryllium (Tara Lay)
 
2015.04 - IBC Capabilities Overview
2015.04 - IBC Capabilities Overview2015.04 - IBC Capabilities Overview
2015.04 - IBC Capabilities Overview
 
Beryllium
BerylliumBeryllium
Beryllium
 

Destacado

Supplier Mentoring Program Checklist
Supplier Mentoring Program ChecklistSupplier Mentoring Program Checklist
Supplier Mentoring Program Checklist
Lockheed-Martin
 

Destacado (10)

Building the Bridge Between Airports and Air Traffic Management
Building the Bridge Between Airports and Air Traffic ManagementBuilding the Bridge Between Airports and Air Traffic Management
Building the Bridge Between Airports and Air Traffic Management
 
Lockheed Martin - Integrated Infrastructure: Cyber Resiliency in Society
Lockheed Martin - Integrated Infrastructure: Cyber Resiliency in SocietyLockheed Martin - Integrated Infrastructure: Cyber Resiliency in Society
Lockheed Martin - Integrated Infrastructure: Cyber Resiliency in Society
 
Evolving Security in Process Control
Evolving Security in Process ControlEvolving Security in Process Control
Evolving Security in Process Control
 
lockheed martin
lockheed martinlockheed martin
lockheed martin
 
Supplier Mentoring Program Checklist
Supplier Mentoring Program ChecklistSupplier Mentoring Program Checklist
Supplier Mentoring Program Checklist
 
Lockheed Martin Presentation
Lockheed Martin PresentationLockheed Martin Presentation
Lockheed Martin Presentation
 
Government ICT 2015: Information and Records Management in SharePoint - Randy...
Government ICT 2015: Information and Records Managementin SharePoint - Randy...Government ICT 2015: Information and Records Managementin SharePoint - Randy...
Government ICT 2015: Information and Records Management in SharePoint - Randy...
 
Evolving Security in Process Control - Cyber Security for Critical Assets 2015
Evolving Security in Process Control - Cyber Security for Critical Assets 2015Evolving Security in Process Control - Cyber Security for Critical Assets 2015
Evolving Security in Process Control - Cyber Security for Critical Assets 2015
 
Lockheed Martin - Enhancing Capacity Through Technology Driven Collaboration
Lockheed Martin - Enhancing Capacity Through Technology Driven CollaborationLockheed Martin - Enhancing Capacity Through Technology Driven Collaboration
Lockheed Martin - Enhancing Capacity Through Technology Driven Collaboration
 
One year on: Results of Time Based Separation at LHR
One year on: Results of Time Based Separation at LHROne year on: Results of Time Based Separation at LHR
One year on: Results of Time Based Separation at LHR
 

Similar a Lockheed Martin diamond presentation

2012 tus lecture 5
2012 tus lecture 52012 tus lecture 5
2012 tus lecture 5
AllenHermann
 
EE driving the cost out of your design
EE driving the cost out of your designEE driving the cost out of your design
EE driving the cost out of your design
bmacforever
 
Focal Plane Engineering Challenges
Focal Plane Engineering ChallengesFocal Plane Engineering Challenges
Focal Plane Engineering Challenges
Eric Schulte
 
Ceramic Solutions Enabling the Evolution of Semiconductor Processing
Ceramic Solutions Enabling the Evolution of Semiconductor ProcessingCeramic Solutions Enabling the Evolution of Semiconductor Processing
Ceramic Solutions Enabling the Evolution of Semiconductor Processing
CoorsTek, Inc.
 

Similar a Lockheed Martin diamond presentation (20)

Redies
RediesRedies
Redies
 
Nano in Civil Engineering
Nano in Civil EngineeringNano in Civil Engineering
Nano in Civil Engineering
 
2012 tus lecture 5
2012 tus lecture 52012 tus lecture 5
2012 tus lecture 5
 
Sumant_Materials_Today
Sumant_Materials_TodaySumant_Materials_Today
Sumant_Materials_Today
 
EE driving the cost out of your design
EE driving the cost out of your designEE driving the cost out of your design
EE driving the cost out of your design
 
Target Fabrication Capabilities
Target Fabrication CapabilitiesTarget Fabrication Capabilities
Target Fabrication Capabilities
 
Focal Plane Engineering Challenges
Focal Plane Engineering ChallengesFocal Plane Engineering Challenges
Focal Plane Engineering Challenges
 
PCB Fabrication Manufacturer Corporate Brochure
PCB Fabrication Manufacturer Corporate BrochurePCB Fabrication Manufacturer Corporate Brochure
PCB Fabrication Manufacturer Corporate Brochure
 
Ceramic Solutions Enabling the Evolution of Semiconductor Processing
Ceramic Solutions Enabling the Evolution of Semiconductor ProcessingCeramic Solutions Enabling the Evolution of Semiconductor Processing
Ceramic Solutions Enabling the Evolution of Semiconductor Processing
 
IC Diamond Report
IC Diamond ReportIC Diamond Report
IC Diamond Report
 
Advancement in surface engineering processes by spraymet
Advancement  in surface engineering processes by spraymetAdvancement  in surface engineering processes by spraymet
Advancement in surface engineering processes by spraymet
 
Michael badding corning
Michael badding   corningMichael badding   corning
Michael badding corning
 
Battery materials
Battery materialsBattery materials
Battery materials
 
Manufacturing of Electronics
Manufacturing of ElectronicsManufacturing of Electronics
Manufacturing of Electronics
 
Nano Technology & Nano Materials
Nano Technology & Nano MaterialsNano Technology & Nano Materials
Nano Technology & Nano Materials
 
KO-CAP for High-Reliability Applications (Space Tech Expo 2017)
KO-CAP for High-Reliability Applications (Space Tech Expo 2017)KO-CAP for High-Reliability Applications (Space Tech Expo 2017)
KO-CAP for High-Reliability Applications (Space Tech Expo 2017)
 
Both 2016 shanghai development of innovative ultra high temperature coatings ...
Both 2016 shanghai development of innovative ultra high temperature coatings ...Both 2016 shanghai development of innovative ultra high temperature coatings ...
Both 2016 shanghai development of innovative ultra high temperature coatings ...
 
Both 2016 shanghai development of innovative ultra high temperature coatings ...
Both 2016 shanghai development of innovative ultra high temperature coatings ...Both 2016 shanghai development of innovative ultra high temperature coatings ...
Both 2016 shanghai development of innovative ultra high temperature coatings ...
 
High Temperature Ceramic Capacitors For Harsh Environments
High Temperature Ceramic Capacitors For Harsh EnvironmentsHigh Temperature Ceramic Capacitors For Harsh Environments
High Temperature Ceramic Capacitors For Harsh Environments
 
Cvfz2015 sw md-2page_docx
Cvfz2015 sw md-2page_docxCvfz2015 sw md-2page_docx
Cvfz2015 sw md-2page_docx
 

Lockheed Martin diamond presentation

  • 1. Lockheed-­‐Martin  Advanced  Technology  Center   J.  Michael  Pinneo,  Ph.D.,  J.D.   September  24,  2009   1  J.  Michael  Pinneo,  michael@pinneo.org  
  • 2. Survey   !  I.  Diamond  synthesis  and  properties   !  II.    Aerospace  applications   2  J.  Michael  Pinneo,  michael@pinneo.org  
  • 3. CVD  Diamond  -­‐  Synthesis   !  Overall  chemistry:    deposition  occurs  in  diamond   metastability  region,  graphite  stability  region   !  i.    CxHy  +  H0  !  Cg+  Cd  (mostly  graphite)   !  ii.    Cg  +  H0  !!!  CxHy   !  iii.    Cd  +  H0  -­‐>  CxHy    (~1/400  ii.)   !  Yields  poly-­‐  and  single-­‐crystal   3  J.  Michael  Pinneo,  michael@pinneo.org  
  • 4. CVD  Diamond  –  Synthesis  Methods   !  Hot  filament,  plasmas,  combustion,  ...   4   VHF  Plasma,  8”   Combustion,  4”  linear   Microwave  Plasma,  4”   RF  Plasma  Torch   DC  Plasma  Torch   J.  Michael  Pinneo,  michael@pinneo.org  
  • 5. CVD  Diamond  -­‐  Varie7es  Scale-up Experience Microwave Diamond CVD 30Kw, 915 MHz Plasma Scanning Deposition Diameter 14" Conformal 3-D Capability Thickness Uniformity <8% over 12" 5   Diamond  on  Si  Wafers   Diamond-­‐coated  BC  wear  blocks   and  Si3N4  ball  bearing   Diamond  heat   spreader   prototype  for   microprocessor   Diamond-­‐coated  Si3N4  fiber   Diamond-­‐coated  Si3N4  dome   (14”  dia  x  3.5”  deep)   J.  Michael  Pinneo,  michael@pinneo.org  
  • 6. CVD  Diamond  –  Thermal  Proper7es   !  Thermal  conductivity  @  273°K:  8  –  25  W/cm-­‐°K   !  Thermal  conductivity  peak  ~  77°K:  60  W/cm-­‐°K   !  Thermal  diffusivity:  1.16  cm2/sec   !  Thermal  conductivity  is  high  even  in   nanocrystalline  films   !  Extremely  useful  in  thermal  management   6  J.  Michael  Pinneo,  michael@pinneo.org  
  • 7. CVD  Diamond  –     Mechanical  Proper7es   !  Hardness:  10,000  kg/mm2   !  Modulus:  1,100  Gpa   !  Poisson’s  ratio:  ~  0.06   !  Thermal  Expansion  Coefficient:  ~  1  x  10-­‐6/°C  @  273°K   !  Coefficient  of  sliding  friction  (µ):  10-­‐2  to  10-­‐3     !  Sonic  velocity:  ~  18  km/sec   7  J.  Michael  Pinneo,  michael@pinneo.org  
  • 8. CVD  Diamond     Op7cal  Proper7es   !  Transparent:  225  nm  –>  DC   !  ~  5µm  –  6µm,  intrinsic  phonon  absorption   !  Refractive  Index  ~  2.4   !  Emissivity  @  273°K  ~  0.04   8  J.  Michael  Pinneo,  michael@pinneo.org  
  • 9. CVD  Diamond   Electronic  Proper7es   !  Resistivity,  intrinsic:  >  1015  Ω-­‐cm   !  Resistivity,  B-­‐doped:  10-­‐3  Ω-­‐cm   !  Dielectric  constant:    5.7   !  Breakdown  field:  >  107  V/cm   !  P  and  N  dopants:  B,  B  &  D  plasma   9  J.  Michael  Pinneo,  michael@pinneo.org  
  • 10. Aerospace  Applica7ons   Thermal  Management   10  J.  Michael  Pinneo,  michael@pinneo.org  
  • 11. Heat  Spreaders  for  Ac7ve  Devices   Device Cold Plate Diamond Heat Spreader! K = 12 W/cm-°K SiC Heat Spreader! K = 2.5 W/cm-°K T1   T2   Tr1   Tr2   Trn   Q  ∝  (T1  –  T2)     Q  ∝  1/(∑  Tr1…Trn)   11  J.  Michael  Pinneo,  michael@pinneo.org  
  • 12. Diamond  Microprocessor     Heat  Spreaders   !  IR  image  of  processor   temperature   !  Diamond  enabled  1.8x   clock  rate  increase     12   Die Temperature w/ Copper Spreader Die Temperature w/ Diamond Spreader Copper  Heat  Spreader   Diamond  Heat  Spreader   J.  Michael  Pinneo,  michael@pinneo.org  
  • 13. GaN  HEMT   13   5 © 2005-2006 Group4 Labs, LLC. All Rights Reserved !""#$%&'%()*+#"%,+#-./+*+"#-)*/%0+1)2+3%&*%4#5 6(+*/-,%&'%,+#-%3&7"2+3%)3%(&*/%)*%2&89#")3&*%:)-,%-,+%3+9#"#-)&*%! #*0%:)0-,%&'%-,+%3&7"2+3; 4#5%+9)(#$+"3 <7=3-"#-+ d T0 = 23°C TP !T = TP–T0 zy !"#$%&'(%)*#'(+!$,-!,$# J.  Michael  Pinneo,  michael@pinneo.org  
  • 14. Thermal  Management   Heat  Spreaders,  GaN  HEMTs   !  Attach  100µm   diamond  heat   spreader  to  GaN   device:   !  200%  increased   power  cf.  SiC  heat   spreader;   !  1000%  increased   power  cf.  Si  heat   spreader.   Courtesy  Group  4  Labs,  and  Jonathan  Felbinger   and  Prof.  Eastman,  Cornell  University.   14  J.  Michael  Pinneo,  michael@pinneo.org  
  • 15. !  4”  free-­‐standing  GaN  wafer  on  diamond   15   Courtesy  Group  4  Labs   J.  Michael  Pinneo,  michael@pinneo.org  
  • 16. 16  J.  Michael  Pinneo,  michael@pinneo.org   Separation  between  linear  sources  [µm]    
  • 17. GaN  HEMT  on  Diamond   !  Benefits:   !  Higher  output  power   !  Lower  operating  temperature   !  Greater  device  density   !  System  Impact:     !  Radar  -­‐>  increased  target  acquisition  distance   !  Active  ECM  -­‐>  increased  range,  effectiveness   !  Increased  MTBF  -­‐>  reduced  maintenance  $,  time   17  J.  Michael  Pinneo,  michael@pinneo.org  
  • 18. Poten7al  Applica7on   !  F-­‐35  thermal  issues   !  Fuel  used  as  internal  systems  heat  sink   !  Low  fuel  near  end  of  mission:   !  Higher  fuel  temperature   !  Lower  ∆T  in  thermal  transfer  chain   !  Increased  avionics  temperature   18  J.  Michael  Pinneo,  michael@pinneo.org  
  • 19. F-­‐35  Thermal  Issue   !  Reduce  overall  thermal  resistance  between   avionics  and  fuel   !  Apply  diamond  to  thermal  transfer  path:   !  Device  level:  diamond  heat  spreaders   !  Card/module  level:  diamond  heat  pipes  &  plates   !  Heat  exchangers:  diamond  or  diamond/SiC   composites   19  J.  Michael  Pinneo,  michael@pinneo.org  
  • 20. Op7cal  Applica7ons   !  Important  properties   !  Broadband  transparency   !  225  nm  -­‐>  DC   !  Intrinsic  phonon   absorption  ~  5  µm  –  6  µm   !  Hardness   !  Low  loss  tangent  (<  10-­‐4)   20  J.  Michael  Pinneo,  michael@pinneo.org  
  • 21. IR  Op7cal  Applica7ons   Rain/dust  impact   damage  on  IR  optic   (F-­‐15E)     21  J.  Michael  Pinneo,  michael@pinneo.org  
  • 22.   IR  Op7cal  Applica7ons   !  Erosion  barrier  for   ZnS/ZnSe  IR  optics   !  Hardness,  IR   transparency   !  Can’t  CVD  direct  on   IR  material,  but   chalcogenide  “glue”   works.   !  AR  coatings  are   available.   VISIBLE   22  J.  Michael  Pinneo,  michael@pinneo.org  
  • 23. Op7cs:  High  Power  Lasers   !  Windows/Lenses   !  High  damage  threshold   !  Physically  robust   !  Solid  State  Lasers   !  Increased  output   !  Reduced  module   volume   Northrop-­‐Grumman  100  Kw  laser,  Phase  3,  JHPSSL   Advanced  Tactical  Laser  (ATL)   23  J.  Michael  Pinneo,  michael@pinneo.org  
  • 24. Op7cs:  HPM  Windows   !  DEW:  high  power  microwave  windows  (HPMW)   !  High  K,  low  loss  tangent,  low  TCE   !  >1  Gw  CW,  >  10  Gw  pulsed  @  90  GHz   !  USAF  BAA/Raytheon  2009  win  to  provide  domestic   source   !  Current  vendors:  Europe,  Asia   !  >$100K  each     24  J.  Michael  Pinneo,  michael@pinneo.org  
  • 25. Mechanical,  Fric7on  &  Wear   !  Important  properties   !  Low  friction   !  Hardness   !  Modulus   !  Corrosion  resistance   25   F-­‐15E  Exhaust  Flap     Mechanism   J.  Michael  Pinneo,  michael@pinneo.org  
  • 26. Machining  Opera7ons   !  Diamond-­‐coated  tooling   Increased  tool  life   Higher  machining  speeds   Better  workpiece  finish   26   Diamond  –  coated  cutting  tools   courtesy  of  Crystallume,  Inc.   J.  Michael  Pinneo,  michael@pinneo.org  
  • 27. Bearings  and  Seals   !  Good  coating  and   performance  increases   shown  for  diamond  on   Si3N4  ball  bearings,  BC   wear  shoes,  and  SiC  pump   seals.   !  Diamond  pump  seals  in   commercial  production  by   Advanced  Diamond   Technologies,  Inc.   27   Diamond-­‐coated  pump  seals,  courtesy  of   Advanced  Diamond  Technologies,  Inc.   J.  Michael  Pinneo,  michael@pinneo.org  
  • 28. Diamond  as  a  MEMS  Material   !  Hardness  &  Modulus   !  Low  self-­‐adhesion/stiction   !  Hydrophobic   !  Tolerate  aggressive   environments   !  Surface  can  be  functionalized   to  provide  sensing  capability   28  J.  Michael  Pinneo,  michael@pinneo.org   Diamond  RF  MEMS  Switch  
  • 29. Diamond  for  High  Power  Lasers   !  Desirable  properties:  transparency,  K,  TCE,  damage   threshold   !  Natural  diamond  laser  demonstrated  in  1985(1)   !  Optically  pumped  (Ar  ion  laser)   !  Lasing  medium:  H3  color  center,  530  nm     !  Tunable  due  to  coupling  with  phonon  energy  levels   !  Efficiency  13.5%   !  Interesting,  but  natural  diamonds  too  costly  &  rare   29   (1)  Rand  &  DeShazer,  Optical  Letters,  1985  vol.  10  (10)  pp.  481-­‐483   J.  Michael  Pinneo,  michael@pinneo.org  
  • 30. Diamond  for  High  Power  Lasers   !  What’s  changed?   !  Large,  high  quality  single  crystal  diamonds  by  CVD   !  R.  Hemley’s  group  at  Carnegie  Institute(2)   !  Microwave  plasma  CVD  followed  by  HP  or  LP  anneal   !  Highly  accessible  with  relatively  simple  equipment   !  Cost-­‐effective  technology   30   (2)  Recent  advances  in  high-­‐growth  rate  single-­‐crystal  CVD  diamond,  Qi  Liang,  et  al.,  Diamond  and  Related   Materials,  2009  vol.  18  (5-­‐8)  pp.  698-­‐703   J.  Michael  Pinneo,  michael@pinneo.org  
  • 31. Diamond  for  High  Power  Lasers   !  High  efficiency  diamond  Raman  laser(3)   !  1.2  watt  output  @  573  nm,  532  nm  pump   !  Conversion  efficiency  63.5%   !  Slope  efficiency  75%   !  Peak  photon  conversion  efficiency  91%   !  Diode-­‐pumped  diamond  Raman  laser  shown  in   2005(4)   31   (3)  Highly  efficient  diamond  Raman  laser,  Mildren  and  Sabella,  Optics  Letters,  2009  vol.  34  (18)  pp.  2811-­‐2813   (4)  Diode  pumped  diamond  Raman  microchip  laser,  Demidovich,  et  al.,    Conference  on  Lasers  and  Electro-­‐Optics  (CLEO)  Europe,  2005,  p.  251   J.  Michael  Pinneo,  michael@pinneo.org  
  • 32. Diamond  for  Hypersonic  Flight   !  Challenge:  extreme  aeroheating  of  vehicle  and  control   surfaces  during  endoatmospheric  flight  (≥  2,500°C)   !  Constrains  thermal  solutions  to  ablative  materials   !  Ablatives  can  substantially  depart  from  nominal   aerosurface  design  during  flight   !  Impact  on  vehicles:   !  Increased  control  authority  required   !  Increased  total  divert  energy  needed   !  Increases  vehicle  weight/size,  reduces  range   !  Introduces  weather  (rain,  dust)  as  launch  limitation   !  Resolution:  robust,  nonablative  thermal  coating   J.  Michael  Pinneo,  michael@pinneo.org   32  
  • 33. Diamond  for  Hypersonic  Flight   !  Critical  info:  diamond  does  not  bulk  graphitize  at  T  >   2,200°C  for  hours   !  Suggests:    Anti-­‐oxidation  coating  +  thick  diamond   film  could  be  useful  as  a  robust,  nonablative  material   for  some  hypersonic  endoatmospheric  missions.   !  Oxidation  barrier:    Re/Ir  –  affordable  because  <  10µm   !  Low  diamond  TCE  –  helps  maintain  antioxidation   coating  integrity   !  Diamond  hardness/modulus  –  better  resistance  to   particle  erosion  (rain,  dust)  than  ablatives   J.  Michael  Pinneo,  michael@pinneo.org   33  
  • 34. The  End   34  J.  Michael  Pinneo,  michael@pinneo.org