SlideShare una empresa de Scribd logo
1 de 30
Environmental Impacts
Oil Exploration and Extraction in Nigeria
By: Michelle Otutu
By:
Michelle Otutu
2012
2
Table of Contents
INTRODUCTION 4
CRUDE OIL EXPLORATION 5
CRUDE OIL EXTRACTTION 7
PRIMARY RECOVERY 9
SECONDARY RECOVERY 10
INJECTION OF FLUIDS 10
USE OF BEAM PUMPS 12
ESPS 13
TERTIARY RECOVERY 14
UNCONVENTIONAL OIL EXTRACTION 15
EXTRACTION IN NIGERIA 17
THE DISCOVERY OF OIL 17
OIL COMPANIES IN NIGERIA 18
THE OIL INDUSTRY AND THE NIGERIAN ENVIRONMENT 19
GAS FLARING 19
OIL SPILLAGE 22
COLLECTIVE CAUSES 24
BIOREMEDIATION 25
CONCLUSION 27
SOURCES AND REFERENCES 28
3
Dedication
This report is dedicated first and foremost to all the citizens of the
Niger Delta that face struggles everyday due to the pollution of
their environment.
It is also dedicated to my dear mother for all her knowledge and
support.
To Dr. Martin Tango, P.Eng for always being a source of laughter
and a great Engineering mentor.
4
Introduction
An oil and gas (or petroleum) reservoir is a natural deposit of a pool of hydrocarbons
such as natural gas, crude oil and several other minerals. For the purpose of this report, I will be
considering the exploration and extraction of crude oil in particular and excluding the inclusion
of natural gas and other minerals unless required for thorough explanation or necessity.
As defined by the Concise Oxford Dictionary, petroleum is “ a liquid mixture of hydrocarbons
which is present in suitable rock strata and can be extracted and refined to produce fuels which include
but are not restricted to: petrol, paraffin, diesel and gasoline.” It is a naturally occurring usually highly
viscous liquid composed of a variety of hydrocarbons and organic matter formed in large quantity over
several millions of years under high pressures and temperatures beneath the Earth‟s crust or surface.
Crude oil formation occurs due to the combining of several hydrocarbons and minerals such as sulphur
under very extreme pressures. Many modern day scientists have proven that most of the present day
petroleum deposits and fields we have were produced after millions of years of highly pressurized
activity. It is understood that the remains of plant and animal life formed petroleum fields after being
compressed on sea beds by billions of tones of silt, sand and mud over a period of several millions of
years. When sea animals and plants die, they will sink to the bottom of the ocean floor and begin to
decompose. This decomposition takes place in the presence of sand and silt; which mixes with the
biological remains. During the process of decomposition, bacteria act on the remains. This results in
the removal of other elements such as phosphorus, nitrogen and oxygen from the mixture; which
leaves the dead matter consisting of mostly carbon and hydrogen. The limited and insufficient supply
of oxygen in the ocean floor disrupts the full decomposition of the dead biological remains.
Eventually, after lying on the ocean floor for several years, the remains are buried under numerous
layers of sand, silt, mud and all the minerals that are found within them. These layers create an
increase in pressure; which in combination with the earth‟s natural heat redefines the mixture.
Thereby, forming thinner and thinner layers of the dead matter finally resulting in a semi-liquid
compressed hydrocarbon mixture. This hydrocarbon mixture is the formation base of petroleum.
Most of the Earth‟s petroleum and natural gas reserves were formed more than a hundred
million years ago, in seas or lakes that had an abundance of microscopic plant or animal organisms.
Let us examine a specific instance for clarity. Assuming the abundant organism contributing to
petroleum formation is plankton: as it is in most cases. When the plankton died, it sank to the bottom
of the sea or lake. If the bottom of the given water body was stagnant and lacked sufficient oxygen
supply, the dead plankton accumulated in the mud and did not decay properly. This would result in a
layer of mud rich in organic matter. Sediments found in water bodies such as sand, silt, stone and mud
will then form layers over the inadequately decomposed supply of dead plankton. As increase in the
amount of layers sediment will result in a corresponding increase in temperature and pressure acting
on the dead plankton matter. This high temperature and pressure would then aid the further
decomposition of the organic matter; forming shorter hydrocarbon chains, creating petroleum.
5
Figure 1: Pictorial representation of the formation of petroleum.20
Crude Oil Exploration
In recent days, petroleum products have come to be a significant natural resource in the
sustainability of human comfort and everyday activities, industrialization and the provision of jobs.
For petroleum to be discovered to make such a contribution, the location of an oil field must first be
determined as well as quantity of the deposit. The entirety of the processes required in locating
petroleum deposits is known as Exploration. A geologist usually oversees the exploration of
petroleum; this process starts with the geologist examining a portion of the Earth‟s surface that is
suspected to contain deposits of petroleum. In the 19th
century, it was observed that areas of the Earth‟s
surface that appeared to fold up or itself or sink several feet inwards; were most likely to contain
petroleum deposits. The geologist will then proceed to carry out surveys and examinations of the
rocks, soil and surrounding of the prospective petroleum reservoir. Samples will usually be obtained
from surrounding water sources and surface areas. These samples will collectively be used to
determine the porosity, age, permeability, formation sequence and profile of the ground within a
particular area. This information will lead to the geologist being able to make an intelligent, supported
and informed decision as to the likelihood of a petroleum reservoir being located within a given area.
For instance, a geologist could be presented with a valley and asked to determine if its subsurface is a
reservoir location. The geologist will first examine rocks in the region to aid such determination by
seeing if it is even remotely possible for such an area to inhabit petroleum.
Once an area is proven to have a possibility of housing a petroleum reservoir, further tests and
examinations are done to determine the precise location of the deposit and its quantity. These tests will
provide a more accurate mapping of the underground conditions of the area and see if these conditions
are unique with those commonly associated with petroleum reservoirs. Usually, the first process of the
second round of testing is - seismic exploration. Seismic exploration of petroleum involves the
application of basic concepts of seismology to aid in the determination of whether a location on the
Earth‟s surface is a petroleum reservoir or not. Seismology is the scientific study of earthquakes and
6
the behavior of the propagation of elastic waves through the layers and surface of the Earth and similar
planetary bodies. This concept is applied to petroleum reservoir determination. Elastic waves are
produced artificially by the geologist or geophysicist involved. These waves are sent ripping through
the Earth‟s crust in areas that are suspected to house deposits of petroleum, natural gas and other
minerals. The reflection of these waves back to where they were sent by the underground rock and
surfaces is scientifically collected and processed. It can be seen clearly, that waves reflected from
regular sub surfaces containing no deposits behave in a different manner from those reflected of sub
surface rocks that are significantly more porous and permeable. Rock surfaces that are porous and
permeable are much more likely to contain deposits of petroleum than those of different physical
characteristics. Hence, the geologist can use such a method to ascertain if an area is in fact a petroleum
reservoir.
Figure 2: Generation and reflection of artificially induced vibration waves.19
Figure 3: Depiction of the varying reflection responses19
7
Ultimately, to conclude without any doubt that an area is indeed a location of petroleum deposits, all
participating individuals looking to obtain oil must see for themselves that the area does in fact house
petroleum. Therefore, the final step to be taken in the exploration of petroleum if the aforementioned
procedures have been successful is the sinking of a well into ground. If substantial quantities of
petroleum are found, the entire exploration process has been a success and extraction will usually
follow. If no substantial quantity of petroleum is found, then the exploration team will conclude that
the given area does not harbor a petroleum reservoir. According to Investopedia, an exploratory well
is “a deep hole, in the Earth, that a petroleum or natural gas company drills in the hopes of locating a
new source of fossil fuels. An exploratory well represents a risk for the company drilling it, because
it is not known, before investing in the well, how much oil or natural gas it might contain. The well
may turn out to be a profitable new source of fossil fuel, or it may contain noncommercial quantities
of fuel that aren‟t worth extracting; in the latter case, the well may be plugged and abandoned.”
Crude Oil Extraction
If an oil company has positive results from a petroleum exploration procedure, the process of
petroleum extraction will begin. The entirety of the processes and methods required to effectively
remove deposits of petroleum from under the Earth‟s crust are collectively known as petroleum
Extraction. Large teams of engineers, geologists, geophysicists and field officials typically carry out
the extraction of petroleum. Usually, the petroleum extraction is an invasive procedure. Invasive in
the sense that deep wells are drilled and high levels of environmental disruption, destruction and
destabilization are observed. Historically, not all petroleum extraction procedures were invasive.
Particularly, in the United Stated of America, some petroleum fields once existed where natural
abundance of petroleum would rise to the surface of the Earth. This would happen either naturally, or
with artificial aid by the use of steam. The majority of these fields have been used up completely;
with just a few still being functional. According to George E. Totten, the earliest known oil wells
were drilled and maintain in 347 CE and were located in China. These wells were very much
“primitive” by today‟s standards. They were up to 240 metres in depth and were drilled using bits
(similar to drilling bits) attached to bamboo bark poles.
Today, the extraction of petroleum may apply a similar concept, but this concept is executed in
a drastically different manner. The extraction of petroleum begins with the creation of oil (petroleum)
wells. Oil wells are created by drilling a hole into the Earth‟s crust with the use of an oil rig. An oil
rig is simply a specialized drilling rig which is a machine used to create holes of varying length and
thickness in the ground. In most cases, to get the well effectively drilled, oil companies have to
engage the use of service rigs in combination with regular drilling rigs. Service rigs are used to
complete the drilling process in order to get the well on line after the oil rig has created it. This
allows for the oil rig to be removed and stored or perhaps used for another drilling operation. After
the oil well is created, a steel pipe casing is inserted into its core to provide structural stability and
integrity. Steel pipe casings (also called „encasement pipes‟) are commonly used as a protection tools
for underground constructed structures. Steel pipe casings generally have no specific specifications as
maintained by any regulatory body. As long as the number one and most fundamental criteria of it is
met. Most steel pipe casings are required to be extremely straight and round. Without this criteria
being met, the effectiveness of the casing is significantly reduced because it has and increase chance
of failure; making it particularly difficult to serve its fundamental purpose. Once the steel pipe casing
has been secured, holes are made in the base of the well to allow the free flow of oil into the bore of
8
the well. For the oil well to be fully structurally completed, collections of valves are fixed at the top
of the well. These valves aid the regulation of pressure and flow, which is required to enable the
upward flow of the crude oil being extracted. This collection of valves is sometime referred to as a
„Christmas tree‟. “In the petroleum and oil and gas industry, a Christmas tree is an assembly of
valves, spools and fittings used for various well operations. It was named for its crude resemblance to
a decorated Christmas tree.” The primary used of a Christmas tree is to control the flow of crude oil
out of a given well. Without a Christmas tree being effectively utilized, oil may flow out at
uncontrollable rates; ultimately leading to oil spillage and pollution of the surrounding areas.
Figure 4: Oil well Christmas tree18
The above picture of a Christmas tree is a wellhead located in Northeastern area of British
Columbia, Canada.
9
The term “wellhead” is used to refer to the outermost portion of an oil well that is seen above the
ground. It encompasses all components responsible for the maintenance of adequate steady pressures
and structure.
Once the Christmas tree is fixed, the oil well is ready to be used in the recovery of crude oil and
other natural resources such as natural gas. The recovery or extraction of oil is generally undertaken
in three stages. These stages are thus:
I. Primary Recovery
II. Secondary Recovery; and
III. Tertiary Recovery.
Primary Recovery
This is the first stage of petroleum extraction. It is the stage where “natural reservoir
energy, such as gasdrive, water drive or gravity drainage, displaces hydrocarbons from the reservoir,
into the wellbore and up to surface.” 17
Gasdrive is one of the primary recovery mechanisms
employed, which contains dissolved and free gas, whereby the energy of the expanding gas is used to
drive crude oil from the reservoir into the wellbore. While water drive refers to a situation whereby
the pressure created by free flowing water that is utilized is enough to facilitate the transportation in
an upward movement of the crude oil within the reservoir up through the wellbore.
Figure 5: Gasdrive depiction 17
Primary recovery involves the use of predominantly naturally occurring mechanisms to pump out
crude oil that flows to the bottom of a given oil well due to the forces of gravity. Primary crude oil
10
processes are essential steps to be taken at the beginning of an oil extraction process. This is because
the natural pressure within the well must first be displaced before the introduction of artificial pumps
and other extraction tools.“A new well is usually under pressure from natural gas and subterranean
structures. This means that the crude oil will freely flow up and out of the well through the well
bore.” 24
According to the National Energy Technology Laboratory of the United States of America‟s
Department of Energy, only about ten percent (10%) of subsurface crude oil is recovered during the
primary recovery stage. Hence, the obvious need for secondary and tertiary extraction procedures.
When crude oil deposits are highly viscous and are at shallow depths, primary recovery is
significantly more difficult to carry out.
Secondary Recovery
After primary recovery methods, a time will usually come where the natural pressure
within the wellbore is insufficient in the supply of the force needed to allow an upward flow of crude
oil out of the well. Hence, several alternative and usually artificial means must be employed to
continue the upward and outward flow of crude oil. Secondary recovery is enabled through the
supply of external energy in to the reservoir. This external energy then improves the natural drive of
the wellbore or completely replaces anynon-existent drive. Thus, forming an artificial drive within
the well. In order to facilitate the introduction or insertion of such artificial drive, officials in charge
can employ several means to reach the desired output. These means includes but are not limited to
some of the following;
1. Injection of fluids: The introduction of certain fluids down into the oil reservoir can be
used to stimulate the pressure increase of the wellbore. This replaces the natural drive
with an artificial drive due to fluid injection. The usual fluid of choice to be injected is
water. The first recorded use of water injection was in the U.S. states of New York and
Pennsylvania in the 1930s. Since then, water injection has come to be a go-to option of
secondary recovery methods. Injection pumps containing water are placed at the
opening of any given oil well and the bottom of the oil reservoir is filled with water at
high pressures. The water acts as a piston, forcing the oil to travel in an upward
displacement. The displacement of the oil does not take place in an immediate fashion.
It is time consuming.
On the following page, a picture of a water injection pump is shown. The depicted pump has a
flexible tubing string discharge and is upright operated. The pump system consists of a frame,
coupling, centrifugal pump, and surface flange asynchronous explosion-proof motor.
It is intended to pump fresh water, stratal water and field wastewater as use for pressure
modifications in secondary oil well recovery.
11
Figure 6: Water Injection Pump 27
12
2. Use of beam pumps: Another secondary recovery means by which crude oil is
recovered from under pressurized wells is through the use of beam pumps or pumping
systems. Beam pumping systems are made up of a pump at the bottom of any given oil
well, a beam-pumping unit also known as the pump jack at the surface, a rod string
connecting the pump jack and the pump and a prime mover containing either an electric
motor or an internal combustion engine. The prime mover acts as an energy source for
the entirety of the system.
Beam pumping systems are typically made use of when the oil well being operated on is
low in volume, relatively shallow in depth and contains light or medium weight crude
oil.
The fundamental operation of a beam pump is shown below.
Figure 7: Drawing of a beam pumper on an oil well. 30
13
3. Use of electrical submersible pumps (ESPs): These devices haveairtightmotors,
which allow for restricting of inward gas, vapor and liquid flow. It operates on the
principle of centrifugation and operates in a vertical position. Unlike other pumps that
are generally used from the outer ground surface of the well, electrical submersible
pumps are inserted into the well for operation. They hence generate a flow of the
situated crude oil from within the oil well. Thus, making electrical submersible pumps
reliable options when it comes to the provision of artificial oil well drive.
Crude oil enters the electrical submersible pump shaft, which is connected, to a gas
separator via mechanical coupling at the bottom of the pump. After entering the shaft,
the oil is then flowed upwards and out. The basic electrical submersible pump system is
shown below:
Figure 8: A typical mechanism of the ESP system
14
Other lesser-used methods of secondary recovery are:
1. Natural gas reinjection;
2. Gas lift (use of air, carbon dioxide or other gases).
*Secondary recovery generally results in 30-50% of the oil reservoir being extracted.
Tertiary Recovery
This includes all extraction processes utilized after the secondary recovery stage in
order to recover an even greater percentage of crude oil output. Tertiary methods of extraction are
generally significantly more cost intensive than the primary and secondary recovery methods.
Therefore, tertiary recovery methods are usually only performed when most of the oil in any given oil
well has been collected. Thus, leaving any other remaining soil located deeply in the bedrock of the
well. Because oil present during the tertiary stage of extraction is deeply rooted in rock, it is even
more difficult to extract. Hence, the number one cause of the expensive nature of tertiary methods of
extraction.
During the period of general extraction where tertiary methods of extraction are engaged, crude oil
within the well is deeply buried, sparse and well distributed along the well bedrock. Therefore,
tertiary methods of extraction are aimed to reduce the overall viscosity of the yet to be extracted
crude oil. A reduction in the crude oil viscosity will allow for the molecules to flow out of the
bedrock and collect together. Thus, making it easier to apply pressure to the well and remove the oil.
Typically, carbon dioxide is employed in tertiary extraction techniques to reduce viscosity and the
effects of capillary action in the rock. Occasionally, detergents are also introduced into the tertiary
extraction procedure to aid the reduction of surface tension between oil and water molecules within
the oil well. Microbial treatments can also be utilized in tertiary extraction. Certain microorganisms
help the simplification of hydrogen-carbon bonds; this helps make simpler crude oil hydrocarbons,
which are thus easier to extract.
Tertiary extraction techniques allow for an additional 5-10% of crude oil deposits to be extracted.
The carbon dioxide tertiary extraction methodis depicted on the following page.
15
Figure 9: Carbon Dioxide tertiary extraction operations.32
In addition to the three most used extraction methods or stages as previously stated; there are some
unconventional extraction processes that are in use today. These unconventional extraction processes
are known as Unconventional Oil Extraction. This extraction technique is used when deposits of
crude oil are located in areas other than the conventional underground oil well deposits. Some of
these unconventional deposit locations are:
1. Oil sands (such as the ones in Alberta, Canada)
2. Oil shales
3. Coal based liquid supplies
4. Biomass-based liquid supplies
5. Natural gas liquid supplies
For the purpose of this report, we will be dealing with only conventional extraction techniques
and ramifications. This is because, conventional extraction techniques are significantly wider
spread practiced than unconventional techniques.
16
The generality of petroleum extraction techniques is depicted in the diagram below.
Figure 10: Crude oil extraction18
17
Extraction in Nigeria
Now that some background has been provided on the exploration and extraction of crude oil in
general has been relayed; we will now examine the brief history of petroleum exploration and
extraction in Nigeria. Hence, one will grasp a better understanding of the environmental impacts of
oil exploration and extraction in Nigeria.
The Discovery of Oil
The British first discovered petroleum deposits in Nigeria in the mid to late 1950s. Ever since
then, the petroleum industry has grown to be the largest industry within the country and has become a
significant source of wealth. The discovery of oil in Nigeria was largely followed by heavy political
and economic strife within the country. This is due to the Nigerian economy becoming heavily reliant
on petroleum-generated revenue and as a result, neglecting other economic sectors within the
country. The political strife is as a direct result of a combination of political desire to control oil
generation within the country as well as the long history of military and civilian regimes.
Figure 11: Map of Africa with Nigeria highlighted 21
Despite the wide landmass of Nigeria, its oil is found in less than 15% of its landmass. Yet, Nigeria is
one of the largest oil producing countries in the world.
“Nigeria's proven oil reserves are estimated by the U.S. United States Energy Information
Administration (EIA) at between 16 and 22 billion barrels (3.5×109
m3
),but other sources claim there
could be as much as 35.3 billion barrels (5.61×109
m3
). Its reserves make Nigeria the tenth most
petroleum-rich nation, and by the far the most affluent in Africa. In mid-2001 its crude oil production
was averaging around 2.2 million barrels (350,000 m³) per day.” 33
18
Figure 12: Map of Nigeria with oil producing regions highlighted21
Oil Companies in Nigeria
The oil companies within the country extract petroleum resources in Nigeria. Extraction of oil in
Nigeria is unique in the sense that the entirety of oil companies within the country acts a joint venture
corporation. That is, all companies are under a national umbrella of a „larger company‟. This larger
company is known as the Nigerian National Petroleum Corporation (NNPC). All companies
operating in Nigeria are legally required to be sub-entities of the NNPC. Thus, incorporating the
addition of “Nigeria” to its company name. Oil extraction and exploration in Nigeria is carried out
between six oil companies. Namely:
1. Royal Dutch Shell (known simply as „Shell‟) – British/Dutch
2. Chevron – American
3. Exxon-Mobil – American
4. Agip – Italian;
5. Total – French; and
6. Texaco (now merged with Chevron).
The government and each company jointly own operations in Nigeria separately. The Nigerian
government own and operate at least 60% of each national oil franchise within the country;
regardless of the company‟s country of ownership.
19
Impact of the Oil Industry on the Nigerian Environment
The region of Nigeria responsible for the harboring of approximately 100% of its
petroleum reservoirs is called the Niger Delta region. The Niger Delta is simply the delta region of
the Niger River, which is the largest and most influential river in West Africa. According to Nigerian
geologists and officials, the Niger Delta region extends over an area of about 70,000 kilometer
squares and makes up approximately 7.5% of the country‟s landmass. The region is home to about 31
million Nigerian citizens and more than 50 ethnic groups. Since 1975, the Niger Delta region has
been singly responsible for the provision of over 80% of the country‟s oil exportation resource.
Gas Flaring
Most of the natural gas extracted from petroleum wells within the Delta region are immediately
burned or flared into the surrounding atmosphere at a rate of approximately 70 million m3
of gas per
day. This daily expulsion of burned gas into the atmosphere of the Niger Delta region is equivalent to
about 42% of the total gas burned in the entire continent of Africa per day. Thus, severely polluting
the air of the entire Niger Delta region and becoming the single most significant contributor of
greenhouse emissions on Earth. It is a well-known fact that the biggest gas flaring contributors
amongst oil companies in Nigeria is Shell Plc.
Annually, about 3.5 billion cubic feet of gas associated with crude oil extraction is produced in
Nigeria. Unlike other countries where associated gas is reused or re-injected into the ground, Nigeria
generally has at least 70% of produced associated gas burned and released into the atmosphere. This
is because, it is more financially economical for oil companies to obtain gas from non-associated
sources rather than separate associated gad from crude oil and other mineralsfrom oil well extraction
procedures. The high levels of gas flaring allow for the high amounts of methane distribution into the
atmosphere, which is a significant contributor to global warming and climate change. In the year
2002 alone, over 35million tones of carbon dioxide were released into the atmosphere via gas flaring.
Gas flaring is a significant source of several carcinogens and poisonous chemicals. These chemicals
include but are not limited to:
1. Nitrogen Dioxides
2. Sulphur Dioxides
3. Benzene
4. Toluene
5. Dioxin
6. Benzapyrene
7. Xylene
8. Hydrogen Sulphide; and others.
Most sites of gas flaring are located close to or around communities inhabited by thousands- if not
millions – of people. Towns and dwellings affected by gas flaring are often covered with soot and
thick dark clouds; leading to complete damage, disruption, contamination and pollution of once
viable food and water sources.
20
“ In November 2005 a judgment by, "the Federal High Court of Nigeria ordered that gas flaring must
stop in a Niger Delta community as it violates guaranteed constitutional rights to life and dignity. In a
case brought against the Shell Petroleum Development Company of Nigeria (Shell), Justice C. V.
Nwokorie ruled in Benin City that the damaging and wasteful practice of flaring cannot lawfully
continue." ”39
Despite such a public declaration of the ill effects of gas flaring, the practice continues
till today.
Figure 13: Satellite view of gas flares in the Niger Delta 40
As is clearly depicted above, there is a high concentration of gas flare sites through out the entire
Niger Delta region; affecting the lives and health of over 30 million people and ruining the
atmospheric habitat of an area of greater that 70 000 km2
.
21
Figure 14: Example of what
a typical gas flare looks like18
Oil Spillage
22
Another significant source of environmental degradation in the Niger Delta region of Nigeria is oil
spillage. Oil spillage is the intentional or accidental release of liquid or semi-liquid crude oil into
surrounding environments. These environments encompass both water bodies and land. Oil spillage
is a form of environmental pollution. Oil spills can take weeks, months of even several years to
effectively clean up. Non-the-less, the damages made by oil spillage usually live on for longer
periods of time even after clean ups. Spills are observed when crude oil escaped from holding takes,
oil rigs, oil well, offshore platforms, pipelines and other sources. Some times, by-products of crude
oil, such as gasoline, diesel and kerosene; when spilled are referred to as oil spillage. For the purpose
of this report, oil spillage will only refer to the spillage of extracted crude oil.
Figure 15: Shell Oil Spill, Nigeria
In Nigeria, oil spillage is so common that many locals have come to see it as a way of life and it does
not raise much concern from them. It has been estimated that over 13million barrels of oil has spilled
in Nigeria since its discovery of oil in 1958. Nigerian officials have stated that over 7000 oil spill
cases have been experienced between 1970 and 2000 alone.
23
Oil spillage has a big impact on the environment in the Niger Delta. The ecosystem in this area had
been severely damaged due to oil spillage. The Niger Delta region has abundant natural mangrove
forests. Over the years, about 15% of the rich mangrove forest has been destroyed; taking with it
several microorganisms and hundreds of unique plant and animal species with it. Drinking water
bodies within the area have also been drastically contaminated. Most water bodies in the area have
constant thin layers of oil on their surfaces. Water contamination has altered the rich aquatic habitat
that was once predominant. The high levels of hydrocarbons and chemicals in natural water sources
have also been a responsible factor for the presence of carcinogens in water supply for inhabiting
towns and communities. Also, because oil floats on water, oxygen levels within the water become
very low due to an increased difficulty in sunlight and air penetrating through the oil layer. Lack of
adequate oxygen then leads to the death of aquatic organisms that require oxygen to ensure their
survival. The mass death of aquatic organisms in turn, will lead to increased levels of decomposition.
Overall, the stability and self-reliance of the water body is completely lost.
Overall, the effects of oil spillage can be briefly summarized under the following:
1. Destruction of the mangrove forest
2. Destabilization of ecosystems
3. Killing of exotic plant and animal species
4. Contamination of water supply
5. Widespread distribution of carcinogens
6. Destruction of soil microorganisms
7. Possible genetic mutation of surviving animal species
8. Contamination of coastal environments
Nigerian environmental regulations are weak and not generally enforced completely and
thoroughly. This allows for oil companies to engage in such environmentally detrimental
practices without worrying about possible sanctions or retributions. Yet, one must remember,
the Nigerian government first and foremost owns 60% of every oil company on its soil.
Therefore, a greater portion of environmental responsibility falls on the shoulders of the
Nigerian government and not necessarily entirely on the oil companies as one might think.
Nigeria has created the following agencies over the years to help curb environmental impacts of oil
and mineral extraction:
1. Federal Environmental Protection Agency (FEPA)
2. National Oil Spill Detection and Response Agency (NOSDRA)
3. National Environmental Regulation and Enforcement Agency (NESREA)
4. National Water Resources Institute (NWRI)
5. National Agricultural Extension, Research and Liaison Services (NAERLS)
6. Nigerian Agricultural and Rural Development Bank (NARDP)
*None of these agencies have succeeded in curbing or even reducing in the
slightest amounts the environmental catastrophe that has been caused by
petroleum extraction in the Niger Delta.
Collective Causes
24
Environmental degradation faced by the Niger Delta region of Nigeria by oil spillage and well as gas
flaring are caused by circumstances and lack or regulations common to both practices.
Corruption: Most Nigerian citizens and indeed individuals from other parts of the
world believe that the most significant problem affecting the betterment of the environmental
situation in the Delta is corruption. Nigerian officials at all levels have a long history of corruption.
This includes (but not limited to); siphoning of funds made available for regulatory and enforcement
operations, inflation of salaries of officials – thus reducing liquid assets available for environmental
research and stability, collection of bribes from oil company officials to turn a „blind eye‟, and so on.
The totality of these and others, make it increasingly difficult to start and sustain a working approach
to environmental sustainability.
Vandalism: Increasingly, instances of pipeline vandalism by locals and surrounding
criminals have propagated the occurrences of oil spills. Often, oil pipelines are tapped and oil is
collected for black-market sale. Persons involved in such acts generally puncture the pipelines and do
not plug any holes made while tapping. These holes are left open, and oil flows out, damaging the
surrounding area.
Maintenance:Pipelines in the Delta are not regularly maintained to ensure their utmost
productivity. Some pipelines have been left without maintenance practices for several years
according to Nigerian officials. This leads to abundant rusting, fracturing andbrittleness of crude oil
transportation pipelines. The pipelines are thus more prone to be a cause of spillage, which is
detrimental to the immediate environment.
Regulations: Regulations that are set in place to protect the environment are largely
ignored or not followed correctly.
Lack of Care:Perhaps indeed, in my opinion, the greatest cause of the environmental
degradation being undergone in the Niger Delta region of Nigeria is the lack of care. Oil company
officials as well as Nigerian government officials just do not seem to have enough care (and perhaps
knowledge) about the true environmental implications of the processes oil extraction entails. When it
comes to oil spillage, there may be less of blame to oil companies and officials, simply because of
situations like vandalism, which are out of their control in most instances. But when it comes to the
issue of gas flaring – oil company officials and Nigerian authority are directly responsible for
environmental pollution due to flaring. I am of the adamant position the people in charge are more
preoccupied with monetary gain than the maintenance of the environment that provides that monetary
gain. It is a classic example of “biting the hand that feeds you”.
If the above causes are duly recognized and corrected, the negative environmental impacts in
Nigeria will be significantly reduced.
Method of Correction/Proposed Solution
25
The following are specific methods or means by which oil spillage and gas flaring impacts can be
minimized, prevented or reversed as much as possible.
Biological Remediation: Biological remediation is the most effective and newly practiced
correction technique. This is a spillage clean-up technique that involves the growth and harvesting of
biological organisms capable of consuming hydrocarbons found in crude oil. Hence, biological
remediation can be used to help reverse or minimize the effects of crude oil spillage in the Delta. This
technique has been implemented to some degree in the Niger Delta region, but not to a large enough
degree to amount in any reasonable change. The Niger Delta town of Ogbogu has used
bioremediation to clean up spills in its areas. Two plant species were used as cleaning agents. These
species are: Hibiscus cannabinusand Vetiveria zizanioides.The procedure involves the spreading of
H.cannabinus over contaminated water bodies; since H.cannabinus has an affinity for hydrocarbons,
it will absorb the oil out of the given water body. The H.cannabinus is then collected and transported
to a plantation rich with V.zizanioides. V.zizanioides is a rich and deeply rooted plant that has the
biological ability to absorb and break down hydrocarbons completely and detoxify soils. Hence, both
organisms are used collectively to help curb soil and water contamination due to crude oil spillage.
Both plants are native to Western Africa.
Figure 16: H.cannabinus 41
26
Figure 17: V.zizanioides 18
Conclusion
27
It is unfortunate that such mass destruction of the environment has been allowed to continue in any
part of the world. As human beings, we must all remember that we are collective owners of the
planet. The occurrences in one part of the planet affect us all in one way or another. In this case, the
environmental degradation of one part of the planet (Nigeria) affects us all. Gas flaring that is highly
practiced in the Niger Delta ultimately produces a green house affect that is detrimental to all
inhabitants of the planet no matter where they are.
It is my utmost believe that the situation the Niger Delta can be duly corrected if steadfast individuals
work collectively in an efficient matter. In the year 2010, the world was shocked and forced into
action due to the oil spillage in the Gulf of Mexico. Sadly, that kind of international coverage has not
been given to the Gulf of Guinea that borders the Niger Delta.
Indeed, after almost 60 years of contamination, we owe it to the Niger Delta and all that has been lost
to correct our wrong. We owe it to the Earth and future generations to clean up.
28
Sources:
1. ^PetroStrategies Oil and Gas Learning Center Oil and Gas
Explorationhttp://www.petrostrategies.org/Learning_Center/exploration.htm
2. ^Concise Online Oxford English Dictionary
http://oxforddictionaries.com/definition/petroleum?q=petroleum
3. ^E. Tzimas, (2005) (PDF). Enhanced Oil Recovery using Carbon Dioxide in the
European Energy System. European Commission Joint Research Center. Retrieved
2008-08-23.
4. ^Global Marine Oil Pollution Information Gatewayhttp://oils.gpa.unep.org/facts/extraction.htm
5. The Encyclopedia of Earth: Structure of the EarthNCSE Boston University
6. ^Petroleum Formation http://www.petroleum.co.uk/formation/
7. Figure 1: Chemistry A Cultural Approach
http://www.m2c3.com/chemistry/VLI/M3_Topic1/M3_Topic1_print.html
8. http://www.naturalgas.org/naturalgas/exploration.asp
9. Figure 2: The Encyclopedia of Earth: Structure of the EarthNCSE Boston University
10. Investopedia Definitions http://www.investopedia.com/terms/e/exploratory-
well.asp#axzz1qplpZSsF
11. ^"New Billions In Oil"Popular Mechanics, March 1933 -- ie article on invention of water
injection and detergents for oil recovery
12. Mines, R.O. and Lackey, L.W., "Introduction to Environmental Engineering", Prentice
Hall/Pearson (2009).
13. A Timeline of Highlights From The Histories of ASTM Committee D02 and the Petroleum
Industry; George E. Totten, Ph.D.
14. ^GE Energy, Oil and Gas
15. API Specifications 6A and 17D
16. Oilfield Glossary http://oilgasglossary.com/wellhead.html
17. Schlumberger Oilfield Glossary
18. Wikipedia Encyclopedia
29
19. Britannica Encyclopedia
20. Bing Images
21. Google Images
22. National Energy Technology Laboratory U.S. Department of Energy
23. Definition of Primary Oil Recovery http://ehow.com/
24. Susan Kristoff; Featured Writer for Engineering. Suite101.com
25. ^"Failing Oil Fields Revived by Action of Water" Popular Mechanics, December 1930,
left-column mid page
26. Roemex Limited; water injection. http://www.roemex.com/production/water_injection.htm
27. JSC ALNAS http://en.alnas.ru/products/ecna-ppd/y-ecna-ksh/
28. Human Development Consultants: http://www.hdc.ca/product_samples/pumpjack_a.pdf
29. Husky Energy Inc.
30. Lewis Morburg’s Internet Oil and Gas Newsletter. http://www.mosburgoil-gas.com/
31. Lyons, William C., ed. (1996). Standard Handbook of Petroleum & Natural Gas Engineering. 2
(6 ed.). Gulf Professional Publishing
32. Denbury Resources Inc. http://i.bnet.com/blogs/carbon-dioxide-tertiary-recovery-
method.jpg?tag=contentMain;contentBody
33. ^U.S. Energy Information Administration (U.S. EIA), “Nigeria Country Analysis Brief,”
December 1997.
34. ^Amnesty International. (2006). Nigeria: Oil, Poverty and Violence. Retrieved 9 May 2007, from
http://web.amnesty.org/library/index/ENGAFR440172006?open&of=ENG-NGA
35. Shell International Petroleum Company, Developments in Nigeria (London: 1995)
36. CRS Report for Congress, Nigeria: Current Issues Updated January 30, 2008
30
37. Pearson, Scott R. Petroleum and the Nigerian Economy”. Stanford: Stanford University Press,
1970. p. 13.
38. ^"Gas Flaring in Nigeria". Friends of the Earth. Oct. 2004. Retrieved 24 Jan. 2009.
39. Egan, J. (1999). Troubled Times in the Niger Delta. Retrieved 8 May 2007, from
http://news.bbc.co.uk/2/hi/programes/crossing-continents/325300.stm
40. Global Gas Flaring Satellite Survey: http://www.treehugger.com/clean-technology/global-gas-
flaring-satellite-survey-reveals-oils-hidden-costs.html
41. Vegetables/Legumes Record Display
http://database.prota.org/PROTAhtml/Hibiscus%20cannabinus_En.htm

Más contenido relacionado

La actualidad más candente

Reserves estimation (Volumetric Method)
Reserves estimation (Volumetric Method)Reserves estimation (Volumetric Method)
Reserves estimation (Volumetric Method)Shivshambhu Kumar
 
Deepwater Horizon Oil Spill Overview Presentation
Deepwater Horizon Oil Spill Overview PresentationDeepwater Horizon Oil Spill Overview Presentation
Deepwater Horizon Oil Spill Overview PresentationRichard Allaway
 
What is the different between the net pay and resrvoir thickness
What is the different between the net pay and resrvoir thicknessWhat is the different between the net pay and resrvoir thickness
What is the different between the net pay and resrvoir thicknessStudent
 
Environmental Impacts of Mining and Mitigation Measures
Environmental Impacts of Mining and Mitigation MeasuresEnvironmental Impacts of Mining and Mitigation Measures
Environmental Impacts of Mining and Mitigation MeasuresHusain Shabbar
 
Petroleum Geology/Engineering
Petroleum Geology/EngineeringPetroleum Geology/Engineering
Petroleum Geology/EngineeringArshad Ayub
 
Thermal method in Well logging and Geothermal Energy
Thermal method in Well logging and Geothermal EnergyThermal method in Well logging and Geothermal Energy
Thermal method in Well logging and Geothermal EnergyAmir I. Abdelaziz
 
Environmental effects of mining
Environmental effects of miningEnvironmental effects of mining
Environmental effects of miningNithin Sai
 
Deepwater Horizon oil spill case
Deepwater Horizon oil spill caseDeepwater Horizon oil spill case
Deepwater Horizon oil spill caseCaterpillar Inc.
 
Estmation of oil & gas proven probable posiible
Estmation of oil & gas proven probable posiibleEstmation of oil & gas proven probable posiible
Estmation of oil & gas proven probable posiibleNarendra Kumar Dewangan
 
Q923+rrl+l04
Q923+rrl+l04Q923+rrl+l04
Q923+rrl+l04AFATous
 
Enhached oil recovery EOR
Enhached oil recovery EOREnhached oil recovery EOR
Enhached oil recovery EORHendri Anur
 
ADVANCEMENT IN ENHANCED OIL RECOVERY
ADVANCEMENT IN ENHANCED OIL RECOVERYADVANCEMENT IN ENHANCED OIL RECOVERY
ADVANCEMENT IN ENHANCED OIL RECOVERYAmit Nitharwal
 
Unconventional reservoir
Unconventional reservoirUnconventional reservoir
Unconventional reservoirAhmed BOUADEL
 
Properties of reservoir rocks
Properties of reservoir rocksProperties of reservoir rocks
Properties of reservoir rocksuos
 
Deepwater Horizon Oil Spill
Deepwater Horizon Oil SpillDeepwater Horizon Oil Spill
Deepwater Horizon Oil SpillJessica Goodman
 
Presentation - A Case Study on Oil Spills
Presentation - A Case Study on Oil SpillsPresentation - A Case Study on Oil Spills
Presentation - A Case Study on Oil SpillsOmZavare
 

La actualidad más candente (20)

Enhanced oil recovery
Enhanced oil recoveryEnhanced oil recovery
Enhanced oil recovery
 
Reserves estimation (Volumetric Method)
Reserves estimation (Volumetric Method)Reserves estimation (Volumetric Method)
Reserves estimation (Volumetric Method)
 
Deepwater Horizon Oil Spill Overview Presentation
Deepwater Horizon Oil Spill Overview PresentationDeepwater Horizon Oil Spill Overview Presentation
Deepwater Horizon Oil Spill Overview Presentation
 
What is the different between the net pay and resrvoir thickness
What is the different between the net pay and resrvoir thicknessWhat is the different between the net pay and resrvoir thickness
What is the different between the net pay and resrvoir thickness
 
Environmental Impacts of Mining and Mitigation Measures
Environmental Impacts of Mining and Mitigation MeasuresEnvironmental Impacts of Mining and Mitigation Measures
Environmental Impacts of Mining and Mitigation Measures
 
Burgen greater 1
Burgen greater 1Burgen greater 1
Burgen greater 1
 
Petroleum Geology/Engineering
Petroleum Geology/EngineeringPetroleum Geology/Engineering
Petroleum Geology/Engineering
 
Thermal method in Well logging and Geothermal Energy
Thermal method in Well logging and Geothermal EnergyThermal method in Well logging and Geothermal Energy
Thermal method in Well logging and Geothermal Energy
 
Environmental effects of mining
Environmental effects of miningEnvironmental effects of mining
Environmental effects of mining
 
ENVIRONMENTAL IMPACTS OF OIL INDUSTRIES
ENVIRONMENTAL IMPACTS OF OIL INDUSTRIESENVIRONMENTAL IMPACTS OF OIL INDUSTRIES
ENVIRONMENTAL IMPACTS OF OIL INDUSTRIES
 
Deepwater Horizon oil spill case
Deepwater Horizon oil spill caseDeepwater Horizon oil spill case
Deepwater Horizon oil spill case
 
Estmation of oil & gas proven probable posiible
Estmation of oil & gas proven probable posiibleEstmation of oil & gas proven probable posiible
Estmation of oil & gas proven probable posiible
 
Q923+rrl+l04
Q923+rrl+l04Q923+rrl+l04
Q923+rrl+l04
 
Enhached oil recovery EOR
Enhached oil recovery EOREnhached oil recovery EOR
Enhached oil recovery EOR
 
ADVANCEMENT IN ENHANCED OIL RECOVERY
ADVANCEMENT IN ENHANCED OIL RECOVERYADVANCEMENT IN ENHANCED OIL RECOVERY
ADVANCEMENT IN ENHANCED OIL RECOVERY
 
Unconventional reservoir
Unconventional reservoirUnconventional reservoir
Unconventional reservoir
 
Properties of reservoir rocks
Properties of reservoir rocksProperties of reservoir rocks
Properties of reservoir rocks
 
Deepwater Horizon Oil Spill
Deepwater Horizon Oil SpillDeepwater Horizon Oil Spill
Deepwater Horizon Oil Spill
 
tight Gas reservoir
 tight Gas reservoir tight Gas reservoir
tight Gas reservoir
 
Presentation - A Case Study on Oil Spills
Presentation - A Case Study on Oil SpillsPresentation - A Case Study on Oil Spills
Presentation - A Case Study on Oil Spills
 

Similar a Environmental impacts : Oil Exploration and Extraction in Nigeria

Drilling operation and components
Drilling operation and componentsDrilling operation and components
Drilling operation and componentsChoong KW
 
Oil patch intro for new employees
Oil patch intro for new employeesOil patch intro for new employees
Oil patch intro for new employeesGlenn Power
 
Deepwater Horizon Oil Spill-signed
Deepwater Horizon Oil Spill-signedDeepwater Horizon Oil Spill-signed
Deepwater Horizon Oil Spill-signedNoel Moitra
 
Updated Lecture-part 1_0974cde6f860831970d41e9995e4a7d0.pdf
Updated Lecture-part 1_0974cde6f860831970d41e9995e4a7d0.pdfUpdated Lecture-part 1_0974cde6f860831970d41e9995e4a7d0.pdf
Updated Lecture-part 1_0974cde6f860831970d41e9995e4a7d0.pdfMuhammedHashmRamazan
 
Oil patch broad overview for non technicals
Oil patch broad overview for non technicalsOil patch broad overview for non technicals
Oil patch broad overview for non technicalsGlenn Power
 
C. Petroleum Accumulation
C. Petroleum AccumulationC. Petroleum Accumulation
C. Petroleum AccumulationNael Zaino
 
Off Shore Oil Drilling Final paper
Off Shore Oil Drilling Final paperOff Shore Oil Drilling Final paper
Off Shore Oil Drilling Final paperChristian Ricchezza
 
Energy engineering
Energy engineeringEnergy engineering
Energy engineeringUmar Farooq
 
THE PEAK AND DECLINE OF WORLD OIL AND GAS PRODUCTION
THE PEAK AND DECLINE OF WORLD OIL AND GAS PRODUCTIONTHE PEAK AND DECLINE OF WORLD OIL AND GAS PRODUCTION
THE PEAK AND DECLINE OF WORLD OIL AND GAS PRODUCTIONLuis Orozco
 
Understanding the Geology of Oil and Shale Gas Deposits.pdf
Understanding the Geology of Oil and Shale Gas Deposits.pdfUnderstanding the Geology of Oil and Shale Gas Deposits.pdf
Understanding the Geology of Oil and Shale Gas Deposits.pdfbobby Lee
 
Evaporite Salt Deposits-converted.pptx
Evaporite Salt Deposits-converted.pptxEvaporite Salt Deposits-converted.pptx
Evaporite Salt Deposits-converted.pptxMuhammadBilalGeology
 
speech.docx
speech.docxspeech.docx
speech.docxmammad16
 
Origin of petroleum, organic and inorganic theories
Origin of petroleum, organic and inorganic theoriesOrigin of petroleum, organic and inorganic theories
Origin of petroleum, organic and inorganic theoriesSohail Nawab
 
Element of Petroleum System
Element of Petroleum SystemElement of Petroleum System
Element of Petroleum SystemEric HAGENIMANA
 
Desertification through fuel harvesting
Desertification through fuel harvestingDesertification through fuel harvesting
Desertification through fuel harvestingtroy schmidt
 
Gulf wildlife-in-the-aftermath-of-the-deepwater-horizon-disaster five-years-a...
Gulf wildlife-in-the-aftermath-of-the-deepwater-horizon-disaster five-years-a...Gulf wildlife-in-the-aftermath-of-the-deepwater-horizon-disaster five-years-a...
Gulf wildlife-in-the-aftermath-of-the-deepwater-horizon-disaster five-years-a...National Wildlife Federation
 

Similar a Environmental impacts : Oil Exploration and Extraction in Nigeria (20)

Drilling operation and components
Drilling operation and componentsDrilling operation and components
Drilling operation and components
 
Oil patch intro for new employees
Oil patch intro for new employeesOil patch intro for new employees
Oil patch intro for new employees
 
History
HistoryHistory
History
 
Deepwater Horizon Oil Spill-signed
Deepwater Horizon Oil Spill-signedDeepwater Horizon Oil Spill-signed
Deepwater Horizon Oil Spill-signed
 
Updated Lecture-part 1_0974cde6f860831970d41e9995e4a7d0.pdf
Updated Lecture-part 1_0974cde6f860831970d41e9995e4a7d0.pdfUpdated Lecture-part 1_0974cde6f860831970d41e9995e4a7d0.pdf
Updated Lecture-part 1_0974cde6f860831970d41e9995e4a7d0.pdf
 
Oil patch broad overview for non technicals
Oil patch broad overview for non technicalsOil patch broad overview for non technicals
Oil patch broad overview for non technicals
 
C. Petroleum Accumulation
C. Petroleum AccumulationC. Petroleum Accumulation
C. Petroleum Accumulation
 
Off Shore Oil Drilling Final paper
Off Shore Oil Drilling Final paperOff Shore Oil Drilling Final paper
Off Shore Oil Drilling Final paper
 
Formation and Discovery
Formation  and DiscoveryFormation  and Discovery
Formation and Discovery
 
Energy engineering
Energy engineeringEnergy engineering
Energy engineering
 
Exploration Geophysics
Exploration GeophysicsExploration Geophysics
Exploration Geophysics
 
THE PEAK AND DECLINE OF WORLD OIL AND GAS PRODUCTION
THE PEAK AND DECLINE OF WORLD OIL AND GAS PRODUCTIONTHE PEAK AND DECLINE OF WORLD OIL AND GAS PRODUCTION
THE PEAK AND DECLINE OF WORLD OIL AND GAS PRODUCTION
 
Understanding the Geology of Oil and Shale Gas Deposits.pdf
Understanding the Geology of Oil and Shale Gas Deposits.pdfUnderstanding the Geology of Oil and Shale Gas Deposits.pdf
Understanding the Geology of Oil and Shale Gas Deposits.pdf
 
Evaporite Salt Deposits-converted.pptx
Evaporite Salt Deposits-converted.pptxEvaporite Salt Deposits-converted.pptx
Evaporite Salt Deposits-converted.pptx
 
speech.docx
speech.docxspeech.docx
speech.docx
 
Origin of petroleum, organic and inorganic theories
Origin of petroleum, organic and inorganic theoriesOrigin of petroleum, organic and inorganic theories
Origin of petroleum, organic and inorganic theories
 
Element of Petroleum System
Element of Petroleum SystemElement of Petroleum System
Element of Petroleum System
 
Desertification through fuel harvesting
Desertification through fuel harvestingDesertification through fuel harvesting
Desertification through fuel harvesting
 
Gulf wildlife-in-the-aftermath-of-the-deepwater-horizon-disaster five-years-a...
Gulf wildlife-in-the-aftermath-of-the-deepwater-horizon-disaster five-years-a...Gulf wildlife-in-the-aftermath-of-the-deepwater-horizon-disaster five-years-a...
Gulf wildlife-in-the-aftermath-of-the-deepwater-horizon-disaster five-years-a...
 
Cave diving in argentina
Cave diving in argentinaCave diving in argentina
Cave diving in argentina
 

Último

Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxannathomasp01
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 

Último (20)

Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 

Environmental impacts : Oil Exploration and Extraction in Nigeria

  • 1. Environmental Impacts Oil Exploration and Extraction in Nigeria By: Michelle Otutu By: Michelle Otutu 2012
  • 2. 2 Table of Contents INTRODUCTION 4 CRUDE OIL EXPLORATION 5 CRUDE OIL EXTRACTTION 7 PRIMARY RECOVERY 9 SECONDARY RECOVERY 10 INJECTION OF FLUIDS 10 USE OF BEAM PUMPS 12 ESPS 13 TERTIARY RECOVERY 14 UNCONVENTIONAL OIL EXTRACTION 15 EXTRACTION IN NIGERIA 17 THE DISCOVERY OF OIL 17 OIL COMPANIES IN NIGERIA 18 THE OIL INDUSTRY AND THE NIGERIAN ENVIRONMENT 19 GAS FLARING 19 OIL SPILLAGE 22 COLLECTIVE CAUSES 24 BIOREMEDIATION 25 CONCLUSION 27 SOURCES AND REFERENCES 28
  • 3. 3 Dedication This report is dedicated first and foremost to all the citizens of the Niger Delta that face struggles everyday due to the pollution of their environment. It is also dedicated to my dear mother for all her knowledge and support. To Dr. Martin Tango, P.Eng for always being a source of laughter and a great Engineering mentor.
  • 4. 4 Introduction An oil and gas (or petroleum) reservoir is a natural deposit of a pool of hydrocarbons such as natural gas, crude oil and several other minerals. For the purpose of this report, I will be considering the exploration and extraction of crude oil in particular and excluding the inclusion of natural gas and other minerals unless required for thorough explanation or necessity. As defined by the Concise Oxford Dictionary, petroleum is “ a liquid mixture of hydrocarbons which is present in suitable rock strata and can be extracted and refined to produce fuels which include but are not restricted to: petrol, paraffin, diesel and gasoline.” It is a naturally occurring usually highly viscous liquid composed of a variety of hydrocarbons and organic matter formed in large quantity over several millions of years under high pressures and temperatures beneath the Earth‟s crust or surface. Crude oil formation occurs due to the combining of several hydrocarbons and minerals such as sulphur under very extreme pressures. Many modern day scientists have proven that most of the present day petroleum deposits and fields we have were produced after millions of years of highly pressurized activity. It is understood that the remains of plant and animal life formed petroleum fields after being compressed on sea beds by billions of tones of silt, sand and mud over a period of several millions of years. When sea animals and plants die, they will sink to the bottom of the ocean floor and begin to decompose. This decomposition takes place in the presence of sand and silt; which mixes with the biological remains. During the process of decomposition, bacteria act on the remains. This results in the removal of other elements such as phosphorus, nitrogen and oxygen from the mixture; which leaves the dead matter consisting of mostly carbon and hydrogen. The limited and insufficient supply of oxygen in the ocean floor disrupts the full decomposition of the dead biological remains. Eventually, after lying on the ocean floor for several years, the remains are buried under numerous layers of sand, silt, mud and all the minerals that are found within them. These layers create an increase in pressure; which in combination with the earth‟s natural heat redefines the mixture. Thereby, forming thinner and thinner layers of the dead matter finally resulting in a semi-liquid compressed hydrocarbon mixture. This hydrocarbon mixture is the formation base of petroleum. Most of the Earth‟s petroleum and natural gas reserves were formed more than a hundred million years ago, in seas or lakes that had an abundance of microscopic plant or animal organisms. Let us examine a specific instance for clarity. Assuming the abundant organism contributing to petroleum formation is plankton: as it is in most cases. When the plankton died, it sank to the bottom of the sea or lake. If the bottom of the given water body was stagnant and lacked sufficient oxygen supply, the dead plankton accumulated in the mud and did not decay properly. This would result in a layer of mud rich in organic matter. Sediments found in water bodies such as sand, silt, stone and mud will then form layers over the inadequately decomposed supply of dead plankton. As increase in the amount of layers sediment will result in a corresponding increase in temperature and pressure acting on the dead plankton matter. This high temperature and pressure would then aid the further decomposition of the organic matter; forming shorter hydrocarbon chains, creating petroleum.
  • 5. 5 Figure 1: Pictorial representation of the formation of petroleum.20 Crude Oil Exploration In recent days, petroleum products have come to be a significant natural resource in the sustainability of human comfort and everyday activities, industrialization and the provision of jobs. For petroleum to be discovered to make such a contribution, the location of an oil field must first be determined as well as quantity of the deposit. The entirety of the processes required in locating petroleum deposits is known as Exploration. A geologist usually oversees the exploration of petroleum; this process starts with the geologist examining a portion of the Earth‟s surface that is suspected to contain deposits of petroleum. In the 19th century, it was observed that areas of the Earth‟s surface that appeared to fold up or itself or sink several feet inwards; were most likely to contain petroleum deposits. The geologist will then proceed to carry out surveys and examinations of the rocks, soil and surrounding of the prospective petroleum reservoir. Samples will usually be obtained from surrounding water sources and surface areas. These samples will collectively be used to determine the porosity, age, permeability, formation sequence and profile of the ground within a particular area. This information will lead to the geologist being able to make an intelligent, supported and informed decision as to the likelihood of a petroleum reservoir being located within a given area. For instance, a geologist could be presented with a valley and asked to determine if its subsurface is a reservoir location. The geologist will first examine rocks in the region to aid such determination by seeing if it is even remotely possible for such an area to inhabit petroleum. Once an area is proven to have a possibility of housing a petroleum reservoir, further tests and examinations are done to determine the precise location of the deposit and its quantity. These tests will provide a more accurate mapping of the underground conditions of the area and see if these conditions are unique with those commonly associated with petroleum reservoirs. Usually, the first process of the second round of testing is - seismic exploration. Seismic exploration of petroleum involves the application of basic concepts of seismology to aid in the determination of whether a location on the Earth‟s surface is a petroleum reservoir or not. Seismology is the scientific study of earthquakes and
  • 6. 6 the behavior of the propagation of elastic waves through the layers and surface of the Earth and similar planetary bodies. This concept is applied to petroleum reservoir determination. Elastic waves are produced artificially by the geologist or geophysicist involved. These waves are sent ripping through the Earth‟s crust in areas that are suspected to house deposits of petroleum, natural gas and other minerals. The reflection of these waves back to where they were sent by the underground rock and surfaces is scientifically collected and processed. It can be seen clearly, that waves reflected from regular sub surfaces containing no deposits behave in a different manner from those reflected of sub surface rocks that are significantly more porous and permeable. Rock surfaces that are porous and permeable are much more likely to contain deposits of petroleum than those of different physical characteristics. Hence, the geologist can use such a method to ascertain if an area is in fact a petroleum reservoir. Figure 2: Generation and reflection of artificially induced vibration waves.19 Figure 3: Depiction of the varying reflection responses19
  • 7. 7 Ultimately, to conclude without any doubt that an area is indeed a location of petroleum deposits, all participating individuals looking to obtain oil must see for themselves that the area does in fact house petroleum. Therefore, the final step to be taken in the exploration of petroleum if the aforementioned procedures have been successful is the sinking of a well into ground. If substantial quantities of petroleum are found, the entire exploration process has been a success and extraction will usually follow. If no substantial quantity of petroleum is found, then the exploration team will conclude that the given area does not harbor a petroleum reservoir. According to Investopedia, an exploratory well is “a deep hole, in the Earth, that a petroleum or natural gas company drills in the hopes of locating a new source of fossil fuels. An exploratory well represents a risk for the company drilling it, because it is not known, before investing in the well, how much oil or natural gas it might contain. The well may turn out to be a profitable new source of fossil fuel, or it may contain noncommercial quantities of fuel that aren‟t worth extracting; in the latter case, the well may be plugged and abandoned.” Crude Oil Extraction If an oil company has positive results from a petroleum exploration procedure, the process of petroleum extraction will begin. The entirety of the processes and methods required to effectively remove deposits of petroleum from under the Earth‟s crust are collectively known as petroleum Extraction. Large teams of engineers, geologists, geophysicists and field officials typically carry out the extraction of petroleum. Usually, the petroleum extraction is an invasive procedure. Invasive in the sense that deep wells are drilled and high levels of environmental disruption, destruction and destabilization are observed. Historically, not all petroleum extraction procedures were invasive. Particularly, in the United Stated of America, some petroleum fields once existed where natural abundance of petroleum would rise to the surface of the Earth. This would happen either naturally, or with artificial aid by the use of steam. The majority of these fields have been used up completely; with just a few still being functional. According to George E. Totten, the earliest known oil wells were drilled and maintain in 347 CE and were located in China. These wells were very much “primitive” by today‟s standards. They were up to 240 metres in depth and were drilled using bits (similar to drilling bits) attached to bamboo bark poles. Today, the extraction of petroleum may apply a similar concept, but this concept is executed in a drastically different manner. The extraction of petroleum begins with the creation of oil (petroleum) wells. Oil wells are created by drilling a hole into the Earth‟s crust with the use of an oil rig. An oil rig is simply a specialized drilling rig which is a machine used to create holes of varying length and thickness in the ground. In most cases, to get the well effectively drilled, oil companies have to engage the use of service rigs in combination with regular drilling rigs. Service rigs are used to complete the drilling process in order to get the well on line after the oil rig has created it. This allows for the oil rig to be removed and stored or perhaps used for another drilling operation. After the oil well is created, a steel pipe casing is inserted into its core to provide structural stability and integrity. Steel pipe casings (also called „encasement pipes‟) are commonly used as a protection tools for underground constructed structures. Steel pipe casings generally have no specific specifications as maintained by any regulatory body. As long as the number one and most fundamental criteria of it is met. Most steel pipe casings are required to be extremely straight and round. Without this criteria being met, the effectiveness of the casing is significantly reduced because it has and increase chance of failure; making it particularly difficult to serve its fundamental purpose. Once the steel pipe casing has been secured, holes are made in the base of the well to allow the free flow of oil into the bore of
  • 8. 8 the well. For the oil well to be fully structurally completed, collections of valves are fixed at the top of the well. These valves aid the regulation of pressure and flow, which is required to enable the upward flow of the crude oil being extracted. This collection of valves is sometime referred to as a „Christmas tree‟. “In the petroleum and oil and gas industry, a Christmas tree is an assembly of valves, spools and fittings used for various well operations. It was named for its crude resemblance to a decorated Christmas tree.” The primary used of a Christmas tree is to control the flow of crude oil out of a given well. Without a Christmas tree being effectively utilized, oil may flow out at uncontrollable rates; ultimately leading to oil spillage and pollution of the surrounding areas. Figure 4: Oil well Christmas tree18 The above picture of a Christmas tree is a wellhead located in Northeastern area of British Columbia, Canada.
  • 9. 9 The term “wellhead” is used to refer to the outermost portion of an oil well that is seen above the ground. It encompasses all components responsible for the maintenance of adequate steady pressures and structure. Once the Christmas tree is fixed, the oil well is ready to be used in the recovery of crude oil and other natural resources such as natural gas. The recovery or extraction of oil is generally undertaken in three stages. These stages are thus: I. Primary Recovery II. Secondary Recovery; and III. Tertiary Recovery. Primary Recovery This is the first stage of petroleum extraction. It is the stage where “natural reservoir energy, such as gasdrive, water drive or gravity drainage, displaces hydrocarbons from the reservoir, into the wellbore and up to surface.” 17 Gasdrive is one of the primary recovery mechanisms employed, which contains dissolved and free gas, whereby the energy of the expanding gas is used to drive crude oil from the reservoir into the wellbore. While water drive refers to a situation whereby the pressure created by free flowing water that is utilized is enough to facilitate the transportation in an upward movement of the crude oil within the reservoir up through the wellbore. Figure 5: Gasdrive depiction 17 Primary recovery involves the use of predominantly naturally occurring mechanisms to pump out crude oil that flows to the bottom of a given oil well due to the forces of gravity. Primary crude oil
  • 10. 10 processes are essential steps to be taken at the beginning of an oil extraction process. This is because the natural pressure within the well must first be displaced before the introduction of artificial pumps and other extraction tools.“A new well is usually under pressure from natural gas and subterranean structures. This means that the crude oil will freely flow up and out of the well through the well bore.” 24 According to the National Energy Technology Laboratory of the United States of America‟s Department of Energy, only about ten percent (10%) of subsurface crude oil is recovered during the primary recovery stage. Hence, the obvious need for secondary and tertiary extraction procedures. When crude oil deposits are highly viscous and are at shallow depths, primary recovery is significantly more difficult to carry out. Secondary Recovery After primary recovery methods, a time will usually come where the natural pressure within the wellbore is insufficient in the supply of the force needed to allow an upward flow of crude oil out of the well. Hence, several alternative and usually artificial means must be employed to continue the upward and outward flow of crude oil. Secondary recovery is enabled through the supply of external energy in to the reservoir. This external energy then improves the natural drive of the wellbore or completely replaces anynon-existent drive. Thus, forming an artificial drive within the well. In order to facilitate the introduction or insertion of such artificial drive, officials in charge can employ several means to reach the desired output. These means includes but are not limited to some of the following; 1. Injection of fluids: The introduction of certain fluids down into the oil reservoir can be used to stimulate the pressure increase of the wellbore. This replaces the natural drive with an artificial drive due to fluid injection. The usual fluid of choice to be injected is water. The first recorded use of water injection was in the U.S. states of New York and Pennsylvania in the 1930s. Since then, water injection has come to be a go-to option of secondary recovery methods. Injection pumps containing water are placed at the opening of any given oil well and the bottom of the oil reservoir is filled with water at high pressures. The water acts as a piston, forcing the oil to travel in an upward displacement. The displacement of the oil does not take place in an immediate fashion. It is time consuming. On the following page, a picture of a water injection pump is shown. The depicted pump has a flexible tubing string discharge and is upright operated. The pump system consists of a frame, coupling, centrifugal pump, and surface flange asynchronous explosion-proof motor. It is intended to pump fresh water, stratal water and field wastewater as use for pressure modifications in secondary oil well recovery.
  • 11. 11 Figure 6: Water Injection Pump 27
  • 12. 12 2. Use of beam pumps: Another secondary recovery means by which crude oil is recovered from under pressurized wells is through the use of beam pumps or pumping systems. Beam pumping systems are made up of a pump at the bottom of any given oil well, a beam-pumping unit also known as the pump jack at the surface, a rod string connecting the pump jack and the pump and a prime mover containing either an electric motor or an internal combustion engine. The prime mover acts as an energy source for the entirety of the system. Beam pumping systems are typically made use of when the oil well being operated on is low in volume, relatively shallow in depth and contains light or medium weight crude oil. The fundamental operation of a beam pump is shown below. Figure 7: Drawing of a beam pumper on an oil well. 30
  • 13. 13 3. Use of electrical submersible pumps (ESPs): These devices haveairtightmotors, which allow for restricting of inward gas, vapor and liquid flow. It operates on the principle of centrifugation and operates in a vertical position. Unlike other pumps that are generally used from the outer ground surface of the well, electrical submersible pumps are inserted into the well for operation. They hence generate a flow of the situated crude oil from within the oil well. Thus, making electrical submersible pumps reliable options when it comes to the provision of artificial oil well drive. Crude oil enters the electrical submersible pump shaft, which is connected, to a gas separator via mechanical coupling at the bottom of the pump. After entering the shaft, the oil is then flowed upwards and out. The basic electrical submersible pump system is shown below: Figure 8: A typical mechanism of the ESP system
  • 14. 14 Other lesser-used methods of secondary recovery are: 1. Natural gas reinjection; 2. Gas lift (use of air, carbon dioxide or other gases). *Secondary recovery generally results in 30-50% of the oil reservoir being extracted. Tertiary Recovery This includes all extraction processes utilized after the secondary recovery stage in order to recover an even greater percentage of crude oil output. Tertiary methods of extraction are generally significantly more cost intensive than the primary and secondary recovery methods. Therefore, tertiary recovery methods are usually only performed when most of the oil in any given oil well has been collected. Thus, leaving any other remaining soil located deeply in the bedrock of the well. Because oil present during the tertiary stage of extraction is deeply rooted in rock, it is even more difficult to extract. Hence, the number one cause of the expensive nature of tertiary methods of extraction. During the period of general extraction where tertiary methods of extraction are engaged, crude oil within the well is deeply buried, sparse and well distributed along the well bedrock. Therefore, tertiary methods of extraction are aimed to reduce the overall viscosity of the yet to be extracted crude oil. A reduction in the crude oil viscosity will allow for the molecules to flow out of the bedrock and collect together. Thus, making it easier to apply pressure to the well and remove the oil. Typically, carbon dioxide is employed in tertiary extraction techniques to reduce viscosity and the effects of capillary action in the rock. Occasionally, detergents are also introduced into the tertiary extraction procedure to aid the reduction of surface tension between oil and water molecules within the oil well. Microbial treatments can also be utilized in tertiary extraction. Certain microorganisms help the simplification of hydrogen-carbon bonds; this helps make simpler crude oil hydrocarbons, which are thus easier to extract. Tertiary extraction techniques allow for an additional 5-10% of crude oil deposits to be extracted. The carbon dioxide tertiary extraction methodis depicted on the following page.
  • 15. 15 Figure 9: Carbon Dioxide tertiary extraction operations.32 In addition to the three most used extraction methods or stages as previously stated; there are some unconventional extraction processes that are in use today. These unconventional extraction processes are known as Unconventional Oil Extraction. This extraction technique is used when deposits of crude oil are located in areas other than the conventional underground oil well deposits. Some of these unconventional deposit locations are: 1. Oil sands (such as the ones in Alberta, Canada) 2. Oil shales 3. Coal based liquid supplies 4. Biomass-based liquid supplies 5. Natural gas liquid supplies For the purpose of this report, we will be dealing with only conventional extraction techniques and ramifications. This is because, conventional extraction techniques are significantly wider spread practiced than unconventional techniques.
  • 16. 16 The generality of petroleum extraction techniques is depicted in the diagram below. Figure 10: Crude oil extraction18
  • 17. 17 Extraction in Nigeria Now that some background has been provided on the exploration and extraction of crude oil in general has been relayed; we will now examine the brief history of petroleum exploration and extraction in Nigeria. Hence, one will grasp a better understanding of the environmental impacts of oil exploration and extraction in Nigeria. The Discovery of Oil The British first discovered petroleum deposits in Nigeria in the mid to late 1950s. Ever since then, the petroleum industry has grown to be the largest industry within the country and has become a significant source of wealth. The discovery of oil in Nigeria was largely followed by heavy political and economic strife within the country. This is due to the Nigerian economy becoming heavily reliant on petroleum-generated revenue and as a result, neglecting other economic sectors within the country. The political strife is as a direct result of a combination of political desire to control oil generation within the country as well as the long history of military and civilian regimes. Figure 11: Map of Africa with Nigeria highlighted 21 Despite the wide landmass of Nigeria, its oil is found in less than 15% of its landmass. Yet, Nigeria is one of the largest oil producing countries in the world. “Nigeria's proven oil reserves are estimated by the U.S. United States Energy Information Administration (EIA) at between 16 and 22 billion barrels (3.5×109 m3 ),but other sources claim there could be as much as 35.3 billion barrels (5.61×109 m3 ). Its reserves make Nigeria the tenth most petroleum-rich nation, and by the far the most affluent in Africa. In mid-2001 its crude oil production was averaging around 2.2 million barrels (350,000 m³) per day.” 33
  • 18. 18 Figure 12: Map of Nigeria with oil producing regions highlighted21 Oil Companies in Nigeria The oil companies within the country extract petroleum resources in Nigeria. Extraction of oil in Nigeria is unique in the sense that the entirety of oil companies within the country acts a joint venture corporation. That is, all companies are under a national umbrella of a „larger company‟. This larger company is known as the Nigerian National Petroleum Corporation (NNPC). All companies operating in Nigeria are legally required to be sub-entities of the NNPC. Thus, incorporating the addition of “Nigeria” to its company name. Oil extraction and exploration in Nigeria is carried out between six oil companies. Namely: 1. Royal Dutch Shell (known simply as „Shell‟) – British/Dutch 2. Chevron – American 3. Exxon-Mobil – American 4. Agip – Italian; 5. Total – French; and 6. Texaco (now merged with Chevron). The government and each company jointly own operations in Nigeria separately. The Nigerian government own and operate at least 60% of each national oil franchise within the country; regardless of the company‟s country of ownership.
  • 19. 19 Impact of the Oil Industry on the Nigerian Environment The region of Nigeria responsible for the harboring of approximately 100% of its petroleum reservoirs is called the Niger Delta region. The Niger Delta is simply the delta region of the Niger River, which is the largest and most influential river in West Africa. According to Nigerian geologists and officials, the Niger Delta region extends over an area of about 70,000 kilometer squares and makes up approximately 7.5% of the country‟s landmass. The region is home to about 31 million Nigerian citizens and more than 50 ethnic groups. Since 1975, the Niger Delta region has been singly responsible for the provision of over 80% of the country‟s oil exportation resource. Gas Flaring Most of the natural gas extracted from petroleum wells within the Delta region are immediately burned or flared into the surrounding atmosphere at a rate of approximately 70 million m3 of gas per day. This daily expulsion of burned gas into the atmosphere of the Niger Delta region is equivalent to about 42% of the total gas burned in the entire continent of Africa per day. Thus, severely polluting the air of the entire Niger Delta region and becoming the single most significant contributor of greenhouse emissions on Earth. It is a well-known fact that the biggest gas flaring contributors amongst oil companies in Nigeria is Shell Plc. Annually, about 3.5 billion cubic feet of gas associated with crude oil extraction is produced in Nigeria. Unlike other countries where associated gas is reused or re-injected into the ground, Nigeria generally has at least 70% of produced associated gas burned and released into the atmosphere. This is because, it is more financially economical for oil companies to obtain gas from non-associated sources rather than separate associated gad from crude oil and other mineralsfrom oil well extraction procedures. The high levels of gas flaring allow for the high amounts of methane distribution into the atmosphere, which is a significant contributor to global warming and climate change. In the year 2002 alone, over 35million tones of carbon dioxide were released into the atmosphere via gas flaring. Gas flaring is a significant source of several carcinogens and poisonous chemicals. These chemicals include but are not limited to: 1. Nitrogen Dioxides 2. Sulphur Dioxides 3. Benzene 4. Toluene 5. Dioxin 6. Benzapyrene 7. Xylene 8. Hydrogen Sulphide; and others. Most sites of gas flaring are located close to or around communities inhabited by thousands- if not millions – of people. Towns and dwellings affected by gas flaring are often covered with soot and thick dark clouds; leading to complete damage, disruption, contamination and pollution of once viable food and water sources.
  • 20. 20 “ In November 2005 a judgment by, "the Federal High Court of Nigeria ordered that gas flaring must stop in a Niger Delta community as it violates guaranteed constitutional rights to life and dignity. In a case brought against the Shell Petroleum Development Company of Nigeria (Shell), Justice C. V. Nwokorie ruled in Benin City that the damaging and wasteful practice of flaring cannot lawfully continue." ”39 Despite such a public declaration of the ill effects of gas flaring, the practice continues till today. Figure 13: Satellite view of gas flares in the Niger Delta 40 As is clearly depicted above, there is a high concentration of gas flare sites through out the entire Niger Delta region; affecting the lives and health of over 30 million people and ruining the atmospheric habitat of an area of greater that 70 000 km2 .
  • 21. 21 Figure 14: Example of what a typical gas flare looks like18 Oil Spillage
  • 22. 22 Another significant source of environmental degradation in the Niger Delta region of Nigeria is oil spillage. Oil spillage is the intentional or accidental release of liquid or semi-liquid crude oil into surrounding environments. These environments encompass both water bodies and land. Oil spillage is a form of environmental pollution. Oil spills can take weeks, months of even several years to effectively clean up. Non-the-less, the damages made by oil spillage usually live on for longer periods of time even after clean ups. Spills are observed when crude oil escaped from holding takes, oil rigs, oil well, offshore platforms, pipelines and other sources. Some times, by-products of crude oil, such as gasoline, diesel and kerosene; when spilled are referred to as oil spillage. For the purpose of this report, oil spillage will only refer to the spillage of extracted crude oil. Figure 15: Shell Oil Spill, Nigeria In Nigeria, oil spillage is so common that many locals have come to see it as a way of life and it does not raise much concern from them. It has been estimated that over 13million barrels of oil has spilled in Nigeria since its discovery of oil in 1958. Nigerian officials have stated that over 7000 oil spill cases have been experienced between 1970 and 2000 alone.
  • 23. 23 Oil spillage has a big impact on the environment in the Niger Delta. The ecosystem in this area had been severely damaged due to oil spillage. The Niger Delta region has abundant natural mangrove forests. Over the years, about 15% of the rich mangrove forest has been destroyed; taking with it several microorganisms and hundreds of unique plant and animal species with it. Drinking water bodies within the area have also been drastically contaminated. Most water bodies in the area have constant thin layers of oil on their surfaces. Water contamination has altered the rich aquatic habitat that was once predominant. The high levels of hydrocarbons and chemicals in natural water sources have also been a responsible factor for the presence of carcinogens in water supply for inhabiting towns and communities. Also, because oil floats on water, oxygen levels within the water become very low due to an increased difficulty in sunlight and air penetrating through the oil layer. Lack of adequate oxygen then leads to the death of aquatic organisms that require oxygen to ensure their survival. The mass death of aquatic organisms in turn, will lead to increased levels of decomposition. Overall, the stability and self-reliance of the water body is completely lost. Overall, the effects of oil spillage can be briefly summarized under the following: 1. Destruction of the mangrove forest 2. Destabilization of ecosystems 3. Killing of exotic plant and animal species 4. Contamination of water supply 5. Widespread distribution of carcinogens 6. Destruction of soil microorganisms 7. Possible genetic mutation of surviving animal species 8. Contamination of coastal environments Nigerian environmental regulations are weak and not generally enforced completely and thoroughly. This allows for oil companies to engage in such environmentally detrimental practices without worrying about possible sanctions or retributions. Yet, one must remember, the Nigerian government first and foremost owns 60% of every oil company on its soil. Therefore, a greater portion of environmental responsibility falls on the shoulders of the Nigerian government and not necessarily entirely on the oil companies as one might think. Nigeria has created the following agencies over the years to help curb environmental impacts of oil and mineral extraction: 1. Federal Environmental Protection Agency (FEPA) 2. National Oil Spill Detection and Response Agency (NOSDRA) 3. National Environmental Regulation and Enforcement Agency (NESREA) 4. National Water Resources Institute (NWRI) 5. National Agricultural Extension, Research and Liaison Services (NAERLS) 6. Nigerian Agricultural and Rural Development Bank (NARDP) *None of these agencies have succeeded in curbing or even reducing in the slightest amounts the environmental catastrophe that has been caused by petroleum extraction in the Niger Delta. Collective Causes
  • 24. 24 Environmental degradation faced by the Niger Delta region of Nigeria by oil spillage and well as gas flaring are caused by circumstances and lack or regulations common to both practices. Corruption: Most Nigerian citizens and indeed individuals from other parts of the world believe that the most significant problem affecting the betterment of the environmental situation in the Delta is corruption. Nigerian officials at all levels have a long history of corruption. This includes (but not limited to); siphoning of funds made available for regulatory and enforcement operations, inflation of salaries of officials – thus reducing liquid assets available for environmental research and stability, collection of bribes from oil company officials to turn a „blind eye‟, and so on. The totality of these and others, make it increasingly difficult to start and sustain a working approach to environmental sustainability. Vandalism: Increasingly, instances of pipeline vandalism by locals and surrounding criminals have propagated the occurrences of oil spills. Often, oil pipelines are tapped and oil is collected for black-market sale. Persons involved in such acts generally puncture the pipelines and do not plug any holes made while tapping. These holes are left open, and oil flows out, damaging the surrounding area. Maintenance:Pipelines in the Delta are not regularly maintained to ensure their utmost productivity. Some pipelines have been left without maintenance practices for several years according to Nigerian officials. This leads to abundant rusting, fracturing andbrittleness of crude oil transportation pipelines. The pipelines are thus more prone to be a cause of spillage, which is detrimental to the immediate environment. Regulations: Regulations that are set in place to protect the environment are largely ignored or not followed correctly. Lack of Care:Perhaps indeed, in my opinion, the greatest cause of the environmental degradation being undergone in the Niger Delta region of Nigeria is the lack of care. Oil company officials as well as Nigerian government officials just do not seem to have enough care (and perhaps knowledge) about the true environmental implications of the processes oil extraction entails. When it comes to oil spillage, there may be less of blame to oil companies and officials, simply because of situations like vandalism, which are out of their control in most instances. But when it comes to the issue of gas flaring – oil company officials and Nigerian authority are directly responsible for environmental pollution due to flaring. I am of the adamant position the people in charge are more preoccupied with monetary gain than the maintenance of the environment that provides that monetary gain. It is a classic example of “biting the hand that feeds you”. If the above causes are duly recognized and corrected, the negative environmental impacts in Nigeria will be significantly reduced. Method of Correction/Proposed Solution
  • 25. 25 The following are specific methods or means by which oil spillage and gas flaring impacts can be minimized, prevented or reversed as much as possible. Biological Remediation: Biological remediation is the most effective and newly practiced correction technique. This is a spillage clean-up technique that involves the growth and harvesting of biological organisms capable of consuming hydrocarbons found in crude oil. Hence, biological remediation can be used to help reverse or minimize the effects of crude oil spillage in the Delta. This technique has been implemented to some degree in the Niger Delta region, but not to a large enough degree to amount in any reasonable change. The Niger Delta town of Ogbogu has used bioremediation to clean up spills in its areas. Two plant species were used as cleaning agents. These species are: Hibiscus cannabinusand Vetiveria zizanioides.The procedure involves the spreading of H.cannabinus over contaminated water bodies; since H.cannabinus has an affinity for hydrocarbons, it will absorb the oil out of the given water body. The H.cannabinus is then collected and transported to a plantation rich with V.zizanioides. V.zizanioides is a rich and deeply rooted plant that has the biological ability to absorb and break down hydrocarbons completely and detoxify soils. Hence, both organisms are used collectively to help curb soil and water contamination due to crude oil spillage. Both plants are native to Western Africa. Figure 16: H.cannabinus 41
  • 27. 27 It is unfortunate that such mass destruction of the environment has been allowed to continue in any part of the world. As human beings, we must all remember that we are collective owners of the planet. The occurrences in one part of the planet affect us all in one way or another. In this case, the environmental degradation of one part of the planet (Nigeria) affects us all. Gas flaring that is highly practiced in the Niger Delta ultimately produces a green house affect that is detrimental to all inhabitants of the planet no matter where they are. It is my utmost believe that the situation the Niger Delta can be duly corrected if steadfast individuals work collectively in an efficient matter. In the year 2010, the world was shocked and forced into action due to the oil spillage in the Gulf of Mexico. Sadly, that kind of international coverage has not been given to the Gulf of Guinea that borders the Niger Delta. Indeed, after almost 60 years of contamination, we owe it to the Niger Delta and all that has been lost to correct our wrong. We owe it to the Earth and future generations to clean up.
  • 28. 28 Sources: 1. ^PetroStrategies Oil and Gas Learning Center Oil and Gas Explorationhttp://www.petrostrategies.org/Learning_Center/exploration.htm 2. ^Concise Online Oxford English Dictionary http://oxforddictionaries.com/definition/petroleum?q=petroleum 3. ^E. Tzimas, (2005) (PDF). Enhanced Oil Recovery using Carbon Dioxide in the European Energy System. European Commission Joint Research Center. Retrieved 2008-08-23. 4. ^Global Marine Oil Pollution Information Gatewayhttp://oils.gpa.unep.org/facts/extraction.htm 5. The Encyclopedia of Earth: Structure of the EarthNCSE Boston University 6. ^Petroleum Formation http://www.petroleum.co.uk/formation/ 7. Figure 1: Chemistry A Cultural Approach http://www.m2c3.com/chemistry/VLI/M3_Topic1/M3_Topic1_print.html 8. http://www.naturalgas.org/naturalgas/exploration.asp 9. Figure 2: The Encyclopedia of Earth: Structure of the EarthNCSE Boston University 10. Investopedia Definitions http://www.investopedia.com/terms/e/exploratory- well.asp#axzz1qplpZSsF 11. ^"New Billions In Oil"Popular Mechanics, March 1933 -- ie article on invention of water injection and detergents for oil recovery 12. Mines, R.O. and Lackey, L.W., "Introduction to Environmental Engineering", Prentice Hall/Pearson (2009). 13. A Timeline of Highlights From The Histories of ASTM Committee D02 and the Petroleum Industry; George E. Totten, Ph.D. 14. ^GE Energy, Oil and Gas 15. API Specifications 6A and 17D 16. Oilfield Glossary http://oilgasglossary.com/wellhead.html 17. Schlumberger Oilfield Glossary 18. Wikipedia Encyclopedia
  • 29. 29 19. Britannica Encyclopedia 20. Bing Images 21. Google Images 22. National Energy Technology Laboratory U.S. Department of Energy 23. Definition of Primary Oil Recovery http://ehow.com/ 24. Susan Kristoff; Featured Writer for Engineering. Suite101.com 25. ^"Failing Oil Fields Revived by Action of Water" Popular Mechanics, December 1930, left-column mid page 26. Roemex Limited; water injection. http://www.roemex.com/production/water_injection.htm 27. JSC ALNAS http://en.alnas.ru/products/ecna-ppd/y-ecna-ksh/ 28. Human Development Consultants: http://www.hdc.ca/product_samples/pumpjack_a.pdf 29. Husky Energy Inc. 30. Lewis Morburg’s Internet Oil and Gas Newsletter. http://www.mosburgoil-gas.com/ 31. Lyons, William C., ed. (1996). Standard Handbook of Petroleum & Natural Gas Engineering. 2 (6 ed.). Gulf Professional Publishing 32. Denbury Resources Inc. http://i.bnet.com/blogs/carbon-dioxide-tertiary-recovery- method.jpg?tag=contentMain;contentBody 33. ^U.S. Energy Information Administration (U.S. EIA), “Nigeria Country Analysis Brief,” December 1997. 34. ^Amnesty International. (2006). Nigeria: Oil, Poverty and Violence. Retrieved 9 May 2007, from http://web.amnesty.org/library/index/ENGAFR440172006?open&of=ENG-NGA 35. Shell International Petroleum Company, Developments in Nigeria (London: 1995) 36. CRS Report for Congress, Nigeria: Current Issues Updated January 30, 2008
  • 30. 30 37. Pearson, Scott R. Petroleum and the Nigerian Economy”. Stanford: Stanford University Press, 1970. p. 13. 38. ^"Gas Flaring in Nigeria". Friends of the Earth. Oct. 2004. Retrieved 24 Jan. 2009. 39. Egan, J. (1999). Troubled Times in the Niger Delta. Retrieved 8 May 2007, from http://news.bbc.co.uk/2/hi/programes/crossing-continents/325300.stm 40. Global Gas Flaring Satellite Survey: http://www.treehugger.com/clean-technology/global-gas- flaring-satellite-survey-reveals-oils-hidden-costs.html 41. Vegetables/Legumes Record Display http://database.prota.org/PROTAhtml/Hibiscus%20cannabinus_En.htm