SlideShare una empresa de Scribd logo
1 de 59
 Characteristics of Sinusoidal
 Phasors
 Phasor Relationships for R, L and C
 Impedance
 Parallel and Series Resonance
 Examples for Sinusoidal Circuits Analysis
Single Phase AC
Sinusoidal Steady State Analysis
• Any steady state voltage or current in a linear circuit with a
sinusoidal source is a sinusoid
– All steady state voltages and currents have the same frequency as
the source
• In order to find a steady state voltage or current, all we need to know
is its magnitude and its phase relative to the source (we already know
its frequency)
• We do not have to find this differential equation from the circuit, nor
do we have to solve it
• Instead, we use the concepts of phasors and complex impedances
• Phasors and complex impedances convert problems involving
differential equations into circuit analysis problems
Characteristics of Sinusoids
Outline:
1. Time Period: T
2. Frequency: f (Hertz)
3. Angular Frequency:  (rad/sec)
4. Phase angle: Φ
5. Amplitude: Vm Im
Characteristics of Sinusoids :
  tVv mt sin iI1
I1
I1 I1 I1 I1
R1
R1
R
5
5
+
_
IS 
E
I1
U1
+
-
U
I

iI1 I1 I1 I1
R1
R1
R
5
5
-
+
IS 
E
I1
U1
+
-
U
I

v ,i
tt1 t20
Both the polarity and magnitude of voltage are changing.
Radian frequency(Angular frequency):  = 2f = 2/T (rad/s)
Time Period: T — Time necessary to go through one cycle. (s)
Frequency: f — Cycles per second. (Hz)
f = 1/T
Amplitude: Vm Im
i = Imsint, v =Vmsint
v ,i
t 20
Vm , Im
Characteristics of Sinusoids :
Effective Roof Mean Square (RMS) Value of a Periodic
Waveform — is equal to the value of the direct current which is
flowing through an R-ohm resistor. It delivers the same average
power to the resistor as the periodic current does.
RIRdti
T
T
2
0
21

Effective Value of a Periodic Waveform 
T
eff dti
T
I
0
21
22
1
2
2cos1
sin
1 2
0
2
0
22 m
m
T
m
T
meff
IT
I
T
dt
t
T
I
tdtI
T
I 

 


2
1
0
2 m
T
eff
V
dtv
T
V  
Characteristics of Sinusoids :
Phase (angle)
   tIi m sin
  sin0 mIi 
Phase angle
-8
-6
-4
-2
0
2
4
6
8
0 0.01 0.02 0.03 0.04 0.05
<0
0
Characteristics of Sinusoids :
)sin( 1  tVv m
)sin( 2  tIi m
Phase difference
2121 )(   ttiv
021   — v(t) leads i(t) by (1 - 2), or i(t) lags v(t) by (1 - 2)
2
21

 
v, i
t
v
i
  21
Out of phase
t
v, i
v
i
v, i
t
v
i
021  
In phase
021   — v(t) lags i(t) by (2 - 1), or i(t) leads v(t) by (2 - 1)
Characteristics of Sinusoids :
Review
The sinusoidal waves whose phases are compared must:
1. Be written as sine waves or cosine waves.
2. With positive amplitudes.
3. Have the same frequency.
360°—— does not change anything.
90° —— change between sin & cos.
180°—— change between + & -
2
sin cos cos
3 2
cos sin
2

   

 
   
       
   
 
   
 
Characteristics of Sinusoids :
Phase difference
 
30314sin22201  tv
   
9030314sin222030314cos22202  ttv
 
120314sin2220  t

1501203021  
 
30314cos22202  tv
 
30314cos22202  tv  
18030314cos2220  t
  
210314360cos2220  t
 
90150314sin2220  t
 
60314sin2220  t

30603021  
Find ?
 
30314cos22202  tvIf
Characteristics of Sinusoids :
Phase difference
v, i
t
v
i
-/3 /3
• ••








3
sin

tVm







3
sin

tIm
Characteristics of Sinusoids :
Outline:
1. Complex Numbers
2. Rotating Vector
3. Phasors
A sinusoidal voltage/current at a given frequency, is characterized by only
two parameters : amplitude and phase
A phasor is a Complex Number which represents magnitude and phase of a sinusoid
Phasors
e.g. voltage response
A sinusoidal v/i
Complex transform
Phasor transform
By knowing angular
frequency ω rads/s.
Time domain
Frequency domain
  eR v t
Complex form:
   cosmv t V t  
Phasor form:
   j t
mv t V e
 

Angular frequency ω is
known in the circuit.
 || mVV
 || mVV
Phasors
Rotating Vector
   tIti m sin)(
i
Im
t1
i
t
Im

t
x
y
 
   
     
 max
cos sin
sin
j t
m m m
j t
m m
I e I t jI t
i t I t I I e
 
 
   
 


   
  
A complex coordinates number:
Real value:
i(t1)
Imag
Phasors
Rotating Vector
Vm
x
y
0

)sin(   tVv m
Phasors
Complex Numbers
jbaA  — Rectangular Coordinates
  sincos jAA 
j
eAA  — Polar Coordinates
j
eAAjbaA 
conversion: 22
baA 
a
b
arctg
jbaeA j

cosAa 
sinAb 

a
b
Real axis
Imaginary axis
jjje j

090sin90cos90 
Phasors
Complex Numbers
Arithmetic With Complex Numbers
Addition: A = a + jb, B = c + jd, A + B = (a + c) + j(b + d)
Real Axis
Imaginary Axis
AB
A + B
Phasors
Complex Numbers
Arithmetic With Complex Numbers
Subtraction : A = a + jb, B = c + jd, A - B = (a - c) + j(b - d)
Real
Axis
Imaginary
Axis
AB
A - B
Phasors
Complex Numbers
Arithmetic With Complex Numbers
Multiplication : A = Am  A, B = Bm  B
A  B = (Am  Bm)  (A + B)
Division: A = Am  A , B = Bm  B
A / B = (Am / Bm)  (A - B)
Phasors
Phasors
A phasor is a complex number that represents the magnitude and phase of
a sinusoid:
  tim cos  mI
Phasor Diagrams
• A phasor diagram is just a graph of several phasors on the complex
plane (using real and imaginary axes).
• A phasor diagram helps to visualize the relationships between currents
and voltages.
Phasors
)sin()cos()(

 
tAjtAeAAe tjtj
)cos(||}Re{ 
 tAAe tj
Complex Exponentials
j
eAA 
 A real-valued sinusoid is the real part of a complex exponential.
 Complex exponentials make solving for AC steady state an
algebraic problem.
Phasors
Phasor Relationships for R, L and C
Outline:
I-V Relationship for R, L and C,
Power conversion
Phasor Relationships for R, L and C
 v~i relationship for a resistor
_
v
i
R

 +
S 


tIt
R
V
R
v
i m
m
 sinsin 
tVv m sin
Relationship between RMS:
R
V
I 
Wave and Phasor diagrams:
v、i
t
v
i 
I 
V
R
V
I



Resistor
Suppose
 Time domain Frequency domainResistor
With a resistor θ﹦ϕ, v(t) and i(t) are in phase .
)cos()(
)cos()(




wtIti
wtVtv
m
m
IRV
RIV
eRIeV
eRIeV
mm
j
m
j
m
wtj
m
wtj
m



 


 )()(
Phasor Relationships for R, L and C
 PowerResistor
_
v
i
R
+

 P  0
tItVvip mm  sinsin  tVI mm 2
sin
 t
VI mm
2cos1
2
 tIVIV 2cos
v, i
t
v
i
P=IV 
T
pdt
T
P
0
1
  
T
VIdttVI
T 0
2cos1
1

R
V
RIIVP
2
2

• Average Power
• Transient Power
Note: I and V are RMS values.
Phasor Relationships for R, L and C
Resistor
, R=10,Find i and Ptv 314sin311
 V
V
V m
220
2
311
2

 A
R
V
I 22
10
220

ti 314sin222  WIVP 484022220 
Phasor Relationships for R, L and C
 v~i relationshipInductor
dt
di
Lvv AB 
  tLI
dt
tId
L
dt
di
Lv m
m


cos
sin

 
90sin  tLIm 
 
90sin  tVm 
 

t
vdt
L
i
1
 

t
vdt
L
vdt
L 0
0 11

t
vdt
L
i
0
0
1
tIi m sinSuppose
Phasor Relationships for R, L and C
 v~i relationshipInductor
 
90sin  tLIm 
dt
di
Lv   
90sin  tVm 
LIV mm 
Relationship between RMS: LIV 
L
V
I

 fLLXL  2  
For DC,f = 0,XL = 0.
fXL 
v(t) leads i(t) by 90º, or i(t) lags v(t) by 90º
Phasor Relationships for R, L and C
 v ~ i relationshipInductor
v, i
t
v
i
eL
V
I
LXIjV 
Wave and Phasor diagrams:
Phasor Relationships for R, L and C
 PowerInductor
vip    tItV mm  sin90sin 
 ttIV mm  sincos 
t
IV mm
2sin
2
 tVI 2sin
P
t
v, i
t
v
i
++
--22
max
2
1
LILIW m 
2
00 2
1
LiLidividtW
it
 Energy stored:
  
T T
tdtVI
T
pdt
T
P
0 0
02sin
11
Average Power
Reactive Power
L
L
X
V
XIIVQ
2
2
 (Var)
Phasor Relationships for R, L and C
Inductor
L = 10mH,v = 100sint,Find iL when f = 50Hz and 50kHz.
  
14.310105022 3
fLX L
 
   Atti
A
X
V
I
L
L

90sin25.22
5.22
14.3
2/100
50



  
31401010105022 33
fLX L
 
   mAtti
mA
X
V
I
L
L
k

90sin25.22
5.22
14.3
2/100
50



Phasor Relationships for R, L and C
 v ~ i relationshipCapacitor
_
v
i
+


C
dt
dv
C
dt
dq
i 
tVv m sinSuppose:
 
90sincos  tCVtCVi mm   
90sin  tIm 
   

t tt
idt
c
vidt
c
idt
c
idt
c
v
0
0
0
0
1111
i(t) leads v(t) by 90º, or v(t) lags i(t) by 90º
Relationship between RMS:
CX
V
C
V
CVI 


1
 
fCC
XC
 2
11

For DC,f = 0, XC  
f
XC
1

mm CVI 
Phasor Relationships for R, L and C
_
v
i
+


C
tj
m
tj
m
eCVj
dt
edV
C
dt
tdv
Cti 


)(
)(
v(t) = Vm ejt
Represent v(t) and i(t) as phasors:
CjX
V
VCωjI ==


• The derivative in the relationship between v(t) and i(t) becomes a
multiplication by in the relationship between and .
• The time-domain differential equation has become the algebraic equation in the
frequency-domain.
• Phasors allow us to express current-voltage relationships for inductors and
capacitors much like we express the current-voltage relationship for a resistor.
 v ~ i relationshipCapacitor
V I
wC
j

Phasor Relationships for R, L and C
 v ~ i relationshipCapacitor
v, i
t
v
i
I
V
CXIjV  
Wave and Phasor diagrams:
Phasor Relationships for R, L and C
PowerCapacitor
Average Power: P = 0
Reactive Power
C
C
X
V
XIIVQ
2
2
 (Var)
 
90sinsin  tItVvip mm  tVIt
IV mm
 2sin2sin
2

P
t
v, i
t
v
i
++
--
Energy stored:
  
t vv
CvCvdvdt
dt
dv
CvvidtW
0 0
2
0 2
1
22
max
2
1
CVCVW m 
Phasor Relationships for R, L and C
Capacitor
Suppose C=20F,AC source v=100sint,Find XC and I for f = 50Hz,
50kHz。
 159
2
11
Hz50
fCC
Xf c

A44.0
2

c
m
c X
V
X
V
I
  159.0
2
11
KHz50
fCC
Xf c

A440
2

c
m
c X
V
X
V
I
Phasor Relationships for R, L and C
Review (v – i Relationship)
Time domain Frequency domain
iRv  IRV  
I
Cj
V  

1
ILjV   
dt
di
LvL 
dt
dv
CiC 
C
XC

1

LXL ,
,
, v and i are in phase.
, v leads i by 90°.
, v lags i by 90°.
R
C
L
Phasor Relationships for R, L and C
Summary:
 R: RX R  0
L: ffLLXL   2
2

  iv
C:
ffcc
XC
1
2
11

 2

  iv
 IXV 
 Frequency characteristics of an Ideal Inductor and Capacitor:
A capacitor is an open circuit to DC currents;
A Inductor is a short circuit to DC currents.
Phasor Relationships for R, L and C
Impedance (Z)
Outline:
Complex currents and voltages.
Impedance
Phasor Diagrams
• AC steady-state analysis using phasors allows us to express the
relationship between current and voltage using a formula that looks
likes Ohm’s law:
ZIV 
Complex voltage, Complex current, Complex Impedance
vm
j
m VeVV v


im
j
m IeII i



 
ZeZe
I
V
I
V
Z jj
m
m iv )(


‘Z’ is called impedance
measured in ohms ()
Impedance (Z)
Complex Impedance

 
ZeZe
I
V
I
V
Z jj
m
m iv )(


 Complex impedance describes the relationship between the voltage
across an element (expressed as a phasor) and the current through the
element (expressed as a phasor).
 Impedance is a complex number and is not a phasor (why?).
 Impedance depends on frequency.
Impedance (Z)
Complex Impedance
ZR = R  = 0; or ZR = R  0
Resistor——The impedance is R
c
j
c jX
C
j
e
C
Z 





21
)
2
(

  iv
or 
90
1

C
ZC

Capacitor——The impedance is 1/jωC
L
j
L jXLjLeZ  

2
)
2
(

  iv
or 
90 LZL 
Inductor——The impedance is jωL
Impedance (Z)
Complex Impedance
Impedance in series/parallel can be combined as resistors.
_
U
U
Z1
+

Z2 Zn


I



n
k
kn ZZZZZ
1
21 ...
_
US
In
I1
I1
I1 I1 I1 I1
 


R1
R1
Zn
5
5
5 5
+
+
_
US
IS 
U1
+
-
U

I

Z2Z1




n
k kn ZZZZZ 121
11
...
111
21
1
2
21
2
1
ZZ
Z
II
ZZ
Z
II



 
Current divider:

 n
k
k
i
i
Z
Z
VV
1

Voltage divider:
Impedance (Z)
Complex Impedance
_
+


V
 I


1IZ1
Z2 Z

 
2121
2
2121
2
1
2
1
1
2
2
1
11
ZZZZZZ
ZV
I
ZZZZZZ
ZZV
ZZ
Z
V
I
ZZ
Z
II





















Impedance (Z)
Complex Impedance
Phasors and complex impedance allow us to use Ohm’s law with
complex numbers to compute current from voltage and voltage
from current
20kW
+
-
1mF10V  0 VC
+
-
w = 377
Find VC
• How do we find VC?
• First compute impedances for resistor and capacitor:
ZR = 20kW = 20kW  0
ZC = 1/j (377 *1mF) = 2.65kW  -90
Impedance (Z)
Complex Impedance
20kW
+
-
1mF10V  0 VC
+
-
w = 377
Find VC
20kW  0
+
-
2.65kW  -
90
10V  0 VC
+
-
Now use the voltage divider to find VC:




46.82V31.1
54.717.20
9065.2
010VCV
)
0209065.2
9065.2
(010 





kk
k
VVC
Impedance (Z)
Impedance allows us to use the same solution techniques
for AC steady state as we use for DC steady state.
• All the analysis techniques we have learned for the linear circuits are
applicable to compute phasors
– KCL & KVL
– node analysis / loop analysis
– Superposition
– Thevenin equivalents / Norton equivalents
– source exchange
• The only difference is that now complex numbers are used.
Complex Impedance
Impedance (Z)
Kirchhoff’s Laws
KCL and KVL hold as well in phasor domain.
KVL: 0
1

n
k
kv vk- Transient voltage of the #k branch
0
1

n
k
kV
KCL: 0
1


n
k
ki
0
1


n
k
kI
ik- Transient current of the #k branch
Impedance (Z)
Admittance
• I = YV, Y is called admittance, the reciprocal of
impedance, measured in Siemens (S)
• Resistor:
– The admittance is 1/R
• Inductor:
– The admittance is 1/jL
• Capacitor:
– The admittance is jC
Impedance (Z)
Phasor Diagrams
• A phasor diagram is just a graph of several phasors on the complex
plane (using real and imaginary axes).
• A phasor diagram helps to visualize the relationships between currents
and voltages.
2mA  40
–
1mF VC
+
–
1kW VR
+
+
–
V
I = 2mA  40, VR = 2V  40
VC = 5.31V  -50, V = 5.67V  -29.37
Real Axis
Imaginary Axis
VR
VC
V
Impedance (Z)
Parallel and Series Resonance
Outline:
RLC Circuit,
Series Resonance
Parallel Resonance
v
vR
vL
vC
CLR vvvv 
CLR VVVV  Phasor

I
V
LV
CV
RV
IZ
XRI
XXRI
IXIXIR
VVVV
CL
CL
CLR





22
22
22
22
)(
)()(
)(
)CL XXX (
22
XRZ 
22
)
1
(
c
LR

 
(2nd Order RLC Circuit )Series RLC Circuit
Parallel and Series Resonance :
22
XRZ 
22
)
1
(
c
LR

 IZVVVV CLR  22
)(
Z
X = XL-XC
R


V
RV
CLX VVV   R
XX
V
VV
CL
R
CL





1
1
tan
-
tan
Phase difference:
XL>XC   >0,v leads i by  — Inductance Circuit
XL<XC   <0,v lags i by  — Capacitance Circuit
XL=XC   =0,v and i in phase — Resistors Circuit
Series RLC Circuit
Parallel and Series Resonance :
CLR VVVV   CL XIjXIjRI  
ZIjXRIXXjRI CL
  )()]((
)( CL XXjR
I
V
Z 


 ZjXRZ
22
)( CL XXRZ 
R
XX CL 
 1
tan
iv  
v
vR
vL
vC
Series RLC Circuit
Parallel and Series Resonance :
Series Resonance (2nd Order RLC Circuit )
CLR VVVV   CL XIjXIjRI  
R
XX
arctg
V
VV
arctg CL
R
CL 



CLCL VVL
C
XXWhen  

1
,
VVR  0and —— Series Resonance
Resonance condition
I
LV
CV
VVR
 
LC
for
LC 

2
11
00 
f0 f
X
Cf
XC
2
1

fLXL 2
Resonant frequency
Parallel and Series Resonance :
Series Resonance
R
V
Z
V
IRXXRZ CL 
0
0
22
0 )(•
Zmin;when V = constant, I = Imax= I0
RXX CL  RIXIXI CL 000  VVV CL 
• Quality factor Q,
R
X
R
X
V
V
V
V
Q CLCL

CLCL VVL
C
XX  )
1
( 

Resonance condition:
When,
Parallel and Series Resonance :
Parallel RLC Circuit
V

I
 LI
 CI
  
)(
1
/
11
222222
LR
L
Cj
LR
R
Cj
LjRLjR
LjR
Cj
LjRCjLjR
Y
























Parallel Resonance
Parallel Resonance frequency
L
CR
LC
2
0 1
1

LXR In generally )
2
1
( 0
LC
f


LC
1
0 
0)( 222



LR
L
C


When 2220
LR
R
Y

,
In phase withV I
V
L
RC
C
L
R
R
V
L
LC
R
R
V
LR
R
VVYII 






222
22
0
200
1
Zmax Imin:
Parallel and Series Resonance :
Parallel RLC Circuit
V

I
 LI
 CI
V
L
C
j
L
V
j
LjR
VIL


 


00
1

V
L
C
jVCjIC
  0
0|||||| 0  III CL
 Z  .
RCR
L
Q
0
0 1


0IjQIL
  0IjQIC
 
•Quality factor Q,
0000 Y
Y
Y
Y
I
I
I
I
Q CLLC

Parallel and Series Resonance :
Parallel RLC Circuit
Review
For sinusoidal circuit, Series : 21 vvv  21 VVV 
21 iii  21 III 
?
Two Simple Methods:
Phasor Diagrams and Complex Numbers
Parallel :
Parallel and Series Resonance :

Más contenido relacionado

La actualidad más candente (20)

Function generator
Function generatorFunction generator
Function generator
 
Transistor biasing
Transistor biasing Transistor biasing
Transistor biasing
 
Single phase AC circuit
Single phase AC  circuit  Single phase AC  circuit
Single phase AC circuit
 
SWR
SWRSWR
SWR
 
Sinusoidal Steady State Ananlysis
Sinusoidal Steady State AnanlysisSinusoidal Steady State Ananlysis
Sinusoidal Steady State Ananlysis
 
Bio-polar junction transistor (edc)
Bio-polar junction transistor  (edc)Bio-polar junction transistor  (edc)
Bio-polar junction transistor (edc)
 
Rec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelRec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re model
 
Permanent Magnet Moving Coil
Permanent Magnet Moving Coil Permanent Magnet Moving Coil
Permanent Magnet Moving Coil
 
Inductors
InductorsInductors
Inductors
 
Transistor Fundamentals
Transistor FundamentalsTransistor Fundamentals
Transistor Fundamentals
 
Ic voltage regulators
Ic voltage regulatorsIc voltage regulators
Ic voltage regulators
 
1. rc rl-rlc
1. rc rl-rlc1. rc rl-rlc
1. rc rl-rlc
 
Feedback amplifiers
Feedback amplifiersFeedback amplifiers
Feedback amplifiers
 
Basic of Diode Rectifiers
Basic of Diode RectifiersBasic of Diode Rectifiers
Basic of Diode Rectifiers
 
Choppers
ChoppersChoppers
Choppers
 
Magnetic circuits
Magnetic circuitsMagnetic circuits
Magnetic circuits
 
Transistor basics
Transistor   basicsTransistor   basics
Transistor basics
 
Electronic Measurement - Power Factor Meter
Electronic Measurement - Power Factor MeterElectronic Measurement - Power Factor Meter
Electronic Measurement - Power Factor Meter
 
basic-electronics
basic-electronicsbasic-electronics
basic-electronics
 
Special purpose diodes
Special purpose diodesSpecial purpose diodes
Special purpose diodes
 

Destacado

Gate 2017 eesyllabus
Gate 2017 eesyllabusGate 2017 eesyllabus
Gate 2017 eesyllabusMickey Boz
 
Elect principles 2 ac circuits (rl)
Elect principles 2   ac circuits (rl)Elect principles 2   ac circuits (rl)
Elect principles 2 ac circuits (rl)sdacey
 
Simple model of DC Power Supply(LTspice)
Simple model of DC Power Supply(LTspice)Simple model of DC Power Supply(LTspice)
Simple model of DC Power Supply(LTspice)Tsuyoshi Horigome
 
AC electricity
AC electricityAC electricity
AC electricitynlahoud
 
AC and DC circuits Presentation
AC and DC circuits PresentationAC and DC circuits Presentation
AC and DC circuits PresentationJonathan Andrei
 
Circuit Theorem
Circuit TheoremCircuit Theorem
Circuit Theoremstooty s
 
chapter 1 linear dc power supply
chapter 1 linear dc power supplychapter 1 linear dc power supply
chapter 1 linear dc power supplyAida Mustapha
 

Destacado (11)

Gate 2017 eesyllabus
Gate 2017 eesyllabusGate 2017 eesyllabus
Gate 2017 eesyllabus
 
Chapter#2
Chapter#2Chapter#2
Chapter#2
 
Series parallel ac networks
Series parallel ac networksSeries parallel ac networks
Series parallel ac networks
 
Elect principles 2 ac circuits (rl)
Elect principles 2   ac circuits (rl)Elect principles 2   ac circuits (rl)
Elect principles 2 ac circuits (rl)
 
Series parallel ac rlc networks
Series parallel ac rlc networksSeries parallel ac rlc networks
Series parallel ac rlc networks
 
Simple model of DC Power Supply(LTspice)
Simple model of DC Power Supply(LTspice)Simple model of DC Power Supply(LTspice)
Simple model of DC Power Supply(LTspice)
 
Network Theorems.ppt
Network Theorems.pptNetwork Theorems.ppt
Network Theorems.ppt
 
AC electricity
AC electricityAC electricity
AC electricity
 
AC and DC circuits Presentation
AC and DC circuits PresentationAC and DC circuits Presentation
AC and DC circuits Presentation
 
Circuit Theorem
Circuit TheoremCircuit Theorem
Circuit Theorem
 
chapter 1 linear dc power supply
chapter 1 linear dc power supplychapter 1 linear dc power supply
chapter 1 linear dc power supply
 

Similar a Ac single phase

Chapter 3: AC Sources and AC Characteristic
Chapter 3: AC Sources and AC CharacteristicChapter 3: AC Sources and AC Characteristic
Chapter 3: AC Sources and AC CharacteristicJeremyLauKarHei
 
4. chap4 bekg1123_sesi_1415_s3 (1)
4. chap4 bekg1123_sesi_1415_s3 (1)4. chap4 bekg1123_sesi_1415_s3 (1)
4. chap4 bekg1123_sesi_1415_s3 (1)tompoktompok
 
2. Power Computations and Analysis Techniques_verstud.pdf
2. Power Computations and Analysis Techniques_verstud.pdf2. Power Computations and Analysis Techniques_verstud.pdf
2. Power Computations and Analysis Techniques_verstud.pdfLIEWHUIFANGUNIMAP
 
Basic Electrical Engineering- AC Circuit
Basic Electrical Engineering- AC CircuitBasic Electrical Engineering- AC Circuit
Basic Electrical Engineering- AC CircuitBhavesh jesadia
 
generation of ac voltage
generation of ac voltagegeneration of ac voltage
generation of ac voltage2461998
 
Alternating current and voltages
Alternating current and voltagesAlternating current and voltages
Alternating current and voltagesBhavik Koradiya
 
Lecture 7 ac waves
Lecture 7 ac wavesLecture 7 ac waves
Lecture 7 ac wavesMohamed Jama
 
BEF 22803 - Lecture 6 - Single-Phase Power Computations.ppt
BEF 22803 - Lecture 6 - Single-Phase Power Computations.pptBEF 22803 - Lecture 6 - Single-Phase Power Computations.ppt
BEF 22803 - Lecture 6 - Single-Phase Power Computations.pptLiewChiaPing
 
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).pptEE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).pptRyanAnderson41811
 
Ac wave forms theroy
Ac wave forms theroyAc wave forms theroy
Ac wave forms theroyReece Hancock
 
Chapter 17
Chapter 17Chapter 17
Chapter 17Tha Mike
 
07 basic-electronics
07 basic-electronics07 basic-electronics
07 basic-electronicsSagar Bagwe
 

Similar a Ac single phase (20)

Chapter 3: AC Sources and AC Characteristic
Chapter 3: AC Sources and AC CharacteristicChapter 3: AC Sources and AC Characteristic
Chapter 3: AC Sources and AC Characteristic
 
4. chap4 bekg1123_sesi_1415_s3 (1)
4. chap4 bekg1123_sesi_1415_s3 (1)4. chap4 bekg1123_sesi_1415_s3 (1)
4. chap4 bekg1123_sesi_1415_s3 (1)
 
lecture11.ppt
lecture11.pptlecture11.ppt
lecture11.ppt
 
2. Power Computations and Analysis Techniques_verstud.pdf
2. Power Computations and Analysis Techniques_verstud.pdf2. Power Computations and Analysis Techniques_verstud.pdf
2. Power Computations and Analysis Techniques_verstud.pdf
 
Basic Electrical Engineering- AC Circuit
Basic Electrical Engineering- AC CircuitBasic Electrical Engineering- AC Circuit
Basic Electrical Engineering- AC Circuit
 
generation of ac voltage
generation of ac voltagegeneration of ac voltage
generation of ac voltage
 
Unit2 ac circuits
Unit2 ac circuitsUnit2 ac circuits
Unit2 ac circuits
 
Unit2-AC_Circuits.ppt
Unit2-AC_Circuits.pptUnit2-AC_Circuits.ppt
Unit2-AC_Circuits.ppt
 
Alternating current voltages
Alternating current voltagesAlternating current voltages
Alternating current voltages
 
rangkaian am dan fm
rangkaian am dan fmrangkaian am dan fm
rangkaian am dan fm
 
Alternating current and voltages
Alternating current and voltagesAlternating current and voltages
Alternating current and voltages
 
Lecture 7 ac waves
Lecture 7 ac wavesLecture 7 ac waves
Lecture 7 ac waves
 
BEF 22803 - Lecture 6 - Single-Phase Power Computations.ppt
BEF 22803 - Lecture 6 - Single-Phase Power Computations.pptBEF 22803 - Lecture 6 - Single-Phase Power Computations.ppt
BEF 22803 - Lecture 6 - Single-Phase Power Computations.ppt
 
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).pptEE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
 
Ac wave forms theroy
Ac wave forms theroyAc wave forms theroy
Ac wave forms theroy
 
AC Theory
AC TheoryAC Theory
AC Theory
 
Chapter 17
Chapter 17Chapter 17
Chapter 17
 
Ece320 notes-part1
Ece320 notes-part1Ece320 notes-part1
Ece320 notes-part1
 
Ece320 notes-part1 2
Ece320 notes-part1 2Ece320 notes-part1 2
Ece320 notes-part1 2
 
07 basic-electronics
07 basic-electronics07 basic-electronics
07 basic-electronics
 

Más de Mohammed Waris Senan (20)

Basics of rotating machines
Basics of rotating machinesBasics of rotating machines
Basics of rotating machines
 
Introduction to Integral calculus
Introduction to Integral calculusIntroduction to Integral calculus
Introduction to Integral calculus
 
Introduction to Differential calculus
Introduction to Differential calculusIntroduction to Differential calculus
Introduction to Differential calculus
 
Control system unit(1)
Control system unit(1)Control system unit(1)
Control system unit(1)
 
Magnetic materials & B-H Curve
Magnetic materials & B-H CurveMagnetic materials & B-H Curve
Magnetic materials & B-H Curve
 
Measurement of 3 phase power by two watt-meter method
Measurement of 3 phase power by two watt-meter methodMeasurement of 3 phase power by two watt-meter method
Measurement of 3 phase power by two watt-meter method
 
Electrical machine slide share
Electrical machine slide shareElectrical machine slide share
Electrical machine slide share
 
Electromechanical energy conversion
Electromechanical energy conversionElectromechanical energy conversion
Electromechanical energy conversion
 
Dc machines (Generator & Motor)
Dc machines (Generator & Motor)Dc machines (Generator & Motor)
Dc machines (Generator & Motor)
 
Single and three phase Transformers
Single and three phase TransformersSingle and three phase Transformers
Single and three phase Transformers
 
Network synthesis
Network synthesisNetwork synthesis
Network synthesis
 
Two port networks
Two port networksTwo port networks
Two port networks
 
Transient analysis
Transient analysisTransient analysis
Transient analysis
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Active network
Active networkActive network
Active network
 
Time domain analysis
Time domain analysisTime domain analysis
Time domain analysis
 
Transformer
TransformerTransformer
Transformer
 
Synchronous machines
Synchronous machinesSynchronous machines
Synchronous machines
 
Magnetic circuit
Magnetic circuitMagnetic circuit
Magnetic circuit
 
Induction machines
Induction machinesInduction machines
Induction machines
 

Último

Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 

Último (20)

Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 

Ac single phase

  • 1.  Characteristics of Sinusoidal  Phasors  Phasor Relationships for R, L and C  Impedance  Parallel and Series Resonance  Examples for Sinusoidal Circuits Analysis Single Phase AC
  • 2. Sinusoidal Steady State Analysis • Any steady state voltage or current in a linear circuit with a sinusoidal source is a sinusoid – All steady state voltages and currents have the same frequency as the source • In order to find a steady state voltage or current, all we need to know is its magnitude and its phase relative to the source (we already know its frequency) • We do not have to find this differential equation from the circuit, nor do we have to solve it • Instead, we use the concepts of phasors and complex impedances • Phasors and complex impedances convert problems involving differential equations into circuit analysis problems
  • 3. Characteristics of Sinusoids Outline: 1. Time Period: T 2. Frequency: f (Hertz) 3. Angular Frequency:  (rad/sec) 4. Phase angle: Φ 5. Amplitude: Vm Im
  • 4. Characteristics of Sinusoids :   tVv mt sin iI1 I1 I1 I1 I1 I1 R1 R1 R 5 5 + _ IS  E I1 U1 + - U I  iI1 I1 I1 I1 R1 R1 R 5 5 - + IS  E I1 U1 + - U I  v ,i tt1 t20 Both the polarity and magnitude of voltage are changing.
  • 5. Radian frequency(Angular frequency):  = 2f = 2/T (rad/s) Time Period: T — Time necessary to go through one cycle. (s) Frequency: f — Cycles per second. (Hz) f = 1/T Amplitude: Vm Im i = Imsint, v =Vmsint v ,i t 20 Vm , Im Characteristics of Sinusoids :
  • 6. Effective Roof Mean Square (RMS) Value of a Periodic Waveform — is equal to the value of the direct current which is flowing through an R-ohm resistor. It delivers the same average power to the resistor as the periodic current does. RIRdti T T 2 0 21  Effective Value of a Periodic Waveform  T eff dti T I 0 21 22 1 2 2cos1 sin 1 2 0 2 0 22 m m T m T meff IT I T dt t T I tdtI T I       2 1 0 2 m T eff V dtv T V   Characteristics of Sinusoids :
  • 7. Phase (angle)    tIi m sin   sin0 mIi  Phase angle -8 -6 -4 -2 0 2 4 6 8 0 0.01 0.02 0.03 0.04 0.05 <0 0 Characteristics of Sinusoids :
  • 8. )sin( 1  tVv m )sin( 2  tIi m Phase difference 2121 )(   ttiv 021   — v(t) leads i(t) by (1 - 2), or i(t) lags v(t) by (1 - 2) 2 21    v, i t v i   21 Out of phase t v, i v i v, i t v i 021   In phase 021   — v(t) lags i(t) by (2 - 1), or i(t) leads v(t) by (2 - 1) Characteristics of Sinusoids :
  • 9. Review The sinusoidal waves whose phases are compared must: 1. Be written as sine waves or cosine waves. 2. With positive amplitudes. 3. Have the same frequency. 360°—— does not change anything. 90° —— change between sin & cos. 180°—— change between + & - 2 sin cos cos 3 2 cos sin 2                                 Characteristics of Sinusoids :
  • 10. Phase difference   30314sin22201  tv     9030314sin222030314cos22202  ttv   120314sin2220  t  1501203021     30314cos22202  tv   30314cos22202  tv   18030314cos2220  t    210314360cos2220  t   90150314sin2220  t   60314sin2220  t  30603021   Find ?   30314cos22202  tvIf Characteristics of Sinusoids :
  • 11. Phase difference v, i t v i -/3 /3 • ••         3 sin  tVm        3 sin  tIm Characteristics of Sinusoids :
  • 12. Outline: 1. Complex Numbers 2. Rotating Vector 3. Phasors A sinusoidal voltage/current at a given frequency, is characterized by only two parameters : amplitude and phase A phasor is a Complex Number which represents magnitude and phase of a sinusoid Phasors
  • 13. e.g. voltage response A sinusoidal v/i Complex transform Phasor transform By knowing angular frequency ω rads/s. Time domain Frequency domain   eR v t Complex form:    cosmv t V t   Phasor form:    j t mv t V e    Angular frequency ω is known in the circuit.  || mVV  || mVV Phasors
  • 14. Rotating Vector    tIti m sin)( i Im t1 i t Im  t x y              max cos sin sin j t m m m j t m m I e I t jI t i t I t I I e                    A complex coordinates number: Real value: i(t1) Imag Phasors
  • 16. Complex Numbers jbaA  — Rectangular Coordinates   sincos jAA  j eAA  — Polar Coordinates j eAAjbaA  conversion: 22 baA  a b arctg jbaeA j  cosAa  sinAb   a b Real axis Imaginary axis jjje j  090sin90cos90  Phasors
  • 17. Complex Numbers Arithmetic With Complex Numbers Addition: A = a + jb, B = c + jd, A + B = (a + c) + j(b + d) Real Axis Imaginary Axis AB A + B Phasors
  • 18. Complex Numbers Arithmetic With Complex Numbers Subtraction : A = a + jb, B = c + jd, A - B = (a - c) + j(b - d) Real Axis Imaginary Axis AB A - B Phasors
  • 19. Complex Numbers Arithmetic With Complex Numbers Multiplication : A = Am  A, B = Bm  B A  B = (Am  Bm)  (A + B) Division: A = Am  A , B = Bm  B A / B = (Am / Bm)  (A - B) Phasors
  • 20. Phasors A phasor is a complex number that represents the magnitude and phase of a sinusoid:   tim cos  mI Phasor Diagrams • A phasor diagram is just a graph of several phasors on the complex plane (using real and imaginary axes). • A phasor diagram helps to visualize the relationships between currents and voltages. Phasors
  • 21. )sin()cos()(    tAjtAeAAe tjtj )cos(||}Re{   tAAe tj Complex Exponentials j eAA   A real-valued sinusoid is the real part of a complex exponential.  Complex exponentials make solving for AC steady state an algebraic problem. Phasors
  • 22. Phasor Relationships for R, L and C Outline: I-V Relationship for R, L and C, Power conversion
  • 23. Phasor Relationships for R, L and C  v~i relationship for a resistor _ v i R   + S    tIt R V R v i m m  sinsin  tVv m sin Relationship between RMS: R V I  Wave and Phasor diagrams: v、i t v i  I  V R V I    Resistor Suppose
  • 24.  Time domain Frequency domainResistor With a resistor θ﹦ϕ, v(t) and i(t) are in phase . )cos()( )cos()(     wtIti wtVtv m m IRV RIV eRIeV eRIeV mm j m j m wtj m wtj m         )()( Phasor Relationships for R, L and C
  • 25.  PowerResistor _ v i R +   P  0 tItVvip mm  sinsin  tVI mm 2 sin  t VI mm 2cos1 2  tIVIV 2cos v, i t v i P=IV  T pdt T P 0 1    T VIdttVI T 0 2cos1 1  R V RIIVP 2 2  • Average Power • Transient Power Note: I and V are RMS values. Phasor Relationships for R, L and C
  • 26. Resistor , R=10,Find i and Ptv 314sin311  V V V m 220 2 311 2   A R V I 22 10 220  ti 314sin222  WIVP 484022220  Phasor Relationships for R, L and C
  • 27.  v~i relationshipInductor dt di Lvv AB    tLI dt tId L dt di Lv m m   cos sin    90sin  tLIm    90sin  tVm     t vdt L i 1    t vdt L vdt L 0 0 11  t vdt L i 0 0 1 tIi m sinSuppose Phasor Relationships for R, L and C
  • 28.  v~i relationshipInductor   90sin  tLIm  dt di Lv    90sin  tVm  LIV mm  Relationship between RMS: LIV  L V I   fLLXL  2   For DC,f = 0,XL = 0. fXL  v(t) leads i(t) by 90º, or i(t) lags v(t) by 90º Phasor Relationships for R, L and C
  • 29.  v ~ i relationshipInductor v, i t v i eL V I LXIjV  Wave and Phasor diagrams: Phasor Relationships for R, L and C
  • 30.  PowerInductor vip    tItV mm  sin90sin   ttIV mm  sincos  t IV mm 2sin 2  tVI 2sin P t v, i t v i ++ --22 max 2 1 LILIW m  2 00 2 1 LiLidividtW it  Energy stored:    T T tdtVI T pdt T P 0 0 02sin 11 Average Power Reactive Power L L X V XIIVQ 2 2  (Var) Phasor Relationships for R, L and C
  • 31. Inductor L = 10mH,v = 100sint,Find iL when f = 50Hz and 50kHz.    14.310105022 3 fLX L      Atti A X V I L L  90sin25.22 5.22 14.3 2/100 50       31401010105022 33 fLX L      mAtti mA X V I L L k  90sin25.22 5.22 14.3 2/100 50    Phasor Relationships for R, L and C
  • 32.  v ~ i relationshipCapacitor _ v i +   C dt dv C dt dq i  tVv m sinSuppose:   90sincos  tCVtCVi mm    90sin  tIm       t tt idt c vidt c idt c idt c v 0 0 0 0 1111 i(t) leads v(t) by 90º, or v(t) lags i(t) by 90º Relationship between RMS: CX V C V CVI    1   fCC XC  2 11  For DC,f = 0, XC   f XC 1  mm CVI  Phasor Relationships for R, L and C
  • 33. _ v i +   C tj m tj m eCVj dt edV C dt tdv Cti    )( )( v(t) = Vm ejt Represent v(t) and i(t) as phasors: CjX V VCωjI ==   • The derivative in the relationship between v(t) and i(t) becomes a multiplication by in the relationship between and . • The time-domain differential equation has become the algebraic equation in the frequency-domain. • Phasors allow us to express current-voltage relationships for inductors and capacitors much like we express the current-voltage relationship for a resistor.  v ~ i relationshipCapacitor V I wC j  Phasor Relationships for R, L and C
  • 34.  v ~ i relationshipCapacitor v, i t v i I V CXIjV   Wave and Phasor diagrams: Phasor Relationships for R, L and C
  • 35. PowerCapacitor Average Power: P = 0 Reactive Power C C X V XIIVQ 2 2  (Var)   90sinsin  tItVvip mm  tVIt IV mm  2sin2sin 2  P t v, i t v i ++ -- Energy stored:    t vv CvCvdvdt dt dv CvvidtW 0 0 2 0 2 1 22 max 2 1 CVCVW m  Phasor Relationships for R, L and C
  • 36. Capacitor Suppose C=20F,AC source v=100sint,Find XC and I for f = 50Hz, 50kHz。  159 2 11 Hz50 fCC Xf c  A44.0 2  c m c X V X V I   159.0 2 11 KHz50 fCC Xf c  A440 2  c m c X V X V I Phasor Relationships for R, L and C
  • 37. Review (v – i Relationship) Time domain Frequency domain iRv  IRV   I Cj V    1 ILjV    dt di LvL  dt dv CiC  C XC  1  LXL , , , v and i are in phase. , v leads i by 90°. , v lags i by 90°. R C L Phasor Relationships for R, L and C
  • 38. Summary:  R: RX R  0 L: ffLLXL   2 2    iv C: ffcc XC 1 2 11   2    iv  IXV   Frequency characteristics of an Ideal Inductor and Capacitor: A capacitor is an open circuit to DC currents; A Inductor is a short circuit to DC currents. Phasor Relationships for R, L and C
  • 39. Impedance (Z) Outline: Complex currents and voltages. Impedance Phasor Diagrams
  • 40. • AC steady-state analysis using phasors allows us to express the relationship between current and voltage using a formula that looks likes Ohm’s law: ZIV  Complex voltage, Complex current, Complex Impedance vm j m VeVV v   im j m IeII i      ZeZe I V I V Z jj m m iv )(   ‘Z’ is called impedance measured in ohms () Impedance (Z)
  • 41. Complex Impedance    ZeZe I V I V Z jj m m iv )(    Complex impedance describes the relationship between the voltage across an element (expressed as a phasor) and the current through the element (expressed as a phasor).  Impedance is a complex number and is not a phasor (why?).  Impedance depends on frequency. Impedance (Z)
  • 42. Complex Impedance ZR = R  = 0; or ZR = R  0 Resistor——The impedance is R c j c jX C j e C Z       21 ) 2 (    iv or  90 1  C ZC  Capacitor——The impedance is 1/jωC L j L jXLjLeZ    2 ) 2 (    iv or  90 LZL  Inductor——The impedance is jωL Impedance (Z)
  • 43. Complex Impedance Impedance in series/parallel can be combined as resistors. _ U U Z1 +  Z2 Zn   I    n k kn ZZZZZ 1 21 ... _ US In I1 I1 I1 I1 I1 I1     R1 R1 Zn 5 5 5 5 + + _ US IS  U1 + - U  I  Z2Z1     n k kn ZZZZZ 121 11 ... 111 21 1 2 21 2 1 ZZ Z II ZZ Z II      Current divider:   n k k i i Z Z VV 1  Voltage divider: Impedance (Z)
  • 44. Complex Impedance _ +   V  I   1IZ1 Z2 Z    2121 2 2121 2 1 2 1 1 2 2 1 11 ZZZZZZ ZV I ZZZZZZ ZZV ZZ Z V I ZZ Z II                      Impedance (Z)
  • 45. Complex Impedance Phasors and complex impedance allow us to use Ohm’s law with complex numbers to compute current from voltage and voltage from current 20kW + - 1mF10V  0 VC + - w = 377 Find VC • How do we find VC? • First compute impedances for resistor and capacitor: ZR = 20kW = 20kW  0 ZC = 1/j (377 *1mF) = 2.65kW  -90 Impedance (Z)
  • 46. Complex Impedance 20kW + - 1mF10V  0 VC + - w = 377 Find VC 20kW  0 + - 2.65kW  - 90 10V  0 VC + - Now use the voltage divider to find VC:     46.82V31.1 54.717.20 9065.2 010VCV ) 0209065.2 9065.2 (010       kk k VVC Impedance (Z)
  • 47. Impedance allows us to use the same solution techniques for AC steady state as we use for DC steady state. • All the analysis techniques we have learned for the linear circuits are applicable to compute phasors – KCL & KVL – node analysis / loop analysis – Superposition – Thevenin equivalents / Norton equivalents – source exchange • The only difference is that now complex numbers are used. Complex Impedance Impedance (Z)
  • 48. Kirchhoff’s Laws KCL and KVL hold as well in phasor domain. KVL: 0 1  n k kv vk- Transient voltage of the #k branch 0 1  n k kV KCL: 0 1   n k ki 0 1   n k kI ik- Transient current of the #k branch Impedance (Z)
  • 49. Admittance • I = YV, Y is called admittance, the reciprocal of impedance, measured in Siemens (S) • Resistor: – The admittance is 1/R • Inductor: – The admittance is 1/jL • Capacitor: – The admittance is jC Impedance (Z)
  • 50. Phasor Diagrams • A phasor diagram is just a graph of several phasors on the complex plane (using real and imaginary axes). • A phasor diagram helps to visualize the relationships between currents and voltages. 2mA  40 – 1mF VC + – 1kW VR + + – V I = 2mA  40, VR = 2V  40 VC = 5.31V  -50, V = 5.67V  -29.37 Real Axis Imaginary Axis VR VC V Impedance (Z)
  • 51. Parallel and Series Resonance Outline: RLC Circuit, Series Resonance Parallel Resonance
  • 52. v vR vL vC CLR vvvv  CLR VVVV  Phasor  I V LV CV RV IZ XRI XXRI IXIXIR VVVV CL CL CLR      22 22 22 22 )( )()( )( )CL XXX ( 22 XRZ  22 ) 1 ( c LR    (2nd Order RLC Circuit )Series RLC Circuit Parallel and Series Resonance :
  • 53. 22 XRZ  22 ) 1 ( c LR   IZVVVV CLR  22 )( Z X = XL-XC R   V RV CLX VVV   R XX V VV CL R CL      1 1 tan - tan Phase difference: XL>XC   >0,v leads i by  — Inductance Circuit XL<XC   <0,v lags i by  — Capacitance Circuit XL=XC   =0,v and i in phase — Resistors Circuit Series RLC Circuit Parallel and Series Resonance :
  • 54. CLR VVVV   CL XIjXIjRI   ZIjXRIXXjRI CL   )()](( )( CL XXjR I V Z     ZjXRZ 22 )( CL XXRZ  R XX CL   1 tan iv   v vR vL vC Series RLC Circuit Parallel and Series Resonance :
  • 55. Series Resonance (2nd Order RLC Circuit ) CLR VVVV   CL XIjXIjRI   R XX arctg V VV arctg CL R CL     CLCL VVL C XXWhen    1 , VVR  0and —— Series Resonance Resonance condition I LV CV VVR   LC for LC   2 11 00  f0 f X Cf XC 2 1  fLXL 2 Resonant frequency Parallel and Series Resonance :
  • 56. Series Resonance R V Z V IRXXRZ CL  0 0 22 0 )(• Zmin;when V = constant, I = Imax= I0 RXX CL  RIXIXI CL 000  VVV CL  • Quality factor Q, R X R X V V V V Q CLCL  CLCL VVL C XX  ) 1 (   Resonance condition: When, Parallel and Series Resonance :
  • 57. Parallel RLC Circuit V  I  LI  CI    )( 1 / 11 222222 LR L Cj LR R Cj LjRLjR LjR Cj LjRCjLjR Y                         Parallel Resonance Parallel Resonance frequency L CR LC 2 0 1 1  LXR In generally ) 2 1 ( 0 LC f   LC 1 0  0)( 222    LR L C   When 2220 LR R Y  , In phase withV I V L RC C L R R V L LC R R V LR R VVYII        222 22 0 200 1 Zmax Imin: Parallel and Series Resonance :
  • 58. Parallel RLC Circuit V  I  LI  CI V L C j L V j LjR VIL       00 1  V L C jVCjIC   0 0|||||| 0  III CL  Z  . RCR L Q 0 0 1   0IjQIL   0IjQIC   •Quality factor Q, 0000 Y Y Y Y I I I I Q CLLC  Parallel and Series Resonance :
  • 59. Parallel RLC Circuit Review For sinusoidal circuit, Series : 21 vvv  21 VVV  21 iii  21 III  ? Two Simple Methods: Phasor Diagrams and Complex Numbers Parallel : Parallel and Series Resonance :