SlideShare una empresa de Scribd logo
1 de 15
Descargar para leer sin conexión
10
CHAPTER 2
Problem 1:
Rectangular channel
q= 1.6/0.8= 2.0 m2
/s
y= 1.1m
By using Equation 2.3
0.74m
81
.
9
)
0
.
2
(
3
2
3
2
3
2
2
=
=
=
=
g
q
gb
Q
yc
Flow is subcritical since y>yc
Trapezoidal channel
Q= 4.0 m3
/s, b= 1.0 m, m=1.5, y= 1.2 m
35
.
2
)
0
.
1
(
)
81
.
9
(
)
5
.
1
)(
0
.
4
(
5
.
2
5
.
0
5
.
1
5
.
2
5
.
0
5
.
1
=
=
b
g
Qm
From Figure myc/b= 1.20. Then yc= 1.20(1.0)/1.5= 0.80m
Flow is subcritical since y>yc
Triangular channel
Q= 2 m3
/s, m=2, y= 0.9m
By using Equation 2.4
m
gm
Q
yc 73
.
0
)
2
(
81
.
9
)
0
.
2
(
2
2
5
2
2
5
2
2
=
=
=
Flow is subcritical since y>yc
Circular Channel
d0= 1.0m and Q= 1.2 m3
/s , y= 0.8m
38
.
0
)
0
.
1
(
)
81
.
9
(
2
.
1
5
.
2
5
.
0
5
.
2
0
5
.
0
=
=
d
g
Q
From Figure yc/d0= 0.63. Thus, yc= 0.63(1.0)=0.63m
Flow is subcritical since y>yc
11
Problem 2:
Rectangular channel q= 100/5= 20 ft2
/s, y= 2.0 ft
By using Equation 2.3
32
.
2
2
.
32
)
0
.
20
(
3
2
3
2
3
2
2
ft
g
q
gb
Q
yc =
=
=
=
Flow is supercritical since y<yc
Trapezoidal channel
Q= 200 cfs, b= 6.0ft, m=2, y= 2.8 ft
13
.
1
)
0
.
6
(
)
2
.
32
(
)
0
.
2
)(
200
(
5
.
2
5
.
0
5
.
1
5
.
2
5
.
0
5
.
1
=
=
b
g
Qm
From Figure myc/b= 0.82. Then yc= 0.82(6.0)/2.0= 2.47ft
Flow is subcritical since y>yc
Triangular channel
Q= 45 cfs, m=1.5, y= 2.0 ft
By using Equation 2.4
ft
gm
Q
yc 24
.
2
)
5
.
1
(
2
.
32
)
0
.
45
(
2
2
5
2
2
5
2
2
=
=
=
Flow is supercritical since y<yc
Circular Channel
d0= 5.0 ft and Q= 100 cfs, y= 3.2 ft
32
.
0
)
0
.
5
(
)
2
.
32
(
100
5
.
2
5
.
0
5
.
2
0
5
.
0
=
=
d
g
Q
From Figure yc/d0= 0.57. Thus, yc= 0.57(5.0)= 2.85 ft
Flow is subcritical since y>yc
12
Problem 3:
Rectangular channel
q= 1.6/0.8= 2.0 m2
/s
y
(m)
E
(m)
0.20 5.30
0.40 1.67
0.60 1.17
0.80 1.12
1.00 1.20
1.50 1.59
2.00 2.05
2.50 2.53
3.00 3.02
3.50 3.52
4.00 4.01
4.50 4.51
5.00 5.01
y= 1.1 m is on the subcritical limb.
Trapezoidal channel
Q= 4.0 m3
/s, b= 1.0 m, m=1.5
y
(m)
A
(m2
)
V
(m/s)
E
(m)
0.20 0.26 15.38 12.26
0.40 0.64 6.25 2.39
0.60 1.14 3.51 1.23
0.80 1.76 2.27 1.06
1.00 2.50 1.60 1.13
1.50 4.88 0.82 1.53
2.00 8.00 0.50 2.01
3.00 16.50 0.24 3.00
4.00 28.00 0.14 4.00
5.00 42.50 0.09 5.00
6.00 60.00 0.07 6.00
7.00 80.50 0.05 7.00
8.00 104.00 0.04 8.00
9.00 130.50 0.03 9.00
y= 1.2 m is on the subcritical limb.
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0
E (m)
y
(m)
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0.0 2.0 4.0 6.0 8.0 10.0
E (m)
y
(m)
13
Triangular channel
Q= 2 m3
/s, m=2
y
(m)
A
(m2
)
V
(m/s)
E
(m)
0.20 0.08 25.00 32.06
0.30 0.18 11.11 6.59
0.40 0.32 6.25 2.39
0.50 0.50 4.00 1.32
0.60 0.72 2.78 0.99
0.70 0.98 2.04 0.91
0.80 1.28 1.56 0.92
1.00 2.00 1.00 1.05
1.50 4.50 0.44 1.51
2.00 8.00 0.25 2.00
3.00 18.00 0.11 3.00
5.00 50.00 0.04 5.00
6.00 72.00 0.03 6.00
7.00 98.00 0.02 7.00
y= 0.9 m is on the subcritical limb.
Circular Channel
d0= 1.0m and Q= 1.2 m3
/s
y
(m) θ
A
(m2
)
E
(m)
0.20 0.93 0.11 6.07
0.25 1.05 0.15 3.36
0.30 1.16 0.20 2.17
0.35 1.27 0.24 1.57
0.40 1.37 0.29 1.25
0.45 1.47 0.34 1.07
0.50 1.57 0.39 0.98
0.55 1.67 0.44 0.92
0.60 1.77 0.49 0.90
0.65 1.88 0.54 0.90
0.70 1.98 0.59 0.91
0.75 2.09 0.63 0.93
0.80 2.21 0.67 0.96
0.85 2.35 0.71 0.99
0.90 2.50 0.74 1.03
0.95 2.69 0.77 1.07
y= 0.8 m is on the subcritical limb.
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
E (m)
y
(m)
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0.0 2.0 4.0 6.0 8.0 10.0
E (m)
y
(m)
14
Problem 4:
Rectangular channel q= 100/5= 20 cfs/ft
y
(m)
E
(m)
0.50 25.34
1.00 7.21
1.50 4.26
2.00 3.55
2.50 3.49
3.00 3.69
3.50 4.01
4.00 4.39
5.00 5.25
6.00 6.17
7.00 7.13
8.00 8.10
9.00 9.08
y= 2.0 ft is on the supercritical limb.
Trapezoidal channel
Q= 200 cfs, b= 6.0 ft, m=2
y
(ft)
A
(ft2
)
V
(fps)
E
(ft)
0.50 3.50 57.14 51.20
1.00 8.00 25.00 10.70
1.50 13.50 14.81 4.91
2.00 20.00 10.00 3.55
2.50 27.50 7.27 3.32
3.00 36.00 5.56 3.48
3.50 45.50 4.40 3.80
4.00 56.00 3.57 4.20
5.00 80.00 2.50 5.10
6.00 108.00 1.85 6.05
7.00 140.00 1.43 7.03
8.00 176.00 1.14 8.02
9.00 216.00 0.93 9.01
10.00 260.00 0.77 10.01
y= 2.8 is on the subcritical limb.
0.0
2.0
4.0
6.0
8.0
10.0
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
E (ft)
y
(ft)
0.0
2.0
4.0
6.0
8.0
10.0
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
E (ft)
y
(ft)
15
Triangular channel
Q= 45 cfs, m= 1.5
y
(ft)
A
(ft2
)
V
(fps)
E
(ft)
0.50 0.38 120.00 224.10
1.00 1.50 30.00 14.98
1.50 3.38 13.33 4.26
2.00 6.00 7.50 2.87
2.25 7.59 5.93 2.80
2.50 9.38 4.80 2.86
3.00 13.50 3.33 3.17
3.50 18.38 2.45 3.59
4.00 24.00 1.88 4.05
5.00 37.50 1.20 5.02
6.00 54.00 0.83 6.01
7.00 73.50 0.61 7.01
8.00 96.00 0.47 8.00
9.00 121.50 0.37 9.00
10.00 150.00 0.30 10.00
y= 2.0 m is on the supercritical limb.
Circular Channel
d0= 5 ft and Q= 100 cfs
y
(ft) θ
A
(ft2
)
E
(ft)
1.5 1.16 4.95 7.83
1.8 1.29 6.36 5.63
2.1 1.41 7.83 4.64
2.4 1.53 9.32 4.19
2.7 1.65 10.82 4.03
3.0 1.77 12.30 4.03
3.3 1.90 13.75 4.12
3.6 2.03 15.13 4.28
3.9 2.17 16.43 4.48
4.2 2.32 17.61 4.70
4.5 2.50 18.61 4.95
4.8 2.74 19.37 5.21
y= 3.2 ft is on the subcritical limb.
0
1
2
3
4
5
0 1 2 3 4 5 6 7 8 9 10
E (ft)
y
(ft)
0.0
2.0
4.0
6.0
8.0
10.0
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
E (ft)
y
(ft)
16
Problem 5:
No. The streamlines curve up. Pressure distribution can not be hydrostatic if the flow has
a vertical velocity component.
Problem 6:
Equation 2.12 is
2
2
2gA
Q
y
E +
=
Taking the derivative of both sides with respect to x
dx
dy
dy
dA
gA
Q
dx
dy
dx
dA
gA
Q
dx
dy
A
dx
d
g
Q
dx
dy
gA
Q
dx
d
dx
dy
dx
dE
3
2
3
2
2
2
2
2
2
2
)
1
(
2
)
2
( −
=
−
=
+
=
+
=
)
1
( 2
2
2
r
r F
dx
dy
dx
dy
F
dx
dy
dx
dy
T
gA
V
dx
dy
dx
dE
−
=
−
=
−
=
)
1
(
/
2
r
F
dx
dE
dx
dy
−
=
Problem 7:
2
2
2gA
Q
y
E +
=
As y approaches infinity so does A, and the second term in the expression for E
approaches zero. Then, as y approaches infinity, the upper limb becomes asymptotical to
the straight line E=y. This straight line makes a 45º angle with each of the E and y axes.
As y approaches zero so does A, and the second term approaches infinity. Therefore, the
lower limb is asymptotical to the E axis, which can also be defined by y= 0.
Problem 8:
From Figure 2.11, the minimum specific energy, EBmin, at section B required to pass 290
cfs is 4.0 ft. The corresponding minimum specific energy at A is EAmin= 4.0 +1.0= 5.0 ft.
The flow has a specific energy of 5.5 ft at A under the given flow conditions. This is
larger than the required specific energy.
17
Problem 9:
Channel section
Q= 5,100 cfs, b= 30 ft, m=2
Bridge section
Q= 5,100 cfs, b= 30 ft, m=2
Channel section Bridge section
y
(ft)
A
(ft2
)
V
(cfs)
E
(ft)
y
(ft)
A
(ft2
)
V
(cfs)
E
(ft)
2.00 68.00 75.00 89.34 2.00 56.00 91.07 130.79
3.00 108.00 47.22 37.63 3.00 90.00 56.67 52.86
4.00 152.00 33.55 21.48 4.00 128.00 39.84 28.65
5.00 200.00 25.50 15.10 5.00 170.00 30.00 18.98
6.00 252.00 20.24 12.36 6.00 216.00 23.61 14.66
7.00 308.00 16.56 11.26 7.00 266.00 19.17 12.71
8.00 368.00 13.86 10.98 8.00 320.00 15.94 11.94
9.00 432.00 11.81 11.16 9.00 378.00 13.49 11.83
10.00 500.00 10.20 11.62 10.00 440.00 11.59 12.09
11.00 572.00 8.92 12.23 11.00 506.00 10.08 12.58
12.00 648.00 7.87 12.96 12.00 576.00 8.85 13.22
13.00 728.00 7.01 13.76 13.00 650.00 7.85 13.96
14.00 812.00 6.28 14.61 14.00 728.00 7.01 14.76
15.00 900.00 5.67 15.50 15.00 810.00 6.30 15.62
16.00 992.00 5.14 16.41 16.00 896.00 5.69 16.50
17.00 1088.00 4.69 17.34 17.00 986.00 5.17 17.42
18.00 1188.00 4.29 18.29 18.00 1080.00 4.72 18.35
19.00 1292.00 3.95 19.24 19.00 1178.00 4.33 19.29
20.00 1400.00 3.64 20.21 20.00 1280.00 3.98 20.25
21.00 1512.00 3.37 21.18 21.00 1386.00 3.68 21.21
22.00 1628.00 3.13 22.15 22.00 1496.00 3.41 22.18
23.00 1748.00 2.92 23.13 23.00 1610.00 3.17 23.16
24.00 1872.00 2.72 24.12 24.00 1728.00 2.95 24.14
The depth at bridge section is
slightly less than 16 ft.
0.0
4.0
8.0
12.0
16.0
20.0
24.0
0.0 10.0 20.0 30.0 40.0 50.0 60.0
E (ft)
y
(ft)
Channel section Bridge section
16.41
18
Problem 10:
(a) Recall from Equations 2.15, 2.3 and 2.17 that for rectangular channels
2
2
2gy
q
y
E +
=
3
2
g
q
yc =
c
c E
y
3
2
=
In this problem ∆z= 0.5 ft, yA= 3.0 ft, qA= 60/12= 5 cfs/ft and qB= 60/6= 10 cfs/ft.
At section A
ft
EA 04
.
3
)
0
.
3
)(
2
.
32
(
2
)
0
.
5
(
0
.
3 2
2
=
+
=
At section B
ft
1.46
2
.
32
)
10
(
3
2
=
=
cB
y
ft
y
E c
B 19
.
2
)
46
.
1
)(
2
/
3
(
)
2
/
3
(
min =
=
=
The corresponding specific energy required at A is
ft
z
E
E B
A 69
.
2
5
.
0
19
.
2
min
min =
+
=
∆
+
=
Because EA>EAmin, choking will not occur. Then EB=(EA – ∆z) and
2
2
2
2
2
55
.
1
)
2
.
32
(
2
)
10
(
2
54
.
2
50
.
0
04
.
3
B
B
B
B
B
B
B
y
y
y
y
gy
q
y +
=
+
=
+
=
=
−
By trial and error yB= 2.23 ft.
(b) Givens are ∆z= 1.0 ft, yA= 3.0 ft, qA= 60/12= 5 cfs/ft and qB= 60/6= 10 cfs/ft.
As in part (a) we can determine EA= 3.04 ft and EBmin= 2.19 ft. Also,
ft
z
E
E B
A 19
.
3
0
.
1
19
.
2
min
min =
+
=
∆
+
=
Because EA>EAmin, choking will occur, the depth at B will be equal to the critical depth
1.46 ft, and flow at A will adjust to acquire the minimum required specific energy.
19
2
2
2
2
2
39
.
0
)
2
.
32
(
2
)
5
(
2
19
.
3
Aadj
Aadj
Aadj
Aadj
Aadj
A
Aadj
y
y
y
y
gy
q
y +
=
+
=
+
=
By trial and error we find yAadj= 3.15 ft.
Problem 11:
Q
(cfs)
y
(ft)
A
(ft2
)
YCA
(ft3
)
V
(fps)
M
(ft3
)
145 1.00 8.00 3.67 18.13 85.29
145 2.00 20.00 17.33 7.25 49.98
145 3.00 36.00 45.00 4.03 63.14
145 4.00 56.00 90.67 2.59 102.33
435 1.00 8.00 3.67 54.38 738.24
435 2.00 20.00 17.33 21.75 311.16
435 3.00 36.00 45.00 12.08 208.24
435 4.00 56.00 90.67 7.77 195.61
Problem 12:
Q
(cfs)
y
(ft)
θ
(rad.)
A
(ft2
)
AYC
(ft3
)
M
(ft3
)
10.00 0.50 0.84 0.77 0.16 4.17
10.00 1.00 1.23 2.06 0.85 2.36
10.00 1.50 1.57 3.53 2.25 3.13
10.00 2.00 1.91 5.01 4.39 5.01
20.00 0.50 0.84 0.77 0.16 16.20
20.00 1.00 1.23 2.06 0.85 6.88
20.00 1.50 1.57 3.53 2.25 5.76
20.00 2.00 1.91 5.01 4.39 6.87
Problem 13:
Givens: d0= 36 inches= 3.0 ft. Q= 20 cfs, yJ1= 1.0 ft.
Q/(g0.5
d0
2.5
)= 20/[(32.2)0.5
(3.0)2.5
]= 0.226
yJ1/d0= 1.0/3.0= 0.33
From Figure 2.29, yJ2/d0= 0.67. Therefore, yJ2= 0.67 (3.0)= 2.0 ft
Let us now verify mathematically if the hydraulic jump equation (Equation 2.21) is
satisfied. For d0= 36 inches= 3.0 ft. Q= 20 cfs, yJ1= 1.0 ft, by using the expressions from
Table 2.1, we obtain θ= 1.23 rad., A= 2.06 ft2
, and AYC= 0.85 ft3
. Then, by using
20
Equation 2.19, we find MJ1= 6.88 ft3
. Likewise for d0= 36 inches= 3.0 ft. Q= 20 cfs, yJ2=
2.0 ft, by using the expressions from Table 2.1, we obtain θ= 1.91 rad., A= 5.01 ft2
, and
AYC= 4.39ft3
. Then, by using Equation 2.19, we find MJ2= 6.88 ft3
. Because MJ1= MJ2 the
jump equation is satisfied with yJ2= 2.0 ft.
Problem 14:
Givens: d0= 1.0m, Q= 0.75 m3
/s, yJ1= 0.30m.
Q/(g0.5
d0
2.5
)= 0.75/[(9.81)0.5
(1.0)2.5
]= 0.24
yJ1/d0= 0.30/1.0= 0.3
From Figure 2.29, we find yJ2/d0= 0.76. Therefore, yJ2= 0.76 (1.0)= 0.76 m.
Let us now verify mathematically if the hydraulic jump equation (Equation 2.21) is
satisfied. For d0= 1.0m, Q= 0.75 m3
/s, yJ1= 0.30m, by using the expressions from Table
2.1, we obtain θ= 1.16 rad., A= 0.20 m2
, and AYC= 0.02 m3
. Then, by using Equation
2.19, we find MJ1= 0.31 m3
. Likewise for d d0= 1.0m, Q= 0.75 m3
/s, yJ2= 0.76m, by using
the expressions from Table 2.1, we obtain θ= 2.12 rad., A= 0.64 m2
, and AYC= 0.31m3
.
Then, by using Equation 2.19, we find MJ2= 0.31 m3
. Because MJ1= MJ2 the jump
equation is satisfied with yJ2= 0.76 m.
Problem 15:
(a) Givens: Trapezoidal channel, Q= 200 cfs, b= 6.0 ft, m= 2, yJ1= 1.0 ft.
To use Figure 2.28 let us evaluate the dimensionless parameters
13
.
1
)
0
.
6
(
)
2
.
32
(
)
0
.
2
)(
200
(
5
.
2
5
.
0
5
.
1
5
.
2
5
.
0
5
.
1
=
=
b
g
Qm
and
33
.
0
0
.
6
)
0
.
1
)(
0
.
2
(
1
=
=
b
myJ
From Figure 2.28, we obtain myJ2/b= 1.6. Then yJ2= 1.6(6.0)/2.0= 4.80 ft. Let us now
determine if this depth satisfy the jump equation, MJ1= MJ2
By using the expressions given in Table 2.1
3
2
2
1
1
2
1
1
1
2
1
159
)]
0
.
6
(
3
)
0
.
1
)(
0
.
2
(
2
[
6
)
0
.
1
(
)
0
.
1
)](
0
.
1
)(
0
.
2
(
0
.
6
[
2
.
32
)
200
(
)
3
2
(
6
)
(
ft
M
b
my
y
y
my
b
g
Q
M
J
J
J
J
J
J
=
+
+
+
=
+
+
+
=
Likewise for the trial value of yJ2= 4.8 ft
21
3
2
2
2
2
2
2
2
2
2
2
159
)]
0
.
6
(
3
)
8
.
4
)(
0
.
2
(
2
[
6
)
8
.
4
(
)
8
.
4
)](
8
.
4
)(
0
.
2
(
0
.
6
[
2
.
32
)
200
(
)
3
2
(
6
)
(
ft
M
b
my
y
y
my
b
g
Q
M
J
J
J
J
J
J
=
+
+
+
=
+
+
+
=
Because MJ1= MJ2 we conclude that yJ2= 4.80 ft.
(b) The head loss due the hydraulic jump is calculated using hLj= EJ1-EJ2 or
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
+
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
+
= 2
2
2
2
2
2
1
1
2
1
]
)
[(
2
]
)
[(
2 J
J
J
J
J
J
Lj
y
my
b
g
Q
y
y
my
b
g
Q
y
h
ft
hLj 79
.
5
]
80
.
4
))
80
.
4
(
2
0
.
6
)[(
2
.
32
(
2
200
80
.
4
]
0
.
1
))
0
.
1
(
2
0
.
6
)[(
2
.
32
(
2
200
0
.
1 2
2
2
2
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
+
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
+
=
Problem 16:
(a) Givens: Trapezoidal channel, Q= 1320 m3
/s, b= 10.0m, m= 2, yJ2= 13.3m.
To use Figure 2.28 let us evaluate the dimensionless parameters
77
.
3
)
10
(
)
81
.
9
(
)
0
.
2
)(
1320
(
5
.
2
5
.
0
5
.
1
5
.
2
5
.
0
5
.
1
=
=
b
g
Qm
and
66
.
2
0
.
10
)
3
.
13
)(
0
.
2
(
2
=
=
b
myJ
From Figure 2.28, we obtain myJ1/b= 0.75. Then yJ2= 0.75(10)/2.0= 3.75 m. Let us now
determine if this depth satisfy the jump equation, MJ1= MJ2
By using the expressions given in Table 2.1
3
2
2
2
2
2
2
2
2
2
2
2812
)]
0
.
10
(
3
)
75
.
3
)(
0
.
2
(
2
[
6
)
75
.
3
(
)
75
.
3
)](
75
.
3
)(
0
.
2
(
0
.
10
[
81
.
9
)
1320
(
)
3
2
(
6
)
(
m
M
b
my
y
y
my
b
g
Q
M
J
J
J
J
J
J
=
+
+
+
=
+
+
+
=
Also for the section before the jump
22
3
2
2
1
1
2
1
1
1
2
1
2818
)]
0
.
10
(
3
)
3
.
13
)(
0
.
2
(
2
[
6
)
3
.
13
(
)
3
.
13
)](
3
.
13
)(
0
.
2
(
0
.
10
[
81
.
9
)
1320
(
)
3
2
(
6
)
(
m
M
b
my
y
y
my
b
g
Q
M
J
J
J
J
J
J
=
+
+
+
=
+
+
+
=
We will accept yJ1= 3.75 ft since MJ1 is nearly equal to MJ2.
(b) The head loss due the hydraulic jump is calculated using hLj= EJ1-EJ2 or
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
+
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
+
= 2
2
2
2
2
2
1
1
2
1
]
)
[(
2
]
)
[(
2 J
J
J
J
J
J
Lj
y
my
b
g
Q
y
y
my
b
g
Q
y
h
m
hLj 7
.
10
]
3
.
13
))
3
.
13
(
2
0
.
10
)[(
81
.
9
(
2
1320
3
.
13
]
75
.
3
))
75
.
3
(
2
0
.
10
)[(
81
.
9
(
2
1320
75
.
3 2
2
2
2
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
+
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
+
=
Problem 17:
2
2
2
2
2
2
2
1
1
2
y
gy
q
y
gy
q
+
=
+
( )
2
1
2
2
2
1
2
2
1
1
1
y
y
y
y
g
q
−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
( )( )
1
2
1
2
2
1
1
2
2
2 y
y
y
y
y
y
y
y
g
q
+
−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
( ) ( ) 0
1
2
1
2
2
1
2
1
2 =
⎥
⎦
⎤
⎢
⎣
⎡
+
−
− y
y
y
y
g
q
y
y
( ) 0
1
2
1
2
2
1
2
=
+
− y
y
y
y
g
q
( ) 0
2
1
2
2
2
1
2
=
+
− y
y
y
gy
q
Divide both sides by y1
2
23
0
2
1
2
2
1
2
2
3
1
2
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
−
y
y
y
y
gy
q
Noting that
3
1
2
1
gy
q
Fr = we obtain
0
2 2
1
1
2
2
1
2
=
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
r
F
y
y
y
y
This quadratic equation has two roots. One of the roots will yield a negative value for the
ratio y2/y1 and has no physical meaning. The second root will yield
( )
1
8
1
2
1 2
1
1
2
−
+
= r
F
y
y
Problem 18:
Equation 2.16 can be written as
1
1
2
8
2
1
2
2
1 −
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
=
y
y
Fr
or
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
1
2
2
1
2
2
1
2
1
2
1
y
y
y
y
Fr (*)
Equation 2.28
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
+
−
=
−
−
+
= 2
2
2
1
2
2
1
2
2
2
2
2
1
2
1
1
1
2
)
(
2
2 y
y
g
q
y
y
gy
q
y
gy
q
y
hLJ
( ) ( )
2
2
2
1
2
2
2
1
1
2
1
2
2
2
1
2
2
2
1
2
2
1
2
)
(
2
)
( y
y
y
F
y
y
y
y
y
y
gy
q
y
y
h r
LJ −
+
−
=
−
+
−
=
Substituting Equation * into this expression we have
( ) ( )
1
2
2
3
1
3
2
2
1
2
2
1
2
1
2
2
2
1
2
1
2
1
2
1
4
1
)
(
4
1
)
( y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
hLJ −
+
−
−
−
=
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ +
+
−
=
24
( )
2
1
3
1
2
1
2
2
3
1
3
2
2
1
2
1
2
2
2
2
1
2
1 4
)
(
4
4
4
1
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
hLJ
−
=
+
−
+
−
−
=
Problem 19:
The hydraulic jump equation on a sloped channel would include the component of the
weight of water in the flow direction. With reference to Equation 2.18, the jump equation
becomes
2
0
1
2
J
U
D
J M
A
A
xS
M =
+
∆
+
Therefore for the same yJ1, the magnitude of MJ2 would be larger. An inspection of any
specific momentum would reveal that, on the subcritical limb, a larger MJ2 corresponds to
a larger yJ2.
Problem 20:
If the friction forces are not negligible, the hydraulic jump equation includes a friction
force term opposing the flow. With reference to Equation 2.18, the hydraulic jump
equation becomes
2
1 J
f
J M
F
M =
−
γ
Therefore for the same yJ1, the magnitude of MJ2 would be smaller. An inspection of a
specific momentum diagram would reveal that, on the subcritical limb, a smaller MJ2
corresponds to a smaller yJ2.

Más contenido relacionado

Similar a sm ch2 open akan.pdf

Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Ansal Valappil
 
thermal science Ch 04
thermal science Ch 04thermal science Ch 04
thermal science Ch 04
尚儒 吳
 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
DannyCoronel5
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
Kadu Brito
 

Similar a sm ch2 open akan.pdf (20)

6. diseño de puente compuesto2
6. diseño de puente compuesto26. diseño de puente compuesto2
6. diseño de puente compuesto2
 
Ch02
Ch02Ch02
Ch02
 
Maths book2 Text book answer
Maths book2 Text book answerMaths book2 Text book answer
Maths book2 Text book answer
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
thermal science Ch 04
thermal science Ch 04thermal science Ch 04
thermal science Ch 04
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
Solucionario_Felder.pdf
Solucionario_Felder.pdfSolucionario_Felder.pdf
Solucionario_Felder.pdf
 
Capítulo 02 considerações estatísticas
Capítulo 02   considerações estatísticasCapítulo 02   considerações estatísticas
Capítulo 02 considerações estatísticas
 
Tablice beton
Tablice betonTablice beton
Tablice beton
 
Full Report.pdf
Full Report.pdfFull Report.pdf
Full Report.pdf
 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
 
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
 
Resposta cap-1-halliday-8-edição
Resposta cap-1-halliday-8-ediçãoResposta cap-1-halliday-8-edição
Resposta cap-1-halliday-8-edição
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
 
2016 CHE2163 Tutorial 5
2016 CHE2163 Tutorial 52016 CHE2163 Tutorial 5
2016 CHE2163 Tutorial 5
 
Eee498 assignment
Eee498 assignmentEee498 assignment
Eee498 assignment
 
Tarea 5 hidraulica iii-cabrera arias roberto alejandro
Tarea 5 hidraulica iii-cabrera arias roberto alejandroTarea 5 hidraulica iii-cabrera arias roberto alejandro
Tarea 5 hidraulica iii-cabrera arias roberto alejandro
 
Mojtaba Hasanlu's Portfolios in Rotor
Mojtaba Hasanlu's Portfolios in RotorMojtaba Hasanlu's Portfolios in Rotor
Mojtaba Hasanlu's Portfolios in Rotor
 
Capítulo 03 materiais
Capítulo 03   materiaisCapítulo 03   materiais
Capítulo 03 materiais
 

Último

VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
dharasingh5698
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 

Último (20)

22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 

sm ch2 open akan.pdf

  • 1. 10 CHAPTER 2 Problem 1: Rectangular channel q= 1.6/0.8= 2.0 m2 /s y= 1.1m By using Equation 2.3 0.74m 81 . 9 ) 0 . 2 ( 3 2 3 2 3 2 2 = = = = g q gb Q yc Flow is subcritical since y>yc Trapezoidal channel Q= 4.0 m3 /s, b= 1.0 m, m=1.5, y= 1.2 m 35 . 2 ) 0 . 1 ( ) 81 . 9 ( ) 5 . 1 )( 0 . 4 ( 5 . 2 5 . 0 5 . 1 5 . 2 5 . 0 5 . 1 = = b g Qm From Figure myc/b= 1.20. Then yc= 1.20(1.0)/1.5= 0.80m Flow is subcritical since y>yc Triangular channel Q= 2 m3 /s, m=2, y= 0.9m By using Equation 2.4 m gm Q yc 73 . 0 ) 2 ( 81 . 9 ) 0 . 2 ( 2 2 5 2 2 5 2 2 = = = Flow is subcritical since y>yc Circular Channel d0= 1.0m and Q= 1.2 m3 /s , y= 0.8m 38 . 0 ) 0 . 1 ( ) 81 . 9 ( 2 . 1 5 . 2 5 . 0 5 . 2 0 5 . 0 = = d g Q From Figure yc/d0= 0.63. Thus, yc= 0.63(1.0)=0.63m Flow is subcritical since y>yc
  • 2. 11 Problem 2: Rectangular channel q= 100/5= 20 ft2 /s, y= 2.0 ft By using Equation 2.3 32 . 2 2 . 32 ) 0 . 20 ( 3 2 3 2 3 2 2 ft g q gb Q yc = = = = Flow is supercritical since y<yc Trapezoidal channel Q= 200 cfs, b= 6.0ft, m=2, y= 2.8 ft 13 . 1 ) 0 . 6 ( ) 2 . 32 ( ) 0 . 2 )( 200 ( 5 . 2 5 . 0 5 . 1 5 . 2 5 . 0 5 . 1 = = b g Qm From Figure myc/b= 0.82. Then yc= 0.82(6.0)/2.0= 2.47ft Flow is subcritical since y>yc Triangular channel Q= 45 cfs, m=1.5, y= 2.0 ft By using Equation 2.4 ft gm Q yc 24 . 2 ) 5 . 1 ( 2 . 32 ) 0 . 45 ( 2 2 5 2 2 5 2 2 = = = Flow is supercritical since y<yc Circular Channel d0= 5.0 ft and Q= 100 cfs, y= 3.2 ft 32 . 0 ) 0 . 5 ( ) 2 . 32 ( 100 5 . 2 5 . 0 5 . 2 0 5 . 0 = = d g Q From Figure yc/d0= 0.57. Thus, yc= 0.57(5.0)= 2.85 ft Flow is subcritical since y>yc
  • 3. 12 Problem 3: Rectangular channel q= 1.6/0.8= 2.0 m2 /s y (m) E (m) 0.20 5.30 0.40 1.67 0.60 1.17 0.80 1.12 1.00 1.20 1.50 1.59 2.00 2.05 2.50 2.53 3.00 3.02 3.50 3.52 4.00 4.01 4.50 4.51 5.00 5.01 y= 1.1 m is on the subcritical limb. Trapezoidal channel Q= 4.0 m3 /s, b= 1.0 m, m=1.5 y (m) A (m2 ) V (m/s) E (m) 0.20 0.26 15.38 12.26 0.40 0.64 6.25 2.39 0.60 1.14 3.51 1.23 0.80 1.76 2.27 1.06 1.00 2.50 1.60 1.13 1.50 4.88 0.82 1.53 2.00 8.00 0.50 2.01 3.00 16.50 0.24 3.00 4.00 28.00 0.14 4.00 5.00 42.50 0.09 5.00 6.00 60.00 0.07 6.00 7.00 80.50 0.05 7.00 8.00 104.00 0.04 8.00 9.00 130.50 0.03 9.00 y= 1.2 m is on the subcritical limb. 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 E (m) y (m) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 0.0 2.0 4.0 6.0 8.0 10.0 E (m) y (m)
  • 4. 13 Triangular channel Q= 2 m3 /s, m=2 y (m) A (m2 ) V (m/s) E (m) 0.20 0.08 25.00 32.06 0.30 0.18 11.11 6.59 0.40 0.32 6.25 2.39 0.50 0.50 4.00 1.32 0.60 0.72 2.78 0.99 0.70 0.98 2.04 0.91 0.80 1.28 1.56 0.92 1.00 2.00 1.00 1.05 1.50 4.50 0.44 1.51 2.00 8.00 0.25 2.00 3.00 18.00 0.11 3.00 5.00 50.00 0.04 5.00 6.00 72.00 0.03 6.00 7.00 98.00 0.02 7.00 y= 0.9 m is on the subcritical limb. Circular Channel d0= 1.0m and Q= 1.2 m3 /s y (m) θ A (m2 ) E (m) 0.20 0.93 0.11 6.07 0.25 1.05 0.15 3.36 0.30 1.16 0.20 2.17 0.35 1.27 0.24 1.57 0.40 1.37 0.29 1.25 0.45 1.47 0.34 1.07 0.50 1.57 0.39 0.98 0.55 1.67 0.44 0.92 0.60 1.77 0.49 0.90 0.65 1.88 0.54 0.90 0.70 1.98 0.59 0.91 0.75 2.09 0.63 0.93 0.80 2.21 0.67 0.96 0.85 2.35 0.71 0.99 0.90 2.50 0.74 1.03 0.95 2.69 0.77 1.07 y= 0.8 m is on the subcritical limb. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 E (m) y (m) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 0.0 2.0 4.0 6.0 8.0 10.0 E (m) y (m)
  • 5. 14 Problem 4: Rectangular channel q= 100/5= 20 cfs/ft y (m) E (m) 0.50 25.34 1.00 7.21 1.50 4.26 2.00 3.55 2.50 3.49 3.00 3.69 3.50 4.01 4.00 4.39 5.00 5.25 6.00 6.17 7.00 7.13 8.00 8.10 9.00 9.08 y= 2.0 ft is on the supercritical limb. Trapezoidal channel Q= 200 cfs, b= 6.0 ft, m=2 y (ft) A (ft2 ) V (fps) E (ft) 0.50 3.50 57.14 51.20 1.00 8.00 25.00 10.70 1.50 13.50 14.81 4.91 2.00 20.00 10.00 3.55 2.50 27.50 7.27 3.32 3.00 36.00 5.56 3.48 3.50 45.50 4.40 3.80 4.00 56.00 3.57 4.20 5.00 80.00 2.50 5.10 6.00 108.00 1.85 6.05 7.00 140.00 1.43 7.03 8.00 176.00 1.14 8.02 9.00 216.00 0.93 9.01 10.00 260.00 0.77 10.01 y= 2.8 is on the subcritical limb. 0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 E (ft) y (ft) 0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 E (ft) y (ft)
  • 6. 15 Triangular channel Q= 45 cfs, m= 1.5 y (ft) A (ft2 ) V (fps) E (ft) 0.50 0.38 120.00 224.10 1.00 1.50 30.00 14.98 1.50 3.38 13.33 4.26 2.00 6.00 7.50 2.87 2.25 7.59 5.93 2.80 2.50 9.38 4.80 2.86 3.00 13.50 3.33 3.17 3.50 18.38 2.45 3.59 4.00 24.00 1.88 4.05 5.00 37.50 1.20 5.02 6.00 54.00 0.83 6.01 7.00 73.50 0.61 7.01 8.00 96.00 0.47 8.00 9.00 121.50 0.37 9.00 10.00 150.00 0.30 10.00 y= 2.0 m is on the supercritical limb. Circular Channel d0= 5 ft and Q= 100 cfs y (ft) θ A (ft2 ) E (ft) 1.5 1.16 4.95 7.83 1.8 1.29 6.36 5.63 2.1 1.41 7.83 4.64 2.4 1.53 9.32 4.19 2.7 1.65 10.82 4.03 3.0 1.77 12.30 4.03 3.3 1.90 13.75 4.12 3.6 2.03 15.13 4.28 3.9 2.17 16.43 4.48 4.2 2.32 17.61 4.70 4.5 2.50 18.61 4.95 4.8 2.74 19.37 5.21 y= 3.2 ft is on the subcritical limb. 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 10 E (ft) y (ft) 0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 E (ft) y (ft)
  • 7. 16 Problem 5: No. The streamlines curve up. Pressure distribution can not be hydrostatic if the flow has a vertical velocity component. Problem 6: Equation 2.12 is 2 2 2gA Q y E + = Taking the derivative of both sides with respect to x dx dy dy dA gA Q dx dy dx dA gA Q dx dy A dx d g Q dx dy gA Q dx d dx dy dx dE 3 2 3 2 2 2 2 2 2 2 ) 1 ( 2 ) 2 ( − = − = + = + = ) 1 ( 2 2 2 r r F dx dy dx dy F dx dy dx dy T gA V dx dy dx dE − = − = − = ) 1 ( / 2 r F dx dE dx dy − = Problem 7: 2 2 2gA Q y E + = As y approaches infinity so does A, and the second term in the expression for E approaches zero. Then, as y approaches infinity, the upper limb becomes asymptotical to the straight line E=y. This straight line makes a 45º angle with each of the E and y axes. As y approaches zero so does A, and the second term approaches infinity. Therefore, the lower limb is asymptotical to the E axis, which can also be defined by y= 0. Problem 8: From Figure 2.11, the minimum specific energy, EBmin, at section B required to pass 290 cfs is 4.0 ft. The corresponding minimum specific energy at A is EAmin= 4.0 +1.0= 5.0 ft. The flow has a specific energy of 5.5 ft at A under the given flow conditions. This is larger than the required specific energy.
  • 8. 17 Problem 9: Channel section Q= 5,100 cfs, b= 30 ft, m=2 Bridge section Q= 5,100 cfs, b= 30 ft, m=2 Channel section Bridge section y (ft) A (ft2 ) V (cfs) E (ft) y (ft) A (ft2 ) V (cfs) E (ft) 2.00 68.00 75.00 89.34 2.00 56.00 91.07 130.79 3.00 108.00 47.22 37.63 3.00 90.00 56.67 52.86 4.00 152.00 33.55 21.48 4.00 128.00 39.84 28.65 5.00 200.00 25.50 15.10 5.00 170.00 30.00 18.98 6.00 252.00 20.24 12.36 6.00 216.00 23.61 14.66 7.00 308.00 16.56 11.26 7.00 266.00 19.17 12.71 8.00 368.00 13.86 10.98 8.00 320.00 15.94 11.94 9.00 432.00 11.81 11.16 9.00 378.00 13.49 11.83 10.00 500.00 10.20 11.62 10.00 440.00 11.59 12.09 11.00 572.00 8.92 12.23 11.00 506.00 10.08 12.58 12.00 648.00 7.87 12.96 12.00 576.00 8.85 13.22 13.00 728.00 7.01 13.76 13.00 650.00 7.85 13.96 14.00 812.00 6.28 14.61 14.00 728.00 7.01 14.76 15.00 900.00 5.67 15.50 15.00 810.00 6.30 15.62 16.00 992.00 5.14 16.41 16.00 896.00 5.69 16.50 17.00 1088.00 4.69 17.34 17.00 986.00 5.17 17.42 18.00 1188.00 4.29 18.29 18.00 1080.00 4.72 18.35 19.00 1292.00 3.95 19.24 19.00 1178.00 4.33 19.29 20.00 1400.00 3.64 20.21 20.00 1280.00 3.98 20.25 21.00 1512.00 3.37 21.18 21.00 1386.00 3.68 21.21 22.00 1628.00 3.13 22.15 22.00 1496.00 3.41 22.18 23.00 1748.00 2.92 23.13 23.00 1610.00 3.17 23.16 24.00 1872.00 2.72 24.12 24.00 1728.00 2.95 24.14 The depth at bridge section is slightly less than 16 ft. 0.0 4.0 8.0 12.0 16.0 20.0 24.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 E (ft) y (ft) Channel section Bridge section 16.41
  • 9. 18 Problem 10: (a) Recall from Equations 2.15, 2.3 and 2.17 that for rectangular channels 2 2 2gy q y E + = 3 2 g q yc = c c E y 3 2 = In this problem ∆z= 0.5 ft, yA= 3.0 ft, qA= 60/12= 5 cfs/ft and qB= 60/6= 10 cfs/ft. At section A ft EA 04 . 3 ) 0 . 3 )( 2 . 32 ( 2 ) 0 . 5 ( 0 . 3 2 2 = + = At section B ft 1.46 2 . 32 ) 10 ( 3 2 = = cB y ft y E c B 19 . 2 ) 46 . 1 )( 2 / 3 ( ) 2 / 3 ( min = = = The corresponding specific energy required at A is ft z E E B A 69 . 2 5 . 0 19 . 2 min min = + = ∆ + = Because EA>EAmin, choking will not occur. Then EB=(EA – ∆z) and 2 2 2 2 2 55 . 1 ) 2 . 32 ( 2 ) 10 ( 2 54 . 2 50 . 0 04 . 3 B B B B B B B y y y y gy q y + = + = + = = − By trial and error yB= 2.23 ft. (b) Givens are ∆z= 1.0 ft, yA= 3.0 ft, qA= 60/12= 5 cfs/ft and qB= 60/6= 10 cfs/ft. As in part (a) we can determine EA= 3.04 ft and EBmin= 2.19 ft. Also, ft z E E B A 19 . 3 0 . 1 19 . 2 min min = + = ∆ + = Because EA>EAmin, choking will occur, the depth at B will be equal to the critical depth 1.46 ft, and flow at A will adjust to acquire the minimum required specific energy.
  • 10. 19 2 2 2 2 2 39 . 0 ) 2 . 32 ( 2 ) 5 ( 2 19 . 3 Aadj Aadj Aadj Aadj Aadj A Aadj y y y y gy q y + = + = + = By trial and error we find yAadj= 3.15 ft. Problem 11: Q (cfs) y (ft) A (ft2 ) YCA (ft3 ) V (fps) M (ft3 ) 145 1.00 8.00 3.67 18.13 85.29 145 2.00 20.00 17.33 7.25 49.98 145 3.00 36.00 45.00 4.03 63.14 145 4.00 56.00 90.67 2.59 102.33 435 1.00 8.00 3.67 54.38 738.24 435 2.00 20.00 17.33 21.75 311.16 435 3.00 36.00 45.00 12.08 208.24 435 4.00 56.00 90.67 7.77 195.61 Problem 12: Q (cfs) y (ft) θ (rad.) A (ft2 ) AYC (ft3 ) M (ft3 ) 10.00 0.50 0.84 0.77 0.16 4.17 10.00 1.00 1.23 2.06 0.85 2.36 10.00 1.50 1.57 3.53 2.25 3.13 10.00 2.00 1.91 5.01 4.39 5.01 20.00 0.50 0.84 0.77 0.16 16.20 20.00 1.00 1.23 2.06 0.85 6.88 20.00 1.50 1.57 3.53 2.25 5.76 20.00 2.00 1.91 5.01 4.39 6.87 Problem 13: Givens: d0= 36 inches= 3.0 ft. Q= 20 cfs, yJ1= 1.0 ft. Q/(g0.5 d0 2.5 )= 20/[(32.2)0.5 (3.0)2.5 ]= 0.226 yJ1/d0= 1.0/3.0= 0.33 From Figure 2.29, yJ2/d0= 0.67. Therefore, yJ2= 0.67 (3.0)= 2.0 ft Let us now verify mathematically if the hydraulic jump equation (Equation 2.21) is satisfied. For d0= 36 inches= 3.0 ft. Q= 20 cfs, yJ1= 1.0 ft, by using the expressions from Table 2.1, we obtain θ= 1.23 rad., A= 2.06 ft2 , and AYC= 0.85 ft3 . Then, by using
  • 11. 20 Equation 2.19, we find MJ1= 6.88 ft3 . Likewise for d0= 36 inches= 3.0 ft. Q= 20 cfs, yJ2= 2.0 ft, by using the expressions from Table 2.1, we obtain θ= 1.91 rad., A= 5.01 ft2 , and AYC= 4.39ft3 . Then, by using Equation 2.19, we find MJ2= 6.88 ft3 . Because MJ1= MJ2 the jump equation is satisfied with yJ2= 2.0 ft. Problem 14: Givens: d0= 1.0m, Q= 0.75 m3 /s, yJ1= 0.30m. Q/(g0.5 d0 2.5 )= 0.75/[(9.81)0.5 (1.0)2.5 ]= 0.24 yJ1/d0= 0.30/1.0= 0.3 From Figure 2.29, we find yJ2/d0= 0.76. Therefore, yJ2= 0.76 (1.0)= 0.76 m. Let us now verify mathematically if the hydraulic jump equation (Equation 2.21) is satisfied. For d0= 1.0m, Q= 0.75 m3 /s, yJ1= 0.30m, by using the expressions from Table 2.1, we obtain θ= 1.16 rad., A= 0.20 m2 , and AYC= 0.02 m3 . Then, by using Equation 2.19, we find MJ1= 0.31 m3 . Likewise for d d0= 1.0m, Q= 0.75 m3 /s, yJ2= 0.76m, by using the expressions from Table 2.1, we obtain θ= 2.12 rad., A= 0.64 m2 , and AYC= 0.31m3 . Then, by using Equation 2.19, we find MJ2= 0.31 m3 . Because MJ1= MJ2 the jump equation is satisfied with yJ2= 0.76 m. Problem 15: (a) Givens: Trapezoidal channel, Q= 200 cfs, b= 6.0 ft, m= 2, yJ1= 1.0 ft. To use Figure 2.28 let us evaluate the dimensionless parameters 13 . 1 ) 0 . 6 ( ) 2 . 32 ( ) 0 . 2 )( 200 ( 5 . 2 5 . 0 5 . 1 5 . 2 5 . 0 5 . 1 = = b g Qm and 33 . 0 0 . 6 ) 0 . 1 )( 0 . 2 ( 1 = = b myJ From Figure 2.28, we obtain myJ2/b= 1.6. Then yJ2= 1.6(6.0)/2.0= 4.80 ft. Let us now determine if this depth satisfy the jump equation, MJ1= MJ2 By using the expressions given in Table 2.1 3 2 2 1 1 2 1 1 1 2 1 159 )] 0 . 6 ( 3 ) 0 . 1 )( 0 . 2 ( 2 [ 6 ) 0 . 1 ( ) 0 . 1 )]( 0 . 1 )( 0 . 2 ( 0 . 6 [ 2 . 32 ) 200 ( ) 3 2 ( 6 ) ( ft M b my y y my b g Q M J J J J J J = + + + = + + + = Likewise for the trial value of yJ2= 4.8 ft
  • 12. 21 3 2 2 2 2 2 2 2 2 2 2 159 )] 0 . 6 ( 3 ) 8 . 4 )( 0 . 2 ( 2 [ 6 ) 8 . 4 ( ) 8 . 4 )]( 8 . 4 )( 0 . 2 ( 0 . 6 [ 2 . 32 ) 200 ( ) 3 2 ( 6 ) ( ft M b my y y my b g Q M J J J J J J = + + + = + + + = Because MJ1= MJ2 we conclude that yJ2= 4.80 ft. (b) The head loss due the hydraulic jump is calculated using hLj= EJ1-EJ2 or ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + = 2 2 2 2 2 2 1 1 2 1 ] ) [( 2 ] ) [( 2 J J J J J J Lj y my b g Q y y my b g Q y h ft hLj 79 . 5 ] 80 . 4 )) 80 . 4 ( 2 0 . 6 )[( 2 . 32 ( 2 200 80 . 4 ] 0 . 1 )) 0 . 1 ( 2 0 . 6 )[( 2 . 32 ( 2 200 0 . 1 2 2 2 2 = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + = Problem 16: (a) Givens: Trapezoidal channel, Q= 1320 m3 /s, b= 10.0m, m= 2, yJ2= 13.3m. To use Figure 2.28 let us evaluate the dimensionless parameters 77 . 3 ) 10 ( ) 81 . 9 ( ) 0 . 2 )( 1320 ( 5 . 2 5 . 0 5 . 1 5 . 2 5 . 0 5 . 1 = = b g Qm and 66 . 2 0 . 10 ) 3 . 13 )( 0 . 2 ( 2 = = b myJ From Figure 2.28, we obtain myJ1/b= 0.75. Then yJ2= 0.75(10)/2.0= 3.75 m. Let us now determine if this depth satisfy the jump equation, MJ1= MJ2 By using the expressions given in Table 2.1 3 2 2 2 2 2 2 2 2 2 2 2812 )] 0 . 10 ( 3 ) 75 . 3 )( 0 . 2 ( 2 [ 6 ) 75 . 3 ( ) 75 . 3 )]( 75 . 3 )( 0 . 2 ( 0 . 10 [ 81 . 9 ) 1320 ( ) 3 2 ( 6 ) ( m M b my y y my b g Q M J J J J J J = + + + = + + + = Also for the section before the jump
  • 13. 22 3 2 2 1 1 2 1 1 1 2 1 2818 )] 0 . 10 ( 3 ) 3 . 13 )( 0 . 2 ( 2 [ 6 ) 3 . 13 ( ) 3 . 13 )]( 3 . 13 )( 0 . 2 ( 0 . 10 [ 81 . 9 ) 1320 ( ) 3 2 ( 6 ) ( m M b my y y my b g Q M J J J J J J = + + + = + + + = We will accept yJ1= 3.75 ft since MJ1 is nearly equal to MJ2. (b) The head loss due the hydraulic jump is calculated using hLj= EJ1-EJ2 or ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + = 2 2 2 2 2 2 1 1 2 1 ] ) [( 2 ] ) [( 2 J J J J J J Lj y my b g Q y y my b g Q y h m hLj 7 . 10 ] 3 . 13 )) 3 . 13 ( 2 0 . 10 )[( 81 . 9 ( 2 1320 3 . 13 ] 75 . 3 )) 75 . 3 ( 2 0 . 10 )[( 81 . 9 ( 2 1320 75 . 3 2 2 2 2 = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + = Problem 17: 2 2 2 2 2 2 2 1 1 2 y gy q y gy q + = + ( ) 2 1 2 2 2 1 2 2 1 1 1 y y y y g q − = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − ( )( ) 1 2 1 2 2 1 1 2 2 2 y y y y y y y y g q + − = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − ( ) ( ) 0 1 2 1 2 2 1 2 1 2 = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + − − y y y y g q y y ( ) 0 1 2 1 2 2 1 2 = + − y y y y g q ( ) 0 2 1 2 2 2 1 2 = + − y y y gy q Divide both sides by y1 2
  • 14. 23 0 2 1 2 2 1 2 2 3 1 2 = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + − y y y y gy q Noting that 3 1 2 1 gy q Fr = we obtain 0 2 2 1 1 2 2 1 2 = − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ r F y y y y This quadratic equation has two roots. One of the roots will yield a negative value for the ratio y2/y1 and has no physical meaning. The second root will yield ( ) 1 8 1 2 1 2 1 1 2 − + = r F y y Problem 18: Equation 2.16 can be written as 1 1 2 8 2 1 2 2 1 − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + = y y Fr or ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = 1 2 2 1 2 2 1 2 1 2 1 y y y y Fr (*) Equation 2.28 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − + − = − − + = 2 2 2 1 2 2 1 2 2 2 2 2 1 2 1 1 1 2 ) ( 2 2 y y g q y y gy q y gy q y hLJ ( ) ( ) 2 2 2 1 2 2 2 1 1 2 1 2 2 2 1 2 2 2 1 2 2 1 2 ) ( 2 ) ( y y y F y y y y y y gy q y y h r LJ − + − = − + − = Substituting Equation * into this expression we have ( ) ( ) 1 2 2 3 1 3 2 2 1 2 2 1 2 1 2 2 2 1 2 1 2 1 2 1 4 1 ) ( 4 1 ) ( y y y y y y y y y y y y y y y y y y hLJ − + − − − = − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + + − =
  • 15. 24 ( ) 2 1 3 1 2 1 2 2 3 1 3 2 2 1 2 1 2 2 2 2 1 2 1 4 ) ( 4 4 4 1 y y y y y y y y y y y y y y y y hLJ − = + − + − − = Problem 19: The hydraulic jump equation on a sloped channel would include the component of the weight of water in the flow direction. With reference to Equation 2.18, the jump equation becomes 2 0 1 2 J U D J M A A xS M = + ∆ + Therefore for the same yJ1, the magnitude of MJ2 would be larger. An inspection of any specific momentum would reveal that, on the subcritical limb, a larger MJ2 corresponds to a larger yJ2. Problem 20: If the friction forces are not negligible, the hydraulic jump equation includes a friction force term opposing the flow. With reference to Equation 2.18, the hydraulic jump equation becomes 2 1 J f J M F M = − γ Therefore for the same yJ1, the magnitude of MJ2 would be smaller. An inspection of a specific momentum diagram would reveal that, on the subcritical limb, a smaller MJ2 corresponds to a smaller yJ2.