SlideShare una empresa de Scribd logo
1 de 10
Descargar para leer sin conexión
PERHITUNGAN KINERJA
TURBIN GAS
Power Plant Tech
Educate and share about Mechanical Engineering
Pendahuluan
1. Pengertian kinerja/Performance adalah sesuatu yang dicapai atau prestasi yang diperlihatkan atau kemampuan kerja
suatu peralatan.
2. Performance turbin gas:
 Design
 Off Design
3. Asumsi Perhitungan Performance turbin gas (Siklus Ideal)
 Proses Kompresi dan ekspansi ialah berlangsung secara revessible, isentropik dan adiabatic
 Fluida kerja berperilaku sebagai gas ideal.
 Setiap komponen dianalisis sebagai volume atur pada kondisi tunak.
 Efek energi kinetik dan potensial dapat diabaikan.
 Penuruan atau kenaikan tekanan pada pembakaran di ruang bakar di abaikan
4. Persamaan yang digunakan Hukum Pertama Termodinamika
Q = ΔU + W
 Desain Sistem Termodinamika
 Performance Test Pabrik
 Performance Test Commisioning
 Performance Test Setelah melakukan Maintanace
ataupun repair)
Metode Perhitungan
• Perhitungan Langsung / Metode Input-output
• Perhitungan tidak langsung
GT Operation Data
Unit Conversion
Parameters Value Unit
Compressor
Compressor Inlet Temperature 29 C
Compressor Inlet Flow 307302.30 kg/hr
Compressor Inlet Pressure 1.03 kg/cm2
Compressor Discharge Temperature 414.00 C
Compressor Discharge Pressure 1.26 Mpa
Combustion Chamber
Combustion Chamber Pressure 2467 Kpa
Combustion Chamber Temperature 1203.00 C
Fuel Flow Gas 5442.96 kg/hr
LHV 51971.35 kJ/kg
Turbine
Exhaust GT Temperature 597.27 C
Exhaust GT Pressure 0.19 Kpa
Net Load GT 24 MW
Parameters Value Unit Symbols
Compressor
Compressor Inlet Temperature 302.15K T1
Compressor Inlet Flow 85.36kg/s ma
Compressor Inlet Pressure 1.01Bar P1
Compressor Discharge Temperature 687.15K T2
Compressor Discharge Pressure 12.60Bar P2
Combustion Chamber
Combustion Chamber Pressure 24.67Bar P3
Combustion Chamber Temperature 1476.15K T3
Fuel Flow Gas 1.51kg/s mf
LHV 51971.35kJ/kg
Turbine
Exhaust GT Temperature 870.42K T4
Exhaust GT Pressure 1.90Bar P4
Net Load GT 24000Kw Pout
mf 1.51kg/s
GHV 51971.35kJ/kg
T3 1476.15K
P3 24.67Bar
T4 870.42K
P4 1.90Bar
T1 302.15K
P1 1.01Bar
ma 85.36kg/s
1
2 3
4
T2 687.15K
P2 12.60Bar
Compressor
Combustion Chamber
Turbine
Generators
Net Load GT 24000 Kw
Compressor Work (Wc)
Efficiency Compressor (ηc)
Efficiency Combustion Chamber
Heat in Combustion Chamber
Turbine Work (Wt)
Efficiency Turbine (ηt)
GT Performance
Shaft Work
Efficiency Thermal
Air fuel Ratio
Back Work Ratio
Cycle Work ratio
Spesific Fuel Comsumption
Hate Rate
Efficiency PLTG
Parameters Symbols Value Unit
Pressure Ratio compresor rp 12.47
Pressure Ratio Turbine rp 0.08
Panas spesifik udara (Kompresi) γ 1.40
Panas spesifik udara (Ekspansi) γ 1.30
Temperature Isentropic compressor T2s 621.34K
Temperature Isentropic Turbine T4s 816.94K
Determine the isentropic temperature in the compression and expansion process
Isentropic Compression Isentropic Expansion
Pressure Ratio
rp =
P2
P1
=
12.60 Bar
1.01 Bar
= 12.47 Bar
Isentropic Compression
γ = 1.4 Rasio Panas Spesifik udara (Gas ideal) proses kompresi
γ = 1.3 Rasio Panas Spesifik udara (Gas ideal) proses ekspansi
𝑇2𝑠 = 𝑇1
𝑃2
𝛾−1
𝛾
𝑃1
= 301.15 𝐾 𝑥 12.47 𝐵𝑎𝑟
1.4−1
1.4 = 621.34 K
2s
1
4s
2
3
4
T T2 = 687.15 K
T2s = 621.34 K
S
Compressor Inlet Temperature T1 302.15K
Enthalpy Inlet compressor H1 302.35kJ/kg
Compressor Discharge Temperature T2 687.15K
Enthalpy outlet compressor H2 699.47kJ/kg
Temperature Isentropic compressor T2s 621.34K
Enthalpy Isentropic compressor H2s 629.49kJ/kg
Combustion Chamber Temperature T3 1476.15K
Enthalpy Combustion Chamber H3 1486.83kJ/kg
Exhaust GT Temperature T4 870.42K
Enthalpy outlet turbine H4 899.88kJ/kg
Temperature Isentropic Turbine T4s 816.94K
Enthalpy Isentropic turbine H4s 840.606kJ/kg
Determine the enthalpy
• Using the table of properties of ideal gas air
Interpolasi = (H atas – Hbawah) / (Tatas - Tbawah) * (T - Tbawah ) + Hbawah
= (300.19 – 305.22) / (300 – 305) x (302.15 – 305) + 305.22
= 302.35 Kj/kg
Wc (actual) = ma · (H2 – H1)
Wc (ideal) = ma · (H2s – H1)
ηC =
𝑇2𝑠 −𝑇1
𝑇2 −𝑇1
=
𝐻2𝑠 −𝐻1
𝐻2 −𝐻1
Compressor
Qin (Ideal) = mf · LHV
Qin (Actual) = ma + mf x H3 - (ma - H2)
Combustion Chamber
Turbine
WT (Actual) = ma + mf · (H3 – H4)
Wt (Ideal) = ma + mf * (GHV - H4S)
ηT =
𝑇3 −𝑇4
𝑇3 −𝑇4𝑠
=
𝐻3 −𝐻4
𝐻3 −𝐻4𝑠
Exhaust
Qout = ma + mf · (H4 – H1)
Symbols Value Unit
Compressor
Compressor Work (Actual) Wca 33898.86Kw
Compressor Work (Ideal) Wc Ideal 27924.73kw
Compressor Losses Wlosses 5974.13kw
Efficiency Compressor
0.82
%
82
Combustion Chamber
Heat in Combustion Chamber (Actual) Qin 69458.33Kw
Heat in Combustion Chamber (Ideal) Qin 78577.212Kw
Combustion Chamber Losses Qlosses 9118.88kw
Efficiency Combustion Chamber
0.88
%
88
Turbine
Turbine Work (Actual) Wta 50990.25kw
Turbine Work (Ideal) Wt ideal 77391.63kw
Efficiency Turbine
0.91
90.8%
Exhaust
Heat out Exhaust 51909.81Kw
CALCULATION
Performance Calculation
Symbols Value Unit
Shaft Work Wnett 17091.39kw
Efficiency Thermal ηtr 21.75%
Spesific Fuel Comsumption SFC 0.318kg/kwh
Back Work Ratio BWR 0.66%
Air fuel Ratio AFR 56.5
Efficiency PLTG ηp 0.35%
Hate Rate HR 3.2741kJ/kwh
Cycle Work ratio CWR 34%
Shaft Work (Wnett) Wnett = Turbine work – Compressor work
Specific Fuel Consumption (SFC ) =
3600 𝑥 𝑚𝑓
𝑊𝑛𝑒𝑡𝑡
Back work ratio (BWR) =
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 𝑊𝑜𝑟𝑘
𝑇𝑢𝑟𝑏𝑖𝑛𝑒 𝑊𝑜𝑟𝑘
Air-fuel ratio (AFR) =
𝑚𝑎
𝑚𝑓
Cycle Work ratio (CWR) =
𝑆ℎ𝑎𝑓t 𝑤𝑜𝑟𝑘
𝑇𝑢𝑟𝑏𝑖𝑛𝑒 𝑤𝑜𝑟𝑘
Efficiency GT / Thermal ηt =
𝑊𝑛𝑒𝑡𝑡
𝑚𝑓 𝑥 𝐿𝐻𝑉 𝑎𝑡𝑎𝑢 𝐻𝐻𝑉
Efficiency power generation (ηp) =
𝐷𝑎𝑦𝑎 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟
𝑄𝑖𝑛
Heat rate =
𝑚𝑓 𝑥 𝐿𝐻𝑉𝑎𝑡𝑎𝑢 𝐻𝐻𝑉
𝐷𝑎𝑦𝑎 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟
1
2 3
4
T2 687.15K
P2 12.60Bar
T2s 621.34K
H2 699.47kJ/kg
H2s 629.49kJ/kg
Wc Ideal 27924.73kW
Wca 33898.86kW
ηC 82%
T1 302.15K
P1 1.01Bar
ma 85.36kg/s
H1 302.35kJ/kg
mf 1.51kg/s
GHV 51971.35kJ/kg
Qin 78577.21Kw
ηCc 88%
Qin (Actual) 69458.33Kw
Turbine
Compressor
GT Performance
Shaft Work 17091.39kW
Efficiency Thermal 21.75%
Spesific Fuel Comsumption 0.318kg/kWh
Back Work Ratio 0.66%
Air fuel Ratio 56.5
Hate Rate 3.2741kJ/kWh
Cycle Work ratio 0.34%
Efficiency PLTG 0.35 %
Generators
Net Load GT 24000 Kw
T3 1476.15K
P3 24.67Bar
H3 1486.83kJ/kg
Wt Ideal 77391.63kW
Wt 50990.25kW
ηt 90.8%
T4 870.42K
P4 1.90Bar
H4 899.88kJ/kg
T4S 816.9K
H4S 840.61kJ/kg
Qout Ideal 46760.19kW
Qout 51909.81kW
Combustion Chamber
Compressor Losses
5974.13kW
Combustion Chamber Losses
9118.88kW
Turbine Losses
26401.39kW
TERIMA KASIH

Más contenido relacionado

La actualidad más candente

Contoh penyelesaian soal sistem refrigerasi
Contoh penyelesaian soal sistem refrigerasiContoh penyelesaian soal sistem refrigerasi
Contoh penyelesaian soal sistem refrigerasi
Ali Hasimi Pane
 

La actualidad más candente (20)

Pertemuan 2 boiler.ok
Pertemuan 2  boiler.okPertemuan 2  boiler.ok
Pertemuan 2 boiler.ok
 
ppt Turbin Uap
ppt Turbin Uapppt Turbin Uap
ppt Turbin Uap
 
Ac
AcAc
Ac
 
Heat exchanger [ Alat Penukar Panas]
Heat exchanger [ Alat Penukar Panas]Heat exchanger [ Alat Penukar Panas]
Heat exchanger [ Alat Penukar Panas]
 
Shell and Tube Exchanger - Perancangan Alat Penukar Kalor
Shell and Tube Exchanger - Perancangan Alat Penukar KalorShell and Tube Exchanger - Perancangan Alat Penukar Kalor
Shell and Tube Exchanger - Perancangan Alat Penukar Kalor
 
13-Reaktor Fixed Bed R-01
13-Reaktor Fixed Bed R-0113-Reaktor Fixed Bed R-01
13-Reaktor Fixed Bed R-01
 
Vaporizer
VaporizerVaporizer
Vaporizer
 
Makalah pompa
Makalah pompaMakalah pompa
Makalah pompa
 
Evaporator
EvaporatorEvaporator
Evaporator
 
Modul Penyelesaian Soal Alat Penukar Kalor
Modul Penyelesaian Soal Alat Penukar KalorModul Penyelesaian Soal Alat Penukar Kalor
Modul Penyelesaian Soal Alat Penukar Kalor
 
Pltg pdf
Pltg pdfPltg pdf
Pltg pdf
 
Double Pipe Heat Excanger
Double Pipe Heat ExcangerDouble Pipe Heat Excanger
Double Pipe Heat Excanger
 
Pompa mesin fluida ajar
Pompa mesin fluida ajarPompa mesin fluida ajar
Pompa mesin fluida ajar
 
Ppt
PptPpt
Ppt
 
Contoh penyelesaian soal sistem refrigerasi
Contoh penyelesaian soal sistem refrigerasiContoh penyelesaian soal sistem refrigerasi
Contoh penyelesaian soal sistem refrigerasi
 
Stasiun boiler kelapa_sawit
Stasiun boiler kelapa_sawitStasiun boiler kelapa_sawit
Stasiun boiler kelapa_sawit
 
Pompa & kompresor; sularso, haruo tahara
Pompa & kompresor; sularso, haruo taharaPompa & kompresor; sularso, haruo tahara
Pompa & kompresor; sularso, haruo tahara
 
Fluid Catalytic Cracking - Pengilangan Minyak Bumi
Fluid Catalytic Cracking - Pengilangan Minyak BumiFluid Catalytic Cracking - Pengilangan Minyak Bumi
Fluid Catalytic Cracking - Pengilangan Minyak Bumi
 
Neraca panas materi
Neraca panas materiNeraca panas materi
Neraca panas materi
 
Pompa aksial (axial pump) 1
Pompa aksial (axial pump) 1Pompa aksial (axial pump) 1
Pompa aksial (axial pump) 1
 

Similar a Turbin gas cal.

Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009
CangTo Cheah
 
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Centro Studi Galileo
 

Similar a Turbin gas cal. (20)

Energy Conversion Ideal vs Real Operation Analysis Webinar
Energy Conversion Ideal vs Real Operation Analysis WebinarEnergy Conversion Ideal vs Real Operation Analysis Webinar
Energy Conversion Ideal vs Real Operation Analysis Webinar
 
Principle of turbomachinery
Principle of turbomachineryPrinciple of turbomachinery
Principle of turbomachinery
 
Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009Thermodynamics of axial compressor and turbine - 3rd December 2009
Thermodynamics of axial compressor and turbine - 3rd December 2009
 
Gas turbines
Gas turbines Gas turbines
Gas turbines
 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-Introduction
 
Power Cycles and Combustion Analysis Webinar
Power Cycles and Combustion Analysis WebinarPower Cycles and Combustion Analysis Webinar
Power Cycles and Combustion Analysis Webinar
 
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
Haitao Hu - NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY - POMPE DI CALORE ...
 
introduction to gas turbine.pptx
introduction to gas turbine.pptxintroduction to gas turbine.pptx
introduction to gas turbine.pptx
 
GE Jebachers Gas Engine JGS620 technical specifications
GE Jebachers Gas Engine JGS620 technical specificationsGE Jebachers Gas Engine JGS620 technical specifications
GE Jebachers Gas Engine JGS620 technical specifications
 
Ambrish
AmbrishAmbrish
Ambrish
 
Energy Conversion Analysis Webinar -- Long Version
Energy Conversion Analysis Webinar -- Long VersionEnergy Conversion Analysis Webinar -- Long Version
Energy Conversion Analysis Webinar -- Long Version
 
Chapter 4 Gas Turbine
Chapter 4 Gas TurbineChapter 4 Gas Turbine
Chapter 4 Gas Turbine
 
Gas Turbine Cycles - 5.pptx
Gas Turbine Cycles - 5.pptxGas Turbine Cycles - 5.pptx
Gas Turbine Cycles - 5.pptx
 
selfstudy-1.ppt
selfstudy-1.pptselfstudy-1.ppt
selfstudy-1.ppt
 
Gas turbine 1
Gas turbine  1Gas turbine  1
Gas turbine 1
 
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.pptGas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
 
Gas Power Cycles.ppt
Gas Power Cycles.pptGas Power Cycles.ppt
Gas Power Cycles.ppt
 
Thermodynamic cycles4.ppt
Thermodynamic cycles4.pptThermodynamic cycles4.ppt
Thermodynamic cycles4.ppt
 
Pr 1
Pr 1Pr 1
Pr 1
 
Cogeneration systems
Cogeneration systemsCogeneration systems
Cogeneration systems
 

Más de M. Rio Rizky Saputra

Más de M. Rio Rizky Saputra (17)

PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG YANG DILENGK...
PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG YANG DILENGK...PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG YANG DILENGK...
PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG YANG DILENGK...
 
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...
 
PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG
PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENGPERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG
PERANCANGAN ALAT UJI PEMBAKARAN CRUDE PALM OIL DAN MINYAK GORENG
 
Sistem Perpipaan Gas Alam
Sistem Perpipaan Gas AlamSistem Perpipaan Gas Alam
Sistem Perpipaan Gas Alam
 
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...
PENGARUH PENGGANTIAN COMBUSTION LINER TERHADAP PERFORMA TURBIN GAS PLTGU UNIT...
 
Ocean Energy
Ocean EnergyOcean Energy
Ocean Energy
 
pengujian material DT dan NDT
pengujian material DT dan NDTpengujian material DT dan NDT
pengujian material DT dan NDT
 
HEAT TREATMENT MATERIALS
HEAT TREATMENT MATERIALSHEAT TREATMENT MATERIALS
HEAT TREATMENT MATERIALS
 
Baja - Besi Tuang - Al
Baja - Besi Tuang - AlBaja - Besi Tuang - Al
Baja - Besi Tuang - Al
 
Bearing (bantalan) 2014
Bearing (bantalan) 2014Bearing (bantalan) 2014
Bearing (bantalan) 2014
 
Pembakaran coal
Pembakaran coalPembakaran coal
Pembakaran coal
 
centrifugal pump
centrifugal pumpcentrifugal pump
centrifugal pump
 
Pengukuran laju aliran
Pengukuran laju aliranPengukuran laju aliran
Pengukuran laju aliran
 
Pompa
Pompa Pompa
Pompa
 
DRAWING PROSES
DRAWING PROSESDRAWING PROSES
DRAWING PROSES
 
Presentation1
Presentation1Presentation1
Presentation1
 
Rivets joint
Rivets jointRivets joint
Rivets joint
 

Último

AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 

Último (20)

Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 

Turbin gas cal.

  • 1. PERHITUNGAN KINERJA TURBIN GAS Power Plant Tech Educate and share about Mechanical Engineering
  • 2. Pendahuluan 1. Pengertian kinerja/Performance adalah sesuatu yang dicapai atau prestasi yang diperlihatkan atau kemampuan kerja suatu peralatan. 2. Performance turbin gas:  Design  Off Design 3. Asumsi Perhitungan Performance turbin gas (Siklus Ideal)  Proses Kompresi dan ekspansi ialah berlangsung secara revessible, isentropik dan adiabatic  Fluida kerja berperilaku sebagai gas ideal.  Setiap komponen dianalisis sebagai volume atur pada kondisi tunak.  Efek energi kinetik dan potensial dapat diabaikan.  Penuruan atau kenaikan tekanan pada pembakaran di ruang bakar di abaikan 4. Persamaan yang digunakan Hukum Pertama Termodinamika Q = ΔU + W  Desain Sistem Termodinamika  Performance Test Pabrik  Performance Test Commisioning  Performance Test Setelah melakukan Maintanace ataupun repair) Metode Perhitungan • Perhitungan Langsung / Metode Input-output • Perhitungan tidak langsung
  • 3. GT Operation Data Unit Conversion Parameters Value Unit Compressor Compressor Inlet Temperature 29 C Compressor Inlet Flow 307302.30 kg/hr Compressor Inlet Pressure 1.03 kg/cm2 Compressor Discharge Temperature 414.00 C Compressor Discharge Pressure 1.26 Mpa Combustion Chamber Combustion Chamber Pressure 2467 Kpa Combustion Chamber Temperature 1203.00 C Fuel Flow Gas 5442.96 kg/hr LHV 51971.35 kJ/kg Turbine Exhaust GT Temperature 597.27 C Exhaust GT Pressure 0.19 Kpa Net Load GT 24 MW Parameters Value Unit Symbols Compressor Compressor Inlet Temperature 302.15K T1 Compressor Inlet Flow 85.36kg/s ma Compressor Inlet Pressure 1.01Bar P1 Compressor Discharge Temperature 687.15K T2 Compressor Discharge Pressure 12.60Bar P2 Combustion Chamber Combustion Chamber Pressure 24.67Bar P3 Combustion Chamber Temperature 1476.15K T3 Fuel Flow Gas 1.51kg/s mf LHV 51971.35kJ/kg Turbine Exhaust GT Temperature 870.42K T4 Exhaust GT Pressure 1.90Bar P4 Net Load GT 24000Kw Pout
  • 4. mf 1.51kg/s GHV 51971.35kJ/kg T3 1476.15K P3 24.67Bar T4 870.42K P4 1.90Bar T1 302.15K P1 1.01Bar ma 85.36kg/s 1 2 3 4 T2 687.15K P2 12.60Bar Compressor Combustion Chamber Turbine Generators Net Load GT 24000 Kw Compressor Work (Wc) Efficiency Compressor (ηc) Efficiency Combustion Chamber Heat in Combustion Chamber Turbine Work (Wt) Efficiency Turbine (ηt) GT Performance Shaft Work Efficiency Thermal Air fuel Ratio Back Work Ratio Cycle Work ratio Spesific Fuel Comsumption Hate Rate Efficiency PLTG
  • 5. Parameters Symbols Value Unit Pressure Ratio compresor rp 12.47 Pressure Ratio Turbine rp 0.08 Panas spesifik udara (Kompresi) γ 1.40 Panas spesifik udara (Ekspansi) γ 1.30 Temperature Isentropic compressor T2s 621.34K Temperature Isentropic Turbine T4s 816.94K Determine the isentropic temperature in the compression and expansion process Isentropic Compression Isentropic Expansion Pressure Ratio rp = P2 P1 = 12.60 Bar 1.01 Bar = 12.47 Bar Isentropic Compression γ = 1.4 Rasio Panas Spesifik udara (Gas ideal) proses kompresi γ = 1.3 Rasio Panas Spesifik udara (Gas ideal) proses ekspansi 𝑇2𝑠 = 𝑇1 𝑃2 𝛾−1 𝛾 𝑃1 = 301.15 𝐾 𝑥 12.47 𝐵𝑎𝑟 1.4−1 1.4 = 621.34 K 2s 1 4s 2 3 4 T T2 = 687.15 K T2s = 621.34 K S
  • 6. Compressor Inlet Temperature T1 302.15K Enthalpy Inlet compressor H1 302.35kJ/kg Compressor Discharge Temperature T2 687.15K Enthalpy outlet compressor H2 699.47kJ/kg Temperature Isentropic compressor T2s 621.34K Enthalpy Isentropic compressor H2s 629.49kJ/kg Combustion Chamber Temperature T3 1476.15K Enthalpy Combustion Chamber H3 1486.83kJ/kg Exhaust GT Temperature T4 870.42K Enthalpy outlet turbine H4 899.88kJ/kg Temperature Isentropic Turbine T4s 816.94K Enthalpy Isentropic turbine H4s 840.606kJ/kg Determine the enthalpy • Using the table of properties of ideal gas air Interpolasi = (H atas – Hbawah) / (Tatas - Tbawah) * (T - Tbawah ) + Hbawah = (300.19 – 305.22) / (300 – 305) x (302.15 – 305) + 305.22 = 302.35 Kj/kg
  • 7. Wc (actual) = ma · (H2 – H1) Wc (ideal) = ma · (H2s – H1) ηC = 𝑇2𝑠 −𝑇1 𝑇2 −𝑇1 = 𝐻2𝑠 −𝐻1 𝐻2 −𝐻1 Compressor Qin (Ideal) = mf · LHV Qin (Actual) = ma + mf x H3 - (ma - H2) Combustion Chamber Turbine WT (Actual) = ma + mf · (H3 – H4) Wt (Ideal) = ma + mf * (GHV - H4S) ηT = 𝑇3 −𝑇4 𝑇3 −𝑇4𝑠 = 𝐻3 −𝐻4 𝐻3 −𝐻4𝑠 Exhaust Qout = ma + mf · (H4 – H1) Symbols Value Unit Compressor Compressor Work (Actual) Wca 33898.86Kw Compressor Work (Ideal) Wc Ideal 27924.73kw Compressor Losses Wlosses 5974.13kw Efficiency Compressor 0.82 % 82 Combustion Chamber Heat in Combustion Chamber (Actual) Qin 69458.33Kw Heat in Combustion Chamber (Ideal) Qin 78577.212Kw Combustion Chamber Losses Qlosses 9118.88kw Efficiency Combustion Chamber 0.88 % 88 Turbine Turbine Work (Actual) Wta 50990.25kw Turbine Work (Ideal) Wt ideal 77391.63kw Efficiency Turbine 0.91 90.8% Exhaust Heat out Exhaust 51909.81Kw CALCULATION
  • 8. Performance Calculation Symbols Value Unit Shaft Work Wnett 17091.39kw Efficiency Thermal ηtr 21.75% Spesific Fuel Comsumption SFC 0.318kg/kwh Back Work Ratio BWR 0.66% Air fuel Ratio AFR 56.5 Efficiency PLTG ηp 0.35% Hate Rate HR 3.2741kJ/kwh Cycle Work ratio CWR 34% Shaft Work (Wnett) Wnett = Turbine work – Compressor work Specific Fuel Consumption (SFC ) = 3600 𝑥 𝑚𝑓 𝑊𝑛𝑒𝑡𝑡 Back work ratio (BWR) = 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 𝑊𝑜𝑟𝑘 𝑇𝑢𝑟𝑏𝑖𝑛𝑒 𝑊𝑜𝑟𝑘 Air-fuel ratio (AFR) = 𝑚𝑎 𝑚𝑓 Cycle Work ratio (CWR) = 𝑆ℎ𝑎𝑓t 𝑤𝑜𝑟𝑘 𝑇𝑢𝑟𝑏𝑖𝑛𝑒 𝑤𝑜𝑟𝑘 Efficiency GT / Thermal ηt = 𝑊𝑛𝑒𝑡𝑡 𝑚𝑓 𝑥 𝐿𝐻𝑉 𝑎𝑡𝑎𝑢 𝐻𝐻𝑉 Efficiency power generation (ηp) = 𝐷𝑎𝑦𝑎 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑄𝑖𝑛 Heat rate = 𝑚𝑓 𝑥 𝐿𝐻𝑉𝑎𝑡𝑎𝑢 𝐻𝐻𝑉 𝐷𝑎𝑦𝑎 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟
  • 9. 1 2 3 4 T2 687.15K P2 12.60Bar T2s 621.34K H2 699.47kJ/kg H2s 629.49kJ/kg Wc Ideal 27924.73kW Wca 33898.86kW ηC 82% T1 302.15K P1 1.01Bar ma 85.36kg/s H1 302.35kJ/kg mf 1.51kg/s GHV 51971.35kJ/kg Qin 78577.21Kw ηCc 88% Qin (Actual) 69458.33Kw Turbine Compressor GT Performance Shaft Work 17091.39kW Efficiency Thermal 21.75% Spesific Fuel Comsumption 0.318kg/kWh Back Work Ratio 0.66% Air fuel Ratio 56.5 Hate Rate 3.2741kJ/kWh Cycle Work ratio 0.34% Efficiency PLTG 0.35 % Generators Net Load GT 24000 Kw T3 1476.15K P3 24.67Bar H3 1486.83kJ/kg Wt Ideal 77391.63kW Wt 50990.25kW ηt 90.8% T4 870.42K P4 1.90Bar H4 899.88kJ/kg T4S 816.9K H4S 840.61kJ/kg Qout Ideal 46760.19kW Qout 51909.81kW Combustion Chamber Compressor Losses 5974.13kW Combustion Chamber Losses 9118.88kW Turbine Losses 26401.39kW